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Abstract: An optimal power flow algorithm for unbalanced three-phase distribution grids is pre-
sented in this paper as a new tool for grid planning on low voltage level. As additional equipment
like electric vehicles, heat pumps or solar power systems can sometimes cause unbalanced power
flows, existing algorithms have to be adapted. In comparison to algorithms considering balanced
power flows, the presented algorithm uses a complete model of a three-phase four-wire low voltage
grid. Additionally, a constraint for the voltage unbalance in the grid is introduced. The algorithm can
be used to optimize the operation of energy storage systems in unbalanced systems. The used grid
model, constraints, objective function and solver are explained in detail. A validation of the algorithm
using a commercial tool is done. Additionally, three exemplary optimizations are performed to show
possible applications for this tool.

Keywords: optimal power flow; OPF; three-phase optimal power flow; TOPF; distribution grid; low
voltage grid; unbalanced power flow; battery storage; energy storage

1. Introduction

The planned reduction of carbon dioxide emissions leads to a transition of the energy
system towards a renewable energy based generation in many countries worldwide. Sev-
eral renewable generation units like solar power systems are connected on low voltage
level. Additionally, new loads such as electric vehicles or heat pumps are integrated into
the power grid. These systems are mainly connected on low voltage level as well. The new
equipment increases fluctuations in the power flow ([1,2]) due to their high power demand
and hence the planning processes are getting more complicated for low voltage grids.

Optimal power flow (OPF) algorithms have been introduced by Carpentier in 1962 [3]
to solve the economic dispatch problem and adapted to a variety of problems since then.
Overviews of different applications can be found in [4] or [5]. Nowadays, OPF algorithms
are mainly known as planning tool on transmission level [5]. Taking into account the
developments mentioned above, applications for this algorithm on distribution level are
beginning to occur. One important difference on distribution level is the existence of
high penetrations of distributed generation (DG). Adaptions of OPF algorithms for this
application have been presented in [6-12]. While [6] uses such an algorithm as planning
tool to efficiently place and size DG units, References [7-9] optimize the operation of DG
units to minimize the total cost for generation ([7,8]) or to minimize energy losses [9].
Refs. [10-12] suggest to implement such an algorithm in an active network management.

Another difference is that on distribution level the assumption of balanced power
flows is not given in general. Adapted algorithms have already been presented in litera-
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ture ([13-15]) with the name three-phase optimal power flow (TOPF) ([13,16,17]). Appli-
cations are conservation voltage reduction [18], voltage unbalance mitigation [17], active
control of distribution grids ([19,20]) (e.g., in a Distribution Management System [16]),
dispatch of energy storage systems [21], the placement and sizing of DG units [22] like
inverter-based renewable systems [23] or load scheduling [24].

One approach for TOPF algorithms is to use an unbalanced power flow algorithm
internally like [13,16,18,25,26]. The power flow results are then used to change the input
data for the next execution of the power flow algorithm, so that an optimal solution
for the whole problem is achieved after several executions of the power flow algorithm.
Hence, for this approach a sequence of algorithms is used internally. In contrast to that,
the algorithm in this paper consists only of a single optimization problem that is build up
and solved like in [14,17,19-21,23,24] or [27].

In general, the size of the optimization problem increases significantly in comparison
to an algorithm for balanced grids. This increase is explained later in Section 7.11 for the
approach chosen in this paper. Especially for large scale grids, it can be challenging to
solve the TOPF problem if it is formulated as a single optimization problem [28]. Therefore,
simplification techniques are presented in literature, for example linearization ([20,23,27]),
relaxation and convexification techniques ([21,29-31]) and distributed [32] or stochastical
approaches [19].

In this paper, an algorithm is developed that can be used to optimize energy storage
systems in low voltage grids. Therefore, a dynamic three-phase optimal power flow
algorithm like in [13,15,21] or [33] is necessary. References [13,15] do not deal with storage
systems. Reference [21] optimizes the dispatch for energy storage systems, while [33]
focuses only on the modelling of the storage system. In contrast to that, the focus in
this publication is the operation of a storage system such that no grid limits are violated
(see [34-36]). To ensure an exact calculation of grid parameters, simplification techniques
are not used here. The problem focuses on a single low voltage feeder and can be solved
using the presented solver without any approximations in contrast to [21].

In Sections 2 and 3, the basic formulation of the optimization problem is explained
as well as the used solver. In Section 4, the approach for modelling the low voltage grid
is presented. The variables being optimized by the algorithm are introduced in Section 5.
In Sections 6 and 7, the exact cost function and constraints are introduced. In Section 8,
the results of a validation with a commercial software tool are shown. In Section 9, the re-
sults of an exemplary optimization including a battery storage system are explained.
A preliminary version of this article was presented at the 55th International Universities
Power Engineering Conference (UPEC 2020) [37].

2. Dynamic Optimal Power Flow Algorithm
OPF problems can be described in the following form:

min[F(x)] ©)
subject to

8(x) =0, 2

h(x) <0. 3)

F(x) is the so-called cost function, which is minimized while the equality constraints g(x)
as well as the inequality constrains /(x) have to be fulfilled. A dynamic OPF algorithm
with a horizon T is used in this paper to be able to include equipment, whose actual
condition is dependent on states in previous or future time steps, e.g., any kind of storage
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system. Therefore, the state vector x contains optimization variables for all time steps t
witht=1...T.

r=| @)

Additionally, the cost function sums up to
T
F(x) =) F'(x"). (5)
t=1

3. Solving the Optimization Problem

TOPF problems can be solved using off-the-shelf nonlinear programming solvers such
as IPOPT (e.g., in [38]), CPLEX (e.g., in [27]), MOSEK (e.g., in [38]) or KNITRO (e.g., in [39]).
For this publication, MIPS [40] was used as solver. In the following section, it is shortly
introduced to deepen the understanding of the optimization problem.

MIPS us based on the Primal-Dual Interior Point Method (PDIPM). This method is
used by other authors to solve OPF problems like [14,17,41,42]. A vector of slack variables 7
is introduced to transform the inequality constraints /1(x) to equality constraints. The slack
variable Z, is weighted with the barrier coefficient 7 to keep the inequality constraints
away from zero in the first iterations and hence to avoid early convergence into local
minima [40]. nj is the number of inequality constraints.

"
min[F(x) —7 ) Zu| ©)
n=1
Subject to
g(x) =0 @)
h(x)+Z=0 ®)
Z>0 ©)

As 7 approaches zero, the solution of this problem approaches the original problem.
The Langrangian £ is built up as follows:

£ (x, A, Z) = F(x) + T (h(x) + Z) + ATg(x) =y Y,y In(Zn) (10)

u and A are the Langrangian multipliers which are assigned to inequality constraints ()
and equality constraints (A). The first order optimality conditions for the optimization
problem are satisfied when the partial derivatives of the Lagrangian (see Equation (10))
above are all set to zero. In the PDIPM, the first order optimality conditions are solved
using Newton’s method. Therefore, first and second derivative of the constraints as well as
the cost function have to be determined. A detailed explanation of PDIPM that is used in
this paper can be found in [42].

4. Model for the Three-Phase Low Voltage Grid

The approach to model the grid as a single-phase grid as used in most existing OPF
algorithms can be seen in Figure 1 for a grid consisting of two buses, one generator, one
line and one load. The generator is feeding-in power to the grid that is flowing over a
line to the load, where the energy is consumed. The algorithm presented in this paper
is based on the software tool MATPOWER ([40,43]), which only uses a single-phase grid
representation. It was extended through the implementation of storage systems in [34,41],
but they are again only using a single-phase approach.
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Figure 1. Model of the grid for a one-phase OPF algorithm.

In Germany, the electric power system is designed as a three-phase four wire system.
Assuming a balanced power flow on all three phases, it is sufficient to calculate the power
flow on only one of the three phases. As the algorithm described in this paper is adjusted
especially for the modelling of distribution grids, the assumption of a balanced power flow
is not made here. In a typical low voltage feeder in Germany, the number of connected
households is not high enough to assume a balanced power flow for statistical reasons.
Therefore, all three phases have to be modelled independently. Furthermore, the power
flow on the neutral conductor has to be taken into account as an additional voltage drop
arises there. The vectorial sum of the current flowing through the different phases of a load
is flowing back on the neutral conductor. In comparison to the single-phase OPF, there
are in total four slack buses. One for each conductor. This concept is shown in Figure 2.
Instead of two points like in Figure 1, the grid shown in Figure 2 consists of eight points.
Each point is named with two numbers. The first number is the number of the bus and the
second number is the phase number (1, 2 or 3) or N for the neutral conductor.

1-1 1Ll 2-1

Generator 1-1 Il> O
ZL1

1-2 N

Generator 1-2 Il> O
212

1-3 ’,f 2-3

Generator 1-3 —O0— ) O
ZL3

I14
Generator 1-N Il> O
1-N Zi 2-N

Figure 2. Model of the grid for three-phase OPF algorithm.

In most power flow software, Kron’s reduction is used to model the three-phase four
conductor grid [21]. The advantage is that only three phases have to be modelled. This
approach is based on the Carson Equations, where the voltage drop over earth is considered
as part of the line impedances. Using Kron’s reduction, it is additionally assumed that
voltage drop over the neutral conductor is zero and therefore the neutral conductor does
not have to be explicitly represented.

