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Abstract

Hospitals are highly complex and very cost-intensive systems. In 2017, the costs

for hospitals in Germany were 105 billion Euros, and thus, accounted for over 20

% of the total health care costs (Statistisches Bundesamt, 2018). Different groups

of people, such as medical, nursing, medical-technical, functional and facility man-

agement services have different values and interests, but pursuing a common goal:

“healing and caring for the patient”. This goal necessitates high-quality care at the

lowest possible cost and always at the right time. In the light of the ever-increasing

resource expenses, maintaining a stable and effective hospital management through

a right allocation of resources becomes more and more important, but at the same

time always more complex.

Meanwhile, operating rooms (OR) are one of the most expensive and most demand-

ing areas of hospitals, but also the most important source of revenue. About 60-70%

of hospital admissions are due to surgical procedures, generating 40% of the total

costs (Lin et al., 2013). On this ground, hospital managers and specially OR man-

agers are interested in optimizing the limited and cost intensive resource of OR

time. Moreover, OR planning and resource allocation are difficult tasks, since they

are plagued with multiple sources of uncertainty and variability.

OR planning usually takes place in a three level hierarchical process: strategic, tac-

tical and operational. The strategic level is about long-term planning of capacity

dimensioning as well as session planning and distribution. The tactical level is mid-

term planning of allocation of capacity to each surgeon or medical specialty. The

operational or short-term level addresses the daily schedules and staffing. An effi-

cient planning should take place at the strategic level, and the resource management

should take the preferences of individual stakeholders into account.

This thesis aims to contribute to the development of methods for session allocation

at the strategic level and partially at the tactical level with the focus on surgeons’

or specialty departments’ preferences. As a result, fairness and productivity will be

brought together in the process of OR time distribution and a stable state will be

reached.

To realize the above-mentioned aim the following methods are developed in this

thesis:

� The OR time allocation among surgeons/wards is formulated as a simple game.

The proposed game approach assumes the wards to be players who consider

the allocation of operating room sessions among themselves. The goal in this

game is reaching a collective stability and finding a solution which is acceptable

to all players. The concept in finding the stable solution is based on the power



concept from the economic literature. The power index method measures the

power of the players in a game under a given set of strategies, based on which

the most possible stable solution will be suggested.

� The resource allocation problem is formulated as a cooperative game and a

distribution mechanism based on the Shapley value is proposed. The Shaply

value suggests the most equitable distribution as a basis for further allocation

negotiations. The individual players can form different coalitions each pre-

senting specific values. The Shapley value divides the resources according to

the marginal contribution of each player to the possible coalitions.

� The master surgical schedule (MSS) at the tactical level of operating room

planning is addressed to develop a method to assign operating rooms, days

and shifts to specialty departments in a defined planning horizon. A hybrid

approach comprised of a bargaining method called fall-back bargaining and

genetic algorithm is developed to solve the MSS problem as a combination

optimization one.

� A dynamic system perspective is adopted to describe the system of operat-

ing rooms. In this approach, inspired by the control theory, the structure of

the system is modeled and analyzed using Simulink® block diagrams. This

approach provides a simple and user-friendly simulation environment to im-

plement different management strategies into the system and analyze them to

find out about the consequences of managerial decision in long-term.

The developed methods are applied to the real data from a case study in order to

evaluate its practical applications. The collected data are from a German hospi-

tal in Baden-Württemberg for 24 months from January 2015 to December 2016.

These data sets contain all the operations performed with information regarding de-

partments, date, duration, operating room, surgeons and Diagnosis-related Groups

(DRGs).

The results provide meaningful measures and insights into the OR planning and

scheduling problem and identify areas for further improvement and investigation. It

is desirable to further develop the proposed methods through applications to further

real data and case studies. Nonetheless, the proposed methods provide suitable

means to articulate and comprehend strategic plans. The game based approaches

provide insights into the fair and acceptable distribution and allocation of operating

room resources, namely OR time, among surgeons and specialty departments. The

system dynamics approach provides an understanding about the operating room

system behavior as responses to strategic and decisional inputs.
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Kurzfassung

Krankenhäuser sind hochkomplexe und sehr kostenintensive Systeme. Die Kosten

für Krankenhäuser lagen beispielsweise im Jahr 2017 in Deutschland bei 105 Mrd.

Euro und bildeten somit einen Anteil von über 20 % an den gesamten Gesund-

heitskosten (Statistisches Bundesamt, 2018). Unterschiedliche Personengruppen,

wie ärztlicher Dienst, Pflegedienst, medizinisch-technischer Dienst, Funktionsdi-

enst und Facility-Management-Dienst haben verschiedene Werte und Interessen,

aber ein gemeinsames Ziel: “Heilen und Pflegen der Patienten”. Dieses Ziel er-

fordert eine qualitativ hochwertige Versorgung zu den geringstmöglichen Kosten und

alles immer zum richtigen Zeitpunkt. Angesichts ständig steigender Ressourceni-

nanspruchnahme wird die Aufrechterhaltung eines stabilen und effektiven Kranken-

hauses durch die richtige Zuweisung der vorhandenen Ressourcen immer wichtiger,

aber auch immer komplexer.

Operationssäle (OPs) sind die kostenintensivsten und anspruchsvollsten Bereiche

eines Krankenhauses, aber auch die wesentliche Einnahmequelle, da 60-70% der

Krankenhauseinweisungen aufgrund chirurgischer Eingriffe stattfinden und dadurch

40% der Gesamtkosten erzeugt werden (Lin et al., 2013). Vor diesem Hintergrund

ist das Krankenhausmanagement und insbesondere das OP-Management stetig an

Optimierungsmöglichkeiten der knappen und kostenintensiven Ressource OP-Zeit

interessiert. Darüber hinaus sind die OP-Planung und die Zuweisung der Ressourcen

komplexe Aufgaben, da aufgrund der vielen Interdependenzen eine hohes Maß an

Unsicherheit und Variabilität entsteht.

OP-Planung wird in einem dreistufigen hierarchischen Prozess vorgenommen: strate-

gisch, taktisch und operativ. Auf der strategischen Ebene geht es um die langfristige

Planung der Kapazitätendimensionierung sowie die Zeitslotplanung und -verteilung.

Auf der taktischen Ebene geht es um die mittelfristige Planung der Kapazitäts-

zuweisung an jeden Chirurgen oder jedes chirurgische Fachgebiet. Auf der opera-

tiven oder kurzfristigen Ebene werden die Tagespläne und die konkrete Personalbe-

setzung vorgenommen. Eine effiziente Planung sollte mit der strategischen Ebene

starten und das Ressourcenmanagement sollte die Präferenzen der einzelnen Inter-

essengruppen berücksichtigen.

Ziel dieser Arbeit ist es, einen Beitrag zur Entwicklung von Methoden für die Zuord-

nung von OP-Sälen und Kapazitäten auf strategischer und teilweise auch auf tak-

tischer Ebene zu leisten. Hierbei werden die Präferenzen der Chirurgen oder der

Fachabteilungen in den Mittelpunkt gestellt. Denn ein stabiler Zustand der Re-

sourcenverteilung wird durch die Kombination von Fairness und Produktivität im

Prozess der OP-Saal- und Kapazitätszuordnung erreicht.

Zum Erreichen des oben genannten Ziels werden in dieser Arbeit die folgenden Meth-
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oden entwickelt:

� Die OP-Saal- und Kapazitätszuordnung unter Chirurgen/Fachabteilungen wird

als Spiel formuliert. Der vorgeschlagene Spielansatz geht davon aus, dass die

Fachabteilungen Spieler sind, die die Aufteilung der OP-Kapazität untereinan-

der aushandeln. Das Ziel in diesem Spiel ist es eine kollektive Stabilität zu

erreichen und eine für alle Spieler akzeptable Lösung zu finden. Das Konzept

bei der Suche nach der stabilen Lösung basiert auf dem Machtindexkonzept

aus der ökonomischen Literatur. Die Machtindexmethode misst die Macht der

Spieler in einem Spiel unter gegebenen Strategien, auf deren Grundlage die

stabilste Lösung vorgeschlagen wird.

� Das Kapazitätsplanungsproblem wird als kooperatives Spiel formuliert und

ein auf dem Shapley-Wert basierender Verteilungsmechanismus vorgeschlagen.

Der Shapley-Wert schlägt die gerechteste Verteilung als Grundlage für weitere

Verteilungsverhandlungen vor. Einzelne Spieler können verschiedene Koalitio-

nen bilden, die jeweils spezifische Werte haben. Beim Shapley-Wert werden

die Ressourcen entsprechend dem marginalen Beitrag der einzelnen Spieler zu

jeder Koalition aufgeteilt.

� Die Master-Operationsplanung (MSS) auf der taktischen Ebene der OP-Planung

wird angewendet, um eine Methode zur Zuweisung von Operationssälen, Tagen

und Schichten an Fachabteilungen in einem definierten Planungshorizont zu

ermitteln. Zur Lösung des MSS-Problems als Kombinationsoptimierung wird

ein hybrider Ansatz entwickelt, der aus einer Verhandlungsmethode namens

Fall-back-Bargaining und einem genetischen Algorithmus besteht.

� Eine dynamische Systemperspektive wird angenommen, um das System der

Operationssäle zu beschreiben. Bei diesem Ansatz, der von der Kontrollthe-

orie inspiriert ist, wird die Struktur des Systems modelliert und mit Hilfe

von Simulink®-Blockdiagrammen analysiert. Dieser Ansatz stellt eine ein-

fache, benutzerfreundliche Simulationsumgebung zur Verfügung, mit der ver-

schiedene Managementstrategien in das System implementiert und analysiert

werden können, um die Konsequenzen langfristiger Managemententscheidun-

gen aufzuzeigen.

Die entwickelten Methoden werden mittels realer Daten auf ihre praktische Anwen-

dung evaluiert. Die erhobenen Daten sind die vollständigen Jahre 2015 und 2016

eines deutschen Krankenhauses in Baden-Württemberg. Bei diesen Datensätzen

handelt es sich um alle durchgeführten Operationen mit Angaben zu Abteilungen,

OP-Ablaufzeiten, OP-Saal, OP-Datum, Operateuren und durchgeführten Proze-

duren nach Diagnosis-raleted Groups (DRGs).

6



Die Ergebnisse liefern aussagekräftige Einblicke in das Problem der OP-Planung

und der Terminierung und zeigen Bereiche auf, in denen weitere Verbesserungen

und Untersuchungen erforderlich sind. Es ist wünschenswert, dass die vorgeschla-

genen Methoden durch die Anwendung weiterer realer Daten und Fallstudien weit-

erentwickelt werden. Nichtsdestotrotz bieten die vorgeschlagenen Methoden auf-

schlussreiche Einsichten, um strategische Pläne zu verstehen und zu verbessern.

Die spielbasierten Ansätze bieten Einblicke in die faire und akzeptable Verteilung

und Zuweisung von OP-Ressourcen, d.h. OP-Zeit, zwischen Chirurgen und Fach-

abteilungen. Der systemdynamische Ansatz bietet darüber hinaus die Möglichkeit

das Systemverhalten im Operationssaal als Reaktion auf strategische und entschei-

dungsrelevante Veränderungen zu verstehen.
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1 Introduction

The primary purpose of this thesis is to describe methods for planning and scheduling

of operating rooms. The main focus is on the acceptability and fairness in the process

of operating room planning and scheduling.

1.1 Motivation

In principle, the healthcare management is about organizing and planning of the

right resources to deliver the highest quality of care at the lowest cost at the right

time to the right patient (Van Riet and Demeulemeester, 2015). One of the most

important areas within this sector to accomplish the aforementioned tasks is the

surgical suite. However, the environment of operating rooms (OR) is one of the most

expensive and most demanding areas of a hospital because of the following reasons:

1) surgical interventions constitute up to 60-70% of hospital admissions, which has

been estimated to account for more than 40% of the total expenses (Lin et al., 2013);

2) a significant amount of high-cost equipment and energy is dedicated to the ORs;

3) 50% percent of the total number of doctors and 10% of the medical staff work in

the OR (Balaras et al., 2007). Thus, in the light of these costs and resource demands,

hospital managers are interested in finding effective ways to manage, organize and

run ORs while ensuring high quality of care. Taking all the above mentioned facts

into consideration, it is evident that planning of the OR department is a difficult

task, as there are various conflicting objectives to be dealt with. This is due to not

only costs and resources, but also presence and involvement of various groups of

professional and semi-professional parties who have different orientations.

Moreover, as the population ages, some regions are facing a growing demand for

providing more surgical services. All of these factors have motivated the researchers

to increasingly stress out the importance of effective management and productive

planning of operating room departments (Macario et al., 1995; Harper, 2002; Glou-

berman and Mintzberg, 2001).

1.2 Aims and Objectives

This research aims at planning OR schedules at the strategic and tactical levels. To

this aim, in the proposed methodologies, satisfaction of surgeons or surgical special-

ties are put at the focal point to bring equity and fairness in the process of OR time

distribution. In order to realize this issue, the OR resource allocation is formulated

as a simple game. This means that different wards within a surgical department

are considered to be rational players fighting for resources (e. g. OR sessions).
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The rules that govern such games, guarantee a fair distribution of resources among

wards, which satisfies all of them at the same level. This approach considers the

optimality in the level of individual players rather than the whole system of the sur-

gical department. The system level optimality may lead to dissatisfaction of some

individuals and disturb the system stability because the satisfactions of individuals

are sacrificed for the sake of the system optimality. In contrast, providing the in-

dividual level optimality maintains the system stability, as it considers keeping the

individuals satisfied so that they don’t tend to leave the system.

The first objective is to develop methods to allocate the OR capacity among par-

ticipants (surgeons/surgical specialties) in a fair and equitable manner. For this

objective the two following methods are developed:

� A method based on the power index concept from the economic literature is

proposed, which measure the power of the participants in a distribution game.

Afterwards, based on the measured power indices, the most stable solution is

suggested.

� Another distribution mechanism based on the Shapley value, again from the

economic literature, is proposed to solve the distribution problem as a coop-

erative game by creating coalitions of involved players and measuring their

marginal contribution to each coalition.

At the tactical level, having already decided about the amount of OR capacity that

each player receives, the next step is to assign days, rooms and shifts to the surgeons

and surgical specialties. Therefore, the second objective is to develop a master

surgical schedule which concerns with the pre-assignment of days, rooms and shifts

to the surgeons and surgical groups, of course, based on their preference and values.

The developed framework is also built on the game theoretic concepts. It takes the

advantages of a method called fall-back bargaining to model the assignment process

as a bargaining session. Since the solution space is a large one and searching the

whole space in terms of the computing time is not a possible task, the fall-back

bargaining is combined with a genetic evolutionary algorithm.

The third objective of this research is to study the OR department as a dynamic sys-

tem. The OR is considered to be a dynamic system since it comprises interconnected

elements, components and people, and changes over time. Therefore, the purpose

is to understand and model the complexities and interrelationships among different

elements in the OR departments. System dynamics tools simulate and quantify the

behavior of the system and let the user to experiment with what-if scenarios. They

are not very detailed models and are used at strategic and speculative levels. The

advantages of this approach is that different strategies and settings incurred to the
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system can be simulated, tested and compared before their implementation in the

real world.

1.3 Outline of the Thesis

The structure of this thesis follows the aforementioned objectives and is divided into

four parts. Together, these chapters constitute the entire PhD thesis. The research

tasks elucidating the research questions are provided in details in individual parts.

Each chapter is finalized by conclusions.

� Chapter 2 concerns the background, literature survey, and the mathematical

concepts to develop the methods described for the first objective. The devel-

oped methods are described, and with the help of numerical examples, the

efficiencies of the methods are illustrated.

� Chapter 3 concerns the development of master surgical schedule. In this

chapter, the background and the relevant literature are reviewed, and the

proposed method is introduced and described. To show the capabilities of the

method, numerical examples are provided.

� Chapter 4 concerns the development of the system dynamics model. The

background of system dynamics and its use in the OR literature are reviewed.

Then, the method is elucidated and to demonstrate the value of the method,

scenario analysis is carried out and discussed.

� Chapter 5 summarizes how the research questions are addressed. Since, the

relation to real-world situations is of great importance, the usefulness of the

results and the practical impacts are discussed. The claimed contribution is

stated and the recommendations for further research are discussed.

1.4 Published Parts of this Thesis

Submitted Manuscripts

Faeghi, S., Lennerts, K., Nickel, S., A System Dynamics Model Application to

Operating Room Planning and Management, Journal of Simulation, under revision.

Faeghi, S., Lennerts, K., Nickel, S., Strategic Planning of Operating Room Ses-

sion Allocation Using Stability and Acceptability Metrics, Health Systems, under

revision.

Faeghi, S., Lennerts, K., Nickel, S., A Pre-assignment of Master Surgical Sched-

ule with Focus on Surgeons’ Satisfactions, Target journal: Annals of Operations
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Research, under preparation.

Faeghi, S., Lennerts, K., A Fair Allocation of Operating Room Sessions Using the

Shapley Value, Target journal: Operations Research for Health Care, under prepa-

ration.

Conference contributions

Faeghi, S., Lennerts, K., A system dynamics model for operating room capacity

allocation, CONFERENCE OF THE EUROPEAN WORKING GROUP ON OP-

ERATIONS RESEARCH APPLIED TO HEALTHCARE SERVICES, 18 July - 02

August, 2019 Karlsruhe, Germany
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2 Resource Allocation and Capacity Dimension-

ing

2.1 Part I: Operating Room Session Allocation Using Sta-

bility and Acceptability Metrics

Abstract

Operating room (OR) resources are limited and the increasing demand

for them may permanently outreach the supply. Hence, there is usually a

competition among surgeons to win OR resources. However, the developed

methods for OR session allocation are mostly based on system-wide optimiza-

tion methods which compensate the preferences of individual surgeons in favor

of productivity of the whole OR department. Such an approach neglects the

equitable distribution among patient groups and leads to conflict and dissat-

isfaction among surgeons and may jeopardize their loyalty. To overcome this

problem, a methodology based on the game theoretic solutions is presented in

this work which formulates the allocation problem as a simple game. In this

game, the individual surgeons or wards, as players, share the collective goal of

reaching an overall stability. The stability is defined based on the concept of

power from the theory of simple games and the weighted power index (WPI)

method. In this method, the power of players in a game is measured for all

possible strategies, and weighted by each player’s performance leading to the

choice of the most stable strategy. In order to deal with circumstances of un-

certainty and lack of information in players’ actual performances, the proposed

method is combined with the Monte Carlo technique to obtain a stochastic

problem-solving process. The suggested procedures are then applied to a case

study from the literature and also a series of hypothetical scenarios whereby

its ability to find the stable strategic solutions is presented and its features

are discussed in detail.

2.1.1 Introduction

Operating room session allocation refers to allocation of operating room (OR) to

various wards, which is particularly challenging due to the existence of conflicting

interests between the people involved in it, and the limitation of the OR’s typically

high-cost resources (Macario et al., 1995; Harper, 2002; Glouberman and Mintzberg,

2001; Cardoen et al., 2010b; Bacelar-Silva et al., 2020). A great deal of theoretical

work has addressed the allocation problem using complicated and detailed opti-

mization methods, however, they are mostly case-specific research works which lack

generalizability (Van Riet and Demeulemeester, 2015) and apparently lack insightful
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effects on real-life OR management practice (Zhu et al., 2019). An important issue

in this regard is societal point of view: focusing on satisfaction of individuals so that

the long-term collective efficiency could be guaranteed rather than compensation of

individual preferences in favor of short-term success. OR session allocation is fun-

damentally a tool to reach an acceptable and equitable distribution not only among

medical specialties (wards) but also among patient groups (Testi and Tànfani, 2009;

Zhu et al., 2019).

Let us consider an operating room department with 20 operating room blocks and

only two wards with different productivity rates. If one of them needs 12 and the

other one 15 blocks to serve the patients on their waiting lists, the total demand

will outreach the available amount and the OR manager will not be able to fully

satisfy both of the demands. If she/he decides to entirely fulfill the demand of one

of them, conflicts may arise; the other ward will find the allocation unacceptable

because it leads to longer waiting times of its patient group. This, in turn, may put

surgeons’ satisfaction and loyalty at risk. A proportional distribution merely based

on demand amount would also make no sense, because every ward has a different

productivity rate and ignoring these rates may jeopardize the whole OR performance

in favor of low performance wards. One possible approach to solve this problem is

to analyze the acceptability and equability of feasible distribution possibilities from

the ward’s/surgeon’s perspectives while considering their contribution to the whole

surgical department.

2.2 Literature Review

Most of the relevant literature pursues to meet only some microeconomic goals such

as the maximization of 1) patient throughput or case volume (Feldstein, 1967; Dowl-

ing, 1976; Baligh and Laughhunn, 1969; Blake and Carter, 2002; Dexter and Macario,

2002; Rohleder et al., 2005; Guido and Conforti, 2017), 2) profit (cost minimization)

(Ma et al., 2009; Koppka et al., 2018) and 3) contribution margin (Brandeau and

Hopkins, 1984; Hughes and Soliman, 1985; Robbins and Tuntiwongpiboom, 1989).

However, Blake and Carter (2003) argued that the acceptability of resource allo-

cation by physicians and surgeons should be additionally considered. Zhang et al.

(2009) also emphasized that the deficiencies between the assigned OR time to each

surgical group and their desired target value should be minimized. The reason is

that, on the one hand, when a hospital aims for profit maximization, it may result

in a work overload on some surgeons, which might be undesirable and unacceptable

to them and may have adverse impact on hospital revenues (Powell et al., 2012).

On the other hand, the surgeons’ targeted demand must be satisfied as much as

possible, meaning that receiving too less OR time than demanded would also be
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unacceptable by them (Blake and Carter, 2003; Guerriero and Guido, 2011). An eq-

uitable distribution of OR time is also addressed by Testi and Tànfani (2009). They

defined equity by “access based on need” and argued that equity is not compatible

with efficiency.

Reaching a system-wide efficiency generally requires a “perfect cooperation” among

players; this means a full agreement on rules that even lead to an unequal resource

sharing. For this reason many of the developed methods such as mathematical

programming like goal programming (Ozkarahan, 2000; Blake and Carter, 2002;

Rohleder et al., 2005), stochastic programming (Denton et al., 2010), linear pro-

gramming (Dowling, 1976; Hughes and Soliman, 1985), integer linear programming

(Guido and Conforti, 2017; Testi and Tànfani, 2009), mixed-integer linear program-

ming (Zhang et al., 2009), and meta-heuristics like genetic algorithms (Roland et al.,

2006) and tabu search (Hsu et al., 2003) all require perfect cooperation. However,

since in reality a full (and stable) cooperation between different wards at the ex-

pense of their overload or idleness is hardly expectable, the outcomes obtained by the

aforementioned methods may often be unreliable. Therefore, when multiple players

are present and a lack of perfect cooperation is likely, application of negotiative

methods (i.e. game-theoretical approaches) can be of great advantage.

