Examples of noncompact nonpositively curved manifolds

Grigori Avramidi and T. Tâm Nguyễn-Phan

Abstract

We give a simple construction of new, complete, finite volume manifolds M of bounded, nonpositive curvature. These manifolds have ends that look like a mixture of locally symmetric ends of different ranks and their fundamental groups are not duality groups.

1. Introduction

The goal of this paper is to give a very simple construction of complete, finite volume, tame ${ }^{\dagger}$ n-manifolds M of bounded, nonpositive curvature. The manifolds obtained have interesting properties. For instance, the large scale geometry of their ends is a mixture of different types and their fundamental groups are not 'duality groups' ${ }^{\ddagger}$, in contrast with the typical examples of nonpositively curved manifolds such as locally symmetric spaces of noncompact type. If M is a locally symmetric manifold of noncompact type, then from a large-scale point of view M looks like a union of flat r-dimensional sectors, where r is the \mathbb{Q}-rank of M. So for (arithmetic ${ }^{\mathbb{®}}$) locally symmetric spaces, their large-scale geometry is determined by the rational structures of the spaces. Moreover, the fundamental group of M is a duality group, or in other words, the lift of the end of M to the universal cover \widetilde{M} has homology concentrated in one dimension. This is a consequence of the fact that it is homotopy equivalent to the rational Tits building (of M), which is homotopy equivalent to a wedge of spheres of a single dimension.

In [2], we tried to capture the topology of the ends of general nonpositively curved, not necessarily locally symmetric, manifolds M from the geometry of M and \widetilde{M}, showing that many properties of locally symmetric manifolds that could be seen only by doing arithmetic before can actually be seen as purely nonpositive curvature phenomena. For example, we obtained that the lift of the end of M in \widetilde{M} has homology only in dimension less than $n / 2$. In other words, it is not an arithmetic phenomenon that the rational Tits building of a locally symmetric space has dimension less than half the dimension of the space. However, one cannot take this analogy too far and base all aspects of nonpositively curved manifolds on delicacies of locally symmetric spaces because there are still arithmetic things that are due to arithmetics, such as the rational Tits building being a building, and this is one of the main points of the examples in this paper.

Below, M is tame, so it is homeomorphic to the interior of a compact manifold-withboundary, $(\bar{M}, \partial \bar{M})$ and its universal cover is a (noncompact) manifold-with-boundary $(\widetilde{M}, \partial \widetilde{M})$. We will abuse notation slightly and denote these manifolds-with-boundary by

[^0]

Figure 1 (colour online).
$(M, \partial M)$ and $(\widetilde{M}, \partial \widetilde{M})$, respectively. Note that $\partial \widetilde{M} \rightarrow \partial M$ is regular cover with covering group $\pi_{1} M$, so we call it the $\pi_{1} M$-cover of ∂M.

Theorem 1. For any $0 \leqslant i \leqslant j<\lfloor n / 2\rfloor$, there is a tame, complete, finite volume, Riemannian n-manifold M of bounded nonpositive curvature with the property that $\bar{H}_{k}(\partial \widetilde{M}) \neq 0$ if and only if $i \leqslant k \leqslant j$.

In fact, in our examples, $\partial \widetilde{M}$ is homotopy equivalent to a union of wedges of spheres of dimensions ranging from i to j.

Remark. One can show that

$$
\bar{H}_{*}(\partial \widetilde{M}) \cong H^{n-1-*}\left(B \pi_{1} M ; \mathbb{Z} \pi_{1} M\right)
$$

so as an algebraic corollary, $\pi_{1} M$ is not a duality group if $j>i$.
The construction is done inductively and the main idea is to assemble nonpositively curved spaces like products of hyperbolic manifolds with cusps via codimension 2 surgery along totally geodesic submanifolds. As usual, one needs to smooth out the metric around the places where surgery is done, but in this case, this is extremely easy.

The codimension 2 surgery involved at each step can be described as follows. We choose suitable manifolds M_{1}^{k} and M_{2}^{k}, each of which has an open set that is isometric to $\mathbb{T}^{k-2} \times \mathbb{D}^{2}$, where \mathbb{T}^{k-2} is the flat square torus. Then we remove $\mathbb{T}^{k-2} \times \mathbb{D}_{\varepsilon}^{2}$ from each M_{i} and glue the resulting spaces together along the boundary preserving the product structure on $\mathbb{T}^{k-2} \times \partial \mathbb{D}_{\varepsilon}^{2}$ to obtain a new manifold M whose metric is singular on $\mathbb{T}^{k-2} \times \partial \mathbb{D}_{\varepsilon}^{2}$. Since the gluing is an isometry on the first factor, the singularity of the metric lies in the second factor, which is the double of $\left(\mathbb{D}^{2}-\mathbb{D}_{\varepsilon}^{2}\right)$ along $\partial \mathbb{D}_{\varepsilon}^{2}$. To smooth out this singularity, replace this double by a 'funnel' that is the surface of revolution generated by the curve α in Figure 1, which clearly has nonpositive Gaussian curvature. Thus, we obtain a bounded nonpositively curved manifold M whose ends correspond to those of M_{1} and M_{2} and therefore have finite volume.