In this publication, we use a different modeling approach. The neutral conductor
is explicitly represented (see Figure?2) as the current and voltage drop on the neutral
conductor have to be considered to be able to ensure the compliance with the given grid
limits. The diameter of the neutral conductor is smaller than for the other conductors
for several cable types [44]. Hence, it is necessary to model the current on the neutral
conductor explicitly to be able to take into account the burden of the neutral conductor.
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Additionally, contact resistances between earthing devices and earth are considered and
an additional conductive path is modelled. This is not possible using Kron’s reduction.
The reason for this modelling approach is that the voltage drop on the neutral conductor
can be significant in German low voltage grids under unbalanced conditions if the soil is
not or only weakly conductive or the distance between the grounding points is large [44].

4.1. Representation of a Load as Impedance

In literature, there exist three different models for loads depending on their character-
istic (constant power, constant impedance or constant current). In most OPF calculations,
only constant power loads are used. In this paper, constant power and constant impedance
loads are considered as these are the most common load types in German grids [45]. The to-
tal power of a load S'p at bus B can then be divided to a part acting as a constant power
load S'g s and a part as constant impedance load S'g 7.

S's = S'ss+ S's 2 (11)

If loads are modelled as constant power loads S'gs, the method presented in
Sections 7.2 and 7.3 is applied. Constant impedance loads S'pz are represented by an
impedance z'[y that is added between point B-CP and B-N. L is a shortcut for Line and Y is
the name of the line. B is the bus where the load is connected. C denotes the conductor
where the load is connected C = (1, 2, 3 or N). When equipment can only be connected to
Phase 1, 2 or 3, the symbol B-CP is used, where CP = (1, 2 or 3). B-N is the corresponding
point to point B-CP on the neutral conductor (see Figure 3). The advantage of this represen-
tation is that impedances can be easily incorporated in the admittance matrix y [31] and
hence the impedance matrix z. ;

1-1 i 2-1
Generator 1-1 @—O—=—{> O

211
1-2 IL2 ]
Generator 1-2 @-O—I—I—D 202
212
1-3 Liy3
Generator 1-3 @
Zi3 iL7 iL6 iLs
ZL7 ZL6 Z15
iL4
Generator 1-N @—O—-I_.—D O
1-N Zia 2-N

Figure 3. Model of the grid for three-phase OPF algorithm.

The input data for the loads have to be processed to calculate the value of the
impedance. For the constant impedance approach, it is assumed that the nominal power
S'p,z is consumed at nominal voltage Unom. So the impedance is calculated as follows

2

(%

2y = (Qom) (12)
Sz
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As the power S'p 7 consumed by the load may change in each time step ¢, the impedance
z'1y is also time-dependent. The impedances calculated here to represent a load are part
of the calculation of the impedance matrix z (see Section 4.2). As z'[y is time-dependent,
the admittance matrix y is equally time-dependent. A corresponding label z* or ! is not
used in this paper, for better clarity and as constant impedance loads are only an optional
modelling approach.

4.2. The Impedance Matrix

The impedance matrix z is used to calculate the currents and power flows in the grid
depending on the voltages. vt is a vector containing all voltages at time step t. A vector
with currents flowing on all lines 7'} j, can be calculated as follows:

1

e

' (13)

SH

Line =2 0'=y"

The admittance matrix y is the inverse of the impedance matrix z. For the test grid
shown in Figure 3, the impedance matrix z is a 7 x 8 matrix having the following form:

+ -1/ Y4
' Z11 Z12 213 Z14 215 Z16 Z17 Z18 ot
‘t v -
2 Z21 Z22 423 Z24 425 Z26  Z27  Z28 Utl )
t (A
'3 Z31 Z32 Z33 434 Z35 Z36 Z37 438 Utz )
it _ (AR
e | = | za1 za2 243 Zaa Zas Zae Zay  Zag | ots (14)
‘t U 1-
I'Ls Z51 452 453 454 455 456 Z57 458 vtz 3
t U
L6 Z61 Z62 Z63 Z64 Z65 266 267 Z68 vt1 N
t U1-
I W4 Z71 272 273 Z74  Z75 276 Z77  Z78 Utz N

The naming is in accordance to Figure3. v'pc refers to the complex voltage at
pointB-C. In Equation (15), the current on Line1 i'{; is calculated as an example for
the grid in Figure 3.

1 1 Ut11—0t21
-t _ t t =1 = 4
i =—"011—— 0y = —+—% (15)
ZL1 ZL1 ZL1

For the test grid shown in Figure 3, the impedance matrix z has the following entries:

i1 z1n —zi1 O 0 0 0 0 0 - QEH
i'io 0 0 zip —z2 O 0 0 0 gtz'l
i3 0 0 0 0 zi3 —zi3 O 0 Qt1-2
ity | = 0 0 0 0 0 0  zi4a —zi4 : Qtz-z (16)
5 0 zs 0 0 0 0 0 -zs s
i're 0 0 0 zis O 0 0  —zi6 gt >3
ity 0 0 0 0 0 ziz 0 -—z7 Qtl_N
02N

In real low voltage grids, there are inductive and conductive couplings between the
different phases as seen in Figure 4. For a correct calculation, especially for unbalanced
power flows, these mutual impedances have to be considered [44].
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1-1 I
Generator 1-1 ®—O———|_|——1>

— (
ZL1
. ZL12
12 L2 z
Generator 1-2 ®_O ﬂL13 2(_)2
z
12 ' i3 > ZLIN
1-3 s 2-3
Generator 1-3 ®—C -——D
Z13 > ZN iy T i T iLs
ZL3N ZL7 ZL6 ZL5
iL4
Generator 1-N ®_O__—|—'_—‘> ) I
1-N 2-N

ZL4

Figure 4. Model of the grid for a three-phase OPF algorithm including mutual impedances.

Taking into account the mutual impedances leads to the following impedance matrix z:

211 —ZL1  ZL12  —ZL12  Z2L13  —ZL13 ZLIN
2121  —TZL21  ZL2 —Zl2 2123 TZL23 ZL2N
Z131  —Z131 2132 —ZL32  ZL3 —ZL3  ZL3N
z= ZIN1 —ZLN1 ZLN2 —ZLN2 ZLN3 —ZLN3 %4
0 Z15 0 0 0 0 0
0 0 0 216 0 0 0
0 0 0 0 0 zr7 0

Under normal circumstances, the impedances of a line z11, z1»
Therefore, zg is introduced as series impedance of the cable.

Zg = Z11 = Z12 = Z13 = Z14

—ZLIN
—ZL2N
—ZL3N

—24 (17)
—2Z15
—Zl6

—ZLy7

and zy3 are equal.

(18)

The mutual impedances are not the same as the distances between the different
conductors inside the cable are not the same. As can be seen in [44], the assumption of
same impedances leads only to minor differences in the results, therefore the mean value
of the mutual impedance z); is used for all mutual impedances in this paper.

ZM = ZL12 = ZL13 = ZLIN = 2121 = Z1.23 = ZL2N = Z131 = ZL32 = ZL3N

= ZLN1 = ZLN2 = ZLN3

(19)

Using the newly introduced variables zg and zyy, the set of equations in Equation (17)

can be simplified to Equation (20).

i1y 25 —2Zs ZM —ZM ZM —2ZIM 2ZM —Z
i'ro ZIM —ZM  Zs  —ZS ZIM —ZM 2ZM —Z
i'ts ZM —ZM ZM —ZM 25  —ZS ZM —Z
e |=] z2M —2M 2M —2Zm 2ZM —2ZM Zs  —Zs
i'Ls 0 zi5 O 0 0 0 0 —zi5
i'Le 0 0 0 zie O 0 0 —zi6
ity 0 0 0 0 0 ziz 0 —zy

o'
v
W)
v
o3
o3
YN
[N

(20)

In Germany, there are several grounding points in a low voltage grid. Besides a
grounding point at the low voltage side of the MV /LV transformer, there are additional
connections to earth at each household as well as at cable distribution cabinets. Hence,
an additional conductive path exists through earth. As shown in [44], neglecting this
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conductive path leads to significant deviations. To model the conductive path through
earth, an approach presented in [44] is used. It consists of an imaginary point that represents
the earth. This point is named E in Figure 5.

All points in the low voltage grid being grounded are connected to this point directly
via an earthing resistance. This earthing resistance consists of the contact resistance between
earthing device and ground as well as the resistance of the ground. In Table 1, the values of
the assumed earthing resistances according to [44] are shown.

Table 1. Earthing resistances from [44].

Equipment Earthing Resistance
Transformer 60
Household 20

Cable distribution cabinet 20

1-1

v
—

Generator 1-1

ZL12

1-2

ZL13

W
8]

Generator 1-2

o

> ZLIN

2123

Generator 1-3

> ZioN iL7 T iLe T iLs

ZL3N L7 ZL6 ZLs

—
y,

Generator 1-N O

—<}j§ Ci
.
L
L

2-N
irg iLo
0O
gy — A\ gy
E
ZL8 ZL9

Figure 5. Model of the grid for a three-phase OPF algorithm including mutual impedances and
earthing impedances.

As the points 1-1, 1-2, 1-3 and 1-N in Figure 4 model the low voltage side of a MV /LV
transformer and the points 2-1, 2-2, 2-3 and 2-N for example a load in a household, the re-
sulting grid model including grounding points can be seen in Figure 5. The corresponding
impedance matrix z is then a 9 x 9 matrix as shown in Equation (21).

