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Abstract
An SPQR-tree is a data structure that efficiently represents all planar embeddings of a biconnected
planar graph. It is a key tool in a number of constrained planarity testing algorithms, which seek a
planar embedding of a graph subject to some given set of constraints.

We develop an SPQR-tree-like data structure that represents all level-planar embeddings of a
biconnected level graph with a single source, called the LP-tree, and give a simple algorithm to
compute it in linear time. Moreover, we show that LP-trees can be used to adapt three constrained
planarity algorithms to the level-planar case by using them as a drop-in replacement for SPQR-trees.
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1 Introduction

Testing planarity of a graph and finding a planar embedding, if one exists, are classical
algorithmic problems. For visualization purposes, it is often desirable to draw a graph
subject to certain additional constraints, e.g., finding orthogonal drawings [28] or symmetric
drawings [21], or inserting an edge into an embedding so that few edge crossings are
caused [20]. Historically, these problems have been considered for embedded graphs. More
recent research has attempted to optimize not only one fixed embedding, but instead to
optimize across all possible planar embeddings of a graph. This includes (i) orthogonal
drawings [9], (ii) simultaneous embeddings, where one seeks to embed two planar graphs
that share a common subgraph such that they induce the same embedding on the shared
subgraph (see [8] for a survey), (iii) simultaneous orthogonal drawings [3], (iv) embeddings
where some edge intersections are allowed [1], (v) inserting an edge [20], a vertex [13], or
multiple edges [14] into an embedding, (vi) partial embeddings, where one insists that the
embedding extends a given embedding of a subgraph [4], and (vii) finding minimum-depth
embeddings [6, 7].

The common tool in all of these recent algorithms is the SPQR-tree data structure, which
efficiently represents all planar embeddings of a biconnected planar graph G by breaking down
the complicated task of choosing a planar embedding of G into the task of independently
choosing a planar embedding for each triconnected component of G [16, 17, 18, 22, 26, 29].
This is a much simpler task since the triconnected components have a very restricted structure,
and so the components offer only basic, well-structured choices.
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8:2 An SPQR-Tree-Like Embedding Representation for Level Planarity

An upward planar drawing is a planar drawing where each edge is represented by a y-
monotone curve. For a level graph G = (V,E), which is a directed graph where each
vertex v ∈ V is assigned to a level `(v) such that for each edge (u, v) ∈ E it is `(u) < `(v), a
level-planar drawing is an upward planar drawing where each vertex v is mapped to a point
on the horizontal line y = `(v). Level planarity can be tested in linear time [19, 24, 25, 27].
Recently, the problem of extending partial embeddings for level-planar drawings has been
studied [12]. While the problem is NP-hard in general, it can be solved in polynomial time
for single-source graphs. Very recently, an SPQR-tree-like embedding representation for
upward planarity has been used to extend partial upward embeddings [11]. The construction
crucially relies on an existing decomposition result for upward planar graphs [23]. No such
result exists for level-planar graphs. Moreover, the level assignment leads to components of
different “heights”, which makes our decompositions significantly more involved.

Contribution. We develop the LP-tree, an analogue of SPQR-trees for level-planar embed-
dings of level graphs with a single source whose underlying undirected graph is biconnected.
It represents the choice of a level-planar embedding of a level-planar graph by individual
embedding choices for certain components of the graph, for each of which the embedding is
either unique up to reflection, or allows to arbitrarily permute certain subgraphs around two
pole vertices. Its construction is based on suitably modifying the SPQR-tree of G, which
represents all planar embeddings of G, not just the level-planar ones, such that, eventually,
the modified tree represents exactly the level-planar drawings of G. See Figure 1 (a, b) for
examples of how level planarity is more restrictive than planarity. The size of the LP-tree
is linear in the size of G and it can be computed in linear time. The LP-tree is a useful
tool that unlocks the large amount of SPQR-tree-based algorithmic knowledge for easy
translation to the level-planar setting. In particular, we obtain linear-time algorithms for
partial and constrained level planarity for biconnected single-source level graphs, which
improves upon the O(n2)-time algorithm known to date [12]. Further, we describe the first
efficient algorithm for the simultaneous level planarity problem when the shared graph is a
biconnected single-source level graph. Proofs of marked statements (?) can be found in the
full version [10].