We illustrate a simple, nontrivial case here. The general case will be treated in the body of the paper.

An example. We construct M by taking two particular manifolds M_{1} and M_{2} (as described below) with isometric totally geodesic submanifolds T_{1} and T_{2} (respectively) and gluing the complement of an ε-neighborhood of T_{1} to the complement of an ε-neighborhood of T_{2}.

Let $M_{1}=S \times S$ be the product of two copies of a punctured torus endowed with a complete hyperbolic metric with finite area, and let a be a simple, closed geodesic in S. Modify the metric smoothly on a regular neighborhood of a in S and rescale it if necessary to make it a product $(-1,1) \times \mathbb{S}^{1}$ without creating positive curvature on S. Give $M_{1}=S \times S$, the product of the new metrics on S. Then $T_{1}:=a \times a$ is a flat, square 2 -torus and has a neighborhood isometric to $\mathbb{D}^{2} \times T_{1}$.

Let M_{2} be obtained by taking a finite volume, complete, hyperbolic 4-manifold H with at least three torus-cusps C_{1}, C_{2} and C_{3}, truncating C_{2} and C_{3} and gluing ∂C_{2} to ∂C_{3} via an affine diffeomorphism. Assume for simplicity that the cross-sections of each of these cusps are homothetic to the flat, square, 3 -torus \mathbb{T}^{3}, so that the gluing can be done via an isometry and gives M_{2} a bounded nonpositively curved metric. (This is standard but we will explain it in the next section.) One can make it so that the metric on M_{2} is a product $(-1,1) \times \mathbb{T}^{3}$ on a neighborhood of where the gluing takes place. Now, there is a square 2 -torus T_{2} factor in \mathbb{T}^{3}, so T_{2} has a neighborhood isometric to the product $\mathbb{D}^{2} \times T_{2}$.

Let M be obtained by gluing the complement of the ε-neighborhood of T_{1} to the complement of the ε-neighborhood of T_{2} along the boundaries. After smoothing out the metric as explained above, we obtain a finite volume, bounded nonpositively curved manifold M with two kinds of cusps, one corresponding to the end of M_{1}, and the other corresponding to the cusp C_{1} of M_{2}.

In this example, $\partial \widetilde{M}$ is homotopically equivalent to a graph Σ with infinitely many components, each component either contractible or of infinite type (homotopy equivalent to an infinite wedge of circles). The first kind of cusp looks like a 2-dimensional flat sector from afar and is responsible for the infinite type components in Σ (see the product formula in Subsection 2.2). The second kind looks like a ray from afar and contributes the contractible components in Σ.

All the simplifying assumptions made above can be taken care of in general when no such assumptions are made. This is dealt with in the rest of the paper and is not difficult.

A simpler construction that gives a manifold very similar to the manifold M above can be obtained by taking $\left(M_{1}-T_{1}\right)$ and stretching out the metric in a neighborhood of T_{1} to make it complete and have finite volume without creating positive curvature. Since the metric on M_{1} is a product $\mathbb{D}^{2} \times T_{1}$, this can be achieved if one can stretch out the metric on $\left(\mathbb{D}^{2}-\{0\}\right)$ to obtain a complete, bounded nonpositively curved metric with finite area. This clearly can be done and is illustrated in Figure 2. This example is a good example but we did not discuss it above because it does not illustrate every step in the construction given in this paper. But we would like to note that this is a counterexample to a conjecture of Farb on geometric rank 1 manifolds and we will discuss this in Subsection 4.3.

2. Proof of Theorem 1, part A - The construction

2.1. A special case

The nontrivial part in proving Theorem 1 is proving the special case when n is even and $i=0$ and $j=n / 2-1$. This is done by inductively constructing manifolds M_{n} satisfying (1) in

Before

$$
\left(\mathbb{D}^{2}-\{0\}\right)
$$

||2

After

112

Figure 2 (colour online).

Proposition 2. In order to facilitate the induction, the manifolds M_{n} need to have the additional properties (2)-(4).

Proposition 2. For even n, there is a tame, complete, finite volume, n-manifold M_{n} of bounded non-positive curvature so that:
(1) $\bar{H}_{k}\left(\partial \widetilde{M}_{n}\right) \neq 0$ for $k<n / 2$;
(2) M_{n} has at least two ends;
(3) M_{n} contains an isometrically embedded $T:=\mathbb{T}^{n-1} \times(-1,1)$, where $\mathbb{T}^{n-1}=\left(\mathbb{S}^{1}\right)^{n-1}$ is a square flat torus of injectivity radius 1; and
(4) $M_{n} \backslash T$ is connected.