-1

Zs  —2Zs ZM —2ZM ZM —2ZM 2ZM —Z 0 o'
ZIM —ZM ZS  —ZS 2ZM —ZM 2ZIM —Z 0 v
ZIM —ZM ZM —2ZM 2§  —2ZS ZIM —Z 0 v
ZIM —ZM ZM —ZM ZM —ZM %S  —Z 0 o'
0 zs 0 0 0 O 0 —zi5 O o3 (21)
0 0 0 zis O 0 0 —zi O 03
0 0 0 0 0 ziz 0 —z7z O YN
0 0 0 0 0 0 zis 0 —zg N
0 0 0 0 0 0 0 zg —zy v'g
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4.3. The Nodal Impedance Matrix

The nodal impedance matrix zn,o4,1 is calculated using z and is used to calculate the
sum of the currents that are flowing from a point B-C to other points. ig,s is a vector
containing all these currents while i'g.c refers to the sum of the currents at point B-C.

—

g -1
itgys = ZNodal ~ * ot (22)

Consequently, i'.c can be calculated using the currents given in Equation (21).

it ity
iy —i'r1 415
i1 i'in
i —i'1y +1'e
i | = i't3 (23)
i3 —i'13+i'y
YN g +1i'g
[N —i'rg — i —i're — ity +i'ro
i'g —i'rg —i'tg

Assuming, a grid structure like in Figure 5, znoda1 15 @ 9x9 matrix.

ZNodal, 11 ZNodal,12 ZNodal,13 ZNodal,14 ZNodal,15 Z£Nodal,16 Z£Nodal, 17 ZNodal,18 ZNodal,19
ZNodal21 ZNodal22 ZNodal23 ZNodal24 ZNodal,25 ZNodal26 2ZNodal27 2ZNodal28 ZNodal?29
ZNodal,31 ZNodal,32 ZNodal33 ZNodal34 Z£Nodal,35 Z£Nodal,36 2£Nodal,37 Z£Nodal,38 ZNodal,39
ZNodal41 ZNodal42 ZNodal43 ZNodal44 ZNodal,45 ZNodal46 ZNodal47 ZNodal48 ZNodal49
ZNodal = | ZNodal51 ZNodal52 ZNodal53 ZNodal54 ZNodal55 ZNodal56 ZNodal,57 ZNodal58 ZNodal59 (24)
ZNodal,61 ZNodal,62 ZNodal63 ZNodal64 ZNodal,65 ZNodal,66 2£Nodal,67 %£Nodal,68 ZNodal,69
ZNodal,71 ZNodal,72 ZNodal,73 ZNodal,74 ZNodal,75 ZNodal,76 Z£Nodal,77 ZNodal,78 ZNodal,79
ZNodal,81 ZNodal,82 ZNodal,83 ZNodal,84 ZNodal,85 ZNodal,86 2ZNodal,87 2ZNodal,88 ZNodal,89
ZNodal91 %ZNodal92 ZNodal93 ZNodal,94 Z£Nodal,95 Z£Nodal,9%6 2£Nodal,97 %£Nodal98 ZNodal 99

zs —z5 M —zMm M —zM M —zMm 0
—2s zs+z15 —2ZMm M —zM M —ZM  ZM — ZL5 0
M —zZm Zs —z3 M -z M —zM 0
—zm M —25 zs+zre —2ZM M —ZM  ZM —ZL6 0
=1 zm —ZM M —ZM Zs —zs M —ZM 0 (25)
—ZMm M —ZM zMm —zs zs+z17 @ —Z ZM — ZL7 0
M —z M —Z M -z zs + 218 —Zs —2Z18
—ZM ZM —ZL5 —ZM 2ZM —ZL6 —ZM ZM —ZL7 —Zs ZNodal,88 —Z19
0 0 0 0 0 0 —Z18 —Z19  Z18 +2Z19
ZNodal 88 = 215 + ZL6 + ZL7 + Zs + 219 (26)

Each impedance as well as each admittance can be divided to a real part and an
imaginary part. In Equation (27), the terms used in this publication for each part of the
admittance are introduced. Subsequently, the real and imaginary part will be often regarded
separately, because the constraints (see Section 7) have to be formulated consisting only of
real numbers.

y=a+j-b (27)

5. Optimization Variables

All optimization variables for one time step are part of the vector x. The number
of optimization variables are determined in the following section for an exemplary grid
containing only two buses (see Figure 5) for a single time step.
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At first, vector x contains the voltages on all points B-C, where B denotes the bus and
C the corresponding phase or neutral. The complex voltage is divided to two parts, the real
and imaginary part which are denoted as follows.

v'pc=e'pc+j flBc (28)

For the exemplary grid, these are 16 variables (2 buses - 4 voltages per bus - 2 parts
per voltage). Furthermore, vector x contains the real and imaginary part of the voltage at
earth (point E in Figure5).

Additionally, the active power P'g p.c as well as the reactive power Q' p.c of all
generators are part of the vector x. G is a shortcut for generator and B-C refers to the
point of connection of the generator. As there are four generators, there are in total
8 optimization variables.

To include battery storage system, the energy capacity E's g of the system is another
variable in the vector x. S is here a shortcut for storage and B is the bus where the storage is
connected. Besides, the active charging P's ¢ p.cp, active discharging power P'sp .cp and
reactive power QtS,B_CP needs to be considered. Depending on the design of the battery
system, it can be connected to different phases CP at the same bus B. Including one battery
system that is connected to all three phases leads to 10 optimization variables.

In total, optimization vector x contains 26 variables without and 36 variables including
the battery system. In comparison, the optimization vector x would contain 6 variables
without and 10 variables including the battery system for a traditional balanced power
flow formulation (see Figure 1).

6. Cost Function

For the cost function, costs are taken into account using cost factors c. These factors are
multiplied with a corresponding power and the duration of one time step. In Equation (29),
an example is shown where the energy of the generators is priced.

F' = (c1P'G 11 + e2Plgao + c3P'G s + caPlg i) - At (29)

The cost function in Equation (29) is used in the following simulations. The cost
factors of the generator connected to one of the three phases are set to the same value. This
value has to be higher than zero to represent the generation costs, so that no unnecessary
energy consumption in the low voltage feeder is encouraged. In this paper, it is set to 28 to
represent average energy consumption costs in Germany of 28 ct/kWh.

Cl =C) =13 = 28 (30)

On the neutral conductor, the current is only flowing back so that no extra costs
are assumed.
Cqy — 0 (31)

Depending on the optimization goal, the power flow over specific lines or other
equipment like a battery storage can be considered additionally.

7. Constraints for the Formulation of the Optimization Problem

In this chapter, the equality and inequality constraints are described. The solver
requires the first and second order derivatives of the constraints to solve the optimization
problem. For constraints that have already been introduced in literature (e.g., the power
flow constraint in Section 7.2), these derivatives are neither given nor mentioned in this
section. Only the constraints are explained to the reader.
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7.1. Voltage at the Slack Bus

It is necessary to fix the voltage at one point in the regarded grid. For a low voltage
feeder, the low voltage side of the MV /LV transformer is chosen. This point is also the
slack bus for a low voltage feeder. For the grid in Figure 5, bus 1 is the slack bus.

The magnitude of all voltages at the slack bus is set to 1 p.u. using linear equality
constraints. In a three-phase system, there is a 120 degree phase shift between the phases.
This phase shift is fixed at the slack bus here to model the feed-in from the medium
voltage grid.

8'velack1 = €11 —1=0 (32)

§'Vslacke = f1:1 =0 (33)

$'Velacks = €'12+05=10 (34)
V3

8" Vslacks = fh12 + 5 = 0 (35)

§'Vslacks = €'13+05=10 (36)
V3

§'Vslacks = f113 — - = 0 (37)

Additionally, the magnitude and phase of the voltage at the slack bus on the neutral
conductor is set to zero.

§'Vslacky = €'1n =0 (38)
§'Vslacks = f1in =0 (39)

As this constraint is a linear constraint, the deviations are all constant.

7.2. Power Flow Equation

At each point in the grid, the power flowing into the point from lines as well as the
power generated or consumed at these points have to be balanced. This is taken into
account using the following constraints like in [40].

-

gtP = ﬁtGen - ﬁtBus =0 (40)

th = QtGen - QtBus =0 (41)
PlGen is thereby a vector containing the sum of the active power generated by generators,
storage systems or constant power loads at all points in the grid. Plpys is a vector containing
the sum of the active power flowing from one point to other points. éfcen and Q?Bus are
defined accordingly.
ﬁtgus (Equation (43)) and étBuS (Equation (44)) are determined using Equation (42),
where o denotes point-wise multiplication. The nodal admittance matrix yxo4a1 can be
separated into a real part aynogq1 and an imaginary part byogqa as denoted in Equation (27).
The vector vt contains all voltages v'p.c for time step t and can be separated in ¢t and f t
(see Equation (28)). The vector i'g,s contains all currents itp.c for time step ¢.