2 Preliminaries

Let G = (V,E) be a connected level graph. For each vertex v ∈ V let d(v) ≥ `(v) denote
the demand of v. Demands provide an interface to model the restrictions imposed on the
embeddings of one biconnected component by other biconnected components; see Figure 1 (c).
An apex of some vertex set V ′ ⊆ V is a vertex v ∈ V ′ whose level is maximum. The demand
of V ′, denoted by d(V ′), is the maximum demand of a vertex in V ′. An apex of a face f is an
apex of the vertices incident to f . A planar drawing of G is a topological planar drawing of the
underlying undirected graph of G. Planar drawings are equivalent if they can be continuously
transformed into each other without creating intermediate intersections. A planar embedding
is an equivalence class of equivalent planar drawings. A path is a sequence (v1, v2, . . . , vj)
of vertices so that for 1 ≤ i < j either (vi, vi+1) or (vi+1, vi) is an edge in E. A directed
path is a sequence (v1, v2, . . . , vj) of vertices so that for 1 ≤ i < j it is (vi, vi+1) ∈ E. A
vertex u dominates a vertex v if there exists a directed path from u to v. A vertex is a
sink if it dominates no vertex except for itself. A vertex is a source if it is dominated by
no vertex except for itself. An st-graph is a graph with a single source and a single sink,
usually denoted by s and t, respectively. Throughout this paper all graphs are assumed to
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Figure 1 In (a), the height of the red component makes it impossible to flip it. In (b), note
that the red and green components can be exchanged, as can the blue and yellow components, but
neither the blue nor the yellow component can be embedded between the red and green component.
In (c), set the demand of v as d(v) = `(w) in the LP-tree that represents the graph that consists of
the red and gray part (but not the striped blue part). This models the restriction imposed on the
embedding of the red subgraph by the striped blue biconnected component.

have a single source s. For the remainder of this paper we restrict our considerations to
level-planar drawings of G where each vertex v ∈ V that is not incident to the outer face is
incident to some inner face f so whose apex a of the set of vertices on the boundary of f
satisfies d(v) < `(a). We will use demands in Section 4 to restrict the admissible embeddings
of biconnected components in the presence of cutvertices. Note that setting d(v) = `(v) for
each v ∈ V gives the conventional definition of level-planar drawings. A planar embedding Γ
of G is level planar if there exists a level-planar drawing of G with planar embedding Γ. We
then call Γ a level-planar embedding. For single-source level graphs, level-planar embeddings
are equivalence classes of topologically equivalent level-planar drawings.

I Lemma 1 (?). The level-planar drawings of a single-source level graph correspond bijectively
to its level-planar combinatorial embeddings with s on the outer face.

To make some of the subsequent arguments easier to follow, we preprocess our input level
graph G on k levels to a level graph G′ on d(V ) + 1 levels as follows. We obtain G′ from G

by adding a new vertex t on level d(V ) + 1 with demand d(t) = d(V ) + 1, connecting it to all
vertices on level k and adding the edge (s, t). Note that G′ is generally not an st-graph. The
embeddings of G′ where the edge (s, t) is incident to the outer face and the embeddings of G
are, in a sense, equivalent.

I Lemma 2 (?). An embedding Γ of G is level-planar if and only if there exists a level-planar
embedding Γ′ of G′ that extends Γ where (s, t) is incident to the outer face.

To represent all level-planar embeddings of G, it is sufficient to represent all level-planar
embeddings of G′ and to remove t and its incident edges from all embeddings. It is easily
observed that if G is a biconnected single-source graph, then so is G′. We assume from now
on that the vertex set of our input graph G has a unique apex t and that G contains the
edge (s, t). We still refer to the highest level as level k, i.e., the apex t lies on level k. To
prove that embeddings are level planar we present some further tools, including a novel
characterization of level planarity, in the full version.

Our description of decomposition trees follows Angelini et al. [2]. Let G be a biconnected
graph. A separation pair is a subset {u, v} ⊆ V whose removal from G disconnects G.
Let {u, v} be a separation pair and let H1, H2 be two subgraphs of G with H1 ∪H2 = G

and H1∩H2 = {u, v}. Define the tree T that consists of two nodes µ1 and µ2 connected by an
undirected arc as follows. For i = 1, 2 node µi is equipped with a multigraph skel(µi) = Hi+ei,
called its skeleton, where ei = (u, v) is called a virtual edge. The arc (µ1, µ2) links the two
virtual edges ei in skel(µi) with each other. We also say that the virtual edge e1 corresponds
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Figure 2 Decompose the embedded graph G on the left at the separation pair u, v. This gives
the center-left decomposition tree whose skeletons are embedded as well. Reflecting the embedding
of skel(µ) or, equivalently, flipping (λ, µ), yields the same decomposition tree with a different
embedding of skel(µ). Contract (λ, µ) to obtain the embedding on the right.

to µ2 and likewise that e2 corresponds to µ1. The idea is that skel(µ1) provides a more
abstract view of G where e1 serves as a placeholder for H2. More generally, there is a
bijection corrµ : E(skel(µ)) → N(µ) that maps every virtual edge of skel(µ) to a neighbor
of µ in T , and vice versa. If it is corrµ((u, v)) = ν, then ν is said to have poles u and v in µ.
If µ is clear from the context we simply say that ν has poles u, v. When the underlying graph
is a level graph, we assume `(u) ≤ `(v) without loss of generality. For an arc (ν, µ) of T , the
virtual edges e1, e2 with corrµ(e1) = ν and corrν(e2) = µ are called twins, and e1 is called
the twin of e2 and vice versa. This procedure is called a decomposition, see Figure 2 on the
left. It can be re-applied to skeletons of the nodes of T , which leads to larger trees with
smaller skeletons. A tree obtained in this way is a decomposition tree of G. A decomposition
can be undone by contracting an arc (µ1, µ2) of T , forming a new node µ with a larger
skeleton as follows. Let e1, e2 be twin edges in skel(µ1), skel(µ2). The skeleton of µ is the
union of skel(µ1) and skel(µ2) without the two twin edges e1, e2. Contracting all arcs of a
decomposition tree of G results in a decomposition tree consisting of a single node whose
skeleton is G. See Figure 2 on the right. Let µ be a node of a decomposition tree with a
virtual edge e with corrµ(e) = ν. The expansion graph of e and ν in µ, denoted by G(e)
and G(µ, ν), respectively, is the graph obtained by removing the twin of e from skel(ν) and
contracting all arcs in the subtree that contains ν.