2.2. The general case

Theorem 1 follows from Proposition 2 by taking products with circles and non-compact surfaces. The key to showing this is the following product formula.

Product formula
If M and N are tame, aspherical manifolds, then one has the following product formula

$$
\begin{equation*}
\partial(\widetilde{M \times N}) \sim \partial \widetilde{M} * \partial \widetilde{N} \tag{1}
\end{equation*}
$$

where the symbol \sim denotes homotopy equivalence.

Proof. This follows from

$$
\left.\begin{array}{l}
\partial \widetilde{M} * \partial \widetilde{N}=\partial \widetilde{M} \times \operatorname{Cone}(\partial \widetilde{N}) \\
\bigcup_{\partial \widetilde{M} \times \partial \widetilde{N}} \\
\partial(\widetilde{M} \times \widetilde{N})= \\
\partial \widetilde{M} \times \widetilde{N}
\end{array} \bigcup_{\partial \widetilde{M} \times \partial \widetilde{N}} \quad \widetilde{M} \times \partial \widetilde{M}\right) \times \partial \widetilde{N},
$$

The quantities on the right-hand side of the above two lines are homotopy equivalent since \widetilde{N} and \widetilde{M} are contractible and thus are, respectively, homotopy equivalent to the cones on their boundaries. Therefore,

$$
\partial \widetilde{M} * \partial \widetilde{N} \sim \partial(\widetilde{M} \times \widetilde{N})
$$

Since $\widetilde{M \times N}=\widetilde{M} \times \widetilde{N}$, the above product formula follows.

Shifting dimensions via products with circles and surfaces
Note that for a non-compact surface Σ the cover $\partial \widetilde{\Sigma}$ is homotopy equivalent to an infinite union of points, which we will write as $\partial \widetilde{\Sigma} \sim \vee_{i=1}^{\infty} S^{0}$. Therefore, $\partial(\widetilde{M \times \Sigma}) \sim \partial \widetilde{M} *\left(\vee_{i=1}^{\infty} S^{0}\right) \sim$ $\vee_{i=1}^{\infty}\left(\partial \widetilde{M} * S^{0}\right)$. So

$$
\begin{equation*}
\bar{H}_{*}(\partial(\widetilde{M \times \Sigma})) \cong \bigoplus_{i=1}^{\infty} \bar{H}_{*-1}(\partial \widetilde{M}) \tag{2}
\end{equation*}
$$

It is also clear that $\partial\left(\widetilde{M \times S^{1}}\right) \sim \partial \widetilde{M}$ so we have

$$
\begin{equation*}
\bar{H}_{*}\left(\partial\left(\widetilde{M \times S^{1}}\right)\right) \cong \bar{H}_{*}(\partial \widetilde{M}) \tag{3}
\end{equation*}
$$

Proof of Theorem 1 given Proposition 2

The proposition gives a $2(j-i+1)$-dimensional manifold $M_{2(j+i-1)}$ whose homology $\bar{H}_{k}\left(\partial \widetilde{M}_{2(j+1-i)}\right)$ does not vanish precisely in the band of dimensions $0 \leqslant k \leqslant j-i$. Crossing with i noncompact surfaces shifts this band into the desired dimension range $i \leqslant k \leqslant j$ (by formula (2)) and then crossing with $n-2 j-2$ circles raises the dimension of the manifold to n without affecting the band (by formula (3)). So, the resulting manifold

$$
\begin{equation*}
M=M_{2(j+1-i)} \times(\Sigma)^{i} \times\left(S^{1}\right)^{n-2 j-2}, \tag{4}
\end{equation*}
$$

satisfies the conclusions of Theorem 1.

2.3. Proof of Proposition 2

The manifolds M_{n} are constructed inductively, as follows.

Base case

Topologically, the base case M_{2} is a twice-punctured torus. Start with a hyperbolic metric on M_{2}. In this metric, the two punctures appear as cusps. Let be a geodesic ${ }^{\dagger}$ that starts in one cusp and ends in the other cusp, and a a nonseparating closed geodesic loop that does not intersect b. Let length $(a) \geqslant 2$ and modify the metric so that it is a flat cylinder on an

[^1]1-neighborhood of a, hyperbolic outside of a compact set, and still nonpositively curved. ${ }^{\dagger}$ It is easy to see that M_{2} with this metric satisfies the conditions in the proposition.

Before starting the inductive construction, we need to introduce a manifold that will be used in the inductive step. As mentioned in the introduction, the construction involves assembling nonpositively curved manifolds containing totally geodesic tori of low codimension. The following is one way to obtain such manifolds.