Iy

to it*Bus = Qt o [K*Nodal 'Qt*] (42)

(S|

Bus

= (et+j fY) o [(anodal — j - bnodal) - (¢t —j - f1)]
= ¢t 0 (anodal®' — bodatf!) + F1 © (Podate! + INodal /1)
+i[—et o (bnodate! + anodal ft) + Ft © (anodate! — DNodatfY)]
Ppus = €t o (anodal€® — bnodalf!) + 1 © (Dnodate! + aNodal f1) (43)

Q'pus = —eto (bNoclalet + aNodalft) + ft o (aNodalet - bNodalft) (44)



Energies 2021, 14, 1623

12 of 34

7.3. Current Equation

Besides a formulation like in Equations (40) and (41) using power flows, the currents
flowing into each point can also be used to formulate an equality constraint. This was
introduced in TOPF in [14,17].

j{Bus = YNodal - ét = (aNodal +j ’ bNodal)(‘;t +j ’ ft> (45)

= ANodal * € — bNodal * f* + j(ONodat - € + @Noda1 - f*)

The disadvantage of this approach is that power generated or consumed at the con-
cerned bus (see ﬁtcen and QtGen in Equations (40) and (41)) can not be considered. Hence,
current based equality constraints are only used on points where ﬁtcen and then are zero.
On the neutral conductor, the power flow is significantly lower than on the other phases.
Assuming similar absolute errors in the fulfillment of power flow based equality constraints
(see Section 7.2), the relative error is significantly higher on the neutral conductor. Hence,
it is beneficial to use current equations on the neutral conductor as currents are in a similar
order as on the other phases for unbalanced power flows. Besides a higher accuracy and
better conditioned matrices, another advantage is that linear constraints are used instead of
nonlinear constraints. The above mentioned disadvantage of this approach is not essential
as no power is consumed or generated on the neutral conductor. The only exception is
the slack bus due to the generator. In this publication, the current equation instead of the
power flow equation is used for all points on the neutral conductor except the slack bus.

For a formulation as a constraints, Equation (45) has to be divided into two parts: One
constraint contains the real part and the second the imaginary part of Equation (45). The
related constraints are formulated as follows:

—

gti,Real = ONodal * et — bNodal . ft =0 (46)

§ti,1mag = bodal - € + ANodal - f£ =0 (47)

When generators, storage systems or constant power loads are part of the regarded
grid, the total generated power at pointB-CP P'gpcp and Q'gp.cp is considered in
Equations (40) and (41). As the power flow on the neutral conductor is considered in
this paper, the negative value of the current being fed into the grid at point B-CP has to
be fed-in at point B-N, where point B-N is the corresponding point to B-CP on the neutral
conductor of the same bus. This is ensured by expanding the current equation as explained
in the following paragraphs.

The current i'G p.cp that is inserted at point B-CP can be calculated as follows

t [ S'BusB-cp \+ _ [ P'Busp-cP — jQ'BusB-cp \ [ €'B-cp + jf B-CP 48
tgper= | —r | = ¢ — T T (48)
v'.cp e'scp — jf'Bcp e'scp +jf'scp

_P tBus,B-cre'B-cp + Q'Bus,B-cpf'B-cp + j(P'Bus,B-cPf'B-cP — Q'Bus B-cre'B-cP)
(etp-cp)? + (fts-cp)?

it _P *Bus,B-cPe'B-CP + Q'Bus,B-cPf 'B-CP (49)
G,B-CPReal (escr)2+ (fcr)?

t _ P'gusp-cpf'B-cp — Q'Bus,B-cre'B-cp 50

1 G,B-CPImag — ( )

(etpcp)? + (f'pcp)?

The vectors zTEG,Real and {EG,Imag contain the real and imaginary part of the current that
is inserted at all points.

-, — —

Ptgys o et + Qtpys o,l?t
(e")? + (f1)?

i_{G,Real = (51)
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Is}tBusof_)t - Q’tBusoe_’t
()2 + (F)2
The current equations as defined in Equations (46) and (47) are adapted as shown

in Equations (53) and (54). Please note that fraction line means pointwise division in
Equations (51)—(54).

(52)

itG,Imag =

gti,Real = ANodal * et — bNodal 'ft - (*S . Z'tG,B—CI",Imag) (53)

PtBus‘:’et“‘QtBusoft _

= ANodal et — bNodal 'ft +S-

(e + (f)?
8titmag = DNodal * € + ONoda * £ = (=5 - G 1mag) (54)
X 2 pt Gty odt
ZbNOdal'@t+”Noda1'ft+S- Busif Q_’Busoe _0
()2 + (f1)?

The negative value of the current which is fed into the grid at point B-CP has to be
fed-in at point B-N, where point B-N is the corresponding point to B-CP on the same bus on
the neutral conductor. The allocation of the current which is fed into the grid at point B-CP
to the corresponding current on point B-N on the neutral conductor is done by matrix S.

The first order derivatives of i'Gpcpreal and i'Gp.cpimag are given in
Equations (55)—-(62).

0i'G B-CPReal _ e'scp (55)
oPgyspcp  (e'cp)?+ (fB-cp)?
0i'G B-CPReal _ fts-cp (56)
0Q%uspcp  (etp-cp)? + (f'p-cp)?
01'G B-CPReal _P tgus,B-cp((e'B-cp)? + (f'B-cp)?) — (P'us,p-cre's-cp + Q'Bus p-cpf'B-cp)2¢'B-cp (57)
detp.cp ((etBcp)? + (f'cp)?)?

—P'ys B-cp(€'B.cp)? + P'gusB-cr (f'B-cp)? — 2Q"Bus B-cpf'B-cPe'B-CP
((etscp)? + (f'Bcp)?)?

di'GBcpreal  Q'Busp-cp((€'8-cp)? + (f'B-cp)?) — (P'BusB-cre'B-cp + Q'BusB-cpf B-cp)2f B-cp (58)

dftpcp ((etBcp)? + (f'Bcp)?)?
_ Q'pus,B-cp (e'B-cp)? — Q'Bus,-cP(f'B-cP)* — 2P'Bus B-cPf'B-cPe'B-CP
((etcp)? + (f'Bcp)?)?

0i'GB-CPImag f'B-cp
oP'uspcr  (e'cp)? + (f'Bcp)?

9i'G B-CPImag _ —e'gcp

0Q%uspcr  (etpcp)? + (facp)?
0i'Gp.cPimag  —Q'Busp-cr((e'B-cp)? + (f'B-cp)?) — (Ptpusp-cpfB-cp — Q'Bus,B-cre's-cp)2¢'p.cp
t - t 2 t 2)\2 (61)
detp.cp ((e'scp)® + (f'Bcpr)?)
_ —Q'Buspcp(f ts-cp)? + Q'Bus,p-cp(€'-cp)? — 2P'Bus B-crf'B-cre'p-cp
((e'Bcp)? + (f'Bcp)?)?

9i'GB-Chimag _ P'pusp-cp((¢'p-cp) + (f'B-cp)?) — (P'Busp-cp/f B-cp — Q'pusp-cre's-cp)2f 'p.cp 62)

dftpcp ((e'p-cp)? + (f'pcp)?)?

— PlgysB-cp(f'B-cP)? + P'Bus,B-cp(€'B-cP)? + 2Q"Bus B-cp f'B-cpe'p-cp
((etBcp)? + (f'Bcp)?)?

(59)

(60)
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All non-zero second derivatives are given from Equations (63)—(86).

2.t
071'GB-CPReal __

0% G B-CPReal _ (e's.cp)? + (f'p-cp)? — e'p.cp - 2¢'p.cp
0Ptpys B-croetp.cp ((etBcp)? + (f'cp)?)?

_ —(e'scp)® + (f'Bcp)?
((etcp)? + (f'cp)?)?

0% G B-CPReal
0P'gys,-cPOftB-cp

_ —2pcp-flaep
((etp-cp)? + (f'pcp)?)?

—2f%.cp - e'Bcp
((e'pcp)? + (f'Bcp)?)?
2+ (f'scp)® — f'Bcp - 2f'B-CP
((e'scp)? + (f'Bcp)?)?
(f'p-cp)?
+ (ft-cp)?)?

2t
0°1'GB-CPReal
0Q"Bus,B-cPoe'B-CP

0%t G B-CPReal _ (e'Bcp)
0Q"Bus,B-cPOf tB-cP

_ (etB—CP)Z -

((etp-cp)?

detp.cp?

_ (=P'suspcp(e'scp)® + P'puspcr(f'pcp)’

((e'cp)? + (f'Bcpr)?)

(—2Ptpus p-cre's-cp — 2Q%us p-cpf'B-cp) - ((e'p-cp)? + (f'B-cp)?)
3

(63)

(64)

(65)

(66)

(67)

—2Q"%us,B-cpf'B-cre's-cp) - 4¢'B-cp

2t
0°1'G B-CPReal

((e'cp)? + (f'Bcp)?)®

+ (f'scp)?)

detp.cpdftp.cp

_ (=P'Busp-cp(e'scp)® + P'puss-cr(f'pcp)?

_(@r tBus,B-cPf B-cp — 2Q"Bus B-cre's-cp) - ((e'p-cp)?
((e'cp)? + (f'Bcp)?)?

(68)

— 2Q"%us-cpf'B-cre'B-cp) - 4f'B-cP

2t
0°1' G, B-CPReal

2+ (ftcp)?)?

_ —(e'scp)® + (f'Bcp)?
((etcp)? + (f'Bcp)?)?

_ —2e's.cpf'B-cp
((e'pcp)? + (f'Bcp)?)?

_ (+2Q"%Bus,B-cre'B-cp — 2P'us B-cpf'B-cr) ((€'B-cp)

((e*pcp)

2t
0%1'G B-CPReal
detp.cpoPtpys B-CP

2t
0°1'G B-CPReal
0etp.cpoQtpus B-cP

2+ (f'pcp)?)

dftp.cpoetp.cp

~ (+Q"Buspcr(e'scp)® —

((e'cp)? + (f'Bcp)?)?