There have been many efforts in the field of game theory to develop methods for

a quantitative description of various games with different properties; bargaining

methods, bankruptcy allocation procedures, power-based and voting methods are

some examples (Hipel and Obeidi, 2005). However, there are only a few studies

which suggest the use of game theory and its solution concepts in OR scheduling.

Ackere (1990), considered conflicting interests in the process of OR scheduling and

developed a game to deal with conflicts such as those between the surgeon and the

scheduler. Marco (2001) wrote about “game theory in the operating room environ-

ment” and discussed the advantage of game theory in describing human interactions

in contrast to other decision making methods and argued how the interactions of

staff and other stakeholders can be modeled as a game. McFadden et al. (2012)

showed that a non-cooperative game theory can be appropriately applied to the

operating room environment, and described how different types of games can be

suitable to resolve conflicting situations in the OR environment.

2.2.1 Stability and Acceptability in OR Planning Problem

The OR suite is a symbiosis comprised of multiple wards in close interaction. They

form a union (or alliance) committed to improve the quality and the efficiency of the

OR suite and with a large impact on the whole hospital (Kheiri et al., 2020). In order

to reach their collective goal of increasing efficiency, under the condition of limited



2 RESOURCE ALLOCATION AND CAPACITY DIMENSIONING 8

resources, wards must restrict themselves to demand to be fully satisfied. However,

since they all have a high tendency to optimize themselves and gain resources as

much as they need, there is a strong competition among them. When individual

wards have much more competition than self-limitation, the system, in which they

exist, becomes unstable (Gui and Lou, 1994).

The problem of planning the allocation of resources for an OR suite is in fact a

supply and demand game in a symbiosis, where the system stability is an important

determinant of its successful development and evolution (Stepaniak and Pouwels,

2017; Wang et al., 2013). Generally, for the players in an allocation game, two

concepts can be imaginable regarding the final solution: 1) minimizing the sum of

the individual dissatisfactions; and 2) minimizing the maximum dissatisfaction of

individuals (Tecle et al., 1998). The former incurs mutual objective compensation

among individuals to reach the system-wide optimal solution while the latter allows

no compensation which leads to stability by providing an acceptable solution to

all individuals. The stability of an allocation scheme is hence to a great extent

determined by the condition of equal satisfaction level for all players. This is based

on the argument that when some players do not find a scheme acceptable, that

scheme may be viewed as unfair by them, leading to instabilities in the overall

system. As a result some players will then become liable to withdraw from the

coalition of wards (Dinar and Howitt, 1997). Therefore, equal satisfaction of players

is a crucial component to a have a synergistic system (Borkotokey and Neog, 2012)

and guarantees success in a coalition of wards. The concept of equal acceptability

and equitable distribution also affects patient groups in an indirect manner, who are

waiting to be treated (Tap and Schut, 1987).

2.2.2 Contributions of this Work and Outline

The allocation problem dealt with here corresponds to a classical allocation game

(Rosenthal, 1973) in which selfish players (i.e. wards) should share limited resources

(OR sessions) to accomplish their tasks (demands), i.e. complete treatment of their

patients waiting list. Game theoretic solutions may provide, by their very nature,

an appropriate basis for solving multi-player/multi-participant allocation and deci-

sion making problems, and equip the decision makers with valuable insights about

perception of participants regarding final decisions. The limited application of game

theoretic solutions in the OR scheduling area is the main motivation of this study.

Although it is often encouraged to develop complicated heuristic approaches to solve

practical problems, some exact and simple approaches have also proved to be power-

ful enough to solve real problems (Cardoen et al., 2010a) like the methods proposed

by Testi and Tànfani (2009) and Rohleder et al. (2005).
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Therefore, in contrast to the majority of approaches, the aim of this study is to

demonstrate the applicability of simple game theoretic solutions to OR resource

allocation problem. In the context of this theory the power index (PI) (Loehman

et al., 1979) methodology is used to calculate the power of each player for potential

allocation schemes and thus obtain a measure for the stability of the final solution.

The problem is defined in Section 2.2.3 and the power index method is described

in Section 2.2.4. Since no real data set which could suit the problem definition

here was accessible, the capability of the proposed method is examined by means

of a real example taken from the literature in Section 2.2.5 and a set of randomly

generated hypothetical examples in Section 2.2.6. Furthermore, a deterministic

(with no uncertainty) approach and a stochastic one (with uncertainty) based on

Monte Carlo simulations are considered. Finally, Part I concludes in Section 2.2.7.

2.2.3 Problem Definition

OR planning and management is usually done in a three level hierarchical decision

making process: the strategic (long-term) level, which is also referred to as session

planning, deals with the number and type of surgeries to be performed. One of the

main goals in this level is to distribute the time available to the OR unit among sur-

gical services seeking an efficient case mix (Blake and Carter, 1997; Samudra et al.,

2016; Guido and Conforti, 2017); the tactical (medium-term) level, which involves

developing a surgical master plan determining surgeons that are to be associated

with the time blocks defined by the strategic planning level (Beliën and Demeule-

meester, 2007); and finally, the operational (short-term) level, which addresses daily

schedules and staffing for individual OR units (Ozkarahan, 2000). With respect

to these three levels, the current work falls under the strategic (session) planning

level, and hence deals with the efficient management of the numbers and types of

surgeries that are to be performed by the OR units. It should be noted, however,

that the three mentioned levels are in fact not strictly separate from each other, but

are rather inter-related and often overlap each other (Slack, 1999).

In this work, the OR suite of a hospital is considered as a system, with sub-systems

each representing a surgical specialty, or ward. The OR suite system is defined

by a limited number of OR sessions (total resources) that can be carried out in a

unit of time, which then results in the number of treated patients (total patient

throughput). Each ward is then modeled as a sub-system with a fixed performance,

i.e. the average number of patients that the ward can treat in a single OR session.

Each ward has then a demand of being allocated with a certain portion of the total

resources available, which corresponds to the number of OR sessions that the ward

will be allowed to perform. In turn, each ward’s demand is itself based on the
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number of patients in its waiting list.

The methodology proposed here, seeks the most possible “stable” allocation scheme.

For this purpose, a pool of possible allocation schemes is generated, and then, the

stability of the allocation schemes are calculated with the help of power concept

(see Section 2.2.4). The output would be then introduction of an allocation scheme

which brings the most possible stability and is unlikely to be rejected by the wards.

The study objectives cab be summarized as follows:

� to present a method for determining the stability of OR resource allocation

by assuming the individual wards as players of an allocation game, and then

compare to those obtained via conventional optimization methods;

� to identify the relative satisfaction of wards using stability analysis methods

under uncertain conditions;

� to illustrate the importance of stability investigations by providing a series of

real and hypothetical case studies.

2.2.4 Weighted Power Index Method

In the framework of the simple game theory, there is a group of methods collectively

known as power index methods. Power indices are used to determine the impact of

the players on the final results which is interpreted as the player’s power in a simple

negotiation game. Power index methods are designed to provide a fair division and a

reasonable sharing of an overall value among the players (Bertini et al., 2018). When

a particular division of values, resources or goods is fair enough and more likely to

be responsive to the preferences of all players, then, that division is accepted as a

stable solution to the game (Brams, 2008).

There are various types of power indices developed so far to deal with the measure

of power in negotiation game processes: Shapley-Shubik (Shapley, 1953), Banzhaf

(Banzhaf III, 1964), Johnston (Johnston, 1977), and Coleman (Coleman, 2011) in-

dices are some examples. Loehman et al. (1979) developed also an approach which is

similar to the Shapley-Shubik power index and it is chosen here because its features

better suit the problem considered in this work. Loehman’s Index is an approach to

determine the relative power. The power index for a game player is calculated by

comparing their individual payoffs with the total payoff gained by all players par-

ticipating in the negotiation game. In the allocation problem discussed here, each

ward’s payoff is the share of resources it obtains. Hence, having N players and AS

amount of total available resources in the game, the power index of player i, namely

PIi can be formulated as (Loehman et al., 1979):
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PIi =
ci − asi∑N

j=1(cj − asj)
(2.1)

where i and j = {1, 2, 3, .., N} is the set of players, ci is the demanded (or claimed)

allocation for the player i, asi is the amount of allocated share (or payoff) to the

player i and
∑N

i=1 PIi = 1. It should be noted that hereby the rule is that no

ward receives more than it has demanded such that 0 ≤ asi ≤ ci. The sum of all

allocations is equal to the available resources (
∑N

i=1 asi = AS). This constraint

imposes the efficiency property which implies that no player can obtain a better

allocated share without making others players’ share worse off. This power index

has also been suggested (Dinar and Howitt, 1997; Bertini et al., 2018) as a forecast

to the stability of the results of a negotiation game. To this end, each player’s PIi

is calculated for each allocation scheme and the balance in the distribution of power

among the players is linked to the stability of the outcome. Conceptually, this means

that a solution is more stable when the variation in the distribution of the power

between players is smaller. To measure this stability, the coefficient of variation in

the PIi is calculated across all players for a given solution as:

CV =
σ

P̄ I
, 0 ≤ S ≤ 1 (2.2)

where CV is the coefficient of variation of a particular solution, σ and P̄ I are

the standard deviation and the mean value of the set of the power indices of all

players, respectively. A greater value of S hence represents a situation where a

larger instability of the allocation solution is expected.

In Equation 2.1 the claims of different players can now be weighted (inspired by

Holler (1981)) according to their capability to influence the game. These weights,

which can help in obtaining realistic results, represent the share of each player in

the game. In our OR problem, these weights represent the performance of the

wards. Therefore, in order to take the weights into account Equation 2.1 is revised

as follows:

WPIi =
(ci − asi)wi∑N
j=1(cj − asj)wi

(2.3)

where WPIi is the weighted power index of the player i, wi is the weight of the

player i calculated based on his/her performance, normalized and re-scaled to [0,

1] such that
∑N

i=1wi = 1 and
∑N

i=1WPIi = 1. A fixed OR capacity is assumed

throughout this work. Among the three strategies of open (surgeons can choose

any working day for their session), block (surgeons are assigned to a set of time

blocks) and modified block (combination of open and block) scheduling approaches,



2 RESOURCE ALLOCATION AND CAPACITY DIMENSIONING 12

the block strategy is applied here. The decision here is about the allocation of asi

of the total available OR sessions in a specific period of time (e.g. one week) to the

ith ward. We also assume that these OR blocks are assigned to elective (in-patient)

surgeries. Emergency cases are not taken into account.

2.2.5 Case study I

The case study is adopted from Testi et al. (2007) which is a surgical department in

San Martino University Hospital located in Genova, Italy. The department is made

up of six wards (players). Six surgery rooms are available from Monday to Friday

for 6 hours daily, which constitute up to 30 OR sessions a week. Each ward has its

own individual performance (weight) which is the average number of patients it can

treat per OR session (see Table 1). There are also initial ward waiting lists, and each

ward demands a certain number of OR sessions (demand) to clear its waiting list.

The work by Testi et al. (2007) is a hierarchical approach with three levels for the

weekly scheduling of operating rooms: session planning (number of sessions to be

weekly scheduled for each ward), master surgical schedule (surgery room assignment

to wards), and elective case scheduling (selection of patients to be scheduled in each

session). Here, we are concerned with the first phase (session planning). Moreover,

of the two scenarios dealt with herein, for which the total demand (1) equals and (2)

exceeds the total number of resources, we are concerned with the latter. In order

to allocate the OR sessions, Testi et al. (2007) calculated the “marginal benefit” of

the kth session demanded by the jth ward. This marginal benefit accounts for the

economic consequences of allocating more sessions to one ward or another in terms

of the satisfied demand as follows:

djk =
Dj − (k − 1)∑

j Dj

(2.4)

where, djk is the marginal benefit of the kth session demanded by the jth ward, Dj

is the total OR sessions demanded by the ward j, and k is the number of already

assigned sessions. This equation gives more importance to the first session assigned

to the jth ward, rather than to the subsequent ones. This means that the ward j’s

benefit is at the highest by receiving the first session (while it had already no sessions)

compared to when it receives the kth session as it already has k − 1 sessions. That

is to say that the marginal benefit decreases as the number of received OR sessions

increases. Since this equation divides the subtraction between the total demand

of the ward j and the having already assigned k − 1 sessions by summation of the

demands of all wards, there more value is given to the ward with the bigger demand.

This means that when a ward has more demands than the others, its marginal

benefit will be higher as it has the bigger share of the total amount demanded by all
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wards. Testi et al. (2007) followed the aim of maximizing
∑

j

∑
k djk as the objective

function of the session distribution problem in the presence of constraints such as

capacity and overrun hours. They didn’t considered any cost constraints.

2.2.5.1 Deterministic Allocation Results Table 1 shows the details of the

case study, the results and the coefficients of variation for the allocation schemes ob-

tained by WPI and the method by Testi et al. (2007). Comparison of the coefficients

of variation for both allocations shows that the one suggested by WPI is more stable

than the one from Testi et al. (2007). Each ward’s unsatisfied demand is given in

Figure 1 obtained by WPI method and the method used in Testi et al. (2007). It

can be seen that WPI method has allocated the available resources in a way that

the disparities among the unsatisfied demands are lower. While the disparity in the

solution of the method based on Testi et al. (2007) is equal to 3, it is 1 in the allo-

cation given by WPI method. This arguably brings more stability among players.

WPI method has not only reached at a more stable solution, but in fact, it has also

improved the patient throughput slightly. The WPI solution offers an increase in

the patient throughput – from 333 to 334 – and this is, however, obviously a side

effect in this specific case and not an explicit objective of the presented method.

As the hospital management is always constrained by budget, and profit maximiza-

tion has been always an objective function for resource distribution, we calculate here

the total cost as a measure. Since for the case study taken from Testi et al. (2007)

no additional data on cost and profitability was provided, therefore, we calculate

the associated variable costs and payments for both optimal and stable allocation

schemes using a method suggested by Diez and Lennerts (2009) as follows:

TC = 0.92t (2.5)

where TC is the total variable cost of every surgery procedure to the hospital with

the duration of t (minutes). The above-mentioned approach was suggested based

on the data provided by German Institut für das Entgeltsystem im Krankenhaus

(InEK) (DKG, 2018). Table 1 reports the total costs. It can be seen that there

is only a slight difference between them (about 0.16%). It must be noted that

the hospital and surgery costs vary among surgeons per unit of time of operating

rooms (Macario et al., 2001), hence, obviously, this approach is not suggested here

as a sound and exact way of calculating costs, but to provide a comparison. At

a speculative and strategic level, such reductionist approaches can provide insights

about decisions for the future, and there might be less need to utilize high-quality

and precise data (Brailsford, 2008).
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Table 1: Details of the case study form Testi et al. (2007).

Proposed

method

Weighted

Power
by Testi et al. Index method

W
ar

d

c1 w
2

IW
L
3

a
s4

U
D

5

M
P

T
6

W
P

I

a
s

U
D

M
P

T

W
P

I

1 12 3.0 144 10 2 120 0.20 11 1 132 0.15

2 5 2.5 50 3 2 30 0.20 3 2 30 0.17

3 12 2.8 134 9 3 100 0.22 10 2 112 0.17

4 6 2.5 60 4 2 40 0.20 4 2 40 0.17

5 3 2.4 29 2 1 19 0.18 1 2 9 0.17

6 2 2.8 22 2 0 22 0 1 1 11 0.16

T7 40 2.7 440 30 10 333 - 30 10 334 -

Coeffiecient of variation (CV ) 0.45 0.05

Total costs (e) 39,574 39,637

1Demand (weekly)
2Ward performnce
3Initial waiting list in one month
4allocated share
5Unsatisfied demand
6Monthly patient throughput
7Total

Figure 1: Scattering of the unsatisfied demands for power index method and results from

Testi et al. (2007).
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2.2.5.2 Perfectly Stable Point To have an insight about the stability of al-

location schemes, a “perfectly stable point” (PSP) is calculated here at which the

satisfaction of all players or their power indices are perfectly equalized such that

the Equation 2.2 equals zero. Such a point is mostly achievable within a continuous

decision space. The decision space of an OR session allocation problem, however,

should be discrete corresponding to the cases in the real world. Nevertheless, the

PSP can be found in a continuous space, and then used for measuring its distance

from the obtained results.

Table 2 presents the PSP, the satisfaction ratio of individual players (wards) under

the results obtained for the case study with respect to PSP, and the Euclidean

distances between the results and the PSP. The satisfaction ratio of the ward i is

defined as the division of its allocated share by the one suggested by PSP. The

Euclidean distance is the most common distance measure and is used as a similarity

measure (Strike et al., 2001) between the obtained allocation schemes and the PSP.

As it can be seen, the satisfaction ratios for the results achieved by the WPI method

are much closer together than those by Testi et al. (2007). However, the ratios for

the Ward 6 are to some extent unusual. Since it has a demand of two sessions, there

are just three possibilities for satisfaction ratios (0, 2.63, and 5.26). Among these

numbers, 0 is unacceptable as it indicates a zero allocated share which increases

the coefficient of variation among power indices and 5.26 is very large and indicates

unfairness because it occurs when the ward’s demand is fully satisfied. Any full

satisfaction leads to the unsatisfied demand of 0, which also increases the coefficient

of variation. Finally, the only possibility to fulfill the stability conditions is 2.63.

Table 2: Perfectly stable point and satisfaction ratios for San Martino University Hospital,

Genova, Italy.

Ward PSP Satisfaction ratio

(as) Testi et al. (2007) WPI Method

1 10.43 0.95 1.05

2 3.28 0.93 0.91

3 10.38 0.86 0.96

4 4.28 0.95 0.93

5 1.25 1.74 0.80

6 0.38 4.87 2.63

ED1 – 2.33 1.04

1ED:Euclidean distance
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2.2.5.3 Remedy for Uncertainty Surgical services are plagued with uncer-

tainties that create major challenges with the development of faultless planning

and scheduling. The previous section presented a deterministic solution to the OR

management problem by using the average values for ward performances. While

taking the average values can be an effective and fast way to reach to a solution,

this approach will cause the elimination of some information and hence leads to

uncertainties: omission of information is not much different from its lacking (Meyer,

1981; Johnson and Levin, 1985).

Ward performances or the average number of patients treated per session are difficult

to predict, since they depend on various influencing factors such as the methods

surgeons adopt, the accompanying teams and the characteristics of the patients

themselves (Samudra et al., 2016). A Monte Carlo sampling method can be used

to generate random values from probability distributions to all feasible situations

for the game. In this way, possible situations that may arise can be accounted

for beforehand. This approach hence transforms the stochastic problem to many

deterministic ones that each can be solved using the approach described in previous

sections.

We now solve Example I in a stochastic manner. In each iteration, 6 random numbers

can be selected from six probability distributions for the ward performances (or

weights). These 6 numbers are used to create a new deterministic OR allocation

problem, and then it will be solved by WPI. The mean values and the standard

deviations of the allocated shares are then updated so that the probability of winning

a certain amount of allocated shares will be known for each ward.

In this study, triangular probability distributions are assumed, making it easier to

further apply a three-point-estimation, a common approach when historical data

are not accessible (like our case study). Triangular distributions have shown that

can be used successfully in simulations in medical practices like in (Holm and Dahl,

2009; Arisha et al., 2010). The three-point-estimation can be generated by deter-

mining worse, most likely, and best conditions and then the triangular probability

distribution can be derived by using the following equation:

f(x|a, b, c) =


0 for x < a

2(x−a)
(b−a)(c−a) for a ≤ x ≤ b

2(c−x)
(c−a)(c−b) for b ≤ x ≤ c

0 for c < x

(2.6)

where a, b, and c are the worse, most likely, and best values, respectively, for the

variable x ∈ R. In our example, the variable x denotes the ward performance and

it is assumed – based on expert judgments – that a = wi− 1, b = wi, and c = wi + 1

(wi is the performance of ward i form Table 1).
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Figure 2 shows the changes in the share allocation during the Monte Carlo procedure.

The number of iterations for the procedure is set to 1000. As it can be seen in Figure

2, the mean values and the standard deviations converge after a few hundreds of

iterations. The probability of winning a specific amount of shares (Figure 3) can

also be elicited, so that the decision maker can see all the probable outcomes. From

Figure 3 it can be understood that for the Ward 1 the share of 11, the Ward 2 the

share of 3, the Ward 3 the share of 10 and the Wards 5 and 6 the shares of 1 sessions

are the most probable results. It can moreover be seen that it was not probable for

any ward to win a share equal to its claim.

Figure 2: Mean values and the standard deviations of changes in allocated shares during

the Monte-Carlo simulation.

The cumulative distribution function (CDF) for the patient throughput is also ob-

tained from the results (Figure 4). Using these CDFs, the decision maker can esti-

mate the probability of having a certain patient throughput. For example, Figure

4 indicates how the probability that the total patient throughput after one month

will be less than 350, is calculated by assigning 350 to the horizontal axis of the

CDF. It can be that the probability of having 350 treated patients is about 90%.

An arbitrary quantile can also be used to find a contingency output. Figure 4 shows

how the 80th quantile of the total throughput is calculated by intersecting the y-axis

of the CDF at y=0.80. The results indicate that with 80% probability, a throughput

around 344 will be the outcome. Using such CDFs, the decision maker can decide

upon strategic approaches for the surgical department. He/she can additionally do

experiments by adopting hypothetical strategies based on the desired expectations

and choose the best one among them.
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Figure 3: Probabilities of wining specific amounts of shares for each ward. These figures

show that, for example, for Ward 1 the probability of wining 11 shares is about 80%, but

the winning of 12 shares is 0%.

Figure 4: Cumulative probability distribution for patient throughput for stochastic prob-

lem solving of San Martino University Hospital. The solid line shows that the probability

of having a patient throughput of 350 is about 90%; the dashed line shows that with 80%

probability, the patient throughput will be around 344.

Moreover, the probability of being stable for the allocation schemes can also be

elicited. Table 3 shows the first three allocation schemes with the highest probabil-

ities to be selected as stable solutions. This probability calculation helps to identify

the likelihood of the allocation schemes to be chosen as the most possible stable
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ones. The winning probability of the first allocation is much higher than the second

and third ones. This shows the robustness of the arrangement of 11, 3, 10, 4, 1,

and 1 for the Wards 1, 2, 3, 4, ,5 and 6, respectively. This result is in accordance

with those from the deterministic approach. The reason is that the triangle prob-

ability distributions for performances here are formed based on the deterministic

values from Section 2.2.5.1. Those values are taken as the most probable point of

the three-point-estimation to generate the probability distributions. It is also worth

mentioning that the allocation scheme obtained by the method suggested by Testi

et al. (2007) is not among the schemes ranked as the three most possible stable ones.