Each skeleton of a decomposition tree of G is a minor of G. So if G is planar, each skeleton
of a decomposition tree T of G is planar as well. If (µ1, µ2) is an arc of T , and skel(µ1)
and skel(µ2) have fixed planar embeddings Γ1 and Γ2, respectively, then the skeleton of the
node µ obtained from contracting (µ1, µ2) can be equipped with an embedding Γ by merging
these embeddings along the twin edges corresponding to (µ1, µ2); see Figure 2 on the right.
This requires at least one of the virtual edges e1 in skel(µ1) with corrµ1(e1) = µ2 or e2
in skel(µ2) with corrµ2(e2) = µ1 to be incident to the outer face. If we equip every skeleton
with a planar embedding and contract all arcs, we obtain a planar embedding of G. This
embedding is independent of the order of the edge contractions. Thus, every decomposition
tree T of G represents (not necessarily all) planar embeddings of G by choosing a planar
embedding of each skeleton and contracting all arcs. Let eref be an edge of G. Rooting T at
the unique node µref whose skeleton contains the real edge eref identifies a unique parent
virtual edge in each of the remaining nodes; all other virtual edges are called child virtual
edges. The arcs of T become directed from the parent node to the child node. Restricting
the embeddings of the skeletons so that the parent virtual edge (the edge eref in case of µref)
is incident to the outer face, we obtain a representation of (not necessarily all) planar
embeddings of G where eref is incident to the outer face. Let µ be a node of T and let e
be a child virtual edge in skel(µ) with corrµ(e) = ν. Then the expansion graph G(µ, ν) is
simply referred to as G(ν).
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Figure 3 A planar graph on the left and its SPQR-tree in the middle. The five nodes of the
SPQR-tree are represented by their respective skeleton graphs. Dashed edges connect twin virtual
edges and colored edges correspond to Q-nodes. The embedding of the graph on the right is obtained
by flipping the embedding of the blue R-node and swapping the middle and right edge of the P-node.

The SPQR-tree is a special decomposition tree whose skeletons are precisely the tricon-
nected components of G. It has four types of nodes: S-nodes, whose skeletons are cycles,
P-nodes, whose skeletons consist of three or more parallel edges between two vertices, and
R-nodes, whose skeletons are simple triconnected graphs. Finally, a Q-node has a skeleton
consisting of two vertices connected by one real and by one virtual edge. This means that in
the skeletons of all other node types all edges are virtual. In an SPQR-tree the embedding
choices are of a particularly simple form. The skeletons of Q- and S-nodes have a unique planar
embedding (not taking into account the choice of the outer face). The child virtual edges of
P-node skeletons may be permuted arbitrarily, and the skeletons of R-nodes are 3-connected,
and thus have a unique planar embedding up to reflection. We call this the skeleton-based
embedding representation. There is also an arc-based embedding representation. Here the
embedding choices are (i) the linear order of the children in each P-node, and (ii) for each
arc (λ, µ) whose target µ is an R-node whether the embedding of the expansion graph G(µ)
should be flipped. To obtain the embedding of G, we contract the edges of T bottom-up.
Consider the contraction of an arc (λ, µ) whose child µ used to be an R-node in T . At this
point, skel(µ) is equipped with a planar embedding Γµ. If the embedding should be flipped,
we reflect the embedding Γµ before contracting (λ, µ), otherwise we simply contract (λ, µ).
The arc-based and the skeleton-based embedding representations are equivalent. See Figure 3
and Figure 6 (a,b) for examples of a planar graph and its SPQR-tree.

3 A Decomposition Tree for Level Planarity

We construct a decomposition tree of a given single-source level graph G whose underlying
undirected graph is biconnected that represents all level-planar embeddings of G, called
the LP-tree. As noted in the Preliminaries, we assume that G has a unique apex t, for
which `(t) = d(t) holds true. The LP-tree for G is constructed based on the SPQR-tree for G.
We keep the notion of S-, P-, Q- and R-nodes and construct the LP-tree so that the nodes
behave similarly to their namesakes in the SPQR-tree. The skeleton of a P-node consists of
two vertices that are connected by at least three parallel virtual edges that can be arbitrarily
permuted. The skeleton of an R-node µ is equipped with a reference embedding Γµ, and
the choice of embeddings for such a node is limited to either Γµ or its reflection. Unlike
in SPQR-trees, the skeleton of µ need not be triconnected, instead it can be an arbitrary
biconnected planar graph. The embedding of R-node skeletons being fixed up to reflection
allows us to again use the equivalence of the arc-based and the skeleton-based embedding
representations.