Q'pus,B-cp(f'-cp)?

(69)

(70)

(71)

— 2P'%gys p-crf'B-cre'Bcp) - 4e'p.cp

2t
0°1'G B-CPReal _

((e'cp)? + (f'Bcp)?)®

2+ (f'scp)?)

dftp.cp?

 (+Q'Buspcr(e'pcp) —

(—2Q"%Bus,B-cpf*B-cP — 2P'Bus B-cre's-cp) ((€'B-cp)
2

((e'cp)® + (f'pcp)?)®

Q'pusB-cr(f'B-cp)?

(72)

— 2Py B-crf'B-cre's-cp) - 4f 'B-cP

((etp-cp)? + (f'pcp)?)?

—2f's.cpe'-cp
((e'Bcp)? + (f'Bcp)?)?

_ +(e'p-cp)” — (f'Bcp)?
((e'p-cp)?® + (f'pcp)?)?

Oi'Gpcrimag  —2f'cp - e'pcp
OP'pusp-croet  ((e'cp)? + (fip-cp)?)?

Pi'cpcpimg  ((e'Bcp)? + (f'Bcp)?) — f'Bcp2ftBcp

2t
0°i'GB-CPReal
dftg.cpdPtpys B-cP

2t
0°1'G B-CPReal
9 ft3.cp0QBus,B-cP

9Py B-cPOf Bus B-cP ((etpcp)? + (f'cp)?)?

(73)

(74)

(75)

(76)



Energies 2021, 14, 1623 15 of 34

_ (e'pcp)* — (f'Bcp)’?
((etp-cp)? + (f'pcp)?)?

9%1'G,B-CPImag _ —((e'scp)® + (f'B-cP)?) + e'Bcp2e'BCP 77)
0Q"Bus,B-cPOe'B-CP ((etcp)? + (f'cp)?)?
_ (e'B-cp)? — (f'B-cp)?
((etBcp)? + (f'Bcp)?)?
9%1'G B-CPImag _ 2e'g.cpf'Bcp 78)
0Q'%BusB-cPOf'Bcr  ((etp-cp)? + (ftB-cp)?)?
9%1'G B-CPImag _ (2Q"usp-cre's-cp — 2P'pusp-crf'pcp) ((¢'p.cp)® + (f'B-cp)?) 79)

detp.cp? ((e'p-cp)? + (f'pcp)?)?

(—Q'Bus,p-cp(fB-cp)? + Q'pus p-cp(e'B-cp)? — 2P'pus p-crf'B-cre's.cp) - 4e'pcp
((etcp)? + (f'cp)?)?

9%i'G B-CPImag _ (—2Q%usB-crf'B-cp — 2P'Bus B-cre's-cp) ((e's-cp)? + (f'B-cp)?)
detp.cpdftp.cp ((e'cp)? + (f'Bcp)?)?

(= Q"Busp-cp(f'B-cp)* + Q'Bus;B-cp(e'B-cp)? — 2P'Bus B-cpf'B-cre's-cp) - 4/ B-cp
((e'B-cp)® + (f'B-cp)?)?

Pi'GBCPimag —2f'scpe'cp (81)
de'p.cpOPpuspcr  ((e'p.cp)? + (f'pcp)?)?
Pi'Gpcrimg  —(f'pcp)? + (elpcp)?

0etp cpdQlpusp-cr  ((efp-cp)? + (ftcp)?)?

9%1'G B-CPImag _ (2P'Busp-cre'B-cp + 2Q"Bus p-cpf'B-cP) ((e'p-cr)? + (f'Bcp)?)
dftg.cpoetp.cp ((e'cp)? + (f'pcp)?)?

_ (—=P'Busp-cp(f'B-cp)* + P'Bus-cp(e'B-cp)? + 2Q"Bus,8-crf 'B-cre's-cp) - 4e'p.cp
((e'B-cp)® + (f'B-cp)?)?

921G, B-CPImag _ (=2P'pusp-cpf'B-cp + 2Q"Busp-cre'p-cp) ((¢'s-cp)” + (f'B-cp)?)
oftp.cp? ((e'p-cp)?® + (f'pcp)?)?

 (=P'Buspcp(f'Bcr)* + P'Busp-cr(e'Bcp)” +2Q"Busp-crf'B-cre'pcr) - 4f'scp
((e'Bcp)® + (f'B-cP)?)?

(80)

(82)

(83)

(84)

Pi'Gpcrimag  _ —(f'cp)? + (e'pcp)? (85)
0f'%-cPOP'Busp-cr  ((e'scp)® + (f'B.cp)?)?
Pi'GBCPimag 2f's.cpre's.cp (86)

9f'8-cpdQBusBcr  ((e'p-cp)? + (ft-cp)?)?

7.4. Limits for the Voltages in the Grid

For the voltage at each point, upper as well as lower voltage limits are defined (e.g.,
in [46] for Europe). For the three-phase algorithm, it is important to mention that the valid
voltage at consumer level is the difference between phase voltage and neutral conductor
voltage. Hence, for each point on Phasel, 2 or 3, the difference between phase and
neutral conductor voltage is constrained between a minimum allowed voltage vyin and a
maximum allowed voltage Upfax.

H'yMax = (e'B-cp — €'B.N)? + (F'Bcp — f'B-N)% — (OMax)? < 0 (87)

hmin = —(e'B-cp — €'BN)* — (F'Bcp — fBN)% + (Omin)> < 0 (88)
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All non-zero derivatives are shown in Equations (89)-(96).

t
ahtVMaX = 2(e'p.cp — €'BN) (89)
de'p.cp
Oh M ax
aet\;l\_ANa = —2(e'p.cp — €'BN) (90)
t
I vsax _ ‘p-cp — f'BN 91)
t
dftscp
ahtVMax t t
=-2 cp — ['B- 92
e (f'BcP — f'BN) (92)
ohyi
5 efB_CI: = —2(e'pcp — €'pN) (93)
Oh'vMin ¢ ¢
= _CP — €'B- 94
e 2(e"p.cp — €'BN) (94)
to
O vMin _ —2(f'scp — f'BN (95)
t
df's.cp
to
on YMm =2(f's-cr — f'BN) (96)
df's-N

All second derivatives of these constraints are constant. All second derivatives not
given in Equations (97) and (98) are zero.

82 htVMax o azhtVMax o 82htVMax o azhtVMax (97)
detp.cpdetp.cp  delpnodetpn  Oft'pcpdfitpcp  9f'pNOfiBN
 Ph'vmin . Phvmin . Phvmin . Ph'vmin 5
detp.cpdetp.n  de'gndelpcp  dftpcpdfin 9f'NOfiBcP
azhtVMax _ azI’ltVMax _ azhtVMax _ azhtVMax (98)
detg.cpdetpn  defpnoetpcp  Oftpcpdfipn 9f'NOfiBcP
Phtymin  Ph'ymin . Phymin . Phivvin )

" Je'gcpoctpcp  de'pNOetEN oftgcroftpcr  OfteNOfiBN

7.5. Limit for Voltage Unbalance

The allowed voltage unbalance can be limited in low voltage grids. For example
in Europe, the maximum voltage unbalance at consumer level is set to 2% according to
EN 50160:2010/A1:2015 [46]. The voltage unbalance thnb,B at bus B is defined in [46]
as the ratio between the negative sequence voltage v'neg s and the positive sequence
voltage v'pos B.

|QtNeg,B

0 Unb = (99)

|QtPos,B

In [21], the voltage unbalance is also taken into account for storage operation. In con-
trast to this paper, [21] uses approximations for the constraints and derivatives to be able
to solve the optimization problem. Here, the constraint and all derivatives are calculated
exactly as can be seen in the upcoming equations for higher accuracy.

In the following equations, d is used for reasons of simplification.

1 3
d=—3+j> (100)



Energies 2021, 14, 1623

17 of 34

For a proper formulation of constraints, QtNeg,B and v'pysp have to be formulated
using optimization variables. The negative sequence voltage v'Neg  at bus B is defined as
in Equation (101).

((v'p1 — v'pn) +d* (0’2 — v'pN) +d(v'ps — 2'BN)) (101)

W =

t _
U'Neg,B =

(((e'p1+7j- f'51) — (e'Bn+j- f'BN))

Q)\H

+(_% _jg)((ets-z +j flp2) = (BNt fBN))

+(_% +]'§)((€t]3_3 +j- f'sa) — (BNt f'BN)))

e'NegB and f'Neg  are introduced as real and imaginary part of v'Neg s

1 1, 1 V3 V3
e'NegB = 3 (e'p1 — Ee B2 — EEtB 3+ ftB-z - 7)“13-3) (102)
1, V3 V3 1 1
f'NegB = 3 (== e'p2 + 7€t3-3 + f'B1 — 5f ‘B2 — 5f *5-3) (103)

Likewise, in Equation (104), the positive sequence voltage v'pos  is defined and then
splitted to real and imaginary parts in Equations (105) and (106).