The building blocks N_{n} (Hyperbolic straightjackets)

Start with a complete, finite volume, connected, hyperbolic n-manifold H_{n}. After passing to a finite cover, if necessary, we may assume that H_{n} has at least three cusps, at least two of which (called C_{+}and C_{-}) are homeomorphic to $\mathbb{T}^{n-1} \times(0, \infty)$. Then, the manifold $H_{n} \backslash\left(C_{+} \cup C_{-}\right)$ has two boundary components $\partial C_{+} \cong \mathbb{T}^{n-1} \cong \partial C_{-}$. Moreover, the induced metrics on ∂C_{+} and ∂C_{-}are flat. Now, let $N_{n}=\left(H_{n} \backslash\left(C_{+} \cup C_{-}\right)\right) / \partial C_{+} \sim \partial C_{-}$be a manifold obtained by gluing the boundaries ∂C_{+}and ∂C_{-}by an affine diffeomorphism.

Proposition 3. For any $r>0$, the manifold N_{n} has a complete, finite volume, Riemannian metric of bounded non-positive curvature in which a regular neighborhood of ∂C_{+}is isometric to $\mathbb{T}^{n-1} \times(-r, r)$, where \mathbb{T}^{n-1} is a square flat torus.

First, note in the case when ∂C_{+}and ∂C_{-}are square, flat tori and the affine diffeomorphism is an isometry, this is not hard. The hyperbolic metric near ∂C_{+}or ∂C_{-}is a warped product and has the form

$$
g_{\mathrm{hyp}}=e^{-2 t} g_{0}+d t^{2}
$$

where g_{0} is a square, flat metric on \mathbb{T}^{n-1} and for some a, the slice $t=a$ corresponds to where ∂C_{+}or ∂C_{-}is. So around where ∂C_{+}and ∂C_{-}are identified, the metric, after reparametrizing t via a shift by a, is

$$
e^{2|t|-2 a} g_{0}+d t^{2}
$$

on $\mathbb{T}^{n-1} \times[-1,1]$, which is not smooth at $t=0$. But one can replace the warping function $e^{2|t|-2 a}$ by a smooth, convex function that, for some small enough ε, agrees with $e^{2|t|-2 a}$ outside $(-2 \varepsilon, 2 \varepsilon)$ and that is equal to a positive constant on $(-\varepsilon, \varepsilon)$. Change the range ${ }^{\ddagger}(-\varepsilon, \varepsilon)$ of t parameter to $(-r, r)$ but keep the metric otherwise the same to get a desired metric. The fact that the resulting metric has nonpositive curvature is a direct application of the Bishop-O'Neil formula [3].

In the general case, the main point is to first interpolate between the square flat metric g_{0} on \mathbb{T}^{n-1} and another flat metric g_{1} on T^{n-1} so that the problem reduces to the above. That is, consider the following metric g on $\mathbb{T}^{n-1} \times[0, \infty)$.

$$
g=e^{-2 t}\left(h(t) g_{0}+(1-h(t)) g_{1}\right)+d t^{2}
$$

for some smooth function $h:[0, \infty) \rightarrow[0,1]$ such that $h(t)=0$ when t is close to 0 and $h(t)=1$ when $t>l$, for some l. One can pick l large enough and an appropriate h so that g has nonpositive curvature as shown in [1, Lemma 2.2]. Truncate that cusp at $t=a>l$ and apply the above special case to get the desired metric.

Now we are ready for the inductive part of the construction.

[^2]
Inductive step

Suppose we have constructed M_{n-2}. We need to build M_{n}. Look at $M_{n-2} \times M_{2}$. It contains an isometrically embedded

$$
\begin{aligned}
\mathbb{T}^{n-3} \times(-1,1) \times a \times(-1,1) & \cong \mathbb{T}^{n-2} \times(-1,1)^{2} \\
& \supset \mathbb{T}^{n-2} \times \mathbb{D}^{2}
\end{aligned}
$$

On the other hand, suppose that N_{n} is an n-dimensional 'building block' described above, that is, a manifold obtained from a hyperbolic manifold by gluing a pair of cusps together so that they give an isometrically embedded copy of

$$
\begin{aligned}
\mathbb{T}^{n-1} \times(-1,3) & \supset \mathbb{T}^{n-2} \times \mathbb{S}^{1} \times((-1,1) \coprod(1,3)) \\
& \supset\left(\mathbb{T}^{n-2} \times \mathbb{D}^{2}\right) \coprod\left(\mathbb{T}^{n-1} \times(1,3)\right)
\end{aligned}
$$

The ' $\mathbb{T}^{n-2} \times \mathbb{D}^{2}$ ' is used in codimension 2 surgery, and the ' $\mathbb{T}^{n-1} \times(1,3)$ ' implies that the resulting manifold M_{n} will have property (3), which let us continue the induction. Also recall that N_{n} has at least one cusp that is not glued to anything. We claim that the manifold

$$
\begin{equation*}
M_{n}:=\left[N_{n} \backslash\left(\mathbb{T}^{n-2} \times \mathbb{D}^{2}\right)\right] \bigcup_{\mathbb{T}^{n-2} \times S^{1}}\left[\left(M_{n-2} \times M_{2}\right) \backslash\left(\mathbb{T}^{n-2} \times \mathbb{D}^{2}\right)\right] \tag{5}
\end{equation*}
$$

obtained by taking the 'connect sum along \mathbb{T}^{n-2} ' has a complete, finite volume metric of bounded nonpositive curvature. We explain this next.