The construction of the LP-tree starts out with an SPQR-tree T of G. Explicitly label
each node of T as an S-, P-, Q- or R-node. This way, we can continue to talk about
S-, P-, Q- and R-nodes of our decomposition tree even when they no longer have their
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emax

λ skel(µ) skel(µ1) skel(µ2)λ
emaxeparent

eparent

Figure 4 Result of a P-node µ split with parent λ and child with maximum height ν. Note that
after the split, µ1 is an R-node and µ2 has one less child than µ had.

defining properties in the sense of SPQR-trees. Assume the edge (s, t) to be incident to
the outer face of every level-planar drawing of G (Lemma 2), i.e., consider T rooted at the
Q-node corresponding to (s, t). The construction of our decomposition tree works in two
steps. First, decompose the graph further by decomposing P-nodes in order to disallow
permutations that lead to embeddings that are not level planar. Second, contract arcs of the
decomposition tree, each time fixing a reference embedding for the resulting node, so that we
can consider it as an R-node, such that the resulting decomposition tree represents exactly
the level-planar embeddings of G. The remainder of this section is structured as follows.
The details and correctness of the first step are given in Section 3.1. Section 3.2 gives the
algorithm for constructing the final decomposition tree T . It follows from the construction
that all embeddings it represents are level-planar, and Section 3.3 shows that, conversely, it
also represents every level-planar embedding. In the full version, we present a linear-time
implementation of the construction algorithm.

3.1 P-Node Splits
In SPQR-trees, the children of P-nodes can be arbitrarily permuted. We would like P-nodes
of the LP-tree to have the same property. Hence, we decompose skeletons of P-nodes to
disallow orders that lead to embeddings that are not level planar. The decomposition is based
on the height of the child virtual edges, which we define as follows. Let µ be a node of a
rooted decomposition tree and let u and v be the poles of µ. Define V (µ) = V (G(µ)) \ {u, v}.
The height of µ and of the child virtual edge e with corr(e) = µ is d(µ) = d(e) = d(V (µ)).
If µ is a leaf Q-node it is V (µ) = ∅ and we define the height of µ as `(u).

Now let µ be a P-node, and let Γ be a level-planar embedding of G. The embedding Γ
induces a linear order of the child virtual edges of µ. This order can be obtained by splitting
the combinatorial embedding of skel(µ) around u at the parent edge. Then the following
is true.

I Lemma 3 (?). Let T be a decomposition tree of G, let µ be a P-node of T with poles u, v,
and let emax be a child virtual edge of µ with maximal height. Further, let Γ be a level-planar
embedding of G that is represented by T . If the height of emax is at least `(v), then emax is
either the first or the last edge in the linear ordering of the child virtual edges induced by Γ.

Lemma 3 motivates the following modification of a decomposition tree T . Take a P-node µ
with poles u, v that has a child edge whose height is at least `(v). Denote by λ the parent
of µ. Further, let emax be a child virtual edge with maximum height and let eparent denote
the parent edge of skel(µ). Obtain a new decomposition tree T ′ by splitting µ into two
nodes µ1 and µ2 representing the subgraph H1 consisting of the edges emax and eparent, and
the subgraph H2 consisting of the remaining child virtual edges, respectively; see Figure 4.
Note that the skeleton of µ1, which corresponds to H1, has only two child virtual edges. We
therefore define it to be an R-node. Moreover, observe that in any embedding of skel(µ)
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that is obtained from choosing embeddings for skel(µ1) and skel(µ2) and contracting the
arc (µ1, µ2), the edge emax is the first or last child edge. Conversely, because µ2 is a P-node,
all embeddings where emax is the first or last child edge are still represented by T ′. Apply
this decomposition iteratively, creating new R-nodes on the way, until each P-node µ with
poles u and v has only child virtual edges e that have height at most `(v)− 1. We say that a
node ν with poles x, y has I shape when the height of G(ν) is less than `(y). The following
theorem sets the stage to prove that after this decomposition, the children of P-nodes can be
arbitrarily permuted.

I Theorem 4. Let G be a biconnected single-source graph with unique apex t. There exists a
decomposition tree T that represents all level-planar embeddings of G such that all children
of P-nodes in T have I shape.

This ensures that P-nodes in our decomposition of level-planar graphs work analogously
to those of SPQR-trees for planar graphs. Namely, if we have a level-planar embedding Γ
of G and consider a new embedding Γ′ that is obtained from Γ by reordering the children of
P-nodes, then also Γ′ is level-planar. Hence, in our decomposition the children of P-nodes
can be arbitrarily permuted. See Figure 6 (b,c) for an example and the full version for a
complete proof.