Table 3: The first three allocation schemes with the highest probabilities of being selected

as the stable solution for the stochastic problem solving of the San Martino University

Hospital case.

Ward 1 2 3 4 5 6 Probability

Allocation Schemes
11 3 10 4 1 1 51.6%

10 3 11 4 1 1 18.6%

11 2 11 4 1 1 9.9%

2.2.6 Case study II: Hypothetical Instances

In this section, the presented method is applied to a series of hypothetical example

cases of the OR session allocation problem, and its sensitivity to the various scenarios

considered is analyzed. It is assumed that there is a surgical department comprised

of 10 wards. The list of demands is generated randomly from the interval [1 15].

The number of available resources is calculated under the three circumstances of 1)

50%, 2) 60%, and 3) 80% of the total demands. For the performance of the wards,

two scenarios are considered: random generation from the interval A) [1, 5] (for the

circumstances under which the differences among performances are high), and B) [2

3] (for the circumstances under which the differences among performances are low).

The PSP and the satisfaction ratios are calculated for all the resulting 6 scenarios

(Tables 4 and 5).

It can be seen from the results (Figure 5), that the wider the range of ward per-

formances is, the wider is the range of unsatisfied demands. Under A Scenarios,

there are more differences between the highest and the lowest unsatisfied demand,

for example, this difference for Scenarios A1 and B1 (also A2 and B2) are 5 and

4, respectively. Comparing Scenarios A3 and B3, it can be seen that as the per-

formance range under B3 is smaller, the distribution of unsatisfied demand is much
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smoother than A3. It can also be seen that when the difference between available

resources and the total demands is higher, the distance between the highest and the

lowest unsatisfied demand becomes higher too. It can be concluded that when there

is less and less resources to be allocated, more shares of resources go to the wards

with higher demands and greater weights. When very scarce resources encounter

excessive total demands, the system needs to pay more attention to satisfy the wards

with higher productivity and higher needs so that it can keep working in an stable

way.

Figure 5: Unsatisfied demands for different wards under Scenarios A and B for the hypo-

thetical case study.

There is an important and interesting issue that should be considered is the PSP.

As the PSP is calculated in the space of real numbers, there exist also negative PSP

values which imply that no resources should be assigned to the respective wards for

the particular allocation. This means that the pertinent ward should wait to come

up with a demand enough to fulfill the requirements of using one resource unit. For

instance, consider Ward 3 under Scenario A: if we assign one OR session to this

ward, despite the performance of 1.7 which delivers 1.7 patients per session, there

will be just one patient treated, and the rest 0.7 of the assigned resources will be

wasted. Therefore, for the overall performance it will be better for that ward to wait

for the next allocation rounds in which it will have reached an enough demand.
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Table 4: Details and results of Case Study II (Scenario A).

Scenario A

Scenario A1 Scenario A2 Scenario A3

Ward c1 w1 as1 UD1 PSP1 SR1 as UD PSP SR as UD PSP SR

1 6 1.6 0 6 1.38 0.00 0 6 2.31 0.00 4 2 4.15 0.96

2 10 4.2 4 6 8.24 0.49 8 2 8.59 0.93 10 0 9.30 1.08

3 1 1.7 0 1 -3.34 0.00 0 1 -2.48 0.00 0 0 -0.74 0.00

4 10 2.6 7 3 7.16 0.98 7 3 7.72 0.91 9 1 8.86 1.02

5 4 3 2 2 1.54 1.30 2 2 2.03 0.99 3 1 3.02 0.99

6 12 3.6 10 2 9.95 1.01 10 2 10.35 0.97 11 1 11.18 0.98

7 2 3.7 0 2 0.00 0.00 1 1 0.40 2.50 1 1 1.20 0.83

8 2 2.0 0 2 -1.69 0.00 0 2 -0.95 0.00 0 2 0.52 0.00

9 8 2.0 5 3 4.31 1.16 5 2 5.04 0.99 6 2 6.52 0.92

10 5 2.9 2 3 2.45 0.82 3 2 2.96 1.01 4 1 3.98 1.01

T2 60 – 30 30 30 – 36 24 36 – 48 12 48 –

A3 – 2.73 – – – 0.58 – – – 0.83 – – – 0.78

ED4 5.90 3.71 1.30

1 c: demand, w: ward performance, as: allocated share, PSP: perfectly stable point,

SR: satisfaction ratio, UD: unsatisfied demand
2Total
3Average
4Euclidean distance between as and PSP
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Table 5: Details and results of Case Study II (Scenario B).

Scenario B

Scenario B1 Scenario B2 Scenario B3

Ward c1 w1 as1 UD1 PSP1 SR1 as UD PSP SR as UD PSP SR

1 6 2.0 0 6 2.12 0.00 0 6 2.89 0.00 4 2 4.45 0.90

2 10 2.6 4 6 7.01 0.57 8 2 7.61 1.05 9 1 8.81 1.02

3 1 2.4 0 2 -2.23 0.00 0 2 -1.58 0.00 0 0 -0.29 0.00

4 10 3.0 7 3 7.41 0.94 8 2 7.93 1.01 9 1 8.96 1.00

5 4 3.0 2 2 1.41 1.42 2 2 1.93 1.04 3 1 2.96 1.01

6 12 2.6 9 3 9.01 0.10 10 2 9.61 1.04 11 1 10.81 1.02

7 2 2.8 0 2 -0.77 0.00 0 2 -0.22 0.00 1 1 0.89 1.12

8 2 2.6 0 2 -0.99 0.00 0 2 -0.39 0.00 1 1 0.81 1.23

9 8 2.3 5 3 4.62 1.08 5 3 5.30 0.94 6 2 6.65 0.90

10 5 3.0 3 2 2.41 1.24 3 2 2.93 1.02 4 1 3.96 1.01

T2 60 – 30 30 30 – 36 24 36 – 48 12 48 –

A3 – 2.65 – – – 0.54 – – – 0.61 – – – 0.92

ED4 4.59 3.38 0.91

1 c: demand, w: ward performance, as: allocated share, PSP: perfectly stable point,

SR: satisfaction ratio, UD: unsatisfied demand
2Total
3Average
4Euclidean distance between as and PSP
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2.2.7 Concluding Remarks

The system-wide optimization methods are based on collective-optimality and ignore

the fact that the individuals have a strong tendency of self-optimization during any

allocation process. Moreover, reaching a collective-optimality necessitates a perfect

cooperation and a complete agreement upon the selected solution. It should be

noted that individuals often have a stronger motivation in self-optimization rather

than in social or group-optimization. This means, when they get unequal shares in

a community, they may leave to find another community in which they can obtain

greater utilities and higher shares.

This issue emphasizes the importance of the concept of stability, as opposed to the

optimality alone. In hospitals, like many other communities, these considerations

must be met too, where the physicians (and subsequently the patients) are the

individuals involved in, say, the OR resource allocation problem. The acceptability

level of the allocation schemes is hence of great importance. The physicians engaged

in various surgical groups enter the game with a certain demand, to get a share of

available but limited resources. How they will be happy and satisfied with the final

solution depends on what they obtain compared to their demands and their levels

of satisfaction compared to the other participants.

This work utilizes the concept of “power” to analyze stability and acceptability of

feasible alternatives and finds the most stable solution possible for the OR session

allocation problem. The power index method is used to this aim. This method

calculates the power or potential tendency of individual players to leave the game

and derives a score for allocation schemes based on this. Hence, it gives an insight

into the stability level of an allocation scheme and investigates if that scheme will

prevent individual wards to develop a tendency towards leaving the game. Moreover,

although a great deal of theoretical comprehensive and detailed optimization meth-

ods have been developed to allocate OR capacity, this work shows that it is worth

taking a look at game-theoretical solutions and solve the OR capacity allocation

problem from another point of view. The seek after stable solution decreases the

inequality in the individual wards’ power to a possible minimum. In this study, also,

the performances of the players in treating patients are considered. Hence, different

criteria and indicators can be considered for this type of weights in future without

changing the methodology presented here. Physician preferences or the criticality

of conditions of a special group of patients are examples of such criteria.

A case study from the literature and a number of various hypothetical cases were

solved using the proposed method. For the former, the results obtained using the

presented method were compared with that of an optimization-only approach from

the literature. It was shown that using the presented method based on the power



2 RESOURCE ALLOCATION AND CAPACITY DIMENSIONING 24

indices, a smaller scattering exists in the unsatisfied demands leading to an overall

more stable solution. In the hypothetical case study, the sensitivity of the results

with respect to variations in performance and available resources were analyzed.

Furthermore, uncertainties encountered in real situations regarding the allocation

process is also taken into account. The number of treated patients during each

OR session is dependent on the duration and type of the surgery and are difficult

to predict. A combination of a Monte Carlo simulation and the weighted power

index was proposed to address this uncertainty. This combination calculates the

probability of winning a specific share for each ward, and also that of an allocation

scheme with regard to its stability.
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2.3 Part II: Fair Allocation of Operating Room Sessions Us-

ing the Shapley Value

Abstract

The allocation problem – as an essential process in strategic planning of

operating room management – is formulated as a cooperative game assuming

the individual surgical services as players having different claim profiles, while

seeking the objective of reaching an equitable resource distribution. In this

sense, a mechanism based on the Shapley value is proposed, which suggests a

fair and equitable distribution scheme as a basis for further allocation negoti-

ations. Individual players can form different coalitions, which each having its

own value. In order to calculate their values, bankruptcy and priority rules

are utilized. These values, then, are used as inputs of the Shapley value which

divides the resources according to the marginal contribution of each player.

To make a performance judgment and examine the proposed mechanism, it is

applied to an operating room planning problem selected from the literature

and the results are compared from equability and fairness points of view. The

method is also implemented to a real case study – elective admissions of sur-

gical departments at a German hospital – and it is shown how an equitable

distribution can influence the results.

2.3.1 Introduction

Surgical departments are, on the whole, lucrative and their revenue stream is vital.

Being a remarkable aspect of hospital finances, the surgical cases constitute up to

40% of the hospitals’ total revenue (HFMA, 2003). However, their profitability

levels depend on how they are managed, and a faulty management could simply

lead to unprofitability. This is mostly because of the ever-increasing expenses and

limitations of the resources dedicated to the operating rooms (ORs) and the impact

of their management on personnel, surgeons, nurses and other departments of the

hospitals (Cardoen et al., 2010a; Ceschia and Schaerf, 2016). Hence, the careful

distribution of these limited resources is profoundly important.

In the process of resource allocation, say OR time, among surgeons or surgical

services, two important issues must be taken into account: the throughput of whole

surgical suite, and equitable allocation of resources. To understand the importance

of these issues let’s take a different view to look at the surgical department. Here,

system theoretic view is adopted and is assumed that the surgical department is a

system (Georgopoulos and Matejko, 1967) within the bigger system of the hospital

- having taken into account that life of the system of surgical department is utterly

vital for continuation of hospital’s economic life. The system seeks means to increase
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efficiency, decrease waste and allocate the resources to improve value (Fraser et al.,

2008). This happens only if the system is able to interrelate its elements (say the

surgical services or surgeons) appropriately, so that the goal of the system, which is

a maximized throughput, could be achieved. The system has the duty to distribute

its available resources among its elements in an equitable way. Equitable does not

necessarily mean equal; it means “fair”. It must be considered that the concept of

“fairness” is subjective.

Every element within the system has expectations regarding the resource distribu-

tion, but they don’t have the same contributions to the system. However, both

contributions and expectations must be taken into account. Some levels of “fair-

ness” are needed to be provided to keep the elements satisfied, so that they all can

cooperate as a team and not withdraw the system (An et al., 2019). Unquestionably,

a good teamwork is one of the remarkable factors that guarantees improvements in

health care (Frankel et al., 2006).

Fairness has become a focal concept in the psychology of organizations. Kuppel-

weiser et al. (Kuppelwieser et al., 2018) discuss that fairness in any organization

leads to employee loyalty, commitment, satisfaction, motivation and performance.

They consider fairness as the endmost decisive factor of productivity and profitabil-

ity. A resource allocation scheme can be seen as a fair one, when all resource receivers

perceive it as acceptable. Blake and Carter (2003) argue that the acceptability of

a resource allocation by physicians and surgeons should be additionally considered.

On one hand, the surgeons’ targeted demand must be as much as possible satisfied;

meaning that receiving very much less OR time than demanded would be unaccept-

able by them (Blake and Carter, 2003; Guerriero and Guido, 2011). On the other

hand, the surgeons scramble to win the resources as much as they need; in this

respect, the full satisfaction of surgeons (surgical services) cannot be implemented,

because the resources are limited and can not be allocated to only a few of services,

while some others are idle throughout the week. Work-overload is also unwanted,

since it has a negative impact on the hospital revenue (Powell et al., 2012). A

large body of studies has been conducted by the researchers to allocate the OR

time with the objective of maximizing the case volume (e.g. Feldstein (1967);

Dowling (1976); Baligh and Laughhunn (1969); Blake and Carter (2002); Dexter

and Macario (2002); Rohleder et al. (2005); Jerić and Figueira (2012); Guido and

Conforti (2017), maximizing the profit/minimizing the cost (e.g. Ma et al.

(2009); Silva and de Souza (2020); Persson and Persson (2009)) or contribution

margin (e.g. Brandeau and Hopkins (1984); Hughes and Soliman (1985); Robbins

and Tuntiwongpiboom (1989)). However, none of the studies have taken the fairness

concept into account.

As discussed, during the resource allocation from a fair point of view the efficiency of
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individual surgeons must also be considered. Macario et al. (2001) showed in a study,

that efficiency per an OR block varies remarkably among surgeons and surgical

services. Therefore, to increase the productivity of the whole surgical department,

it is more important to pay attention to the productivity of individual surgeons,

rather than merely increasing the surgical throughput.

A useful approach to this aim is game theory (Kaye et al., 2012) which is proven

to be a helpful method to resolve the allocation conflicts (Dinar and Howitt, 1997;

Wang et al., 2008; Hipel et al., 2013) and has the capability to be applied to a wide

variety of situations involving human interactions. This theory uses the game form

to represent the physical rules that govern strategic interactions between multiple

players, whose decisions impact one another. These players could be either members

of a team (coalition) having the same goals or opponents with different or conflicting

objectives. The players have two choices: they can either cooperate with others or

counteract them. Cooperation of all players would make them all win, but if one of

them chooses to defect, that player’s payoff would be much bigger than the others’.

If all of them decide not to cooperate, this leads to the loss of everyone, or they may

obtain a very little payoff (Kaye et al., 2012). Thus, there are, in general, two types

of games: cooperative and non-cooperative. The former deals with coalitions, which

are less complicated than the latter one, in which all the available strategies should

be familiar to the players. Real-life situations can be better defined by coalitional

forms. In cooperative games or better to say, in coalitions, the members need to

shift their perspective from individualistic view to an altruistic one and focus on

other members. This attitude would let the members evaluate what they can add

to the game and help them to maximize the total benefit of the system.

The basic concepts of the cooperative game theory and their properties are intro-

duced by von Neumann and Morgenstern (1944). Since then, many researchers have

made efforts to develop various kinds of games and solution concepts. In the field

of OR management, however, there are only a few studies that discuss the useful-

ness of application of game theory or related concepts. Ackere (1990) discussed

the conflicting interests in the scheduling process of surgery rooms and developed

a game to deal with conflicts such as those between the surgeon and the scheduler.

Marco (2001) rationalized the advantages of game theory by comparing it to the

more traditional decision making methods in describing human interactions and ex-

plained how such interactions could be modeled as a game. McFadden et al. (2012)

argued that game theory can be successfully applied to the OR environment, and

then, explained the advisability of different types of games for resolving conflicting

situations in the OR.

In this sense, a mechanism based on the Shapley value is proposed, which provides

a fair point to start the resource distribution process. The Shapley value repre-
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sents a fair, equitable, neutral alternative for managers to help them to bargain

over how the resources could be allocated. This would be achieved by ensuring

that the participants have equitable positions during the bargaining process. The

Shapley value is generally developed for economic applications and have been fur-

ther used in other contexts; such as economic and social applications (e.g. van den

Brink (2007)) environmental applications (e.g. Dinar and Howitt (1997); Sadegh

et al. (2010); Abed-Elmdoust and Kerachian (2012); Petrosjan and Zaccour (2003);

Liao et al. (2015); Naber et al. (2015)), and computer sciences (e.g. Iturralde et al.

(2013); Kaewpuang et al. (2013)). As mentioned earlier, to the best knowledge of

the authors, no reported research has applied game theory to the OR problems. The

proposed mechanism illustrates how game theory, particularly its solution concepts

like the Shapley, can be utilized in resource allocation problem in OR department.

To achieve this purpose, the mechanism works by forming possible coalitions among

players (surgical services), and then applies bankruptcy and priority rules to calcu-

late the worth of coalitions as input to the Shapley value. Finally, it introduces a

fair resource allocation. Therefore, in summary, the main objectives of this work

are:

� to apply game theoretic concepts to the resource allocation problem to obtain

a fair distribution of OR block times (resources) among surgical services;

� to evaluate and validate the proposed framework based on an operating room

planning problem selected from the literature;

� to provide a real-world case study to illustrate the practical insights of appli-

cation of the proposed method.

The Shapley value is to distribute the payoffs and benefits produced by the coali-

tion of all players. But, the use of the Shapley method to distribute the resources

among players according to their demands is inspired by Iturralde et al. (2013).

Nevertheless, the specifications of this problem are different from that of Iturralde

et al. (2013), which is in the context of telecommunication networks. In Iturralde

et al. (2013), the distribution of resources is carried out by just considering the claim

profiles, while in this work, the contribution and productivity of each player is taken

into account as well. This purpose is fulfilled by combining the Shapley value with

bankruptcy and priority rules. Part II presents a simple, systematic and careful

allocation of resources to create satisfaction for all surgical services focusing on the

fairness concept. To the best of knowledge of authors, this concept has not been

carefully elaborated by the health care literature.

The remainder of the chapter is as follows: Section 2.3.2 briefly reviews the Shapley

value. The proposed resource allocation method is described in Section 2.3.3. In
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Section 2.3.4 an illustrative example is given to clarify the details of the method.

The verification of the model is provided in Section 2.3.5. Section 2.3.6 is dedicated

to deal with the uncertain conditions in which fuzzy technique is applied to generate

fuzzy claims. The details of the case study, results and discussions are presented in

Section 2.3.7. Finally, Part II closes with concluding remarks in Section 2.3.8.

2.3.2 Shapley Value

In this chapter, we cope with cooperative games, whose players are able to form

coalitions. There are several solutions to the cooperative games like the Core, the

Nucleolus (Schmeidler, 1969), the Shapley value (Shapley, 1953) and the Kernel

(Davis and Maschler, 1965), among which, the Shapley value is a strong tool for an

equitable distribution, as it considers the “marginal contribution” of each player.

The Shapley value is a concept introduced by Shapley (1953) to the economic lit-

erature with the purpose of proposing the fairest allocation of cooperatively earned

profits among the collaborative players of coalitions. It basically calculates the rel-

ative importance of every player considering their collaborative activities.

Suppose a cooperative game, in which N = {1, 2, ..., n} is the set of players partic-

ipating in the game and S is a subset of N , indicating a coalition. In this game,

in order to calculate marginal contribution of each player, characteristic functions

of all possible coalitions should be investigated. Characteristic function v(S) of

coalition S specifies the total payoff that the members of S can obtain by signing

an agreement among themselves; this payoff is accessible to be distributed among

the members of the group. If the set of all coalitions is denoted by P (S), then the

characteristic function v(S) which maps the subset of players to real numbers, is as

follows:

v : 2N → IR≥0 satisfying v(∅) = 0. (2.7)

Having the characteristic functions, based on the weighted average of the players’

contributions to all possible coalitions, the Shapley value is calculated as:

θi(v) =
∑
{S:i 6∈S}

(|S|)!(|n| − |S| − 1)!

|n|!
[v(S ∪ i)− v(S)] (2.8)

where θi is the Shapley value or worth of the player i, N is the number of players, |S|
is the number of members in the coalition S, and v(S∪i) is the worth of the coalition

S including the player i. The Shapley value of the player i can be interpreted as his

index of power in each coalition.
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2.3.3 Resource Allocation Framework

2.3.3.1 Problem Definition In this work, the OR suite of a hospital is re-

garded as a system, comprised of surgeons and surgical services as its elements. The

interrelations among these elements within this system are modeled using mathe-

matical formulations governing cooperative games. In this game, the system seeks

the goal of distributing the resources among its elements in a fair manner. There is

a limited amount of OR time, and each element has a particular performance in the

sense of productivity per unit of resources (say OR sessions). Each surgical service

has a list of patients waiting for surgery and demands to be allocated with a certain

quota from the total available resources. Thereupon, each surgical service demand

is itself based on the number of patients on its waiting list.

The proposed distribution scheme suggested by the proposed method can be used

as the point of fairness, based on which the further decisions regarding the exact

allocation of the OR session could be conducted. For this purpose, a mechanism

comprised of four steps is introduced and described in what follows:

2.3.3.2 Step 1: Data Entry In this step, all data including the number of

players, their claim profiles, and their productivities must be fed into the mechanism.

2.3.3.3 Step 2: Formation of Possible coalitions In the second step, possi-

ble coalitions are formed. Coalitions are groups comprised of one or more number of

agents that gather together and make joint agreements to coordinate their actions.

While the members are behaving cooperatively within the coalitions, they might

interact non-cooperatively with the non-members. In a N -player game, the number

of coalition members possibly ranges from 1 to N .

2.3.3.4 Step 3: Calculation of the Characteristic Functions In order to

calculate the characteristic functions or worth of coalitions, a rule must be defined to

determine the resource quota that each coalition receives and how this quota should

be consumed by the coalition. For this purpose, a bankruptcy game is modeled, and

the adjusted proportional rule of such games is taken to ration the distribution of

limited resources among the players participating in possible coalitions. Bankruptcy

games analyze the allocation of a number of perfectly divisible resources among a

group of players according to their claim profiles, which in sum, exceed the amount

to be allocated.

Our bankruptcy game is a triplet (N,E, c), where N = {1, 2, ..., n} is the set of

players, C = {c1, c2, ..., cn} ≥ 0, 0 ≤ E ≤
∑N

i=1 ci. C represents the claim vector of

players and E is the total available resources. Each coalition S obtains an amount
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of available resources that the other players – not participating in the coalition S –

concede. Therefore, the number of resources brought to the coalition S is:

x(S) = max

{
E −

∑
i∈N\S

ci, 0

}
, x(N) = E (2.9)

Having determined the resource quota that each coalition receives, a rule must

define how the coalition members should consume the resources. In this process, a

priority rule is applied; that is, that first the capacity of the player with the highest

productivity rate will be fulfilled, then, the remaining number of resources will be

given to the player with the second highest productivity rate until his/her claim

is satisfied as well, and so forth. This process continues until no adequate amount

of resources remains to satisfy the players’ requests. Macario et al. (2001) also

proposed a method based on the priority rule to allocate a limited number of OR

blocks to surgical services according to their productivity rate.