Flat, codimension 2 surgery in nonpositive curvature
Suppose M and N are complete, finite volume manifolds of bounded nonpositive curvature and $S \subset M$ a totally geodesic submanifold. Suppose further that a regular neighborhood of S is isometric to $S \times \mathbb{D}^{2}$.

Cusps

The manifold $M \backslash S$ has a complete, finite volume, nonpositively curved metric of bounded nonpositive curvature obtained by replacing $S \times\left(\mathbb{D}^{2}-\{0\}\right)$ by $S \times$ funnel, where a funnel is defined as follows.

Definition 4 (Funnel). Let $f:(0,1] \rightarrow \mathbb{R}$ be a smooth, strictly convex, non-negative function that satisfies the following properties.
(i) $f(x)=0$ when $x \geqslant 1 / 2$.
(ii) $f(x) \rightarrow \infty$ as $x \rightarrow 0$.
(iii) $\int_{0}^{1} f(x) d x<\infty$.

Let funnel be the surface of revolution obtained by rotating the graph of $f(x)$ around the y axis. Then it is diffeomorphic to $\mathbb{D}^{2}-\{0\}$ but has negative Gaussian curvature (because $f(x)$ is strictly convex) and finite area (because of condition (iii) above). See Figure 2.

REmARK. We use this in the alternative construction (Subsection 4.1) which works in special cases, but do not need it for the proof of Theorem 1.

Definition 5 (2-Sided Funnel). A 2-sided funnel is the surface of revolution obtained by rotating in the curve $\alpha(t)$, where $\alpha(t)$ is a smooth curve defined as in Figure 1, around the y-axis. A 2 -sided funnel is diffeomorphic to $\mathbb{S}^{1} \times(-1,1)$ but has negative Gaussian curvature.

Codimension two connect sum. If N also contains an isometrically embedded copy of $S \times \mathbb{D}^{2}$, then the S-connect sum

$$
\begin{equation*}
M \not \#_{S} N:=\left[M \backslash\left(S \times \mathbb{D}^{2}\right)\right] \cup_{S \times \mathbb{S}^{1}}\left[N \backslash\left(S \times \mathbb{D}^{2}\right)\right] \tag{6}
\end{equation*}
$$

has a complete, finite volume metric of bounded nonpositive curvature. After cutting out the regular neighborhoods $S \times \mathbb{D}^{2}$ from both manifolds, the metric is obtained by inserting a tube that looks topologically like $S \times\left(\mathbb{S}^{1} \times(0,1)\right)$ but metrically looks like $S \times\{$ two sided funnel $\}$.

Remark. In the notation of equation (6),

$$
M_{n}=N_{n} \#_{\mathbb{T}^{n-2}}\left(M_{n-2} \times M_{2}\right)
$$

so M_{n} has a complete finite volume metric of bounded nonpositive curvature.

3. Proof of Theorem 1, part B-Properties of the manifold M_{n}

The manifold M_{n} contains the isometrically embedded $T:=\mathbb{T}^{n-1} \times(1,3)$, which shows property (3). The space $N_{n} \backslash T$ is connected (because it is homotopy equivalent to the original connected hyperbolic manifold H_{n} we had before we glued two of its cusps together) and the product $M_{n-2} \times M_{2}$ is connected (the factors M_{n-2} and M_{2} are connected because they satisfy property (4)) so the space

$$
M_{n} \backslash T=\left[\left(N_{n} \backslash T\right) \backslash\left(\mathbb{T}^{n-2} \times \mathbb{D}^{2}\right)\right] \bigcup_{\mathbb{T}^{n-2} \times \mathbb{S}^{1}}\left[\left(M_{n-2} \times M_{2}\right) \backslash\left(\mathbb{T}^{n-2} \times \mathbb{D}^{2}\right)\right]
$$

obtained via the codimension 2 surgery is also connected. This proves property (4).
Since both N_{n} and $M_{n-2} \times M_{2}$ have ends, the manifold M_{n} has at least two ends. This shows property (2). It also implies that $\partial \widetilde{M}_{n}$ has at least two components, so

$$
\bar{H}_{0}\left(\partial \widetilde{M}_{n}\right) \neq 0
$$

It remains to establish the positive dimensional cases of property (1).
3.1. Computing $H_{>1}\left(\partial \widetilde{M}_{n}\right)$