I Theorem 5. Let G be a biconnected single-source graph with a unique apex. There exists
a decomposition tree T that (i) represents all level-planar embeddings of G (plus some planar,
non-level-planar ones), and (ii) if all skeletons of the nodes of T are embedded so that
contracting all arcs of T yields a level-planar embedding, then the children of all P-nodes
in T can be arbitrarily permuted and then contracting all arcs of T still yields a level-planar
embedding of G.

3.2 Arc Processing
In this section, we finish the construction of the LP-tree. The basis of our construction
is the decomposition tree T from Theorem 4, which represents a subset of the planar
embeddings of G that contains all level-planar embeddings, and moreover all children of
P-nodes have I shape. We now restrict T even further until it represents exactly the level-
planar embeddings of G. As of now, all R-node skeletons have a planar embedding that is
unique up to reflection, as they are either triconnected or consist of only three parallel edges.
By assumption, G is level-planar, and there exists a level-planar embedding Γ of G. Recall
that our definition of level-planar embeddings involves demands. Computing a level-planar
embedding Γ of G with demands reduces to computing a level-planar embedding of the
supergraph G′ of G obtained from G by attaching to each vertex v of G with d(v) > `(v) an
edge to a vertex v′ with `(v′) = d(v) without demands. Because G′ is a single-source graph
whose size is linear in the size of G this can be done in linear time [15]. We equip the skeleton
of each node µ with the reference embedding Γµ such that contracting all arcs yields the
embedding Γ. For the remainder of this section we will work with the arc-based embedding
representation. As a first step, we contract any arc (λ, µ) of T where λ is an R-node and µ
is an S-node and label the resulting node as an R-node. Note that, since S-nodes do not
offer any embedding choices, this does not change the embeddings that are represented by T .
This step makes the correctness proof easier. Any remaining arc (λ, µ) of T is contracted
based upon two properties of µ, namely the height of G(µ) and the space around µ in the
level-planar embedding Γ, which we define next. The resulting node is again labeled as an
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w1 w2

a1 a2

a3 v w3

a4
a5

G(λ)
G(µ)

G(ν)

Figure 5 The height of G(λ) is at least `(w1) = `(w2), the height of G(µ) is at most `(v)− 1 and
the height of G(ν) is at least `(w3). The space around λ is `(a1), the space around µ is `(v) and the
space around ν is `(a5).

R-node. Let µ be a node of T with poles u and v. We denote by Γ ◦ µ the embedding
obtained from Γ by contracting G(µ) to the single edge e = (u, v). We call the faces f1, f2
of Γ that induce the incident faces of e in Γ ◦ µ the µ-incident faces. The space around µ
in Γ is min{`(apex(f1)), `(apex(f2))}; see Figure 5. For the time being we will consider the
embeddings of P-node skeletons as fixed. Then all the remaining embedding choices are
done by choosing whether or not to flip the embedding for the incoming arc of each R-node.
Let A denote the set of arcs in T . For each arc a = (λ, µ) ∈ A let space(µ) denote the space
around µ in Γ. We label a as rigid if d(µ) ≥ space(µ) and as flexible otherwise.

Let T ′ be the decomposition tree obtained by contracting all rigid arcs and equipping
each R-node skeleton with the reference embedding obtained from the contractions. We now
release the fixed embedding of the P-nodes, allowing to permute their children arbitrarily.
The resulting decomposition tree is called the LP-tree of the input graph G. See Figure 6 (d)
for an example. Our main result is the following theorem.

I Theorem 6 (?). Let G be a biconnected, single-source, level-planar graph. The LP-tree
of G represents exactly the level-planar embeddings of G and can be computed in linear time.

The next subsection is dedicated to proving the correctness of Theorem 6. The above
algorithm considers every arc of T once. The height of µ and the space around µ in Γ can
be computed in polynomial time. Thus, the algorithm has overall polynomial running time.
In the full version, we present a linear-time implementation of this algorithm.

3.3 Correctness
Process the arcs in top-down order α1, . . . , αm. For i = 0, . . . ,m let Ai = {α1, . . . , αi}
contain the first i processed arcs for i = 0, . . . ,m. Note that A0 = ∅ and Am = A. Denote
by Ri and Fi the arcs in Ai that are labeled rigid and flexible, respectively. We now introduce
a refinement of the embeddings represented by a decomposition tree. Namely, a restricted
decomposition tree T is a decomposition tree together with a subset of its arcs that are
labeled as flexible, and, in the arc-based view, the embeddings represented by T are only
those that can be created by flipping only at flexible arcs. We denote by Ti the restricted
decomposition tree obtained from T by marking only the edges in Fi as flexible.