In order to compute the worth of a given coalition, the priority order of the mem-

bers should be determined based on their productivity rates and the correspond-

ing vector must be sorted in descending format. If a given coalition has m mem-

bers, W = {w1, w2, ..., wm} is the productivity rates vector of its members and

C = {c1, c2, ..., cm} is the claim vector. After sorting the productivity vector W , we

have the new set of {z1, z2, ..., zm}, whereby z1 ≥ z2 ≥ ... ≥ zm. The claims should

be sorted as well according to the productivity based priority order of the members

as the new set of {d1, d2, ..., dm}, whereby, for example d1 is the claim of the coalition

member with the highest productivity rate of z1. Afterwards, using the following

algorithm the worth of coalition v(S) could be calculated.

Calculation of v(S)

v(S)← 0

x(S)0 ← resource quota of coalition S

while j ← 1 to M do

if x(S)j−1 ≥ dj then

v(S)← v(S) + dj × zj
x(S)j ← x(S)j−1 − dj

else

v(S)← v(S) + x(S)j−1 × zj
terminate the loop

end if

end while

return v(S)

The objective of the above-mentioned process is to assure that each coalition uses its
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full capacity to contribute to the system. The purpose is to maximize the patient

throughput out of each coalition given a certain number of resources. To clarify

the details of the above-mentioned algorithm, a detailed calculation for the example

mentioned in Section 2.3.4 is provided (Table 8).

2.3.3.5 Step 4: Calculation of Resource Allocation Based on the Shapley

value Based on the characteristic functions obtained in the previous stage, the

Shapley value using Equation 2.8 and accordingly the percentage of resource share

that every player receives, is calculated using the following equation:

P =
θi(v)∑N
i θi(v)

× 100 (2.10)

This framework ensures that all players participating in the grand coalition (formed

by all members) will receive a share of total available resources adjusted by their

claim and contribution to the coalition. Moreover, this framework fortifies that the

whole coalition will achieve the maximum contribution margin, while no claim will

remain unanswered.

2.3.4 Illustrative Example

Herein, we illustrate the application of the proposed mechanism to a hypothetical

game among surgical services. A surgical suite with the capacity of E =25 OR

blocks is to be filled by allocating it to N = 4 different surgical services, named A,

B, C and D. The claim (ci) by the surgeon i is generated randomly from the interval

[0, 10] under the constraint of
∑N

i=1Ci > E. Their productivity per an OR block is

also generated randomly from the interval [1, 5]. The claims of the surgical services

and their productivity rates are shown in Table 6.

Table 6: Inputs of the illustrative example.

Surgical Service Claim Productivity rate

i ci wi

A 12 2.8

B 7 4.7

C 8 1.5

D 3 3.5

The next step is to form the possible coalitions and determine the amount of re-

sources, that they receive based on the bankruptcy rules (Table 7). Finally, based
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on the Equations 2.7 and 2.9 the number of resources allocated to each player can

be calculated (Table 9).

Table 7: Possible coalition settings, their received amount of resources and characteristic

functions.

Coalitions x(S) Value of the

Coalition v(s)

Non-cooperative Coalitions

{A} 7 19.6

{B} 2 9.4

{C} 3 4.5

{D} 0 0.0

Partial Coalitions

{A B} 14 52.5

{A C} 15 38.1

{A D} 10 28.0

{B C} 10 37.4

{B D} 5 23.5

{C D} 6 15.0

{A B C} 22 71.0

{A B D} 17 63.5

{A C D} 18 48.6

{B C D} 13 47.9

Grand Coalition {A B C D} 25 81.5

Table 8: Detailed calculation of v(S) for the grand coalition from Table 7.

j x(S)j−1 dj zj ↑ x(S)j ≥ dj v(S) x(S)j ←
x(S)j−1 − dj

1 25 7 4.7 True 7× 4.7 25− 7 = 18

2 18 3 3.5 True 7× 4.7 187− 3 = 15

+3× 3.5

3 15 12 2.8 True 7× 4.7

+3× 3.5 15− 12 = 3

+12× 2.8

4 3 8 1.5 False 7× 4.7 –

(terminate +3× 3.5

the loop) +12× 2.8

+3× 1.5

v(S) = 81.5
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Table 9: The amount of share that each player receives.

Surgical Service Shapley value Received Share (%)

A 31.09 38.15

B 26.24 32.20

C 15.99 19.62

D 8.18 10.03

2.3.5 Case study I: Verification of the Proposed Mechanism

The purpose here is to verify that we have modeled what we aimed to do. In this

regard, a decision making problem from the literature is selected to examine the

performance of the proposed mechanism. Here, the case study discussed by Testi

et al. (2007) is considered. The case, which is a surgical department in San Martino

University Hospital located in Genova, Italy, has an OR department comprised of six

surgical services regarded as players in this work. Six surgery rooms are available

from Monday to Friday for 6 hours daily constituting up to 30 OR sessions per

week. Each ward has its own individual productivity, which is the average number

of patients it can treat per an OR session. The proposed method by Testi et al.

(2007) is a three level hierarchical approach for OR scheduling on a weekly basis.

These levels are comprised of session planning, master surgical schedule, and elective

case scheduling. This work is concerned only with the session planning level, which

is about assigning operating sessions to the wards. The objective function for Testi

et al. (2007), to allocate the OR time between the surgical services, is to maximize

the sum of “marginal benefits” of all surgical services defined by the kth session

demanded by the jth surgical service as the following equation:

djk =
∑
j

∑
k

Dj(k − 1)∑
j Dj

(2.11)

where, djk is the marginal benefit of the kth session claimed by the jth ward, Dj

is the total number of OR sessions claimed by the ward j, and k is the number of

already assigned sessions. This equation grants more significance to the first session

assigned to the jth ward, rather than to the successive ones. This means that, when

the ward j has already no sessions, after receiving the first one, its benefit is at the

highest, compared to the state, in which it receives the kth session while it already

has k − 1 sessions. Namely, the marginal benefit drops as the number of received

OR sessions rises. Consider that, in this equation the subtraction between total

demand of the ward j and having already assigned k − 1 sessions is divided by the
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aggregated demands of all wards, therefore, more value is received by the ward with

the highest claim. That is to say that the more the demand, the higher the marginal

benefit is. Testi et al. (2007) ran the allocation problem under constraints such as

capacity and overrun hours without any cost constraints.

The results taken from Testi et al. (2007) and the results obtained from the proposed

mechanism are shown in Table 10. Comparison of the results in Figure 6 demon-

strates that the distribution percentages proposed by the Shapley-based method

match the results from Testi et al. (2007). The differences between the results for

the wards 1, 3, 4, and 5 are negligible. For players 2 and 6 there are slight differences

between the results. The reason is that this method, unlike Testi et al. (2007), takes

the performances of the players into consideration in the process of resource dis-

tribution, which provides a fairer approach. This motivates the players to improve

their productivity and performance.

The fairness of solutions suggested by both methods is measured using the method

proposed by Jain et al. (1984). This index measures the “equality” of a system

which allocates resources to n players. If ith player receives an allocation xi, then

the fairness of the system is measured using the following formulation:

f(x) =
[
∑
xi]

2

n
∑
xi2

(2.12)

where f(x) is the fairness index (FI). If f(x) = 1, then the system is 100% fair, and

if f(x) = 0, it means that the system is totally unfair and only favors the demands of

a few numbers of players. Here, this index is used in terms of unsatisfied claims. The

reason is that, the unsatisfied claim is a remarkable factor in bringing dissatisfaction

between surgical services. An unsatisfied claim means the numbers of procedures

done in overtime. Here, unfair dissatisfaction levels are unwanted. This means that

having surgical services which suffer from more overtime or have more patients on

the waiting list than the others is not desirable.

By comparing the fairness indices calculated for both methods (Table 10), it can be

understood that, the proposed method in Part II provides a fairer solution than the

one from Testi et al. (2007) but the same throughput (∼ 83 patients per week).
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Table 10: Details of the case study form Testi et al. (2007).

Testi et al. (2007) Shapley value

Surgical Claim Productivity Received Unsatisfied Received Unsatisfied

Service (Weekly) (Patient/Block) share claim share claim

i ci wi (%) (%)

1 12 3.0 33.33 2.00 32.81 2.16

2 5 2.5 10.00 2.00 11.32 1.60

3 12 2.8 30.00 3.00 30.84 2.75

4 6 2.5 13.33 2.00 13.64 1.91

5 3 2.4 6.67 1.00 6.68 0.99

6 2 2.8 6.67 0.00 4.71 0.59

Total 40 – 100 100

FI 0.76 0.84

PT* 83 83

* PT= Patient Throughput

Figure 6: Comparison of the results obtained from the proposed mechanism and Testi

et al. (2007).
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2.3.6 Allocation Under Uncertainty: Fuzzy Claims

Surgical services are infested with uncertainties, and straight ways to measure sur-

gical times are not generally available (Burgette et al., 2017). Uncertainty causes

major challenges in faultless planning and scheduling. The previous section solved

the OR management problem in a deterministic manner by using the average values

for ward performances (contribution margin). Using the average values can be a

quick way to obtain a solution; however, it requires the elimination of some infor-

mation, and hence, creates uncertainties. This is because elimination of information

is not much different from its lacking (Meyer, 1981; Johnson and Levin, 1985).

The contribution margin of wards or their claims are not easy to predict. There

are different influencing factors such as the methods surgeons use, the quality of

surgical teams, patient characteristics, and the frequency of patient arrivals for each

service (Samudra et al., 2016). Therefore, in this section the uncertain parameters

are considered to be fuzzy numbers and a fuzzy technique is employed to deal with

these numbers. This is due to the capability of fuzzy techniques (Zadeh et al.,

1965) in handling subjectivity and representing inherent vagueness caused by gaps

in knowledge (Sadeghi et al., 2010). Here, some basic definitions of the fuzzy sets

theory are reviewed.

Definition 1. X is a collection of objects represented by x. Then, a fuzzy set Ã in

X is defined as

Ã = {(x, µÃ(x)|x ∈ X} (2.13)

µÃ is the membership function which maps X to the membership space M and takes

values within [0,1].

Definition 2. A triplet (m1,m2,m3) is called a triangular fuzzy number, when its

membership function is given by follows:

µÃ(x) =


(x−m1)/(m2 −m1) m1 ≤ x ≤ m2,

1, x = m2,

(m3 − x)/(m3 −m2) m2 ≤ x ≤ m3,

0, Otherwise.

 (2.14)

Definition 3 An α-cut of fuzzy set X is a crisp set Aα that contains all the elements

of the universal set X whose membership grades in A are greater than or equal to

the value of α. This definition can be written as

[A]α = {x ∈ X|µ(x) ≥ α}. (2.15)
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Table 11: Details of the case study form Testi et al. (2007) and the obtained results from

the proposed mechanism.

Surgeon/Surgical Service Fuzzy claim Fuzzy contribution margin

(ci − 2, ci, ci + 2) (wi − 1, wi, wi + 1)

1 (10, 12, 14) (2, 3, 4)

2 (3, 5, 7) (1.5, 2.5, 3.5)

3 (10, 12, 14) (1.8, 2.8, 3.8)

4 (4, 6, 8) (1.5, 2.5, 3.5)

5 (1, 3, 5) (1.4, 2.4, 3.4)

6 (0, 2, 4) (1.8, 2.8, 3.8)

ci and wi are the claims and contribution margins of players, respectively,

taken from Table 10.

2.3.6.1 Fuzzy α-cut Technique This work uses fuzzy α-cut technique to ad-

dress the confidence levels regarding fuzzy claims and elicit crisp values from fuzzy

numbers to calculate the Shapley value. As mentioned earlier, the uncertain data

are considered to be fuzzy to represent imprecision in data. According to the Defi-

nition 3, the wider the support of the α-cut, the higher the uncertainty and the less

informative the parameter and vice versa (Li and Yen, 1995).

The process to consider the fuzziness in claims as well as contribution margin is as

follows:

� Step 1: Select a value α of the membership function (a level of likelihood).

� Step 2: Calculate the Infimum (smallest) and Supremum (largest) values of

each fuzzy number.

� Step 3: Calculate the share of each player for both Inf and Sup values based

on the Shapley value described in Section 2.3.3.

� Step 4: Return to Step 1 and repeat Steps 2 and 3 for another α-cut (note: α

can be increased step-wise from 0 to 1 every 0.1 increments). The fuzzy results

(resource share of each player, total contribution margin, etc.) are obtained

from the Inf and Sup values for each α-cut.

2.3.6.2 Case Study I Under Fuzziness In this subsection, for the case study

from Testi et al. (2007) fuzzy claims and fuzzy performances are considered for each

ward. Table 11 shows the triangular fuzzy numbers, which are generated based on

the data from Table 10.
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The percentage that each surgeon receives is presented in Figure 7. Figure 7 illus-

trate the outputs of the experiments for different values of α (0, 0.2, 0.5 and 0.8).

It is obvious that as the uncertainty decreases, the gap between results for the In-

fimum (Inf) and Supremum (Sup) values gets narrower and narrower, and finally

they share the same results for α = 1. It depends on the risk attitude of the OR

manager to choose a level of uncertainty and make decisions based on the obtained

results. It is also possible to elicit a fuzzy result for each player. For example, see

Figure 8 for Player 1. The manager is also able to elicit fuzzy contribution margin

for the whole grand coalition of players (Figure 9), by which she/he can estimate

the profitability of the OR departmentbased on her/his risk attitude.

Figure 7: Received share of the players as percent for α = 0 (top left), α = 0.2 (top right).

α = 0.5 (bottom left), α = 0.8 (bottom right) and The dashed line shows the results for

Inf values and the solid one shows the results for Sup values.
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Figure 8: The fuzzy number of the received share for Player 1.

Figure 9: The fuzzy output from the Shapley based allocation mechanism for total con-

tribution margin for the grand coalition (the whole surgical suite).
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2.3.7 Case Study II

The case study here refers to one of the surgical departments in a general hospital in

the state of Baden-Württemberg of Germany. This department is made up of three

specialty departments of trauma surgery (TS), general surgery (GS), and thorax

surgery (THS) which share 7 operating rooms. The operating rooms are available

from Monday to Friday from 7:30 until 15:00, which means 5× 7 = 35 sessions are

available in a week. Overall 67 surgeons are involved in this department, which have

various performances and productivity rates per an OR session.

The data for this department were collected for six months from January to June

2015. In this time-frame, 3,045 elective patients were admitted to this department.

It is forecasted that the number of patients would increase in the upcoming years.

According to the Statistical Office of Baden-Württemberg, the number of elective

patients are expected to increase about 10% in 2030 with reference to 2015. This

means that the hospitals in the region must adjust themselves to the demographic

changes and patient increase.

The analysis of data showed that in this department averagely 23.4 procedures are

carried out of the production window. OR overtime induces increase in surgical cost

and brings dissatisfaction for surgical teams, and hospitals need to take effort to

control the expenses and unhappy surgical teams. The purpose of this case study

is, firstly, to estimate the performances of the individual surgeons, and accordingly,

those of the surgical departments, to see how many procedures they can carry out

per an OR session. Secondly, the current status is investigated to see how the

situation for each department is; how many procedures are completed within the

OR’s production window and how many are done out of this window. Thirdly, the

proposed mechanism is applied to the case study to see how the fair distribution

can change the situation.

To evaluate the performances of surgeons and surgical services, the incision-suture

duration is considered. In calculation of surgical service performances, the influence

of overlaps during turnover times is also taken into account. For GS, the procedure

duration for surgeons varies between 25 and 150 minutes. For THS and TS these

values range between 25 and 107, and 20 and 108 minutes, respectively. Of course,

there are duration variations in relation to diagnosis types, but it is assumed that –

for the sake of simplicity – the average values could be representatively enough.

Further evaluations showed that the GS, THS and TS can carry out in average

2.8, 3 and 3.8 procedures per an OR session, respectively, and GS is suffering more

from overtime than the other two departments (see Table 12). The data from these

departments are fed into the proposed mechanism to see how consideration of fairness

influences the situation. Since the emergency cases are also using these 7 operating
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rooms, according to the frequency of these cases during the day, it is assumed that

0.5 OR session on a daily basis during the production window is reserved for these

cases. The available OR sessions in each month for elective cases are calculated

based on the number of business days which are shown in Table 12. It can be seen

from the results, that a fair distribution and consideration of contribution of each

specialty department, may not dramatically increase the total patient throughput

of the whole department but leads to more equitable distribution in terms of unmet

demands and better outcomes with respect to fairness index. Comparison of the

fairness indies shows that the Shapley method brings a comparative level of fairness

between the specialty departments.

Table 12: Real data and proposed solutions for the case study over 6 months.

Jan Feb Mar Apr May Jun

(123.5)* (136.5) (136.5) (136.5) (123.5) (143)

Dept. Nr. of Procedures within (out of) Production Window Mean

GS (2.80) 191 (55) 211 (62) 206 (52) 196 (64) 199 (50) 217 (65) 203.34 (58.00)

Real Measures THS (3.00) 39 (5) 53 (11) 48 (9) 48 (9) 49 (9) 55 (9) 48.67 (8.67)

TS (3.80) 151 (37) 154 (29) 173 (24) 169 (21) 138 (35) 167 (35) 158.67 (30.16)

FI 0.71 0.72 0.71 0.64 0.77 0.71 0.71

GS (2.80) 194 (52) 220 (53) 208 (50) 212 (48) 198 (51) 226 (56) 209.67 (51.67)

Solution by THS (3.00) 29 (15) 42 (21) 38 (19) 38 (19) 39 (19) 43 (21) 38.17 (19.00)

Shapley value TS (3.80) 168 (19) 165 (18) 188 (9) 183 (7) 151 (21) 183 (19) 173.00 (15.50)

FI 0.75 0.79 0.69 0.67 0.81 0.78 0.75

* Number of available sessions in month

2.3.8 Concluding Remarks

Hospitals as systems have the goal of being profitable to survive financially and to

continue their services within the society. To reach this goal, an intra-system fair-

ness must be constructed so that the system performance and its profitability could

be guaranteed. The surgical department – as a vital component to the profitability

of the whole hospital – must also sustain an intra-system justice and treat its key

elements (surgical services) in a fair way. The productivity of the surgical suite –

apart from the fairness concept – depends strongly on productivity of individual sur-

gical services. These surgical services, despite the variations in their performances,

are fighting for the resources to consummate their waiting lists. On the other side of

the story, for each player, there is a minimum acceptable level, which if remains un-

satisfied, it will be likely that the player withdraws the game. This issue highlights

the importance of the concept of fairness.

Being “fair” in the process of resource distribution has become the motivation of this
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work. In this work, a fair resource distribution mechanism based on game theory,

particularly, the Shapley value, is developed and implemented to allocate OR time

to the surgical services according to their demand profiles and productivity rates.

The mechanism introduced here, is comprised of several steps. Having considered

the surgical services as players of a cooperative game (1) the possible coalitions

are determined (2) based on the bankruptcy rules, the number of resources that

each coalition receives is calculated, then (3) based on the priority rules, the value

(characteristic function) of each coalition is measured, and finally (4) the percentage

of resources that each player collects is calculated based on the Shapley value. An

illustrative example is provided to clarify the process of resource distribution in the

proposed mechanism. To judge the performance of the proposed mechanism, an

operating room planning problem is taken from the literature. The deliberation of

results using a fairness metric shows that the distribution scheme suggested by our

Shapley-based method can provide a very good starting point for fair distribution

negotiations, since it guarantees a relatively high level of fairness.

Furthermore, uncertainties encountered in real situations regarding the allocation

process is also taken into account. The claim profiles and the contribution margins

of the players are considered to be fuzzy numbers. With the help of the α-cut

technique, the Inf and Sup values from the fuzzy numbers are elicited and utilized

as the inputs for our mechanism. The outputs of the fuzzy integrated method are

also fuzzy numbers, which can be interpreted according to the risk perceptions of

the head decision maker or the OR manager.

Having ensured about the capability of the proposed method, it is also applied to

real data collected from a surgical department in a German hospital. The results

emphasized the influence of fair distribution on the overall productivity of the sur-

gical department. The scenario analysis which focused on exclusion of the slowest

surgeons, revealed that hospitals must align incentives among surgeons and surgical

services to improve their facilities leading to increase in efficiency and productivity

of the whole surgical department.

The scope of Part II pleads for further research in the field of master surgical sched-

ules, to cope with the assignment of days, rooms and shifts at the tactical level. For

example, developing a game theoretic process to allocate the resources considering

surgeon preferences and patients priorities.
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3 A Pre-assignment of Master Surgical Schedule

with Focus on Surgeons’ Satisfactions

Abstract

This chapter addresses the master surgical schedule (MSS) at the tacti-

cal level of operating room (OR) planning and control. This process focuses

on assigning operating room time blocks to specialty departments and their

associated surgeons in a finite planning horizon. The complexity of creating

a MSS emerges from the fact that normally several surgeons and specialty

departments share the same limited resources. Usually, surgeons have their

own individual preferences regarding rooms, days and even shifts, and satisfy-

ing their preferences have not been necessarily the focal point of the methods

have been developed so far. To overcome the complexities, a hybrid heuristic

algorithm using bargaining methods, called Nego2Sked, is developed in this

chapter, which solves MSS problem as a combinatorial one. The focus of

Nego2Sked is on surgeon preferences as a key determinant of proper manage-

ment of ORs. In this method, a feasible set of solutions is evaluated, scored

and ranked by surgeons/surgical groups using ordered weighted averaging ag-

gregation operator (OWA). Then, by assuming a virtual bargaining process,

surgeons/surgical groups enter a bargaining process to bargain over the so-

lutions and find the one upon which all surgeons have consensus. Since the

problem is a large combinatorial problem, mutation only genetic algorithm is

utilized to exploit and explore the solution space. To demonstrate the perfor-

mance of Nego2Sked, computational results by solving a real case study are

reported and analyzed.

3.1 Introduction

Various groups of players are involved and coordinated in operating room (OR) suites

to deliver highly specialized medical services to patients. Each player has a kind of

selfishness, and their objectives do not necessarily correspond to others’ (Weissman,

2005; Glouberman and Mintzberg, 2001). Hence, OR managers are constantly under

pressure to manage these conflicting objectives. The most powerful group, which

stay at the focal point of the ORs, are surgeons; they expect maximum convenience,

easy and quick access to OR resources, and advanced equipment (Kaye et al., 2012).