Next, let z be a connected homology cycle representing a nontrivial homology class in $H_{k}\left(\partial \widetilde{M}_{n-2}\right)$ for $0<k<n / 2-1$. Let \tilde{b} be a lift of the path connecting the two ends of the twice punctured torus, and b^{+}and b^{-}its endpoints. Look at the suspended cycle $\Sigma z=z *\left\{b^{+}, b^{-}\right\}$. Since z is connected, the suspended cycle Σz is simply connected. Therefore, a map $\Sigma z \rightarrow \partial \widetilde{M}_{n-2} * \partial \widetilde{M}_{2} \sim \partial\left(M_{n-2} \times M_{2}\right)$ which represents the nontrivial $(k+1)$-homology class $[\Sigma z] \in H_{k+1}\left(\partial\left(M_{n-2} \times M_{2}\right)\right)$ lifts to a component of $\partial \widetilde{M}_{n}$. So, for $1<k+1<n / 2$, we have

$$
H_{k+1}\left(\partial \widetilde{M}_{n}\right) \neq 0
$$

3.2. Computing $H_{1}\left(\partial \widetilde{M}_{n}\right)$

Since M_{n-2} has two ends and $M_{n-2} \backslash T$ is connected, we can find a path $\beta:[0,1] \rightarrow M_{n-2} \backslash T$ connecting two different ends of M_{n-2}. Let $z=\partial \tilde{\beta} \in \bar{H}_{0}\left(\partial \widetilde{M}_{n-2}\right)$ be the non-trivial zero cycle obtained as the boundary of a lift $\tilde{\beta}$ of β. Then, the image of $\Sigma z=\left\{\beta^{+}, \beta^{-}\right\} *\left\{b^{+}, b^{-}\right\}$is contractible in M_{n} because it bounds $\beta \times b$. Therefore, in this case the nontrivial homology cycle $[\Sigma z] \in H_{1}\left(\partial\left(M_{n-2} \times M_{2}\right)\right)$ also lifts to a cycle in a component of $\partial \widetilde{M}_{n}$, showing that

$$
H_{1}\left(\partial \widetilde{M}_{n}\right) \neq 0
$$

In summary, we have shown that $\bar{H}_{k}\left(\partial \widetilde{M}_{n}\right) \neq 0$ for $k<n / 2$. This proves property (1), finishes the proof of Proposition 2, and thus also the proof of Theorem 1.

4. Miscellaneous

4.1. A variant for narrow bands that only uses surfaces

Note that the regular neighborhood of $a \times a$ inside $M_{2} \times M_{2}$ is isometric to $a \times a \times D_{\epsilon}^{2}$. Replacing D_{ϵ}^{2} by a 'funnel' metric on $D_{\epsilon}^{2} \backslash\{0\}$, we get a complete, finite volume metric of bounded nonpositive curvature on

$$
M_{4}^{\prime}:=\left(M_{2} \times M_{2}\right) \backslash(a \times a) .
$$

The arguments in the previous section apply to show that $\bar{H}_{0}\left(\partial \widetilde{M}_{4}^{\prime}\right) \neq 0$ and $H_{1}\left(\partial \widetilde{M_{4}^{\prime}}\right) \neq 0$. Taking products of the manifold M_{4}^{\prime} with itself and using the product formula (1), we get manifolds $\left(M_{4}^{\prime}\right)^{m}$ of dimension $4 m$ which have $\bar{H}_{k}\left(\widetilde{\partial\left(M_{4}^{\prime}\right)^{m}}\right) \neq 0$ precisely when $m-1 \leqslant k \leqslant$ $2 m-1$.

Remark. Taking products with circles S^{1} and non-compact surfaces M_{2}, we get in this way manifolds $M:=\left(M_{4}^{\prime}\right)^{m} \times\left(M_{2}\right)^{p} \times\left(S^{1}\right)^{q}$ of dimension $\operatorname{dim} M=4 m+2 p+q$ for which $\bar{H}_{k}(\partial \widetilde{M})$ is non-zero in a band of dimensions $m-1+p \leqslant k \leqslant 2 m-1+p$.

4.2. Large scale geometry

Denote by $[n]$ the set with n elements. It is easy to see that the main construction gives manifolds that on a large scale look like the Euclidean cone on a complex C_{k}, where C_{k} is defined inductively via $C_{0}=[2], C_{1}=([2] *[2]) \amalg\left[n_{4}\right], \ldots, C_{k}=\left(C_{k-1} *[2]\right) \amalg\left[n_{2 k}\right]$ where $n_{2 k}$ is the number of ends of the $2 k$ dimensional building block $N_{2 k}$ (see Subsection 2.3 for a description of $N_{2 k}$).

4.3. Geometric rank-1 manifolds with π_{1} generated by a cusp

Once upon a time, there was a conjecture that said the following.
Conjecture 6 (Farb). Let M be a tame, complete, finite volume n-manifold of bounded nonpositive curvature. Suppose M has geometric rank one. Then there is a loop in M that cannot be homotoped to leave every compact set.

This is known to be true in dimension $\leqslant 3$. We will first show that the manifold ($M_{1}-T_{1}$) from the introduction is a 4 -dimensional counterexample to this conjecture, and then we will build higher dimensional counterexamples afterward.