Initially, F0 = ∅, and therefore T represents exactly the reference embedding Γref and its
reflection. Since all children of P -nodes have I shape and each P-node has I shape, no arc
incident to a P-node is labeled rigid. Therefore, if such an edge is contained in Ai, it is flexible.
In particular, only arcs between adjacent R-nodes are labeled rigid. As we proceed and label
more edges as flexible, more and more embeddings are represented. Each time, we justify the
level planarity of these embeddings. As a first step, we extend the definition of space from
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(a) (b)

(c) (d)

Figure 6 Example construction of the LP-tree for the graph G (a). We start with the SPQR-tree
of G (b). Arcs are oriented towards the root. Next, we split the P-node, obtaining the tree shown in
(c). Finally, we contract arcs that connect R-nodes with S-nodes and arcs that are found to be rigid
(thick dashed lines). This gives the final LP-tree T for G (d).

the previous subsection, which strongly depends on the initial level-planar embedding Γ,
in terms of all level-planar embeddings represented by the restricted decomposition tree Ti.
Let µ be a node of Ti with poles u, v. The space around µ is the minimum space around µ in
any level-planar embedding represented by the restricted decomposition tree Ti. Now let Γ
be a planar embedding of G and let Π be a planar embedding of G(µ) where u and v lie on
the outer face. Because u and v is a separation pair that disconnects G(µ) from the rest of G
and G(µ) is connected, the embedding of G(µ) in Γ can be replaced by Π. Let Γ + Π refer to
the resulting embedding. Now let Γ be a planar embedding of G and let µ be a node of T .
Let Π denote the restriction of Γ to G(µ) and let Π̄ be the reflection of Π. Reflecting µ in T
corresponds to replacing Π by Π̄ in Γ, obtaining the embedding Γ + Π̄ of G.

The idea is to show that if there is (is not) enough space around a node µ to reflect it, it
can (cannot) be reflected regardless of which level-planar embedding is chosen for G(µ). So,
the algorithm always labels arcs correctly. We use the following invariant.
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I Lemma 7 (?). The restricted decomposition tree Ti satisfies the following five conditions.
1. All embeddings represented by Ti are level planar.
2. Let (λ, µ) be an arc that is labeled as flexible. Let Γ be an embedding represented by Ti−1

and let Π be any level-planar embedding of G(µ). Then Γ + Π and Γ + Π̄ are level planar.
3. Let (λ, µ) be an arc that is labeled as rigid. Let Γ be an embedding represented by Ti−1

and let Π be a level-planar embedding of G(µ) so that Γ + Π is level planar. Let all
skeletons of Ti be embedded according to Γ + Π. Then skel(µ) has the reference embedding
and Γ + Π̄ is not level planar.

4. The space around each node µ of Ti is the same across all embeddings represented by Ti.
5. Let Γ be a level-planar embedding of G so that there exists a level-planar embedding Γp

of G that (i) is obtained from Γ by reordering the children of P-nodes, and (ii) satis-
fies Γp = Γref(π1, π2, . . . , πm) where πj indicates whether arc αj = (λj , µj) should be
flipped (πj = ᾱj) or not (πj = αj), and it is πj = αj for j > i. Then Γ is represented
by Ti.

The restricted decomposition tree Tm represents only level-planar embeddings by Property 1
of Lemma 7. Because no arc of Tm is unlabeled, it also follows that all level-planar embeddings
of G are represented by Tm. Contracting all arcs labeled as rigid in Tm gives the LP-tree
for G, which concludes our proof of Theorem 6.

4 Applications

We use the LP-tree to translate efficient algorithms for constrained planarity problems to
the level-planar setting. First, we extend the partial planarity algorithm by Angelini et
al. [4] to solve partial level planarity for biconnected single-source level graphs. Second,
we adapt this algorithm to solve constrained level planarity. In both cases we obtain a
linear-time algorithm, improving upon the best previously known running time of O(n2),
though that algorithm also works in the non-biconnected case [12]. Third, we translate the
simultaneous planarity algorithm due to Angelini et al. [5] to the simultaneous level planarity
problem when the shared graph is a biconnected single-source level graph. Previously, no
polynomial-time algorithm was known for this problem.

Partial Level Planarity. Angelini et al. define partial planarity in terms of the cyclic orders
of edges around vertices (the “edge-order definition”) as follows. A partially embedded
graph (Peg) is a triple (G,H,H) that consists of a graph G and a subgraph H of G together
with a planar embedding H of H. The task is to find an embedding G of G that extends H
in the sense that any three edges e, f, g of H that are incident to a shared vertex v appear
in the same order around v in G as in H. The algorithm works by representing all planar
embeddings of G as an SPQR-tree T and then determining whether there exists a planar
embedding of G that extends the given partial embedding H as follows. Recall that e, f, g
correspond to distinct Q-nodes µe, µf and µg in T . There is exactly one node ν of T that lies
on all paths connecting two of these Q-nodes. Furthermore, e, f, g belong to the expansion
graphs of three distinct virtual edges ê, f̂ , ĝ of skel(ν). The order of e, f and g in the planar
embedding represented by T is determined by the order of ê, f̂ , ĝ in skel(ν), i.e., by the
embedding of skel(ν). Fixing the relative order of e, f, g therefore imposes certain constraints
on the embedding of skel(µ). Namely, an R-node can be constrained to have exactly one of
its two possible embeddings and the admissible permutations of the neighbors of a P-node
can be constrained as a partial ordering. To model the embedding H consider for each
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vertex v of H each triple e, f, g of consecutive edges around v and fix their order as in H.
The algorithm collects these linearly many constraints and then checks whether they can be
satisfied simultaneously.