Every surgeon has its own preferences and waiting list, that may conflict with others’,

and hence, the OR manager must be able to respect all surgeons and OR constraints

in order to maximize productivity, minimize conflict, maintain order and fairness. It

must be mentioned, that not giving enough importance to surgeon preferences may

decrease their satisfaction and consequently jeopardize their loyalty (Hosseini and
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Taaffe, 2015). Therefore, it is rational to design a scheduling system which could

properly manage surgeon preferences and priorities under consideration of resource

limitations.

3.2 Relevant Sub-problems in the Literature

Operating room planning and scheduling is normally done in a three stage hierarchi-

cal decision process (van Oostrum, 2009; Guerriero and Guido, 2011): (1) strategic

level or long-term (2) tactical level or medium-term (3) operational level or short-

term. The first level is referred to as OR time distribution among surgical specialties

or groups of surgeons seeking an efficient case mix (Blake and Carter, 1997). The

second level referred to as master surgical schedule (MSS) which specifies surgeons

to be associated with OR time (Beliën and Demeulemeester, 2007), and finally the

operational level which deals with daily schedule and staffing for individual surgical

groups. Surgeon preferences come first at the tactical stage and in the process of

creating MSS to question. MSS is about deciding on how rooms and time blocks

should be allocated to the surgeons. It is a cyclic timetable and must be adjusted

according to strategical decisions and seasonal fluctuations.

Master surgical planning and its optimization has attracted more attention of re-

searchers than the other stages. Various parameters and influencing factors are

studied by researchers to generate MSS. Nevertheless, surgeon preferences were ei-

ther halfway considered by these studies or were totally neglected. Marchesi and

Pacheco (2016) considered minimization of unmet demand in terms of difference

between allocated OR time and demanded one as their objective function. The min-

imization of deviations between realized utilization and targeted levels was regarded

by (Adan and Vissers, 2002; Dellaert and Jeunet, 2017; Vissers et al., 2005; Cap-

panera et al., 2014). Instead, some other researchers (Beliën and Demeulemeester,

2007; van Oostrum et al., 2008; Beliën et al., 2009; Fügener et al., 2014; Santibáñez

et al., 2007) studied the influence of OR schedules on downstream resource usage

such as intensive care unit and normal bed utilization. They took leveling of these

resources as their objective function into account. In a same manner, Testi et al.

(2007) minimized the impact of MSS on downstream resources in terms of length

of stay. Alongside resource leveling, Beliën et al. (2009) considered two more pa-

rameters to fine-tune their method. They tried to concentrate surgeons of the same

group in a same room and maintain consistent weekly schedules. Keeping a consis-

tent schedule was also scrutinized by Blake et al. (2002). They also ensured that

the total OR time is assigned.

Maximization of the patient throughput as a conventional measure of productivity

of health systems was also an attractive objective function in generating MSS, which
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was the focal point of studies by (Adan and Vissers, 2002; Santibáñez et al., 2007;

Cappanera et al., 2014; Guido and Conforti, 2017). However, Guido and Conforti

(2017) didn’t consider a mere maximized patient throughput. They also took clinical

and overall priority of patients into consideration to reduce the waiting times for

patients who are in a semi-urgent status. The concept of longer waiting lists and

penalizing longer queues was also appreciated by (Mannino et al., 2012).

Under-utilization and over-utilization as a cost burden to OR departments are also

among the factors frequently studied by researchers. Minimization of these two

factors and the associated costs was the focus point of (Ozkarahan, 2000; Hosseini

and Taaffe, 2015; Guido and Conforti, 2017). The proposed approach by Marques

et al. (2019) was slightly different, in which the authors considered several objective

functions at the same time. They suggested minimization of four objective functions:

number of assigned rooms, deviation of assigned shifts and those where most of the

surgeons are available, deviation of weekly time from median value driven from

historical data and workload variability at downstream units. To solve the MSS

problem. Blake and Carter (2002) presented an algorithm comprised of two models.

The first one determines a case mix and volume for each surgeon and the second

one converts the determined case mix into equivalent set of practice changes for

surgeons.

3.3 Model Preferences

Surgeon preferences as an objective function was partially by Testi et al. (2007) and

Marques et al. (2019). However, they considered surgeon preferences in a binary way,

which means they have considered either availability or not-availability of surgeons.

Ozkarahan (2000) argued also about inclusion of surgeons satisfaction in scheduling

process but views it as the least important determinant. Consideration of surgeon

preferences in a binary way may not implement realistic implications. For example,

if surgeons obtain the privilege to express different levels of preferences (in ordinal

or cardinal manner), they can manage their own priorities such as patient priorities,

operating room type and even consecutive shifts in order to avoid back-to-back

working hours. Such an approach, which is of course not offered by hospitals, could

definitely lead to more surgeons’ satisfaction and loyalty. In this regard, Gendreau

et al. (2006) consider four rules in scheduling problems: (a) supply and demand, (b)

workload, (c) fairness and (d) ergonomics. Supply and demand is about assigning

surgeons within their preferences and availabilities associated with prioritization of

their patients or their availabilities due to involvement in other activities such as

teaching, research or working for other hospitals. Workload is about not inducing

overload or assigning less than desired. Fairness is about distributing the undesirable
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shifts in an equitable manner so that no surgeon feels discriminated, and ergonomics

is about restricting consecutive working hours (Gendreau et al., 2006). However,

satisfying these rules for all surgeons is relatively cumbersome and OR manger

should use strong negotiation skills to carefully manage the assignment process.

Therefore, it seems sensible to negotiate distribution of OR time among surgeons or

surgical groups and bargain over a solution which could reduce conflicts and main-

tain satisfaction and fairness especially among highly experienced and prestigious

surgeons. For this purpose, bargaining games, in the game theory literature, which

simulate the behavior of bargaining parties, could be a reasonable option. Bargain-

ing methods are about how to make the bargainers involved in a conflict reach a

consensus (Brams, 2003) and yield an optimal/near-optimal solution out of available

alternatives. The use of game theoretic methods in OR planning has been consid-

ered by only few studies. Ackere (1990) developed a game to deal with conflicts

between the surgeon and the scheduler. Marco (2001) and McFadden et al. (2012)

highlight that negotiation and game theoretic methods are more advantageous than

traditional methods in modeling interactions of different stakeholders in the OR

environment.

3.4 Contribution of this Chapter and Outline

Taking the above-mentioned arguments, the focus of this chapter is on surgeon pref-

erences in the first phase of generating MSS. Therefore, it is not about the detailed

assignment of cases and patients. For this purpose, this chapter uses negotiation

methods to maximize the minimum satisfaction of the surgeons regarding the as-

signment of OR time. In fact, the assignment process is considered as a bargaining

process in which surgeons bargain over their preferences. Here, the fall-back bar-

gaining (FB) method, developed by Brams and Kilgour (2001) is used to reduce

the conflicts among surgeons and meet their expectations in creating OR sched-

ules. The FB is a useful method to simulate negotiations involving multiple parties

(Sheikhmohammady and Madani, 2008; Madani et al., 2015). The aim is to de-

fine the assignment of surgeons or surgical groups to the available operating rooms,

days, and shifts in a way that the minimum satisfaction of the involved people are

maximized. Such scheduling problems are difficult combination optimization ones

and finding a feasible solution satisfying all conflicts is really burdensome. For this

reason, different solution approaches and algorithms are developed to search the

decision spaces such as genetic algorithm (Marchesi and Pacheco, 2016; Guido and

Conforti, 2017; Dellaert and Jeunet, 2017; Marques et al., 2019), simulated annealing

(Beliën et al., 2009; Fügener et al., 2014), branch-and-bound (Fügener et al., 2014),

variable neighborhood search algorithm (Dellaert and Jeunet, 2017), linear program-
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ming (Hosseini and Taaffe, 2015), quadratic optimization (Beliën et al., 2009), goal

programming (Ozkarahan, 2000; Blake and Carter, 2002), integer/mixed integer pro-

gramming (Marques et al., 2019; Blake et al., 2002; Vissers et al., 2005; Beliën and

Demeulemeester, 2007; van Oostrum et al., 2008; Mannino et al., 2012; Adan and

Vissers, 2002; Santibáñez et al., 2007; Beliën et al., 2009; Cappanera et al., 2014)

or simulation methods (Testi et al., 2007; Cappanera et al., 2014) are developed to

explore the decision spaces and search for optimal/near-optimal solutions.

The solution approach to solve the negotiation model proposed in this chapter is a

modified version of genetic algorithms (GA). This modification is a special case of

GA called mutation only genetic algorithm (MOGA) (Zhang and Szeto, 2005; Ma

and Szeto, 2004). The MOGA version, which is slightly modified here in compar-

ison to its original one, suits better the proposed negotiation than traditional GA

methods and almost no reported research has used it to solve MSS problems. The

MOGA is chosen to show the validity and efficiency of this tool to deal with MSS

problems.

This chapter is organized as follows: the problem description is provided in Section

3.5. Section 3.6 presents the theoretical basis of the proposed model, which includes

description of the fall-back bargaining method, a short background of genetic al-

gorithms, and the steps of the proposed hybrid approach. Numerical experiments

including an illustrative example and several instances based on a real case study

are reported in Section 3.7 and finally the chapter concludes in Section 3.8.

3.5 Proposed Management Approach for Weekly MSS

As already mentioned, this chapter concerns with the tactical level of planning and

scheduling of ORs. This level deals with development of so called MSS timeta-

bles that defines the surgeons to whom the OR time is assigned. Normally, MSS

timetables are created for a period of few weeks to few months based on the sea-

sonal fluctuations and availability of surgeons, and can be classified into three types:

(1) open (non-block) scheduling; aims to assign the OR time to the first surgeon re-

quests it, (2) block scheduling; under this type, either individual surgeons or surgical

groups are allotted a OR time in a periodic -weekly or monthly - schedule, and (3)

hybrid scheduling which is a combination of both open and block scheduling. In an

open system there is a competition among surgeons to win the OR time. They often

result in high rates of cancellation, long waiting lists and variations in OR utilization

rates among different specialties. This type could be advantageous for some special-

ties which can book the OR time far in advance, but for some others could result

in under-utilization. To moderate these disadvantages, hospitals normally use the

block scheduling. In block scheduling, the OR time is booked exclusively by a spe-
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cific surgeon until a predefined time (cut off time) ahead before surgery, after which,

if no final booking has been already carried out, the pertinent time will be made

available for other surgeons (Ozkarahan, 2000). However, when the cut off time is

too short, this approach may lead to idle OR blocks. Nevertheless, since surgeons

perform a number of cases in a consecutive order, using a block system facilitates a

better utilization of OR time in comparison to non-block system (Ozkarahan, 2000).

This chapter, therefore, considers the block system in OR time assignment process.

Each MSS is a table of day-shift-room assignments to surgeons according to their

demands and preferences. Figure 10 shows a schematization of an OR schedule

where 4 ORs are shared among 4 surgeons on two days of the week. According to

Figure 10, the representation of day-shift-room sequence for Monday can be written

as {{S1, S1}, {S3, S1}, {S4, S4}, {S2, S1}}. Different permutations of this sequence

can be seen as possible solutions for MSS. Therefore, for the MSS problem described,

the search space is a space of permutations. Every feasible permutation can be eval-

uated differently from the viewpoint of individual surgeons. For instance, suppose

that the preference sets of the S1, S2, S3 and S4 with respect to the above men-

tioned sequence are {{1, 2}, {3, 4}, {5, 6}, {7, 8}} , {{1, 1}, {1, 1}, {1, 1}, {1, 1}} ,

{{1, 1}, {1, 1}, {1, 1}, {1, 1}} and {{8, 7}, {6, 5}, {4, 3}, {2, 1}}, respectively.

Figure 10: Upper: An example of an OR schedule, considering four surgeons of S1, S2,

S3 and S4, two days (Monday and Tuesday), four rooms, and two shifts (Shift1=morning

shift, Shift2=afternoon shift) and lower: a possible solution to maximize the minimum

satisfaction of surgeons S1 and S4.
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According to these preference sets, since all of the day-shift-rooms on Monday have

the same score for S2 and S3, they are already happy with the schedule. The

Monday-Shift1-OR1 is the ideal sub-block for Surgeons S1, and she/he has been

assigned this block. However, the sub-block Monday-Shift2 -OR4 is at the bottom

of her/his preference list, which is totally undesirable for her/him, yet, this sub-block

is the first priority of the surgeon S4. It can be easily seen that if we switch the

sub-block Monday-Shift1-OR3 and Monday-Shift2-OR4 between these two surgeons

(S1 and S4), the satisfaction for both of them would be increased (see Figure 10).

Such situations could be easily managed by negotiating the assignment alternatives

which would lead to an increase the minimum satisfaction of surgeons.

The procedure suggested by this work aims at finding a sequence of day-shift-room,

which maximizes the minimum satisfaction of surgeons. It takes the advantages of

the fall-back bargaining procedure, which relies on the falling back of surgeons from

their preferences until reaching a collective consensus. The proposed method which

is a bargaining based MSS – hereafter Nego2Sked – uses a solution approach via

genetic algorithm. The MOGA version, which is slightly altered here in comparison

to its original version, is described in Section 3.6.2. The procedure to manage the

surgeon preferences is presented in Figure 11 and could be briefly described in the

following steps:

� Surgeons specify days or shifts that they want to dedicate to other activities

beyond the OR (such as teaching, research, etc.). These days are excluded

from surgeons’ available days. Surgeons will accordingly assign a preference

score to the available day-shift-rooms.

� A set of feasible solutions, namely sequences of day-shift-rooms assigned to

the surgeons, are iteratively generated by GA.

� In every iteration the solution sets are evaluated and ranked by each sur-

geon using a fitness function based on ordered weighted averaging aggregation

(OWA) operator.

� Then, based on the individual solution ranking orders, FB approach decides

upon the final aggregated ranking of the solutions.

� Based on the outcomes from the previous step, the solutions are sorted, se-

lected and mutated by GA to generate an evolved set of solutions for the next

iteration.

� The iteration process goes on until a stopping criterion is reached. In the final

solution set, the first ranked one is picked up as the winner assignment.
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Figure 11: Flowchart of Nego2Sked.

The following assumptions and simplifications are considered in this work:

� Only elective cases are considered (non-elective and emergency cases are ex-

cluded). Handling every single case here is not important, because it is not

about generating operational schedules.

� Multiple and multi-functional ORs are shared among surgeons of the surgical

specialty.

� It is assumed that personnel (except for the surgeon) and instrumental re-

sources either for anesthetic procedures or the surgery itself are available when-

ever they are required.

� Recovery room relevant restrictions are relaxed, and hence, only operating

room constraints are taken into account.

� The only resource constraints are due to the opening hours of OR, the OR

numbers and the availability of the surgeons.
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� For the planning, the following data are available: a) number of OR sessions

to be allocated b) number of surgeons, their availability and their preferences

over day-shift-rooms.

� Shifts cannot be partially used and surgical teams are supposed to stay at the

same room/sterile area and rely on the same team members so that no-one

will be waiting for anyone, and therefore, the waiting times can be reduced or

eliminated.

� A surgeon cannot obtain OR time blocks in different rooms on the same day

or shift, or on a day or shift when they are not available.

� Surgeons have no priorities over each other.

3.6 Theoretical Basis of Nego2Sked Model

3.6.1 Fall-back Bargaining

The Fall-back bargaining (FB) (Brams and Kilgour, 2001) is a method for maxi-

mizing the minimum satisfaction of the bargainers. The bargainers are allowed to

rank their preference rankings regarding the feasible alternatives. However, their

preferences are usually not in accordance with the others’, and therefore, conflicts

may arise. Hence, to reach a compromise, they fall back from their preferences from

the most favored one to the less and less preferred ones in a step-wise manner un-

til an alternative is found, which receives the sufficient support and all bargainers

agree upon it. The outcome of this process is a subset of alternatives which is called

compromise set.

For instance, suppose that we have two bargainers who rank a set of alternatives A,

B, C, D. The bargainer 1’s preference order is D, C, B, A, while the bargainers 2’s

preference order is B, A, C, D. If they need to make a decision together, they cannot

agree on their own very most preferred alternative (D and B). Therefore, they need

to meet a compromise. They start to fall back from their first preferred alternative to

their second choices; C and A for bargainers 1 and 2, respectively. However, there

is still no common choice, and they continue to fall back to their third preferred

alternatives; B and C. B is already chosen by the bargainer 2 as the most preferred

alternative. Thereupon, B is a winning choice. Nevertheless, the bargainer 1 has

already shown that C is his second choice. This means that C is a wining alternative

as well. The lowest position of the winning alternative among the players is called

“depth of the agreement” (DoA). In this case the depth of the agreement is three.

The outcome of the FB procedure is a Pareto-optimal solution which, as mentioned

earlier, maximizes the bargainers’ minimum satisfaction (Brams and Kilgour, 2001).
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There are three methods for the FB developed by Brams and Kilgour (2001):

� Unanimity: in this method the alternatives with unanimous support at high-

est possible DoA will be chosen.

� q-Approval: this method selects the alternative, which is supported by q

number of bargainers at the highest possible DoA.

� with Impasse: in this method the bargainers are allowed to set an impasse

in their rankings which implies that when the DoA falls below the impasse

level, the bargainers would prefer not to make any agreement.

In this work, the unanimity method is chosen to make sure that the opinions of all

surgeons are considered in the process.

3.6.2 Mutation Only Genetic Algorithm

Genetic algorithms (GA) and evolutionary computations are meta-heuristic search-

ing methods applied to optimization problems with large searching spaces and are

based on the survival of the fittest. Genetic algorithm was first developed by Gold-

berg and Holland (1988) and, since then, it has been employed in various disciplines.

GA methods usually rely on selection, mutation, and crossover operators. However,

in Nego2Sked, the crossover operator is left out and a version of the traditional GA

is used, which is called mutation only genetic algorithm (MOGA). The reason to use

this version of GA is the characteristics of the problem in question. Our scheduling

problem is a combinatorial one and is represented by an order of elements. Hence,

permutation representation is most suited technique and binary encoding is not

used. For a permutation representation, the crossover operator in its traditional

way does not make any sense.

THe mutation only genetic algorithm was first suggested to solve a type of com-

binatorial optimization problems called knapsack (Zhang and Szeto, 2005; Ma and

Szeto, 2004) and it was claimed that the traditional genetic algorithm is a special

case of MOGA. The MOGA introduces the mutation matrix concept which makes

use of fitness information and loci statistics to determine the mutation probability

in a dynamic way. It outperforms the traditional GA in terms of speed and quality

of the solution (Szeto and Zhang, 2005; Law and Szeto, 2007).

Here, we consider using the mutation matrix and the MOGA concept and adapt it

through slight variations to suit the characteristics of the problem in question. A

population of N chromosomes, each represented by permutation of the L loci, which

forms a N×L matrix A(t)i×j for the population at a given time t, is considered. The
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ith row of the matrix indicates the chromosome with the fitness of fi and with the

rank of i and j th column indicates the j th locus of the population matrix. In every

iteration, the rows of A(t) are ordered in terms of their rankings such that for every

i ≤ k, fi ≤ fk. Then, the fittest chromosomes are exploited and, in order to explore

the solution space, the mutation is performed on A(t). For the exploitation purpose

and decision over the survival of the fittest chromosomes, a mutation probability is

calculated as Mr = (i − 1)/(N − 1). Then, for a given row i, a random number c

in the interval of (0, 1) is generated. If Mr > c, then mutation will be performed on

this row, otherwise the chromosome will be copied to the next generation. If row i is

to be mutated, the number of loci to be mutated should be determined (exploration

of the solution space). Since the permutation representation is used in this problem,

the swap mutation is chosen which suits better than other mutation types (Murata

et al., 1996; Ruiz et al., 2006). In gene swap, two random loci in a chromosome will

be selected. The genes at these two positions will be extracted, swapped and put

back to the chromosome. Here, multiple swaps for the chromosomes to be mutated

are performed. The number of swaps for the row i, N i
swap, is calculated as b(Mr×L)e.

Mostly, real-world optimization problems are constrained ones. There are several

methods to handle constraints in GAs, which can be generally classified as reject-

ing, repairing, modifying genetic operator, and penalty strategies (Gen and Cheng,

1996). The first three strategies make the generation of the infeasible solutions

impossible. However, this approach makes the searching process difficult, since in-

feasible solutions constitute up a large quota of the population. Hence, penalty

strategy is used to penalize the infeasible solutions and lead the searching directions

towards the favorable solutions (Chang, 2008).

Penalizing the infeasible solutions transforms the constrained problem into an equiv-

alent unconstrained one. The easiest way to penalize the infeasible solutions is

adding a penalty to the fitness function for these solutions as follows:

F (x) =

{
f(x) x ∈ feasible region

f(x) + p(x) x /∈ feasible region
(3.1)

where p(x) is the penalty function. In Section 3.7.2 the penalty function to be

applied to the problem in this chapter is described.

3.7 Framework of Nego2Sked

3.7.1 Population Initialization

Every surgeon has a number and an amount of already determined day-shift-room

quota, which should be exactly fulfilled in every combination/chromosome. Every
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Figure 12: An example of chromosome of length L = 8 representing a stem assignment of

loci (day-shift-room) to surgeons (V = 2) with Q1 = 5 and Q2 = 3. In this example, we

have two days, two rooms and two shifts.

chromosome has L loci that equals the number of available days X multiplied by

the number of available operating rooms Y and the number of available shifts Z

(L = X × Y × Z). For initialization of the population of chromosomes, first, an

assignment must be generated. Suppose that we have V number of surgeons (Sv)

and each surgeon has a predetermined quota of Qv such that
∑V

v Qv = L. The

assignment of the day-shift-room (loci) starts with the first surgeon by fulfilling his

quota in row. Afterwards, the second surgeon will be assigned to the day-shift-room

and so forth. It should be noted that the surgeons have no priorities to each other

and this process is just to generate a “stem chromosome” from which the initial

population matrix will be created (see Figure 12).

To create the parent population matrix (A(0)) of size N × L, N chromosomes as

random permutations of the ordering of the stem chromosome are generated.

3.7.2 Fitness Function

In order to evaluate the fitness of the chromosomes, the FB method is applied.

The aim of utilization of the FB is to rank the chromosomes according to depth in

which they receive the support of all bargainers/surgeons. However, the prerequisite

to start the FB procedure, is to obtain the individual preference order of chromo-

somes from the viewpoint of bargainers. To this aim, every generated combination

needs to be evaluated, scored and ranked according to the preferences of bargainers.

Evaluation of individual combinations is done based on the ordered weighted av-

eraging (OWA) operator. The OWA operator can be used to model compensatory

and non-compensatory preferences by adopting a degree of compensation among

attributes/criteria. Based on the degree of compensation, the OWA Operator as-

signs order weights according to an ordered position, and therefore, this operator

is different from other aggregation or multi-attribute/multi-criteria decision making

methods (Reimann et al., 2017). The degree of compensation indicates the attitude

towards satisfaction of attributes/criteria, either the purpose is satisfaction of all

attributes or the risk of dissatisfaction of one or more of the attributes is accepted
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(Zarghami, 2011; Heravi and Faeghi, 2012). In our problem in question, each and

every locus on a given chromosome to be scored by a specific surgeon is an attribute

to evaluate the whole chromosome.