0'Pos,B = %((QtB-l —0'pN) + d(0'p2 — v'eN) + 42 (2'x3 — 2'BN)) (104)
% (e'p1— *8132* %6133 - £ftB- +£ftB—
+f'(\£§ etBZ_?eBS‘Fft 1—*fBz—*fB3))
e'pos B = %(eBl_%EBZ_%3B3_£f82+£fB3) (105)
f'Posp = % : (? -e'y — ?6%-3 + f'p1— %ftB-Z - %ftB-S) (106)

The constraint for voltage unbalance at bus B of the grid is then defined as the follow-
ing inequality constraint:

2 (etNeg,B)2 + (ftNeg,B)2

M — VUnb Max? = — VUnb M.
nbAax (e,[Pos,B)2 + (ftPos,B)2 nbAax

|2'po

W' Unbp = 2<o0 (107)

VUnb,Max defines the applied limit for the voltage unbalance. For the optimization algorithm,
the first and second derivatives of the constraint in Equation (107) with respect to all
variables in the vector x have to be derived. As Equation (107) consists only of real
and imaginary parts of voltages, all derivatives with respect to other quantities are zero.
In Equation (108), the first order derivative of the voltage unbalance constraint htUnb,B is
given with respect to k. k is any real part e'gc or imaginary part f'g.c of a voltage.

ahtUnb,B _ 3 (etNeg,B)2 + (ftNeg,B)2
ok ok (etl"os,B)2 + (ftl’os,B)2

(108)

9¢'Neg B f'Neg,B
(zetNeg,B ' a;g’ + 2ftNeg,B . akeg, )((etPos,B)z + (ftPos,B)z)
((etPos,B)2 + (ftl’os,B)z)2
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det aft
(2€tpos B+ —522 +2ftpos B - —522 ) ((etnegB)? + (f'NegB)?)
((etPos,B) (ftPOS,B)z)2
et Neo B 9f'Neg B
2(etNeg,B ) % + ftNeg,B : akeg/ )

((etPos,B)2 + (ftPos,B)z)

et aft
2(etPos,B : I;ES/B + ftPos,B : g]?s’B )((etNeg,B)Z + (ftNeg,B)z)

((etPos,B)2 + (ftPos,B)z)2

The second derivatives are given in the following equations. Here, ity p is derived
with respect to a real or imaginary part of a voltage k and with respect to a real or imaginary
part of a voltage I.

t t
9et Neg,B oet Neg B 9f"Neg,B 9/ Neg,B

0%h Unb B _ 2 —= + 2 B 2 ) ((e'pos,B)® + (f'Pos,B)?) (('pos,B)® + (f'Pos,B)?)? (109)
okal ((etpos,B)? + (ftposp)?)*
9" Neg B 9f'Neg,B det oft
+ <2€tNeg,B . a]fg’ + 2-ftNeg,B : akeg, )(ZetPos,B : I;(Z)S'B + 2]CtPos,B : %) ((etPos,B)2 + (ftPos,B)z)2

((etl’os,B)2 + (ftPOS,B)2)4
aftNeg B

B : det aft
+ 2ftNeg,B : ok ) . 2((6tPos,B)2 + (ftPos,B)z)z(ZetPos,B POS B + 2ftPos B S?S'B )
((etPos B)z + (ftPos,B)2)4

et aet art aft
- (2 gis B POS B +2- POS B g?s B )((etNeg,B)2 + (ftNeg,B)z)((etPos,B)2 + (ftPos,B)z)2
((etPos,B)2 + (ftPos,B)2)4

et
t Neg,
. (23 Neg,B - oK

t
det Pos B of tPos,B of g

' Neg B Neg,B
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The equations for first and second derivatives of the voltage unbalance constraint
htUnb,B/ given in Equations (108) and (109), still contain further derivatives. These are given
in Equations (110) to (129). All derivatives not mentioned here are zero.

aetNegB 1 1
= 1= 110
aEtB_l 3 3 ( )
de'Negp 1 1 1 (111)
detgn, 3 2 6
aetNeg,B 1 1 1
aetB_g - 5 . 75 N 78 (112)
de'Negn _ 1 V3 _ V3 (113)
oftps 3 2 6
de'Negh _ 1 V3 _ V3 (114)
oftgs 3 2 6
If'Negs _ 1 V3 _ V3 (115)
Be"B_z o 3 2 N 6
Of 'Negb _ 1 V3 _ /3 (116)
de'ps 3 2 6
a t
foNegs 1, _ 1 (117)
oftp1 3 3
Of'Neg 1 1 1 (118)
ftg, 3 2 6
Of'Negs _1 1 _ 1 (119)
dftps 3 2
aetPosB 1 1
B _ 2o 2 120
aetB_l 3 1 3 ( )
aetPosB 1 1 1
g_1 1 1 121
detg, 3 2 6 (121
aetPosB 1 1 1
sg_t 1 1 122
aetB_?) 3 2 6 ( )
aetl’os,B _ 1 _é — _é (123)
dftg 3 2 6
de'poss _ 1 V3 _ V3 (124)
oftgs 3 2 6
f'posp _ 1 V3 _ V3 (125)
aetB—Z 3 2 6
f'posp _ 1 V3 _ V3 (126)
aetB_3 3 2 6
aftPos B 1 1
9/ PosB _ 1 4 _ 1 127
offtgq 3 1=3 (127
aftPos B 1 1 1
g _1 1 1 12
oftgn 3 2 6 (128)
aftl’os B 1 1 1
9V PosB _ 2 2 _ _ 2 129
oftgs 3 2 (129
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7.6. Current Limits of the Lines

The current on Line Y i'[y is limited using a maximum current i1y pmax that is allowed
to flow over each line. In the algorithm, the current is limited at each end of the lines using
a nonlinear inequality constraint like in [40].

hry = |i'iy|* = (iymax)® < 0 (130)

il ine is a vector containing the current flows over all lines (see Equation (13)).

— —

fine =y ot=(a+j b)(et+j fy=a-e—b-fitjb-et+a-f)y (131

—

ftinel? = (a-et —b- f)2 4 (b-et +a- f1)2 (132)
=(a- e+ (b f)2+ (b)) + (a- f1)?
7.7. Power Limits of the Generator

The active and reactive power of each generator has an upper and lower power limit.
These limits can be defined as linear inequality constraint like in [40].

h'pemaxs-c = Pl c — PGp-cmax < 0 (133)
h'poming-c = —P'G-c + PG B-cMin < 0 (134)
h' goMaxs-c = Q'p-c — QGB-CMax < 0 (135)
h oemin-c = —Q'Gp-c + QgB-cMin < 0 (136)

The generators at the slack bus (see the exemplary grid in Figure 5) are representing
the MV/LV transformer. Hence, the limits of these generators are set according to the
power limit of the MV/LV transformer PR Max- PTR Max 1S given by the manufacturer for
the complete transformer, which is modelled using four independent generators in the
assumed model. To simplify, the total power is therefore divided equally to the different
phases. In Equations (137) and (138), this is shown exemplarily for Phase 1. As the voltage
on the neutral conductor is set to zero (see Equations (38) and (39)), no power is flowing
into the generator on Phase N and hence it does not have to be constrained.

PtrMm p TRM

- Tax = Pgramin < P'G11 < PGiaMax = 3 = (137)
Q1R M Q1R M

- Tax = Qg 1-1Min < Q'c11 < QG114 Max = Tax (138)

7.8. Power Limits of the Storage

Due to constructional reasons, the charging and discharging power of storage systems
is also limited using linear inequality constraints like in [41].

h'psemaxs-cp = P's,cp-cp — Ps,cp-cpMax < 0 (139)
h'pseming-cp = —Plscpcp <0 (140)
h'pspMaxs-cp = P'sp,s-cp — Psp,B-cPMax < 0 (141)
h'pspming-cp = —P'sps.cp < 0 (142)

h osmaxs-cp = Q's p-cp — Qs p-cpmax < 0 (143)

htgsming-cp = —Q's p-cp — Qs p-cpMax < 0 (144)
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7.9. Energy Capacity Limits of the Storage

The energy capacity of the storage system is limited between an empty storage and
the maximum energy capacity Espmax Of the storage system using a linear inequality
constraint like introduced in [41].

h'enmaxs = E'sp — EspMax < 0 (145)
h'eming = —E'sp <0 (146)

7.10. Storage Equation

The energy capacity in the current time step E's g depends on the energy capacity of
the previous time step Els 5 and the energy difference caused in the current time step
AEtS,B. This is a nonlinear equality constraint like in [41].

g'ep = E'sp — E"'sp — AE'sp =0 (147)

AE'sp = [c(P'scpa + P'scpa + Plscps) — 7a (P'spp1 + Plsppa + Plspps)] - At (148)

The charging efficiency 7. and discharging efficiency 74 are taken into account as
a constant.

7.11. Total Number of Constraints

The total number of constraints for the grid in Figure5 and for a single time step
can be seen in Table 2 for balanced and unbalanced OPF formulation with and without
storage system. Summarizing, it can be said that the complexity increases significantly in
comparison to an OPF formulation, where a balanced power flow can be assumed.

Table 2. Number of constraints.

Balanced Unbalanced

Constraints No Storage Storage No Storage Storage
Linear Equality

Slack constraints 2 2 8 8
Linear Inequality

Power limits generator 4 4 16 16

Energy capacity limits 0 2 0 2

Power limits storage 0 6 0 18
Nonlinear Equality

Power flow equation 4 4 14 14

Current equation 0 0 4 4

Storage equation 0 1 0 1
Nonlinear Inequality

Power limits lines 2 2 18 18

Voltage limits 4 4 12 12

Voltage unbalance 0 0 2 2
Total 16 25 74 95

8. Validation of the OPF Algorithm Using Simulink

For solving TOPF problems, two open tools are available [38,39]. As they are using
a completely different grid model, which is based on Kron’s reduction, it is not possible
to use them for validation. Also all commercially available power flow software does
not support the low voltage grid model used in this paper. The algorithm is therefore
validated using the commercially available software environment Simulink. In Simulink,
the model presented in [44] was used to get comparative results. These results have then
been compared to results from the optimization environment presented in this paper.
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The Simulink model is able to calculate an unbalanced load flow, but an optimization of
equipment is not possible and therefore this application can not be validated. Furthermore,
all loads are modelled as constant power loads in Simulink and therefore the same model
is assumed in the OPF environment.