A 4-dimensional counterexample

We will drop the index ' 1 ' in $\left(M_{1}-T_{1}\right)$ as we no longer need it. First, note that the manifold $W:=M-T$ has geometric rank 1 because it is neither a locally symmetric space, nor a product. ${ }^{\dagger}$ Thus, we only need to show that all loops in W can be homotoped to leave all compact sets. This is true because of the following lemma.

[^3]Lemma 7. Let $\left(S_{1}, \partial S_{1}\right)$ and ($S_{2}, \partial S_{2}$) be compact, connected manifolds-with-boundary and pick basepoints $s_{i} \in \partial S_{i}$. Suppose that $T_{i} \subset\left(S_{i}-\partial S_{i}\right)$ are compact nonseparating hypersurfaces. Let $S_{1} \vee S_{2}=\left(S_{1} \times\left\{s_{2}\right\}\right) \cup\left(\left\{s_{1}\right\} \times S_{2}\right)$. Then the composition

$$
\left(S_{1} \vee S_{2}\right) \hookrightarrow \partial\left(S_{1} \times S_{2}\right) \hookrightarrow\left(S_{1} \times S_{2}\right)-\left(T_{1} \times T_{2}\right),
$$

is π_{1}-onto.
Proof. If $\gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t)\right)$ is a loop in $\left(S_{1} \times S_{2}\right)-\left(T_{1} \times T_{2}\right)$, then the times at which γ_{1} crosses T_{1} are disjoint from the times at which γ_{2} crosses T_{2}. So, one can decompose γ as concatenation $\gamma=\gamma^{(1)} \cdots \cdots \gamma^{(r)}$ of paths where for each $\gamma^{(k)}$ either the first coordinate path $\gamma_{1}^{(k)}$ never crosses T_{1} or the second coordinate path $\gamma_{2}^{(k)}$ never crosses T_{2}. Using the fact that the T_{i} are nonseparating, we can homotope γ to be a concatenation of such loops (all based at $\left.\left(s_{1}, s_{2}\right)\right)$. Finally, each such loop $\gamma^{(k)}$ is homotopic to $\gamma_{1}^{(k)} \cdot \gamma_{2}^{(k)}$, so we are done.

Remark. Since T has codimension 2 in M, there is a loop γ in M that goes around T. One might wonder how γ can be a product of elements in $S_{1} \vee S_{2}$. Let b_{i} be a loop in S_{i} based at s_{i} that intersects transversely with T_{i} precisely once. We claim that $\gamma=\left[b_{1}, b_{2}\right]=b_{1} b_{2} b_{1}^{-1} b_{2}^{-1}$. To see this, observe that $T^{\prime}:=b_{1} \times b_{2}$ is an embedded torus in M that intersects T transversely at exactly one point p. So γ can be taken to be a loop in T^{\prime} that goes around p. Removing T from M results in removing p from T^{\prime}. Since $T^{\prime}-\{p\}$ is a punctured torus, the loop γ, which goes around the puncture, must be the commutator of the generators b_{1} and b_{2}.

Higher dimensional counterexamples can be constructed in a very similar manner. In dimension $n \geqslant 4$, let S_{1} be the punctured torus as before, and let $T_{1}=a_{1}$. Let S_{2} be the building block N_{n-2} and let T_{2} be \mathbb{T}^{n-3}, the square flat torus in N_{n-2} in Proposition 3. The manifold $W:=\left(S_{1} \times S_{2}\right)-\left(T_{1} \times T_{2}\right)$ is an n-dimensional counterexample to Conjecture 6. It has geometric rank one for the same reasons as in the above example. To see that $\pi_{1}(W)$ is generated by loops coming from the end of M, we apply the above lemma. Thus, we have proved that Conjecture 6 is false for all $n \geqslant 4$.

Proposition 8. There is a counterexample to Conjecture 6 for each $n \geqslant 4$.

4.4. A thick-thin conjecture for nonpositively curved manifolds

We would like to suggest the following replacement for Conjecture 6 .
Conjecture 9. Let M be a tame, complete, finite volume n-manifold of bounded ${ }^{\dagger}$ nonpositive curvature. Then there is a compact subset $C \subset M$ that cannot be homotoped to leave every compact set.

Note that this conjecture makes sense (and is most easily stated) for general finite volume manifolds of bounded nonpositive curvature, not just those of geometric rank one. The conjecture is known to be true for locally symmetric manifolds M by a result of Pettet and Souto $[5] . \ddagger$ Therefore, it is enough to understand it for geometric rank one manifolds.