As described in subsection 3.7.1 every block assignment combination or chromo-

some has a length of L. According to each chromosome for every surgeon a one-

dimensional matrix (1×L) can be elicited which its elements are either 1 (for assigned

blocks) and 0 (for not assigned blocks). Every individual surgeons also constructs a

1×L matrix for his preferences. This matrix contains scores between 1 and 5, where

1 means that the pertinent block is the most preferred one and in contrary 5 means

the block is less acceptable. When the surgeon can not by any means, perform any

surgery the block is denoted by “NA”. Having this preference matrix, the process

to evaluate the whole set of assigned blocks is as follows:

We have N chromosomes in every population which are needed to be ranked by V

surgeons.

Step 1: The assignment matrix for the surgeon v elicited from the chromosome n

is as follows:

Avn = [avn,l]1×L (3.2)

an,l =

{
1 if block avn,l is assiged to the surgeon v

0 otherwise
(3.3)

Step 2: The preference matrix of the surgeon v is defined as:

P v = [pvl ]1×L (3.4)

where, pvl ∈ {[1, 5], NA}

Step 3: The assignment matrix will be multiplied by the preference matrix to obtain

the scored assignment matrix SM v
n as follows:

SM v
n = P v.Avn = [smv

n,l]1×L (3.5)

Step 4: The next step is to aggregate the scored arrays, which is done using the

OWA method. The entire process of the OWA for the surgeon v is as follows:

Sv,minn (smv
n,1, · · · , smv

n,k) ≤ Sv,OWA
n (smv

n,1, · · · , smv
n,k) ≤ Sv,maxn (smv

n,1, · · · , smv
n,k)

(3.6)
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where Sv,OWA
n : In 7−→ I as follows:

Sv,OWA
n (smv

n,1, · · · , smv
n,k) = Σk

w=1u
v
wb

v
w (3.7)

where bw is the wth smallest element in the set of inputs smn,l for the alternative

i. The coefficient uvw ≥ 0, is the order weights such that Σk
w=1u

v
w = 1. According to

Zarghami (2011) and Yager (1996) the OWA weights are calculated as follows:

uvw = (
kv − w + 1

kv
)(

1
β
)−1 − (

kv − w
kv

)(
1
β
)−1 (3.8)

where kv = ΣL
l=1a

v
n,l and β is the degree of compensation; the model is non-

compensatory if β = 0.001 and vice versa if β = 0.999. Using these 4 steps every

chromosome receives an OWA-Score from each surgeon, based on which the surgeon-

specific score matrices could be built: the lower the score, the better the solution

is.

In Nego2Sked a penalty function is considered to penalize the infeasible solutions.

An infeasible solution in our problem is defined as a chromosome containing even

one unacceptable assigned block (any locus denoted by NA). Hence, in the surgeon-

specific score matrices for every locus with NA the fitness of the pertinent solution

will be added by 100.

After penalizing the infeasible solutions, the ranking of chromosomes will be deter-

mined. This means, this time the surgeon-specific ranking matrices will be created,

based on which, the FB process can be followed. In the FB process the depth on

which the solutions receive the support of all surgeons for every one of them will

be determined. According to these depths, the whole population will be sorted in

ascending order and the matrix A(t)n×l will be created.

3.7.3 Selection and Mutation

In this process, the fittest chromosomes are exploited, and it is determined whether

the chromosomes survive or are to be mutated. As described in Section 3.6.2, for each

chromosome in each generation the mutation probability Mr is calculated. Then,

for a given raw (i) a random number c ∈ (0, 1) is generated, and if Mr ≤ c then

the corresponding chromosome will be duplicated to the next generation, otherwise

they will be picked out for the swap mutation (see Section 3.6.2).
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3.7.4 Iteration

The process of fitness evaluation, sorting, selection and mutation are iterated to let

the population evolve by producing new generation of chromosomes. The iteration

continues until a stopping criterion is met. In the presented algorithm the stopping

criteria is defined as a fixed number of generations produced.

3.8 Numerical Experiments

In this section, the carried out numerical examples and the relevant results are

described. Example I is a small combinatorial problem provided to give an insight

into the method application and verify the efficiency of Nego2Sked. The numerical

experiments in Example II are based on the real data coming from a hospital in

Germany. However, since the received data sets were not detailed enough, a set of

instances were generated based on the collected data. All experiments are run on

a station with an Intel® Core
TM

i7-7500 processor at 2.70 GHz and 16.0 GB RAM

under Windows® 10 environment. The formulations and algorithms were scripted

in Matlab®.

3.8.1 Case I: Illustrative Example

Suppose that there are seven available blocks to be allocated to two surgeons

{S1, S2}. The number of the blocks that each surgeon receives is 4 for S1 and 3 for

S3. The preference matrices of the surgeons are defined as: P 1 = [3, NA, 1, 2, 1, 2, 3]

and P 2 = [1, 3, NA, 2, 4, 2, 5]. The compensation degree is set to 0.091. Table 16

shows the results of the proposed method. It can be easily understood that the ideal

solution for S1 and S2 will bring the score sets of 1, 1, 2, 2 and 1, 2, 2 in ascend-

ing order, respectively. However, none of the surgeons can get their ideal solution,

because their ideal ones do not correspond to each other’s. The proposed solution

brings the score sets of 1, 1, 2, 3 and 1, 3, 3 to surgeons S1 and S2, respectively. To

evaluate the proposed solution, the whole decision space is searched for the exact

solution. Considering the whole decision space the depth of agreement (Global DoA

in Table 13) is 2.

3.8.2 Case II: Example Based on Real World Data

This case is a surgical suite with 7 operating rooms which are used jointly by three

specialties: 1) trauma surgery (TS), 2) general surgery (GS) and 3) thorax surgery

(THS). The operating rooms are available from Monday to Friday from 7:30 until
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Table 13: Input data, proposed solution and scores for Case I.

Surgeon Block Nr.

1 2 3 4 5 6 7

Preference Matrix 3 NA 1 2 1 2 3

S1 Proposed solution ∗ ∗ ∗ ∗
Ideal solution • • • •

Score 1.09

Preference Matrix 1 3 NA 2 4 2 5

S2 Proposed solution ∗ ∗ ∗
Ideal solution • • •

Score 1.14

Global DoA 2

15:00. The data for this department were collected for 24 months from January 2015

to December 2016.

Overall 67 surgeons are involved in this department each having different workloads.

Yet not all individual surgeons are considered as bargainers; they are clustered to

into two types: 1) a single surgeon with a sufficient workload (Type 1) or 2) a group

of two or three surgeons with a collective sufficient workload (Type 2). Based on

these rules 9 surgeons/surgical groups are considered for this example; 4 groups

belong to GS, 3 groups belong to TS, and the remaining 2 groups to THS (see

Table 14). In our case, the proportion of the OR time to be assigned to each

surgeon/surgical group/surgical specialty is a decision that has been already taken

at an upper level. Since the OR time assignment here is about elective cases, one of

the 7 available operating rooms are reserved for the emergency cases. The opening

hours are divided into two shifts: morning (from 7:30 to 11:00) and afternoon (from

11:00 to 15:00) and the planning horizon is considered to be one week. Therefore,

overall 5× 6× 2 = 60 day-shift-rooms are considered to be available within a week.

The aim is just to arrange the order of OR block assignments to reach a point in

the decision space where the conflict is at the lowest possible level.

In order to test the ability of Nego2Sked to produce satisfactory solutions, it is

necessary to analyze the impact of changes in the final results. For this purpose five

instances with variations in the proportion of OR time that each surgeon receives

are generated. A scored list of day-room-shift room for every surgeon/surgical group

is determined based on the data collected from the case study (see Appendix Table

19). For each instance the population size is 800 and the iteration number is 1000.
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Table 14 shows the results of Nego2Sked for the suggested instances. At the first look

it can be figured out, that no surgeon/surgical group has received any unacceptable

day-shift-room. A detailed assignment plan is provided in Appendix Table 20. A

closer look highlights that even no surgeon/surgical group has been assigned any

block with the score 5 meaning the least acceptability. The total score of the every

surgeon may not fluctuate a lot in response to small variations in quotas, because

it is mostly dependent on the score matrix. For instance, for THS-2, the 91.7% are

scored equal or greater than 3, of which around 20% is denoted by “NA”. Therefore,

his scores in 4 instances (except for instance IV) are the highest one. In instance

V, where THS-2 has just one quota, his score is 1, which shows that the algorithm

seeks to maximize the minimum satisfaction of individual bargainers. DoA for all

instances varies around 11 (ranges from 10 to 12), which shows that the bargainers

are able to come to an agreement at their 11th preference out of 800 possible solutions

(population size).

Table 14: Results of Case II.

Instances

Surgeon I II III IV V

Nr. Q S si Q S si Q S si Q S si Q S si

GS-1 7 1.76 0.81 8 1.84 0.79 7 1.49 0.88 5 1.96 0.76 7 1.82 0.79

GS-2 8 2.01 0.75 7 2.79 0.55 9 2.80 0.55 10 2.75 0.56 6 2.97 0.51

GS-3 7 2.91 0.52 8 2.23 0.69 6 2.56 0.61 5 2.86 0.54 9 2.21 0.70

GS-4 6 3.20 0.45 5 3.20 0.45 7 3.19 0.45 8 3.18 0.46 4 2.75 0.56

TS-1 8 2.22 0.70 9 2.00 0.75 7 2.25 0.68 6 2.50 0.63 10 2.26 0.69

TS-2 7 2.79 0.55 6 2.36 0.66 8 2.74 0.57 9 2.08 0.73 5 2.72 0.57

TS-3 10 2.91 0.53 11 2.97 0.51 9 2.95 0.51 8 2.98 0.51 12 3.05 0.49

THS-1 3 1.89 0.78 2 3.50 0.38 4 2.19 0.70 5 2.60 0.60 1 1 1

THS-2 4 3.75 0.31 4 3.75 0.31 3 3.89 0.28 4 2.94 0.52 6 3.28 0.43

DoA – 12 – – 11 – – 11 – – 11 – – 10 –

Ave – 2.60 – – 2.73 – – 2.67 – – 2.65 – – 2.45 –

CV – 0.24 – 0.23 – – 0.24 – – 0.15 – – 0.27 –

FI – – 0.93 – – 0.93 – – 0.93 – – 0.97 – – 0.94

To demonstrate the effectiveness of Nego2Sked in solving this example, two param-

eters are calculated. The first one is the coefficient of variation (CV) between the

surgeon scores. CV is, per definition, a measure of the extent of variability in re-

lation to the mean of a data set, and yields a value between 0 and 1. The greater

the CV value, the more the variability is. The CV values of the obtained results are

between 0.15 and 0.27, which shows a low variability in surgeon scores. The second

parameter to estimate the effectiveness is a fairness index (FI) which is measured

using the method proposed by Jain et al. (1984). This index measures the “equal-

ity” of a system which allocates payoffs to its n elements (here surgeons). If the ith
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player receives the payoff si, then the fairness of the system is measured using the

following equation:

f(s) =
[
∑
si]

2

n
∑
si2

(3.9)

where f(s) is the FI. If f(s) = 1, then the system is 100% fair, and if f(s) = 0, it

means that the system is totally unfair and only favors the demands of a few number

its elements. The payoff, here, is calculated as the similarity of the obtained score

to the worst possible score, using the following equation:

si =
diw

diw + dib
(3.10)

where diw and dib are the absolute values of distances between the score i and the

worst (5) and best (1) possible scores, respectively. The FI values show that the

results and score distribution in system has in average 5% difference from an ideal

system. This demonstrates the efficiency of Nego2Sked in distributing the OR time

in a fair manner.

3.9 Concluding Remarks

The main motivation of this chapter is to reduce possible conflicts may arise in the

process of creating master surgical schedules. Hence, this work considers the master

surgical planning problem as a negotiation process and develops a heuristic method,

called Nego2Sked, to take the surgical preferences in creating MSS into account.

To this aim, every surgeon or surgical group is regarded as a bargainer which bar-

gains over their preferences with other surgeons in a bargaining process. To model

this process, the fall-back bargaining method from negotiation and decision making

literature is adopted. In the process of fall-back bargaining, the bargainers rank

the proposed solutions based on their preferences which may not necessarily match

with others’. Then, they start to step back from their most preferred alternatives

to the less favored ones, until finding a solution which receives sufficient support.

The process of solution evaluation from the surgeon’s viewpoint is done using the

ordered weighted averaging operator, which is considered as a useful method to gain

realistic judgments over solutions. The reason is the possibility that this method

gives the user to adjust the degree of compensation.

Since the MSS problem is a large combinatorial problem, searching the whole so-

lution space is not feasible. Therefore, the advantage of evolutionary algorithms,

in this case genetic algorithms, is used to search and explore the solution space.

In this sense, considering the fact that the problem in question is a combinatorial



3 A PRE-ASSIGNMENT OF MASTER SURGICAL SCHEDULE WITH FOCUS ON
SURGEONS’ SATISFACTIONS 62

one, a special case of GA without crossover function is used. This version which is

called mutation only genetic algorithm, according to the literature, outperforms the

traditional GA algorithms in terms of speed and quality.

The proposed hybrid algorithm is then applied to two examples to give insights into

the method and demonstrate its capabilities and efficiency. Example I, which is a

small example, shows that the algorithm can find the optimal solution in small solu-

tion spaces. Example II, which is based on the real data from a hospital in Germany,

shows that the algorithm is efficient in maximizing the minimum satisfaction of the

surgeons.

Like any other methods, Nego2Sked has its own limitations. This method focuses

only on the pre-assignment of day-shift-rooms to the surgeons/surgical groups, and

does not take the details of every single case or patient into account to generate de-

tailed and operational schedules. The purpose was mainly to show the applicability

of bargaining methods to solve MSS problems. However, the results provide a sound

ground for further operational schedules.
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4 A System Dynamics Model Application to Op-

erating Room Planning and Management

Abstract

Operating room (OR) management is an essential task which has remark-

able impacts on the efficiency of not only operating room departments them-

selves but also other functions of hospitals. On this ground, evaluation of

long-term adequacy of specific decisions and policies regarding the planning

of OR departments is of a notable importance. Since hospitals deal with a

varying environment, every long-term analysis must investigate and predict

hospital responsiveness to the relevant variations and changes. However, static

models which just consider a limited time-frame have gained more attention

in OR management than dynamic models such as system dynamics. System

dynamics models are not dependent on detailed and high-quality data and

because of this advantage they can be applied to aggregate data at a strate-

gic level. Using a system dynamics approach, this chapter aims to consider

OR departments as multi-product systems, comprehend the interactions of

their different influencing parameters and study their dynamic hypothesis.

The proposed model is based on a mesoscopic approach, which represents the

system flow processes through piecewise constant rates. The novelty here is

that the proposed model is generic, modular and easy to extend. The model

is described by means of MATLAB/Simulink® software, and validation of

its effectiveness and demonstration of its capabilities are done through an

application to a real case study.

4.1 Introduction

Hospitals and particularly operating room (OR) suites are fast-changing and com-

plex environments in which different groups of individuals are involved and coor-

dinated to deliver highly professional operations. This is analogous to production

systems; they are both built around a set of interconnected processes to transform

inputs to outputs with two major differences:

� Since the real business of hospitals is to treat individual patients, the offered

products are specific sets of pure services and physical products play no

role (Fetter and Freeman, 1986). These sets of services are referred to as

diagnosis related groups (DRGs) and hospitals offer different DRG related

products/services to their customers/patients. Thus, their production lines

are multi-product ones. The OR department obeys the same pattern: a multi-

product production line within which each surgery type is a product. In con-
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trary to production lines, which are mostly comprised of one-directional ma-

terial flows, in surgical suites patients flow in diverse directions, which brings

about more complexities (Wolstenholme and McKelvie, 2019).

� Additionally, there are always various ethical and methodological factors in-

fluencing the organization and management of surgical suites (Sobolev et al.,

2008). Each of the involved stakeholders has their own interests that may not

necessarily correspond to the others’. Therefore, every OR manager must be

able to balance the needs of these different groups in order to maximize pro-

ductivity, minimize conflict and maintain order and fairness (Kaye et al.,

2012). On this account, managing of OR departments is often cumbersome.

Some may argue that comparing a hospital or an OR suite to a production system

might not be a right analogy, because hospitals are plagued with uncertainties and

deal with human beings. However, conceptualizing of OR suits as multi-product

systems helps in better understanding of their efficiency and productivity (Palmer,

1991). The idea behind such an assumption is to simplify the process of modeling of

OR suites, study their system structure and understand the patient flows between

different processes. Additionally, from a strategic point of view, this kind of simpli-

fication would be satisfactory enough to understand how decisions and plans could

support the strategic goals of the hospital in the long-term without being captivated

by unnecessary details.

To explore and investigate healthcare system structures and assess their behavior

under decisional changes, computer simulations are frequently recommended by the

literature (e.g. Salleh et al. (2017); Wolstenholme (2020); Lattimer et al. (2004)).

Simulation models can be classified into static or dynamic models. In static models

the outcomes normally belong to a particular point in time. In contrary, dynamic

models simulate systems as they evolve over time. Since healthcare systems deal

with changing environments because of variations in patient types, they should be

modeled as dynamic systems. One of the useful methods to study the structure of

dynamic systems, is system dynamics (SD). SD techniques (Forrester, 1997) have

been used by numerous researchers to investigate a wide range of healthcare decision

problems. They are grounded in control theory and are mathematical modeling

techniques to characterize the behavior of complex systems over time. They specify

the interrelations of the system’s elements and their interactions with each other.

In this approach, systems are structured as causal-loop (influence) diagrams which

represent the flow of resources over time through different states as specified by rates

(Baines and Harrison, 1999).

One possible SD application, as mentioned above, is studying the OR department

structure, its management at a strategic level and improving the patient throughput.
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Generally, the aim of this chapter is to develop a SD model – by assuming OR suits

as multi-product systems – in order to investigate the long-term consequences of de-

cisions like increase/decrease in resources (OR room, opening hours, surgeons, etc.),

demand responsiveness, and specialty coverage of hospitals concerning changes in

future demands. Figure 13 demonstrates the results of a simple simulation example,

exploring the long-term demand responsiveness of a single-specialty OR department

in two years’ time and shows how the increase in resources can shorten the length

of waiting lists.

Figure 13: Example of two yearly OR department behavior in response to demand increase

after one year. Suppose that an OR department has a monthly demand for new surgeries

as random selection from U(55, 70) with a 10% demand increase in monthly amounts

after one year. The OR department has a total amount of 30 OR block per month and

a productivity rate of three patients per every block. At the end of every month, the

unprocessed surgery demands would be postponed to the next month. If the manager

decides to increase the time blocks by 40 after 12 months, the demand responsiveness

would be enhanced (the dashed line). The solid line shows the behavior of the waiting list

without employing any changes.

4.1.1 Relevant Literature

In general, system dynamics approaches have been widely used and advised in

healthcare decision and policy making (i.e. Taylor and Lane (1998); Royston et al.

(1999); Brailsford et al. (2004); Wolstenholme and McKelvie (2019)). The litera-

ture in this area could be generally classified into two branches: a) epidemiolog-

ical studies (i.e. (Dangerfield et al., 2001; Dangerfield, 1999)) and b) healthcare

management and planning studies which mainly tend to concern patient flows (i.e.

Lane and Husemann (2008); Maliapen and Dangerfield (2010); Taylor et al. (2005);

Van Ackere and Smith (1999); Sedehi (2001); Ravn and Petersen (2007); Mahachek

(1992)). For a detailed review about the different system dynamics (SD) applica-

tions to the healthcare problems in a general context, readers are referred to (Lyons
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and Duggan, 2015; Davahli et al., 2020).

In the particular field of operating room management there are also research studies

employing the systemic dynamics view. González-Busto and Garćıa (1999) applied a

SD approach to analyze waiting lists in Spain and study the effectiveness of policies

like subcontracting on the length of waiting lists. They categorized the waiting

lists into outpatient and surgery lists. However, because of higher costs and more

managerial concerns, they put a particular focus on the surgery lists. Anderson

et al. (2002) adopted a dynamic simulation approach to analyze and comprehend the

factors affecting costs and outcomes of a single department of cardiovascular surgery.

They also suggested that their model can be used to answer clinical questions to

cardiologists and cardiovascular surgeons. Lane and Husemann (2008) analyzed

the acute patient pathways using a qualitative mapping derived from SD. Their

maps considered patients scheduled for elective surgery. They demonstrated that

SD could be useful for elucidating the functioning of healthcare systems. Grida and

Zeid (2019) developed a re-configurable SD model for multi-department operating

room settings and implemented the Theory of Constraints to identify the system

bottlenecks. However, only the performance of the whole system was traceable in

their system, and the behavior patterns of individual departments and surgeons

could not be extracted.

Review of existing literature reveals that the developed system dynamics methods

are not generic enough to be applied to different hospital settings. Choosing the

right level of details is of great importance. The reason is that the greater the level

of detail, the less the chance that a model will be considered as generic. On the

contrary, the more simplified the model, the greater the possibility that the model

could not represent the reality (Gunal, 2012; Brailsford, 2005). Another point that

should be noted is that normally the SD applications are aimed at reaching and

maintaining a steady state condition (Brailsford, 2008). However, high variability

and demand fluctuations in healthcare systems call for the system’s ability to recover

from these changes at every time step (i.e. dynamic stability) rather than reaching

an unchanging equilibrium situation. Therefore, the SD approach in healthcare has

many unexplored ideas for research, such as the standardization of generic models

in healthcare (Vázquez-Serrano and Peimbert-Garćıa, 2020) and contemplating the

dynamic behavior of healthcare systems.

4.1.2 Contribution of this Chapter and Outline

In contrast to the majority of models which are case-specific approaches and concern

reaching a steady state condition, the underlying research question here is: what is

the structure of a modular and generic framework for a dynamic model which al-
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lows easy reconfiguration and application to any OR setting and facilitates studying

long-term policy consequences? And how the quality of dynamic stability can be

incorporated in such a model? The model resulting from this research provides a

mean of easy modeling at a suitably aggregate level by assuming specialty depart-

ments and surgeons as production units. Its most interesting feature is modularity;

using a block construction, the model allows integration of different systems, sub-

systems, and components as blocks, and enables easy reconfiguration of the model

according to desired OR settings and corresponding specifications. This approach

is innovative since no other similar model has been reported in the literature. Since

many healthcare settings are not necessarily rich in useful data (Brailsford, 2008),

the focus here is on semi-continuous models (see Section 2.3). To address the

uncertainty, a stochastic aspect, by incorporating random variables, is added to

the model.