The simulation is performed for a single time step. As grid topology, a two-bus grid
structure as shown in Figure 5 is used. The generators are considered as slack bus with a
nominal voltage of 1 pu (point 1-1, 1-2, 1-3) or 0 pu (point 1-N). For the line, a NAYY 4x150
cable with a length of 1010.9 metres is assumed. The impedances can be found in Table 3.

Table 3. Overview of used cable parameters.

Starting Bus End Bus Distanceinm rginpu rnyinpu xginpu xyinpu
1 2 1010.9 0.394 0.630 0.000 0.506

The grid used here is a simplified version of the existing grid that is presented in
Section 9.1. This cable length was chosen to create significant voltage drops. At point2-1,
point 2-2 and point 2-3, there is a load connected with 10kW and 5kVAr. At point2-2, there
is an additional load of 5kW to create an unbalanced power flow.

In Table 4, the voltages at all points in the grid, that are not slack buses, can be seen
for the OPF presented in this paper and the Simulink model. In general, the results
between the different algorithms are very similar. The maximum deviation is less than
0.0001 p.u. Hence, it can be concluded that the OPF algorithm determines correct results
for an unbalanced load flow calculation. A validation including optimization of a battery
system is not possible so far, as no comparable algorithms are available.

Table 4. Calculated voltages for different algorithms.

OPF Simulink Deviation
point 2-1 0.951536 pu 0.951482 pu 0.000054 pu
point 2-2 0.930303 pu 0.930227 pu 0.000076 pu
point 2-3 0.952876 pu 0.952820 pu 0.000054 pu
point 2-N 0.022397 pu 0.022415 pu 0.000018 pu

pointE 0.005599 pu 0.005604 pu 0.000005 pu

9. Exemplary Results for the Dynamic TOPF Using a Battery Storage

In this section, exemplary optimizations are performed using the dynamic TOPF to
prove its functionality. At first, the input data for optimization is described. Following
that, in the first scenario the battery storage is optimized to increase the self-consumption
of a settlement. In the second scenario, the compliance with given grid limits is ensured
through the battery storage system. Finally, the battery storage system is optimized such
that a given voltage unbalance limit is not exceeded.

9.1. Input Data for the Simulations

As an exemplary grid, an existing low voltage feeder in a rural area in southwestern
Germany is modelled. The test grid was the project area of the project “Hybrid-Optimal” [1].
In this project, a battery storage system was used to avoid overvoltages [47] and for
economic optimization [48] in a field test. All input data is realistic data that was gathered
during the research project.

In total, there are 24 buses in the grid connecting 11 electricity users. Figure 6 shows a
single-phase structure of the grid. The slack is at bus 1 (red in Figure 6). The grid consists
of a 1010.9 m long cable segment until a settlement starts at bus 4. The electricity users are
atbus5,7,9,11,14,16,17,19, 21,23 and 24 (purple and green in Figure 6). All electricity
users represent family houses in reality. The households at bus5,7,14,17,24 (purple in
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Figure 6) have PV generation. The data assumed for the low voltage cables can be found in
Table 5. The impedance values are calculated according to the equations given [44].

@ @ ® @ O ®—0
g ©—®
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22 (20)

b od
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Figure 6. Single-phase representation of the considered low voltage feeder.

Table 5. Overview of used cable parameters.

Starting Bus End Bus Distanceinm rginpu rnyinpu xginpu xyinpu

1 2 721.3 0.281 0.450 0.000 0.361
2 3 138.7 0.054 0.086 0.000 0.069
3 4 150.9 0.059 0.094 0.000 0.076
4 5 36.2 0.059 0.093 0.000 0.074
4 6 46.7 0.018 0.029 0.000 0.023
6 7 19.2 0.016 0.025 0.000 0.020
6 8 14.0 0.005 0.009 0.000 0.007
8 9 12.9 0.021 0.033 0.000 0.026
8 10 23.1 0.009 0.014 0.000 0.012
10 11 25.0 0.021 0.033 0.000 0.026
10 12 17.6 0.007 0.011 0.000 0.009
12 13 22.1 0.018 0.029 0.000 0.023
13 14 50.5 0.042 0.066 0.000 0.053
12 15 32.3 0.027 0.042 0.000 0.034
15 16 9.1 0.015 0.023 0.000 0.019
15 17 15.6 0.013 0.020 0.000 0.016
12 18 16.6 0.006 0.010 0.000 0.008
18 19 13.9 0.012 0.018 0.000 0.015
18 20 5.1 0.002 0.003 0.000 0.003
20 21 9.9 0.008 0.013 0.000 0.010
20 22 43.8 0.017 0.027 0.000 0.022
22 23 33.8 0.028 0.044 0.000 0.035
23 24 13.7 0.011 0.018 0.000 0.014

In contrast to Section 8, a simulation for a whole day is performed using a temporal
resolution of 15 min and it is assumed that all loads are constant power loads. For the
household, realistic profiles according to the yearly energy consumption of each household
are used that have been generated using [49]. It is assumed, that the household consump-
tion is balanced as no exact data is available. Additionally, as already mentioned before,
some of the households have photovoltaic (PV) systems installed. For the PV profiles,
measurement data from an existing solar power plant in southern Germany is used. The PV
generation is assumed to be unbalanced as several generation units are only connected to
one or two phases.
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The voltage at the slack buses is specified according to measurement data. The voltage
fluctuates between 1.022 pu and 1.054 pu and deviations in the phase voltages up to 0.005 pu
are assumed.

In Figure 7, the total energy consumption for an exemplary test day is shown. A nega-
tive power means that energy is generated at this time due to the PV generation. The test
day is a summer day. The resulting voltages at the end of the feeder are shown in Figure 8.
Due to the unbalanced PV generation, there are significant differences in the magnitude of
the voltages for the different phases around midday. This can also be seen in an increasing
voltage unbalance (see Figure 9) at these times.

In the following simulations, a battery storage system with an energy capacity of
101 kWh and power limits of 45 kVA is connected at bus 3 (orange in Figure 6). It will be
optimized using the algorithm presented above. The storage system is connected to all
three phases and the power flow for each phase can be controlled independently. For the
charging and discharging processes an efficiency of 90% is assumed.
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Figure 7. Total power import per phase.
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Figure 8. Voltages at the end of the feeder.
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Figure 9. Voltage unbalance at the end of the feeder.

9.2. Increasing Self-Consumption Using a Battery Storage

In the first scenario, the battery storage system is used to increase the self-consumption
of the households. It is assumed, that the cost of energy consumption from the utility is
28 ct/kWh, while feed-in tariffs from PV earn only 10 ct/kWh. This is implemented using
two generators per phase at the slack bus (see Figure 10).

Generator 1-1/1 @— 1-1 Ly 2-1
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)
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irs ILo
ZL8 E Z19

Figure 10. Model of the grid for three-phase OPF algorithm.

The generator limits were set such that one generator is only importing energy while
the second generator is only able to export energy. The cost functions are adapted accord-
ingly as mentioned in Equation (149).

F' = (c1P'Gras1 + 2P'Grase + caPlgion + o (149)

P'G1a2/2 4 csP'G1a1 + 6Pl a2 + 7Pl anN) - At

€l =C3 =C5 = 28 (150)
C) = C4 = Cg = —10 (151)
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On the neutral conductor, the current is only flowing back so that no extra costs
are assumed.
c;=0 (152)

Hence, using this input data, it is economically beneficial to increase the
self-consumption in the feeder. As the generation on all phases exceeds the consump-
tion in several time steps, the battery storage is used to store the energy. The resulting
power import is shown in Figure 11. In comparison to Figure 7, the export decreases signifi-
cantly on all phases during midday. Additionally, no import is needed in the afternoon
and night hours.

Figure 12 shows the energy stored in the battery system. As the simulation horizon
is one day, the battery storage is empty at the start and in the end. It would have been
possible, but the battery system is not charged completely during the day. The reason is
that the consumption is not sufficient to empty the battery system until the end of the
simulation horizon.
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Figure 11. Total power import per phase.
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Figure 12. Charging power of the battery system per phase.
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9.3. Ensuring Compliance with the Voltage Limits Using a Battery Storage

In the second test scenario, the maximum voltage in the grid is restricted to 1.06 pu.
The reason is that over- or undervoltages are one reason for failure of connected devices.
Therefore, voltage limits are given in power grids, for example in [46] for Europe. In this
simulation, the battery storage system is used to prevent overvoltages higher than 1.06 pu.
In Figure 13, the resulting voltages are shown at the end of the feeder. It has to be mentioned
that the lowest voltage in this grid is automatically at the end of the feeder.