Note that the examples in this paper are not counterexamples to Conjecture 9. To see this, pick an embedded loop b_{i} in S_{i} that intersects T_{i} transversely exactly once. This is possible

[^4]since the hypersurfaces T_{i} are nonseparating. Now, let T_{i}^{\prime} be a parallel copy of T_{i}. We pick it close to T_{i}, so that b_{i} intersects T_{i}^{\prime} transversely at exactly one point $x_{i}=b_{i} \cap T_{i}^{\prime}$. Then the closed submanifolds $T_{1}^{\prime} \times b_{2}$ and $b_{1} \times T_{2}^{\prime}$ of W intersect transversely at a single point $x_{1} \times x_{2}$. Therefore, the interior of W cannot be homotoped into its end, because if there was such a homotopy $h_{t}: W \rightarrow W$ with $h_{0}=\operatorname{Id}_{W}$ and $h_{1}(W)$ contained in a sufficiently small neighborhood of the end of W, then we could move $T_{1}^{\prime} \times b_{2}$ via the homotopy $h_{t}\left(T_{1}^{\prime} \times b_{2}\right)$ to be disjoint from $b_{1} \times T_{2}^{\prime}$. This is a contradiction because intersection number is a homological invariant. Therefore, there is no such homotopy.

Acknowledgements. We would like to thank the referee for their comments on the paper. The second author would like thank Bena Tshishiku for asking her whether $\partial \widetilde{M}$ should be homotopy equivalent to a building. Part of this paper was complete while the second author was at the Max Planck Institute of Mathematics.

Open access funding enabled and organized by Projekt DEAL.

References

1. S. Aravinda and T. Farrell, 'Twisted doubles and nonpositive curvature', Bull. Lond. Math. Soc. 41 (2009) 1053-1059.
2. G. Avramidi and T. T. Nguyen Phan, 'Half dimensional collapse of ends of manifolds of nonpositive curvature', Geom. Funct. Anal. 29 (2019) 1638-1702.
3. R. Bishop and B. O'Neill, 'Manifolds of negative curvature', Trans. Amer. Math. Soc. 145 (1969) 1-49.
4. T. T. Nguyen Phan, 'On finite volume, negatively curved manifolds', Preprint, 2011, arXiv:1110.4087.
5. A. Pettet and J. Souto, 'Periodic maximal flats are not peripheral', J. Topol. 7 (2014) 363-384.
6. R. Zimmer, Ergodic theory and semisimple groups, vol. 81 (Springer Science \& Business Media, Berlin, 2013).

Grigori Avramidi
Max Planck Institute of Mathematics Vivatsgasse 7
Bonn D-53111
Germany
gavramidi@mpim-bonn.mpg.de

T. Tâm Nguyễn-Phan
Karlsruhe Institute of Technology
Institute of Algebra and Geometry
Englerstr. 2 Mathebau (20.30)
Karlsruhe D-76131
Germany
tam@mpim-bonn.mpg.de

The Bulletin of the London Mathematical Society is wholly owned and managed by the London Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its publishing programme is used to support mathematicians and mathematics research in the form of research grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.

[^0]: Received 26 August 2020; revised 11 January 2021.
 2020 Mathematics Subject Classification 53A35 (primary), 53C99 (secondary).
 \dagger 'Tame' means that the manifold is homeomorphic to the interior of a compact manifold-with-boundary.
 ${ }^{\ddagger}$ Here, being a duality group means that the preimage of the end of M in the universal cover \widetilde{M} has (reduced) homology concentrated in only one dimension.
 ${ }^{\text {® }}$ All irreducible higher rank locally symmetric spaces are arithmetic by Margulis' arithmeticity theorem [6].
 © 2021 The Authors. Bulletin of the London Mathematical Society is copyright © London Mathematical Society. This is an open access article under the terms of the Creative Commons Attribution-NonCommercialNoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

[^1]: ${ }^{\dagger}$ It is not important that b is a geodesic. We could take any path.

[^2]: ${ }^{\dagger}$ We can do this without changing the length of a.
 ${ }^{\ddagger}$ In other words, we replace the cylinder $(-\varepsilon, \varepsilon) \times \mathbb{T}^{n-1}$ by the cylinder $(-r, r) \times \mathbb{T}^{n-1}$.

[^3]: ${ }^{\dagger} W$ is not a product of two noncompact manifolds because it has more than one end. It is not a product of a non-compact manifold and a compact manifold, because its two ends do not have a common factor: The end cross sections are \mathbb{T}^{3} and the irreducible graph manifold $\left(\left(\mathbb{T}^{2}-D^{2}\right) \times S^{1}\right) \bigcup_{S^{1} \times S^{1}}\left(S^{1} \times\left(\mathbb{T}^{2}-D^{2}\right)\right)$.

[^4]: ${ }^{\dagger}$ The conjecture is not true without the lower curvature bound. There is a complete, finite volume, negatively curved metric on the product $\Sigma \times \mathbb{R}$, where Σ is a closed surface with genus $g \geqslant 2[4]$.
 \ddagger Such locally symmetric manifolds contain maximal periodic flat tori $\mathbb{T}^{r} \rightarrow M$, where r is the \mathbb{R}-rank of the locally symmetric space M. Pettet and Souto showed these tori cannot be homotoped into the end (even though loops in such a locally symmetric space can always be homotoped into the end whenever the \mathbb{Q}-rank is $\geqslant 2$).