Define partial level planarity analogously, i.e., a partially embedded level graph is a
triple (G,H,H) of a level graph G, a subgraph H of G and a level-planar embedding H
of H. Again the task is to find an embedding G of G that extends H in the sense that any
three edges e, f, g of H that are incident to a shared vertex v appear in the same order
around v in G as in H. This definition of partial level planarity is distinct from but (due
to Lemma 1 (?)) equivalent to the one given in [12], which is a special case of constrained
level planarity as presented in the next section. LP-trees exhibit all relevant properties
of SPQR-trees used by the partial planarity algorithm. Ordered edges e, f, g of G again
correspond to distinct Q-nodes of the LP-tree T ′ for G. Again, there is a unique node ν
of T ′ that has three virtual edges ê, f̂ , ĝ that determine the order of e, f, g in the level-planar
drawing represented by T ′. Finally, in LP-trees just like in SPQR-trees, R-nodes have exactly
two possible embeddings and the virtual edges of P-nodes can be arbitrarily permuted. Using
the LP-tree as a drop-in replacement for the SPQR-tree in the partial planarity algorithm due
to Angelini et al. gives the following, improving upon the previously known best algorithm
with O(n2) running time.

I Theorem 8. Partial level planarity can be solved in linear running time for biconnected
single-source level graphs.
Angelini et al. extend their algorithm to the connected case [4]. This requires significant
additional effort and the use of another data structure, called the enriched block-cut tree,
that manages the biconnected components of a graph in a tree. Some of the techniques
described in this paper, in particular our notion of demands, may be helpful in extending our
algorithm to the connected single-source case. Consider a connected single-source graph G.
All biconnected components of G have a single source and the LP-tree can be used to represent
their level-planar embeddings. However, a vertex v of some biconnected component H of G
may be a cutvertex in G and can dominate vertices that do not belong to H. Depending on
the space around v and the levels on which these vertices lie this may restrict the admissible
level-planar embeddings of H. Let X(v) denote the set of vertices dominated by v that do
not belong to H. Set the demand of v to d(v) = d(X(v)). Computing the LP-tree with
these demands ensures that there is enough space around each cutvertex v to embed all
components connected at v. The remaining choices are into which faces of H incident to v
such components can be embedded and possibly nesting biconnected components. These
choices are largely independent for different components and only depend on the available
space in each incident face. This information is known from the LP-tree computation. In
this way it may be possible to extend the steps for handling non-biconnected graphs due to
Angelini et al. to the level planar setting.

Constrained Level Planarity. A constrained level graph (Clg) (G, {≺′1,≺′2, . . . ,≺′k}) con-
sists of a k-level graph G and partial orders ≺′i of Vi for i = 1, 2, . . . , k (the “vertex-order
definition”) [12]. The task is to find a drawing of G, i.e., total orders ≺i of Vi that extend ≺′i
in the sense that for any two vertices u, v ∈ Vi with u ≺′i v it is u ≺i v.

I Theorem 9 (?). Constrained level planarity can be solved in linear running time for
biconnected single-source level graphs.

Proof Sketch. Consider a depth-first-search tree D of G. Translate each vertex-order
constraint u ≺′i v to an edge-order constraint around the lowest common ancestor of u and v
in D and use a similar approach as for partial level planarity. J
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Figure 7 In the R-node, e fixes the relative embeddings of G(λ) and G(µ). In the level-planar
setting, e also fixes the embedding of G(ν). In the S-node, e2 and e3 fix the relative embeddings
of G(λ), G(ν) and G(λ), G(µ), respectively. In the level-planar setting, e1 also fixes the embedding
of G(ν). In the P-node, e1 fixes the relative embeddings of G(λ) and G(µ). In the level-planar
setting, e1 also fixes the embedding of G(ν).

Simultaneous Level Planarity. We translate the simultaneous planarity algorithm of An-
gelini et al. [5] to solve simultaneous level planarity for biconnected single-source graphs.
Let G1 = (V,E1) and G2 = (V,E2) be two graphs with the same vertices. The inclusive
edges E1 ∩E2 together with V make up the intersection graph G1∩2, or simply G for short.
All other edges are exclusive. The graphs G1 and G2 admit simultaneous embeddings E1, E2
if the relative order of any three distinct inclusive edges e, f and g with a shared endpoint is
identical in E1 and E2. The algorithm of Angelini et al. works by building the SPQR-tree for
the shared graph G and then expressing the constraints imposed on G by the exclusive edges
as a 2-Sat instance S that is satisfiable iff G1 and G2 admit a simultaneous embedding.
We give a very brief overview of the 2-Sat constraints in the planar setting. In an R-node,
an exclusive edge e has to be embedded into a unique face. This potentially restricts the
embedding of the expansion graphs G(λ), G(µ) that contain the endpoints of e, i.e., the
embedding of G(λ) and G(µ) is fixed with respect to the embedding of the R-node. Add
a variable xµ to S for every node of T with the semantics that xµ is true if skel(µ) has its
reference embedding Γµ, and false if the embedding of skel(µ) is the reflection of Γµ. The
restriction imposed by e on G(λ) and G(µ) can then be modeled as a 2-Sat constraint on
the variables xλ and xµ. For example, in the R-node shown in Figure 7 on the left, the
internal edge e must be embedded into face f1, which fixes the relative embeddings of G(λ)
and G(µ). In an S-node, an exclusive edge e may be embedded into one of the two candidate
faces f1, f2 around the node. The edge e can conflict with another exclusive edge e′ of the
S-node, meaning that e and e′ cannot be embedded in the same face. This is modeled by
introducing for every exclusive edge e and candidate face f the variable xfe with the semantics
that xfe is true iff e is embedded into f . The previously mentioned conflict can then be
resolved by adding the constraints xf1