In recent years, many user-friendly SD software packages have been developed which

make the modeling process easier. However, these software packages lack flexibil-

ity to deal with explicit mathematical representations or employ complicated al-

gorithms for optimization purposes inside models. MATLAB/Simulink® has been

also demonstrated to be able to simulate and optimize dynamic models (Morcillo

et al., 2018; Fanti et al., 2018) and moreover, offers the advantage of embedding

algorithms and complicated functions. Hence, MATLAB/Simulink® is utilized in

this chapter to describe the modeling process. To the best of the knowledge of the

authors, Simulink® has not been applied to operating room management problems.

This chapter commences with a systemic view on operating room and describes

the methodology in Section 4.2. Then the modular description of the OR system

is given in Section 4.5. In Section 4.6 a real case study is described where the

modeling approach is applied and then follows by a scenario analysis to demonstrate

the advantages of the proposed method. Finally this chapter concludes in Section

4.7.

4.2 Methodology and Modeling of OR Systems

4.2.1 General Approach

In this chapter, a broader meaning of system dynamics is intended. The combination

of the definition of “system” as an assemblage of elements/components/activities

and “dynamic” as a time-varying situation. Hence, here the term “system dynamics”

refers to studying the time-varying behavior of connected components/activities.

Generally, any system can be defined as Input-Transformation-Output; a flow

of information from input to output, which evolves through the passage of time.
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Here, the whole system of the operating room suite is treated as a continuous flow,

which basically contains one flow: the patient flow. In this model, resources –

namely operating room sessions – are referred to as any inputs, while patients are

referred to as any outputs from the transformation units. This definition requires

a simple feedback loop which delivers information about the outputs to the inputs.

The model can be broken into sub-systems based on the type of transformation units

and the relationship of input and output flows into and out of these units. In the

current context, the transformation unit refers to any element of the system which

offers services. These units are surgeons at the lowest level, at a middle level are

specialty departments, and possibly at the highest level could be any aggregation of

specialty departments. An operating room department system can thus be modeled

as one or more of such transformation activities and queues connected together in

series or parallel manners.

4.3 System Stability

Within a system, stability is an important determinant of its successful develop-

ment and evolution (Stepaniak and Pouwels, 2017; Wang et al., 2013). Stability

in the area of operations research is normally considered as returning to a steady

state after being imposed to disturbances (Luhmann, 1995). Here, stability means

dynamic stability defined as the ability to recover from small disturbances and

changes in a longer time frame. From the perspective of systems theory, the goal in

dynamic stability is to increase the degree to which changes and disturbances can be

regulated in the most peaceful and fair way (Luhmann, 1995). In healthcare systems

changes in patient types, either hourly, daily, weekly or seasonally, are usually high,

while the resource capacities to be distributed among the system elements remain

constant. Therefore, stability in terms of OR management could be considered as

a fair distribution of resources among specialty departments or surgeons. Details

of incorporation of a fair distribution process in the proposed model are given in

Section 4.5.1.

4.4 Level of Detail

Since the objective here is to aid the long-term strategic decision making, detailed

information are not a prerequisite and aggregate data would suffice. In terms of de-

tail level in simulation modeling, three classes can be identified (Schenk et al., 2010):

1) macroscopic, 2) mesoscopic and 3) microscopic. Macroscopic models are continu-

ous and based on differential equations. They mostly work with aggregate data and

are incapable of accurately representing of numerous objects flowing through the
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system. On the contrary, microscopic simulations are discrete models which mostly

refer to the discrete-event simulations. These types of models are very complicated,

their creation is time consuming and often the obsession with details might cause

losing the sight of the big picture (Penn et al., 2020; Brailsford, 2008). What falls

between these two types are mesoscopic models which normally facilitate quick and

effective analysis and planning. Mesoscopic models represent flows through piece-

wise constant flow rates and use mathematical formulas for recalculating the system

state variables (Schenk et al., 2010). In the healthcare context, it is recommended

to balance the data requirements in modeling processes and concentrate on main

problems (Gillespie et al., 2014). Therefore, the proposed method belongs to the

mesoscopic class. Here, the reaction of the system to a single surgical order is not

of importance, rather the consequences of variations in orders and policies are of

interest. Additionally, the input and output values are not calculated as average

values over a long period. For a mesoscopic modeling it has to be substituted with

a piecewise constant flow and the simulation step size depends on the length of

planning horizons which could be weekly or monthly.

4.5 Modular Description of the System

A block representation (Kailath, 1980) is used to decompose the system into sub-

systems. On this basis, the generic system is formed by interconnecting of corre-

sponding blocks. The whole system is essentially comprised of three categories of

modules: 1) sub-production units, 2) resource distributor and 3) measure-

ment. In this section, the generic system structure is firstly introduced based on a

block representation, without giving details on the internal structure of the individ-

ual sub-systems. Then, three forming modules are described in details. Subsection

4.5.1 discusses the resource distributor module. The measurement module and the

surgeon subsystem as the smallest sub-production unit are explained in Subsections

4.5.2 and 4.5.3, respectively.

In control theory, a systems is characterized by a block with input vector (u) and

the output vector (y). The outputs are determined by function (fcn):

y = fcn(u) (4.1)

which could be an operator or an algorithm and thoroughly determines the behavior

of the system (Figure 14). Different sub-systems are connected to each other using

input u and output y terminals and on the basis of information flow principles.

The interdependencies between the three OR system modules are shown in Figure 15.

As it can be seen in Figure 15, at the surgical suite level, every specialty department
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Figure 14: Block representation of a subsystem.

is modeled as a separate sub-production sub-system, which has the task to process its

own orders according to the resources it receives. The resource distributor module

is responsible for distribution of available resources at a given system level (e.g.

available resources for the whole surgical suite) and the measurement module is

required to provide measurements. The sub-production units have themselves the

capability to be considered as production systems at a lower level, comprised of their

own sub-production (sub-sub-production) units - i.e. surgeons. Hence, the above-

described structure could replicate itself inside each sub-production unit (Figure 15).

Therefore, the performance of each sub-production unit is dependent on its sub-sub-

production units, and accordingly, the performance of the whole system depends on

the performances of individual sub-production units. The model represents the

patient flow as a piecewise constant flow rate and a sequence of impulse-like surgical

orders.

The processing of orders is done based one the following procedure:

� P1) At every time step, the surgical orders are laid by individual surgeons

(sub-sub-production units).

� P2) Every ward or surgical specialty collects the orders of its surgeons/surgical

groups and passes them to the OR manger at the upper level.

� P3) At the operating room suite level (ORSL) the OR manager, according

to the collected orders, distributes the available but limited resources, namely

OR time, among wards.

� P4) At the specialty department level (SDL) the received quota of resources

is distributed among its surgeons/surgical groups.

� P5) Then, the received resources will be processed by the surgeons/surgical

groups and the outputs of the system in terms of processed orders, associated

costs, and possible overtime will be calculated. These outputs will also be

accumulated over time in the measurement module.

� P6) The remaining unprocessed surgical orders at the time step t will be added

to new surgical orders at the time step t+ 1 using a feedback mechanism.
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Figure 15: The structure of the generic system and model layout. Every sub-production

unit has the same structure.

Figure 16 shows the Simulink® model parts which are built up based on Figure

15. The number of wards/specialty departments in this model corresponds to the

case study described in Section 4.6. In the following subsections, the structure

of the system, the relevant parameters and the governing equations are explained

in details. The type and number of parameters are chosen in a way to fulfill the

condition of being generic. This degree of details corresponds to the requirements of

the strategic decision making which concerns mainly the size of the OR department

(number of rooms and surgeons), the amount and types of surgeries for each specialty

and general cost calculations.

4.5.1 Resource Distributor Module and Distribution Rules

As already mentioned, the resource distributor is defined at two levels: 1) the whole

surgical suite (P3), 2) sub-production units (specialty departments, P4). The pur-

pose of the resource distributor is to allocate the available resources among the wards

and accordingly the surgeons depending on the level it is responsible for. This sub-

system is the heart of the system, and the performance of the whole system is decided

here. Distribution of OR time blocks is an allocation problem, which corresponds

to the classical allocation game (Rosenthal, 1973) in which selfish players should

share limited resources. In the allocation problem in question, the specialty depart-

ments/surgeons, should share limited OR blocks to consummate their waiting lists

of patients.

It must be noted that the distribution of the resources is a task which needs specific

considerations. Surgeons normally stay at the focal point and their acceptance level

regarding resource distributions should be always taken into account. Moreover,
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Figure 16: Example Simulink® model of the whole operating room suite (upper) and the

ward (lower). This model corresponds to the case study with three specialty departments,

which is described in Section 4.6. The ward sub-system “Ward1/TS” shown in this figure

is comprised of three surgeons/surgical groups.
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each surgeon or ward has a waiting list of patients and any distribution mechanism

would indirectly and subsequently impact the patients. Therefore, a fair distribution

at every simulation time step brings acceptability and satisfaction to the system and

ensures the dynamic stability. In this sense, the power index method, taken from

the game theory literature, is considered to be a suitable method to gauge the

acceptability of feasible resource distributions. The reason is that the power indices

are designed to provide fair division and reasonable sharing of an available value

among participants (Bertini et al., 2018) by determining the impact of participants

on the final results. This impact is interpreted as a power which indicates how much

power the participants would receive as the result of a proposed solution.

There are various types of power index methods. In this chapter, the power index

proposed by Loehman et al. (1979) is adopted. Loehman et al.’s Index is an approach

to determine the relative power for participants by comparing their individual payoffs

with the total payoff gained by all participants. In the allocation problem discussed

here, each participant’s payoff is the share of the resources she/he obtains. This

version of power index is formulated as the following equation:

PIi =
CLi − ARi∑N

j=1(CLj − ARj)
(4.2)

where i and j = {1, 2, 3, .., N} are the sets of participants, CLi is the claimed amount

of resources for the participant i, ARi is the amount of the share allocated to the

participant i and
∑N

i=1 PIi = 1. It should be noted that no participant receives

more than her/his claim by applying this constraint: 0 ≤ ARi ≤ CLi. This power

index has also been suggested (Dinar and Howitt, 1997; Bertini et al., 2018) as a

forecast to the stability of resource distributions. To measure the stability, each

participant’s PIi is calculated for each allocation scheme. It must be noted that the

balance in the distribution of power among the participants is linked to the stability

of the outcome. A solution is more stable when the disparity in power distribution

among the participants is smaller. This disparity is measured using coefficient of

variation in PIi across all participants for a given solution as:

S =
σ

P̄ I
, 0 ≤ S ≤ 1 (4.3)

where S is the coefficient of variation of a particular solution, σ and P̄ I are the

standard deviation and the mean value of the set of power indices of all partici-

pants, respectively. A greater value of S, thus, represents a situation where a larger

instability of the allocation solution is expected.

In Equation 4.2 the claims of different participants can be weighted (inspired by

Holler (1981)) according to their capability to influence the outcome. These weights



4 A SYSTEM DYNAMICS MODEL APPLICATION TO OPERATING ROOM
PLANNING AND MANAGEMENT 74

help in obtaining realistic results and, in our OR problem, represent the performance

of the wards. The weighted power index for the participant i (WPIi) can then be

written as:

WPIi =
(CLi − ARi)

WPi∑N
j=1(CLj − ARj)WPi

(4.4)

whereWPi is the weight of sub-production unit i calculated based on its performance

and
∑N

i=1WPIi = 1. This performance is measured based on the production rate

per unit of allocated resources, which in our case is the number of patients per OR

block.

Back to the system, the resource distributor at ORSL has already information re-

garding the performance rates (WPi). Once it collects the waiting list information

(WLi) at every time step from the specialty departments, it calculates the required

claims (CLi) as the following equation:

CLi =
WL

WP
(4.5)

Having calculated the claims and gathered information regarding the available OR

blocks, a pool of possible block allocations is generated, and then, their stability

degrees are calculated with the help of the above-mentioned power concept. The

system then picks the allocation scheme with the highest stability. Hence, the out-

puts of this sub-system would then be the amount of OR blocks each sub-production

unit is allowed to receive.

The same procedure holds true for the lower level resource distributors (SDL) inside

the sub-production units, with a small difference that the input of these sub-systems

are the outputs of the higher level (ORSL) resource distributor. Figure 16 provides

closer pictures of how distributors are connected to the other sub-systems at SDL

and ORSL levels.

4.5.2 Monitoring Module

The measurement sub-system accumulates data from the individual production units

to monitor the whole system during the passage of time at the levels of ORSL and

SDL. The structure of this module is compatible with the cost categorization defined

by the German Institute für das Entgeltsystem im Krankenhaus – Institute for the

Hospital Remuneration System – (InEK) which is responsible for the DRG data

and pricing system. The InEK system divides expenses of hospitals into eleven cost

centers: 1) normal ward, 2) intensive care unit, 3) dialysis department, 4) operating

room, 5) anesthesia, 6) delivery room, 7) cardialogical diagnosis and therapy, 8)
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endoscopic diagnosis and therapy 9) radiology department, 10) laboratories and 11)

other diagnostic and therapeutic areas. For each cost center, three categories of costs

are considered: 1) personnel, 2) material and 3) infrastructure costs. The proposed

model, collects information regarding the most cost-intensive areas of “operating

room (OR)”, “intensive care unit (ICU)”, “normal ward (NW)” and “anesthesia

(ANE)”. In addition, the “total patient throughput” and the “total waiting list”

are also calculated. Overtime is also another parameter which is monitored in this

model. Suppose that we have N sub-production units or specialty departments

in our surgical suit. The equations governing the measurement sub-system are as

presented in Table 15. The same equations hold true for every specialty department

with N surgeons. In Figure 16, it can be seen how the measurement modules at

ORSL and SDL take inputs from the specialty departments and surgeons.

Table 15: Equations governing the measurement module.

Equation Description

TORCt =
N∑

i=1

ORCi TORCt= total operating room cost at time t

ORCi= operating room cost of sub-production unit i

CTORC =

t∑
t0=0

TORCt CTORC = cumulative total operating room cost

TICUCt =

N∑
i=1

ICUCi TICUCt= total intensive care unit cost at time t

ICUCi= intensive care unit cost of sub-production unit i

CICUC =

t∑
t0=0

TICUCt CICUC = cumulative total intensive care unit cost

TNWCt =

N∑
i=1

NWCi TNWCt= total normal ward cost at time t

NWCi = normal ward cost sub-production unit i

CTNWC =
t∑

t0=0

TNWCt CTNWC = cumulative total normal ward cost

TANECt =
N∑

i=1

ANECi TANECt= total anesthesia cost at time t

ANECi anesthesia cost sub-production unit i

CTANEC =

t∑
t0=0

TANECt CTANEC = cumulative total total anesthesia cost

TPTt =

N∑
i=1

PTi TPTt= total patient throughput at time t

PTi= patient throughput sub-production unit i

CTPT =
t∑

t0=0

TPTt CTPT = cumulative total patient throughput

TWLt =
N∑

i=1

WLi TWLt= total waiting list at time t

WLi= waiting list sub-production unit i

CTWL =
t∑

t0=0

TWLt CTWL = cumulative total waiting list

TOTCt =
N∑

i=1

OTCi TOTCt=total overtime cost at time t

and OTCi = overtime cost sub-production unit i

CTOTC =
t∑

t0=0

TOTCt COTC = cumulative total overtime cost
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4.5.3 Surgeons as Sub-sub-production Units

In this section, the details of the surgeon sub-systems are described. Figure 17 shows

the details of its Simulink® model. The surgeons are the smallest production units

responsible to process their own orders. The orders to be processed by the system

are laid by these units at every time step. The list of orders is comprised of the

new patients (NP ) at time t, and the orders (patients) that were not processed at

time t − 1 and were consequently transmitted to time t as the remaining waiting

list (RWL). Summation of these two variables yields the surgical order of the sub-

sub-production unit. Every surgeon requires a specific amount of OR resources to

consummate its order list, which is determined based on her/his performance (P ).

Having been assigned the OR resources (after P2, P3 and P4), the orders will be

processed based on the received quota of resources and the patient throughput (PT )

for the time t will be calculated as follows:

WL = NP +RWL (4.6)

PT = P × AR (4.7)

P ∼ N (µp, σ
2
p) (4.8)

RWL = WL− PT (4.9)

where, WL= waiting list; NP=new patients; RWL= remaining waiting list; AR=

allocated resources; PT= patient throughput; and P= performance of the perti-

nent surgeon which is selected randomly out of a normal probability distribution

calculated based on the surgeon’s historical performance data.

Regarding cost calculations, as described in Subsection 4.5.2, the adopted approach

is based on the German InEK system. Hence, inside every surgeon unit, the perti-

nent OR, normal ward, intensive care unit, and anesthesia cost blocks are provided.

To this aim, inside every block random values per surgical procedure are generated.

These random values are sampled from normal probability distributions fitted to

the cost information provided by the InEK system. The probability distributions

are calculated based on the data of the most frequent diagnoses. To overcome the

problem of production of negative values by normal distributions, a positivity con-

straint is applied to the sampling process rejecting negative values and re-sampling

until getting a positive one. This process corresponds to the definition of rectified

normal distributions.
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ORCi =
PT∑
j=1

ORCsj where ORCsj ∼ N (µORCsj , σ
2
ORCsj

) (4.10)

NWCi =
PT∑
j=1

NWCsj where NWCsj ∼ N (µNWCsj , σ
2
NWCsjv

) (4.11)

ICUCi =
PT∑
j=1

ICUCsj where ICUCsj ∼ N (µICUCsj , σ
2
ICUCsj

) (4.12)

ANECi =
PT∑
j=1

ANECsj where ANECsj ∼ N (µANECsj , σ
2
ANECsj

) (4.13)

Each surgeon has a specific time slot to treat a certain number of patients. However,

the performance amounts are not always integer numbers. Therefore, there is always

a remaining time, which is not enough to complete a procedure. If the surgeon could

complete a given procedure within 60 minutes of overtime, then, this amount of time

would be granted to her/him, otherwise the remaining time would be considered as

idle time. To calculate the overtime cost a method suggested by Diez and Lennerts

(2009) is taken, which suggests assigning a 0.92e per minute of surgery according

to the InEK system. Therefore, overtime cost for surgeon i, OTCi, is calculated as

the following algorithm:

Calculation of OTCOTCi

while k ← 1 to PT/AR do

if OTk(S) ≤ 60min then

OT ← OTk

end if

end while

OTCi =← OT × 0.92

return OTCi

The surgeon sub-system could represent one surgeon or a group of surgeons who

have common characteristics or approximately the same level of performances and

could cooperate with each other. At every time step, all of the calculated parameters

for surgeons are collected by the ward measurement module to monitor the state of

the system.
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Figure 17: The Simulink® model of surgoen/surgical group.

4.6 Case Study

The case study here refers to one of the surgical departments in a general hospital in

the State of Baden-Württemberg of Germany. This department is made up of three

specialty departments of trauma surgery (TS), general surgery (GS), and thorax

surgery (THS) with case mix indices of 1.16, 3.63 and 2.46, respectively. There are

seven jointly used operating rooms available from Monday to Friday from 7:30 until

15:00 o’clock, which means 5 × 7 = 35 sessions are available in a week. Overall 67

surgeons are involved in this department each having a different performance rate.

The structure of the generic model has already been described in Figure 16 in Section

4.5.1. To ease the modeling procedure not every single surgeon is modeled as a sub-

sub-production unit. They are categorized into two general groups: 1) a single

surgeon who has a sufficient workload, 2) a group of two or more surgeons who have

together enough workload to be modeled as a joint-production unit. In this regard,

nine sub-sub-production units for the whole of the mentioned surgical department

are created, therefrom, four groups belong to GS, three groups to TS, and the

remaining two groups to THS. Table 16 shows the model input data regarding the
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Table 16: Model inputs regarding surgeon information, their performances and related

costs.

Surgeon Performance ORC (e) ICUC (e) NWC (e) ANEC (e)

1-GS N (3.75, 0.12) N (1770, 16182) N (1252, 6102) N (2605, 12382) N (737, 5382)

2-GS N (2.6, 0.12) N (1770, 16182) N (1252, 6102) N (2605, 12382) N (737, 5382)

3-GS N (3.4, 0.12) N (1770, 16182) N (1252, 6102) N (2605, 12382) N (737, 5382)

4-GS N (3.0, 0.12) N (1770, 16182) N (1252, 6102) N (2605, 12382) N (737, 5382)

5-TS N (5.25, 0.12) N (1437, 8492) N (1270, 5882) N (93, 452) N (516, 1432)

6-TS N (4.5, 0.12) N (1437, 8492) N (1270, 5882) N (93, 452) N (516, 1432)

7-TS N (3.0, 0.12) N (1437, 8492) N (1270, 5882) N (93, 452) N (516, 1432)

8-THS N (3.75, 0.12) N (2696, 12832) N (3327, 11962) N (3702, 23702) N (1091, 4462)

9-THS N (3, 0.12) N (2696, 12832) N (3327, 11962) N (3702, 23702) N (1091, 4462)

surgeons/surgical groups, their related specialty departments, their performances

and the department-related costs.

Surgery costs per hour of operating room time can differ significantly among sur-

geons, according to their performances (Macario et al., 2001), but because of data

gaps and for the sake of simplicity, the probability distribution for different cat-

egories of costs are considered to be the same for the whole of a given specialty

department.

The data for this department were collected for 24 months from January 2015 to

December 2016. In this time-frame, 11,424 elective patients were admitted to this

department. It is prognosticated that the number of patients would increase in the

upcoming years. According to the Statistical Office of Baden-Württemberg, the

number of elective patients is expected to increase about (as an average amount

for all disciplines) 10% in 2030 with reference to 2015 (Landesamt, 2005). This

means that the hospitals in the region must adjust themselves to the demographic

changes and demands. In this regard, it is indispensable to define reasonable “what-

if” scenarios, evaluate them and experiment with the system prior to making any

decisions and changes.

4.6.1 Simulation Scenarios

The long-term policy orientation is the objective of SD models (Barlas, 1994). In

this regard five scenarios/policies are defined to examine the system behavior and

the quality of its dynamic stability. Scenarios 1 through 3 are mostly dealing with

changes in input management parameter values such as opening hours and operating

room numbers. Scenarios 4 and 5 are mainly dealing with examining the modularity

and reconfigurability of the model. Scenario 4 is about exclusion of one of the
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specialty department sub-systems, and Scenario 5 is about the exclusion of surgeons

sub-systems. Table 17 lists a short description of each scenario. The simulations

are run for a period of 10 years from 2020 to 2030 based on monthly rates.

Table 17: Different scenarios and their model inputs.