Through charging (see Figure 14) and discharging (see Figure 15) the battery, the volt-
ages in the grid are within the given limits at all time steps. The battery system is charging
with the highest charging power on Phase 1 as the highest share of PV generation is on
this phase, followed by Phase 2. The battery system discharges mainly on Phase 3 around
midday. The reason is that without a battery system (see Figure 8), the voltage on Phase 3 is
less than 1.06 pu, so there are still reserves to discharge the battery system. In the afternoon,
the remaining battery capacity is used to supply the consumption on all three phases.
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Time
Figure 13. Voltages at the end of the feeder.

In Figure 16, the total power import per phase is given. In contrast to Figure?7,
the power flow is more balanced during times of power export.
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Figure 14. Charging power of the battery system per phase.
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Figure 15. Discharging power of the battery system per phase.
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Figure 16. Total power import per phase.

9.4. Ensuring Compliance with the Voltage Unbalance Limit Using a Battery Storage

In the third scenario, the focus is on the voltage unbalance. A high voltage unbalance
can for example harm electric drives and therefore the voltage unbalance is often restricted.
For example in Europe, according to [46], a maximum voltage unbalance of 2% is permitted
in public grids.

In this scenario, the operation of the battery storage system is optimized such that a
given unbalance limit of 0.25% is not exceeded (see Figure 17). Without the storage system,
voltage unbalances of more than 0.6% occur (see Figure 9).

The operation of the battery system to prevent high voltage unbalances automatically
leads to more balanced magnitudes of the voltage (see Figure 18 in contrast to Figure 8)
and a more balanced energy import (see Figure 19 in contrast to Figure 7).
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Figure 17. Voltage unbalance at the end of the feeder.
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Figure 18. Voltages at the end of the feeder.
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Figure 19. Total power import per phase.

9.5. Discussion of the Simulation Results

In this chapter, three different simulations have been performed using the presented
algorithm. First of all, the simulations show that the realistic assumptions for power
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generation and consumption lead to significantly unbalanced power flows and unbalanced
voltages in the low voltage grid. This proves the need for an algorithm considering the low
voltage grid as complete three-phase four-conductor grid as in this paper.

In all simulations, a battery storage system was used to influence specific grid param-
eters. In Section 9.2, the power import and power export was decreased to increase the
self-consumption. In Section 9.3, voltages higher than 1.06 pu were prevented through
the battery system. As last simulation, in Section 9.4, the voltage unbalance in the grid
was constrainted to 0.25%. As a conclusion for all simulations, it can be stated that the
battery storage system is able to significantly influence the events in the low voltage grid.
In case of any violation of grid limits, battery storage systems can be therefore seen as one
possibility to prevent these events.

In Section 8, the algorithm was validated performing a power flow calculation using
an existing tool. The optimization capability could not be validated as no algorithm was
available for comparison. The simulations in Section 9 are no validation, but show that the
algorithm is able to comply with the given constraints while minimizing energy import.
Thereby, the basic functionality of the algorithm is proven.

10. Summary & Outlook

A Dynamic TOPF algorithm for unbalanced three-phase distribution grids to simulate
energy storage systems is presented in this paper. The algorithm uses no approximations
in comparison to existing approaches to solve the optimization problem. Additionally,
we introduced a new constraint and its derivatives that takes the voltage unbalance as
limit for grid operation into account. Further, a novel approach to model loads as constant
power loads is deduced including the necessary constraints as well as the corresponding
derivatives. Finally, a grid model including the neutral conductor and an earth point is
suggested. The used grid model is a focus area of the publication. The grid model is
adapted to typical low voltage feeders in Germany to accurately model the unbalanced
power flows in the system. The algorithm is explained in detail including solver, cost
function, optimization variables and constraints.

The algorithm has been validated using the commercially available software tool
Simulink. The validation results show only slight deviations between both software tools
and hence the presented approach converges to correct solutions regarding the power flow.
Furthermore, three exemplary simulations using data from an existing low voltage feeder
show possible applications of the algorithm. Besides a self-consumption optimization,
the algorithm can also optimize the operation of a battery system to prevent over- or
undervoltages as well violations of voltage unbalance limits. Besides demonstrating
possible applications, the simulations emphasise the importance of exact modelling of
power flows in low voltage grids. The power flows are highly unbalanced and grid models
including the neutral conductor and other conductive paths over earth are necessary for
exact results.

Next steps are the extension of the size of the considered grids to complete low-
voltage grids as well as a more accurate modelling of the MV /LV transformer as slack
bus. Besides that more equipment that can be optimized as heat pumps or the charging
behaviour of electric vehicles owner will be included.
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Abbreviations

The following abbreviations are used in this manuscript:

DG Distributed generation
LV Low voltage
MV Medium voltage

OPF Optimal power flow

PDIPM  Primal-Dual Interior Point Method
PV Photovoltaic

TOPF Three-phase optimal power flow

The following symbols are used in this manuscript:

a

ANodal
b

bNodal
B

c

E'sp
E S,B,Max
Nc

itG,B-CP,Real
itG,B-CP,Imag
iy

ijLY,MaX

l.t Bus
ZjG,B-CP,Imag
i:G,Imag

it Line

]
k
l
L
A
K

n:
N

Real part of the admittance matrix

Real part of the nodal admittance matrix

Imaginary part of the admittance matrix

Imaginary part of the nodal admittance matrix

Bus

Cost factor

C=(1,2,30rN)

CP=(1,20r3)

Auxiliary variable

Real part of the voltage at point B-C at time step ¢

Real part of the negative sequence voltage at bus B at time step ¢

Real part of the positive sequence voltage at bus B at time step ¢
Vector containing the real part of all voltages at time step ¢

Earth

Energy stored in the storage at bus B at time step ¢

Total energy capacity of the storage at bus B

Charging efficiency

Discharging efficiency

Imaginary part of the voltage at Point B-C at time step ¢

Imaginary part of the negative sequence voltage at bus B at time step ¢
Imaginary part of the positive sequence voltage at bus B at time step ¢
Vector containing the imaginary part of all voltages at time step ¢
Cost function

Equality constraint

Barrier coefficient

Inequality constraint

Sum of the currents at point B-C at time step ¢

Sum of the currents at point Earth at time step ¢

Current that is inserted at point B-CP at time step ¢

Real part of the current that is inserted at point B-CP at time step ¢
Imaginary part of the current that is inserted at point B-CP at time step ¢
Current on Line Y at time step ¢

Maximum current on Line Y

Vector containing flowing from one bus B to other buses at time step ¢
Real part of the current that is inserted at all points at time step ¢
Imaginary part of the current that is inserted at all points at time step ¢
Vector containing all currents at time step ¢

imaginary unit

Any real part e'p ¢ or imaginary part fig.c of a voltage

Any real part e'g_c or imaginary part f'g.c of a voltage

Langrangian

Langrangian multiplier for equality constraints

Langrangian multiplier for inequality constraints

Number of inequality constraints

Neutral
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Plgys B-C Sum of the active power flowing from point B-C to other points
PtopC Active power of the generator at point B-C at time step ¢

PG B-c,Min Minimum active power of the generator at point B-C

PG B-c,Max Maximum active power of the generator at point B-C

Ptscp.cp Active charging power of the storage at point B-CP at time step ¢

Pscp.cpMax Maximum active charging power of the storage at point B-CP
Pscp.cpmin Minimum active charging power of the storage at point B-CP
Ptspp.cp Active discharging power of the storage at point B-CP at time step ¢
Pspp-ceMax Maximum active discharging power of the storage at point B-CP
Pspp-cemin  Minimum active discharging power of the storage at point B-CP

PR Max Rated active power of the transformer at bus B

Ptpus Vector containing the sum of the active power flowing from one point to
other points

PtGen Vector containing the sum of the active power generated by generators,
storage systems or constant power loads at all points in the grid at time step ¢

Q'Bus B-C Sum of the reactive power flowing from point B-C to other points at
time step t

QtG,B_C Reactive power of the generator at point B-C at time step ¢

QG,B-C Min Minimum reactive power of the generator at point B-C

QG,B-C,Max Maximum reactive power of the generator at point B-C

QtS,B_CP Reactive power of the storage at point B-CP at time step ¢

Qs,B-CPMax Maximum reactive power of the storage at point B-CP

QTR Max Rated reactive power of the transformer at bus B

O'Bus Vector containing the sum of the reactive power flowing from one point to
other points

then Vector containing the sum of the reactive power generated by generators,
storage systems or constant power loads at all points in the grid at time step ¢

S Auxiliary matrix

Sts Power consumed at time step ¢ at bus B

Stss Constant power share of the power consumed at time step t at bus B

Stsz Constant impedance share of the power consumed at time step f at bus B

S'Bus,B-C Sum of the power flowing from point B-C to other points

StBus Vector containing the sum of the power flowing from one point to
other points

t Actual time step

T Horizon

UNom Nominal voltage

UMax Maximum allowed voltage

UMin Minimum allowed voltage

e Voltage at point B-C at time step ¢

v'g Voltage at point Earth at time step ¢

QtNeg,B Negative sequence voltage at bus B at time step ¢

U Pos,B Positive sequence voltage at bus B at time step ¢

' Unb,B Voltage unbalance at bus B at time step ¢

UUnb, Max Maximum allowed voltage unbalance

ot Vector containing all voltages at time step ¢

x Vector containing optimization variables

y Admittance matrix

YNodal Nodal admittance matrix

z Impedance matrix

M Mutual impedance

ZNodal Nodal Impedance matrix

zs Series impedance

zthy Impedance of Line Y at time step ¢

Zn Slack variable n

Z Vector of slack variables
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