e ∨ xf2
e , xf1

e′ ∨ xf2
e′ and xf1

e 6= xf1
e′ to S. Additionally,

an exclusive edge e whose endpoints lie in different expansion graphs can restrict their
respective embeddings. For example, in the S-node shown in Figure 7 in the middle, the
edges e2 and e3 may not be embedded into the same face. And e2 and e3 fix the embeddings
of G(λ) and G(ν) and of G(λ) and G(µ), respectively. This would be modeled as xλ = xν
and xλ = xµ in S. In a P-node, an exclusive edge can restrict the embeddings of expansion
graphs just like in R-nodes. Additionally, exclusive edges between the poles of a P-node
can always be embedded unless all virtual edges are forced to be adjacent by internal edges.
For example, in the P-node shown in Figure 7 on the right, e1 fixes the relative embeddings
of G(λ) and G(µ). And e2 can be embedded iff one of the blue edges does not exist.

Adapt the algorithm to the level-planar setting. First, replace the SPQR-tree with the
LP-tree T . The satisfying truth assignments of S then correspond to simultaneous planar
embeddings E1, E2 of G1, G2, so that their shared embedding E of G is level planar. However,
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due to the presence of exclusive edges, E1 and E2 are not necessarily level planar. To make
sure that E1 and E2 are level planar, we add more constraints to S. Consider adding an
exclusive edge e into a face f . This splits f into two faces f ′, f ′′. The apex of at least one face,
say f ′′, remains unchanged. As a consequence, the space around any virtual edge incident
to f ′′ remains unchanged as well. But the apex of f ′ can change, namely, the apex of f ′ is
an endpoint of e. Then the space around the virtual edges incident to f ′ can decrease. This
reduces the space around the virtual edge associated with ν. In the same way as described
in Section 3.2, this restricts some arcs in T . This can be described as an implication on the
variables xfe and xν . For an example, see Figure 7. In the R-node, adding the edge e with
endpoint v into f1 creates a new face f ′1 with apex v. This forces G(ν) to be embedded so
that its apex a is embedded into face f2. Similarly, in the S-node and in the P-node, adding
the edge e1 restricts G(ν). We collect all these additional implications of embedding e into f
and add them to the 2-Sat instance S. Each exclusive edge leads to a constant number of
2-Sat implications. To find each such implication O(n) time is needed in the worst case.
Because there are at most O(n) exclusive edges this gives quadratic running time overall.
Clearly, all implications must be satisfied for E1 and E2 to be level planar. On the other
hand, suppose that one of E1 or E2, say E1, is not level planar. Because the restriction of E1
to G is level planar due to the LP-tree and planar due to the algorithm by Angelini et al.,
there must be a crossing involving an exclusive edge e of G1. This contradicts the fact that
we have respected all necessary implications of embedding e. We obtain Theorem 10.

I Theorem 10. Simultaneous level planarity can be solved in quadratic time for two graphs
whose intersection is a biconnected single-source level graph.

5 Conclusion

The majority of constrained embedding algorithms for planar graphs rely on two features of
the SPQR-tree: they are decomposition trees and the embedding choices consist of arbitrarily
permuting parallel edges between two poles or choosing the flip of of a skeleton whose
embedding is unique up to reflection. We have developed the LP-tree, an SPQR-tree-like
embedding representation that has both of these features. SPQR-tree-based algorithms can
then usually be executed on LP-trees without any modification. The necessity for mostly
minor modifications only stems from the fact that in many cases the level-planar version
of a problem imposes additional restrictions on the embedding compared to the original
planar version. Our LP-tree thus allows to leverage a large body of literature on constrained
embedding problems and to transfer it to the level-planar setting. In particular, we have
used it to obtain linear-time algorithms for partial and constrained level planarity in the
biconnected case, which improves upon the previous best known running time of O(n2).
Moreover, we have presented an efficient algorithm for the simultaneous level planarity
problem. Previously, no polynomial-time algorithm was known for this problem. Finally,
we have argued that an SPQR-tree-like embedding representation for level-planar graphs
with multiple sources does not substantially help in solving the partial and constrained level
planarity problems, is not efficiently computable, or does not exist.
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