Nr. Scenarios Input to the Model

1 Business as usual (BaU) The OR department continues its function under the

current conditions, demand increase in 10 years is ex-

pected to be 8.80% for TS, 7.60% for GS and 15.30%

(according to Landesamt (2005)).

2 Increase in number of operat-

ing rooms (IOR)

The number of OR rooms will be increased from 7 to

8, demand increase same as BaU.

3 Increase in opening hours

(IOH)

The opening hours will be increased from 7.5 to 8

hours, demand increase same as BaU.

4 Service elimination (SE) The specialty department with the least demand (in

this case TS) amount is eliminated, demand increase

same as BaU.

5 Dismissing low performance

surgeons (DPS)

At each specialty department one surgeon/surgical

group with the least performance will be dismissed,

demand increase same as BaU.

4.6.2 Simulation Results

The simulation results for each scenario are shown in Table 18. One can extract

results for the individual surgeons or specialty departments, however, only the results

for the whole system are presented here. Figures 18, and 20 and 21 in the Appendix

A2 elucidate the state and sensitivity of the studied operating room suite to the

changes in scenario variables. According to the results, the behavior patterns of

different variables show that:

� If the operating room department continues its function under the current con-

ditions, it could not be able to provide enough services to meet the increasing

demand for surgery. Despite the 30% of increase in the number of patients

in 2030 with respect to 2020, the monthly patient throughput stays relatively

unchanged.

� Patient throughput variable shows a better behavior in Scenario 2 and has the

highest amount (about 11.5% increase with respect to Scenario 1). Although

the costs are almost in direct relationships with the number of total patient

throughput, the ICU and normal ward costs show 14% (instead of 11.5%) of

increase with respect to Scenario 1. This shows that more GS and TS patients,
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who need more ICU resources, were treated. Adding an extra operating room

to the department increases not only the patient throughput, but also the re-

sponsiveness of the system to the demand increase. The fitted trend-line slope

to the patient throughput (14%) is higher than those in the other scenarios.

The productivity ratio, calculated as the average number of patient through-

put to the average number of patients in waiting list, is also higher than the

other scenarios. However, it should be mentioned that the total cost of this

scenario, because of consumption of more resources, is also higher than the

others.

� In Scenario 3, patient throughput shows a 5.6% increase with respect to Sce-

nario 1, however, increase in normal ward costs is about 8%. This means that

more THS patients, who need longer stays in normal ward, are treated.

� Regarding Scenario 4 which is about the elimination of a service which would

be less demanded, one might be conservative in interpreting the outputs. Since

the demand amount in this scenario is decreased and the operating depart-

ment has to deal with less patients, all outputs show reduction with respect

to Scenario 1. Nevertheless, the overtime may not necessarily improve. It

means that the eliminated service is less responsible for overtime than the

other departments.

� Despite dismissing low performance surgeons in Scenario 5, the results show

more overtime. The reason is that the surgeons are faster than the other

scenarios, and hence, they are more allowed to complete unfinished procedures

within 60 minutes of overtime.

(For more result details please refer to Figures 22 to 25 in the Appendix.)

The simulation results show how changes in different variables can affect the whole

system. The assessment of the model results for different scenarios presents a good

perspective of the interconnected and dynamic nature of the system. However, the

main purpose of this study is to comprehend the interactions of different variables.

This study offers a quick approach for integrating, exploring, adapting, and under-

standing the consequences of policies and decisions. Even if wrong, the developed

model can be still useful in the early investigations of system behavior. The scenario

analysis is conducted to just comprehend the system behavior patterns, and hence,

the generated numbers are merely to provide comparisons and may not speak for

any absolute realistic future.
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Figure 18: Behavior of patient throughput and waiting list of the whole surgical suite.

“TL PT” and “TL WL” are fitted trend-lines to total patient throughput and waiting list,

respectively
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Table 18: Outputs of the different scenarios
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(BaU) 483 58015 0.88 7.42 2.04 4.03 6.41 2.50 1.60 2.06 0.00
30.00

(IOR) 539 64685 0.92 8.30 2.03 4.69 7.48 2.80 1.80 2.35 14.00
30.00

(IOH) 510 61202 0.88 7.81 2.20 4.35 6.83 2.63 1.70 2.19 6.00
30.00

(SE) 475 56987 0.92 7.15 2.24 3.49 5.28 2.37 1.73 1.85 4.00
30.00

(DPS) 518 62421 0.90 7.93 3.85 4.30 7.05 2.66 2.98 2.23 2.00
30.00

∗based on monthly average amounts

† hrs/(room × day)

4.6.3 Model Validation

To validate a simulation model, it is necessary to determine how sharply the model

is able to simulate the real systems. Therefore, it is crucial to test the model or per-

form a sensitivity analysis to determine the accuracy of the model behavior. In the

validation process of SD models, the focus should be on behavior pattern prediction

rather than numerical sensitivity and point prediction (Barlas, 1994). To this aim,

the considered case study is analyzed during a period of 52 weeks from January

to December 2016. Using this data first a calibration is conducted to adjust the

model. For the validation, a multivariate analysis concerning surgeon performances

(P ) with 100 simulations is conducted. The weekly new patient arrivals remained

the same as those in the real data for all simulation runs. Figure 19 shows the sim-

ulation results, their mean value and the real data. Since long-term and midterm

behavior predictions are of importance here, the cumulative (Figure 19 upper) and

the 4-weekly (Figure 19 lower) patient throughput results are taken into considera-

tion. The average relative error and the root mean square error for the cumulative

results are about 1.4% and 22.3 and for the 4-weekly predictions are about 2.7%

and 6.7, respectively. The difference between the simulated and the real total pa-

tient throughput is only about 0.3%. The results demonstrate that the model can

represent a satisfactory back-casting of the real system in midterm and long-term.

Although it does not perfectly reproduce the historical data at each time step, but

adequately reflects the behavior patterns and the total outcomes.

Since the received data sets were not detailed enough and no cost data from the

real case was available, the only comparison possibility was the behavior of pa-
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tient throughput. The model could, of course, be extensively validated in terms of

overtime and cost estimations in case of availability of relevant reliable data.

Figure 19: Comparison of the simulated and the real data over 2 years (52 weeks), upper:

cumulative patient throughput (mean simulated total: 5967, real total: 5950); lower:

4-weekly patient throughput.

4.7 Concluding Remarks

It is well-known that experimentation with real systems is not possible in most cases

given undesired consequences or high costs. Particularly, in the case of management

and planning, system dynamics simulations are the basis for policy design and regu-

lation improvements (Morcillo et al., 2018) and it must be mentioned that they are

learning laboratories (Forrester, 1997) and are not optimization tools.

Therefore, the purpose of the approach presented in this chapter is to provide an

experimental simulation model to analyze consequences of decisions and policies at

strategic levels and address the issues of demand dynamics and demand manage-
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ment. The proposed model, which is developed in MATLAB/Simulink® environ-

ment, provides a sound perspective of operating room suite dynamism by suggesting

a modular and generic design and illustrating the interconnected relations between

various components. Being aware of these relations and having a holistic view of

an OR system, the hospital administration and OR manager can harmonize the

current management affairs and predict the behavior patterns of various variables

of the system over time. By considering the probable behavior of system variables

in response to various strategies and policies, hospitals can prepare themselves early

enough for the future changes and demands. Moreover, the suggested model is one

of the few works which offers a generic approach to deal with the OR planning and

management problem from the perspective of control theory.

The proposed approach is applied to a real operating room suite in Germany through

the simulation of five different scenarios. Using this scenario analysis the system

behavior according to future changes is analyzed and comprehended. It must be

noted that the generated numbers are not of interest, but the relative differences

and system reactions with respect to inputs are important.

Similar to all models, the proposed model has some limitations too, which should be

taken into account when interpreting the results. The model is built and calibrated

based on the limited available data sets. If more data would be available, inclusion

of more parameters in the system could be possible in future work. Accordingly, for

such an extended model a systemic sensitivity analysis of model parameters would

be useful to examine, for example, the significance of the input parameters and

correlation of the input parameters with the outputs. However, the main objective

of studies like this is to investigate the system’s reactions to different plans, and

understanding, comprehending and exploring the dynamism of the OR system.
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5 Overall Conclusions

The purpose of this study has been to describe methods for planning and manage-

ment of operating rooms and to further improve the understanding of how game

theoretic and bargaining methods can be used for supporting OR management and

decision making. Moreover, what also can be very useful in decision making and

management is a systemic view, which is adopted in this research to comprehend

the behavior of operating rooms as systems.

There have been two main motivations in designing this study. The first motivation

stems from the fact that values, orientations and objectives of different stakehold-

ers involved in operating rooms departments may conflict with each other. This

issue makes the OR management task and resource distribution between different

claimants a challenging task. One of the important groups of stakeholders, which

stay at the center of operating room departments are surgeons who metaphorically

fight for the OR time. The preferences of surgeons and their pertinent specialty

departments have been the motivation of developing two methods to dimension the

OR capacity at the strategic level in Chapter 2 and one further method to generate

master surgical schedules based on negotiation and bargaining methods in Chapter

3.

The second motivation is to consider the OR department as a system; a system

which is in a constant interaction with its surrounding environment and there is a

natural flow of information from input to output. The idea is to break down the

operating room departments into sub-systems and comprehend the interrelations

between these sub-systems and study the behavior of them through the passage of

time. This idea led to development of a system dynamics model which is represented

in Chapter 4.

Chapter 2 reviews the literature related to OR management and planning, and

describes the theoretical bases for the power index methods and the Shapley value.

The problem of OR capacity allocation is formulated, and the suggested methods are

described. This study attempts to define the acceptability and stability mechanism

of resource allocation among resource users in operating room management context.

The proposed methods are evaluated based on a case study taken from the literature.

Comparison of the results obtained from the proposed methods to those from the

literature shows that, using the power index method, there is a less disparity between

the claimed and received resources for individual claimants in the final solution,

which implies that no claimant is discriminated in the name of others. Regarding the

second method based on the Shapley value, evaluation of the results using fairness

metric shows that distribution scheme suggested by the proposed Shapley-based

method can provide a sound starting point for fair distribution negotiations, as it
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ensures a relatively high level of fairness between participants.

Chapter 3 concerns the details of the proposed model for creating master surgical

schedules. This chapter first gives an introduction about master surgical schedules

and reviews the related literature. Then, after describing the relevant theoretical

basis, the suggested framework is explained. The core of the proposed method

is based on a bargaining method called fall-back bargaining in which individual

bargainers – in our case surgeons – first rank the existing solutions and then enter

the bargaining process. In the bargaining process they step back from their first

choice until they can find a solution upon which they all can agree. Bargaining

methods guarantee the maximization of minimum satisfaction of the bargainers.

The process of solution evaluation from the surgeon’s viewpoint is carried out using

the ordered weighted averaging operator, which is a useful method in obtaining

realistic judgments over solutions. To search and explore the large solution space,

a special case of genetic algorithms called mutation only genetic algorithm is used.

Application of the method to two examples – one illustrative and the other one

based on a real case – shows that the proposed method is efficient in maximizing

the minimum satisfaction of the surgeons.

Chapter 4 concerns the system dynamics model and first starts with providing a

discussion on how to view the hospitals and accordingly operating room departments

as systems. Then, the chapter reviews relevant literature, which is followed by

the methodology and modeling descriptions. The model is developed based on

the principles of dynamical systems and control theory. The three modules of (1)

wards, (2) resource distribution and (3) monitoring equip the user with possibilities

to characterize the model according to their expectations. The proposed approach

is used to model and simulate a real operating room suite in Germany. A scenario

analysis is also run to demonstrate the capabilities and capacities of the model.

It must be noted that the generated numbers are not of interest, but the relative

differences and system behavior under different scenarios are of importance.

5.1 Contributions of the Study

The following contributions are claimed by this study:

� Although the surgeon preferences and acceptability of the resource allocations

are addressed by the literature and are considered in developing planning and

scheduling methods, no reported research has used game theoretic and negoti-

ation methods to solve the allocation problem concerning surgeon preferences.

Therefore, a novelty of this study is to use and employ these kinds of methods

to solve the resource allocation and scheduling problem.
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� The results suggested by the developed method may not be considered to be

directly implemented in real management and planning of operating rooms.

The idea here is to provide a starting point grounded on fairness and accept-

ability, based on which further decisions can be made.

� The system dynamics model developed in this study is a generic model which

offers modularity, eases the modeling process and can be simply modified and

extended. This model facilitates scenario analysis and studying the behavior

of the system under different settings.

5.2 Limitations and Recommendations for Further Research

Like any other research study, according to the scope within which it is defined, this

thesis has also limitations. The following items, among others, are not resolved by

this thesis. However, they are recommended for further research:

� The proposed methods based on the power index and the Shapley value only

suggest starting points for further planning and may not have direct realistic

implications. Naturally, the methods must mature through the application in

practice and receiving feedback from practitioners, OR managers, and most

importantly surgeons.

� The bargaining-based method to create MSS focuses only on the pre-assignment

of days, shifts and rooms to the surgeons or surgical specialties, and does not

take details of every single case or patient into account. However, the results

provide a sound basis for further operational schedules. Therefore, further

development to create detailed operational schedules considering patient pri-

orities based on the suggested results could be recommended.

� The system dynamics model is built and calibrated based on the limited avail-

able data sets. Obviously, when more data are available, inclusion of more

parameters and variables in the system will be possible, and the model could

reflect a more realistic future.
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A Appendix

A.1 Detailed results of Chapter 3 for Case II

Table 19: Score list of surgeons/surgical groups.

OR1 OR2 OR3 OR4 OR5 OR6

Surgeon Day S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Surgeon 1 Mon 2 N 2 N 2 N 2 N 2 N 2 N

Type 1 Tue 1 4 1 4 1 4 1 4 1 4 1 4

Dept. GS Wed 1 4 1 4 1 4 1 4 1 4 1 4

Thu 2 N 2 N 2 N 2 N 2 N 2 N

Fri 2 4 2 4 2 4 2 4 2 4 2 4

Surgeon 1 Mon 2 3 2 3 2 3 2 3 2 3 2 3

Type 2 Tue 2 3 2 3 2 3 2 3 2 3 2 3

Dept. GS Wed 2 2 2 2 2 2 2 2 2 2 2 2

Thu 3 3 3 3 3 3 3 3 3 3 3 3

Fri 3 3 3 3 3 3 3 3 3 3 3 3

Surgeon 1 Mon 3 4 3 4 3 4 3 4 3 4 3 4

Type 2 Tue 3 3 3 3 3 3 3 3 3 3 3 3

Dept. GS Wed 2 2 2 2 2 2 2 2 2 2 2 2

Thu 2 2 2 2 2 2 2 2 2 2 2 2

Fri 2 2 2 2 2 2 2 2 2 2 2 2

Surgeon 1 Mon 4 3 4 3 4 3 4 3 4 3 4 3

Type 2 Tue 4 4 4 4 4 4 4 4 4 4 4 4

Dept. GS Wed 5 4 5 4 5 4 5 4 5 4 5 4

Thu 3 3 3 3 3 3 3 3 3 3 3 3

Fri 2 2 2 2 2 2 2 2 2 2 2 2

Surgeon 1 Mon 1 3 1 3 1 3 1 3 1 3 1 3

Type 1 Tue 2 3 2 3 2 3 2 3 2 3 2 3

Dept. TS Wed 1 3 1 3 1 3 1 3 1 3 1 3

Thu 4 4 4 4 4 4 4 4 4 4 4 4

Fri 1 3 1 3 1 3 1 3 1 3 1 3

Surgeon 1 Mon 2 N 2 N 2 N 2 N 2 N 2 N

Type 1 Tue 1 4 1 4 1 4 1 4 1 4 1 4

Dept. TS Wed 1 4 1 4 1 4 1 4 1 4 1 4

Thu 2 N 2 N 2 N 2 N 2 N 2 N

Fri 2 4 2 4 2 4 2 4 2 4 2 4

Surgeon 1 Mon 3 2 3 2 3 2 3 2 3 2 3 2

Type 2 Tue 4 3 4 3 4 3 4 3 4 3 4 3

Dept. TS Wed 5 3 5 3 5 3 5 3 5 3 5 3

S6 Thu 3 3 3 3 3 3 3 3 3 3 3 3

Fri 3 3 3 3 3 3 3 3 3 3 3 3

Surgeon 1 Mon 2 2 2 2 2 2 2 2 2 2 N N

Type 2 Tue 3 3 3 3 3 3 3 3 3 3 N N

Dept. THS Wed 1 2 1 2 1 2 1 2 1 2 N N

Thu 4 4 4 4 4 4 4 4 4 4 N N

Fri 2 3 2 3 2 3 2 3 2 3 N N

Surgeon 1 Mon 3 5 3 5 3 5 3 5 3 5 N N

Type 2 Tue 2 3 2 3 2 3 2 3 2 3 N N

Dept. THS Wed 3 3 3 3 3 3 3 3 3 3 N N

Thu 3 4 3 4 3 4 3 4 3 4 N N

Fri 3 4 3 4 3 4 3 4 3 4 N N
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Table 20: Arrangement of the OR blocks.

OR1 OR2 OR3 OR4 OR5 OR6

Surgeon Day S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Instance 1 Mon TS-1 TS-3 GS-2 TS-3 TS-2 GS-4 GS-2 THS-1 TS-2 TS-1 TS-3 TS-3

Tue GS-1 TS-1 GS-2 TS-3 TS-2 GS-4 GS-3 TS-3 TS-2 GS-3 GS-1 GS-1

Wed GS-1 THS-1 TS-2 TS-2 GS-3 TS-1 THS-2 GS-2 THS-1 GS-3 GS-2 TS-2

Thu GS-3 TS-3 TS-3 GS-4 GS-1 THS-2 THS-2 GS-2 GS-1 GS-3 GS-2 GS-4

Fri TS-1 THS-2 TS-1 TS-3 TS-1 GS-4 TS-1 GS-4 GS-1 TS-3 GS-2 GS-3

Instance 2 Mon GS-4 TS-3 TS-1 TS-3 TS-1 GS-4 TS-1 THS-1 TS-3 TS-1 TS-2 GS-2

Tue GS-1 TS-3 TS-2 GS-1 GS-1 TS-3 GS-1 GS-3 GS-1 GS-2 TS-2 TS-3

Wed GS-3 GS-3 TS-1 GS-1 GS-2 GS-3 GS-3 TS-2 TS-2 GS-1 GS-1 GS-3

Thu GS-3 THS-2 TS-3 GS-2 GS-3 GS-2 TS-3 GS-4 THS-2 THS-1 TS-2 TS-1

Fri TS-1 GS-2 TS-3 TS-3 TS-1 GS-4 THS-2 GS-2 TS-1 THS-2 GS-4 TS-3

Instance 3 Mon TS-2 GS-2 TS-2 THS-1 GS-2 TS-3 TS-3 GS-4 TS-1 GS-4 TS-3 TS-3

Tue TS-2 TS-3 THS-1 TS-3 GS-3 GS-2 GS-1 TS-1 GS-3 TS-2 GS-1 GS-2

Wed GS-2 GS-2 THS-1 GS-4 THS-1 TS-3 TS-2 THS-2 GS-1 GS-3 TS-2 GS-2

Thu TS-3 GS-4 GS-4 THS-2 GS-1 GS-1 TS-1 GS-3 TS-2 GS-1 GS-1 GS-3

Fri GS-4 THS-2 TS-1 GS-4 GS-2 GS-2 TS-1 TS-3 TS-1 TS-2 TS-1 GS-3

Instance 4 Mon TS-3 GS-4 THS-1 GS-2 TS-1 GS-4 GS-2 TS-1 TS-1 GS-3 TS-1 TS-3

Tue GS-2 THS-2 TS-2 GS-3 THS-2 TS-1 TS-2 TS-2 TS-2 THS-1 TS-2 GS-4

Wed THS-1 GS-1 GS-2 TS-3 GS-3 GS-2 TS-2 TS-1 THS-2 GS-1 GS-2 TS-3

Thu GS-2 TS-3 GS-3 GS-2 TS-2 GS-4 TS-3 GS-1 GS-1 GS-4 GS-2 GS-3

Fri GS-1 TS-3 THS-2 GS-2 GS-4 TS-3 THS-1 THS-1 TS-2 GS-4 TS-3 GS-3

Instance 5 Mon TS-2 GS-4 TS-3 TS-3 TS-1 TS-3 GS-2 TS-3 TS-1 TS-3 TS-2 GS-2

Tue THS-2 TS-3 TS-1 TS-1 GS-3 TS-3 TS-1 THS-2 TS-3 TS-1 GS-1 TS-2

Wed THS-1 THS-2 GS-3 GS-1 TS-1 TS-1 GS-1 GS-3 THS-2 TS-3 TS-1 TS-3

Thu GS-2 GS-1 GS-1 GS-2 GS-4 GS-3 TS-2 GS-3 TS-3 GS-2 GS-3 GS-1

Fri TS-1 GS-4 TS-2 GS-3 GS-3 GS-2 THS-2 THS-2 GS-4 TS-3 GS-1 GS-3
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A.2 Selected outputs of the System Dynamics model

Figure 20: Behavior of TORCt, TICUCt and TNWCt under different scenarios from Jan

2020 to Jan 2030.
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Figure 21: Behavior of TANECt, TOTCt and TCt under different scenarios from Jan

2020 to Jan 2030.
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Figure 22: Behavior of patient throughput and waiting list of ward GS. “TL PT” and

“TL WL” are fitted trend-lines to total patient throughput and waiting list, respectively.
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Figure 23: Behavior of patient throughput and waiting list of ward THS. “TL PT” and

“TL WL” are fitted trend-lines to total patient throughput and waiting list, respectively.
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Figure 24: Behavior of patient throughput and waiting list of ward TS. “TL PT” and “TL

WL” are fitted trend-lines to total patient throughput and waiting list, respectively.
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Figure 25: Allocated resources to surgeons 1-GS (upper), 1-THS (middle), and 1-TS

(lower) from January 2020 to January 2030.
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Testi, A. and Tànfani, E. (2009). Tactical and operational decisions for operating

room planning: Efficiency and welfare implications. Health Care Management

Science, 12(4):363.

Testi, A., Tanfani, E., and Torre, G. (2007). A three-phase approach for operating

theatre schedules. Health Care Management Science, 10(2):163–172.

Van Ackere, A. and Smith, P. C. (1999). Towards a macro model of national health

service waiting lists. System Dynamics Review: The Journal of the System Dy-

namics Society, 15(3):225–252.



REFERENCES 109

van den Brink, R. (2007). Null or nullifying players: the difference between the shap-

ley value and equal division solutions. Journal of Economic Theory, 136(1):767–

775.

van Oostrum, J. M. (2009). Applying mathematical models so surgical patient plan-

ning: Toepassen van mathematische modellen voor de planning van chirurgische
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