
Learning Latent Features using
Stochastic Neural Networks on Graph

Structured Data

Zur Erlangung des akademischen Grades eines Doktors der
Ingenieurwissenschaften (Dr.-Ing.)

von der

KIT-Fakultät für Wirtschaftswissenschaften des Karlsruher Instituts für
Technologie (KIT)

genehmigte

Dissertation

von

M.Sc. Tobias Weller

Referent: Prof. Dr. York Sure-Vetter
Korreferentin: Jun. Prof. Dr. Maribel Acosta Deibe

Tag der mündlichen Prüfung: 11. Februar 2021

https://www.aifb.kit.edu/web/York_Sure-Vetter
https://www.ei.ruhr-uni-bochum.de/fakultaet/personen/macostadeibe/

This work is licensed under a Creative Commons
“Attribution-ShareAlike 4.0 International” license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

This thesis is dedicated to my beloved parents
Edgar and Heiderose Weller

A B S T R A C T

Graph structured data are ubiquitous data structures, used to model relation-
ships between entities. Graphs have become an important foundation to repre-
sent interactions between users in social networks, items in recommender sys-
tems, and interactions between drugs in bioinformatics. The main research prob-
lems in these areas include node clustering, node classification and link pre-
diction. Especially the link prediction task is in bioinformatics of special interest
toward the identification and development of new uses of existing or abandoned
drugs since drug development is currently very time consuming and expensive.
In the context of knowledge graphs, link prediction is also of special interest to
automatically complete missing information to derive further knowledge. Like-
wise, node classification is an important research focus in the context of knowl-
edge graphs, e.g. to automatically classify new entities according to their class
affiliation and to complete missing class affiliation for existing entities.

In recent years, network embeddings are often trained for encoding the en-
tities of graph structured data into a low-dimensional space whilst preserving
the graph structure. Based on the trained embeddings, machine learning tech-
niques are applied to address the main machine learning tasks, such as link
prediction and node classification. In most of the published methods, like e.g.
RDF2Vec, DeepWalk, node2vec and LINE, random walks procedures are used
to efficiently explore diverse neighbourhoods and compute embeddings based
on them. However, these methods develop their full potential only when the in-
put graph is connected, otherwise the random walks are not sufficient to gather
enough information about nodes in the neighborhoods, as not all nodes in the
graph can be reached.

In this work we address three types of problems: Link prediction on bipar-
tite networks, link prediction on knowledge graphs and a semantic grouping of
nodes and links in graphs. We use a stochastic factorization model to learn a
target distribution over the graph structured data, allowing to predict unknown
links and embed the nodes into a low-dimensional space whilst preserving the
distribution of interactions within the graph. The embeddings are used in a fol-
lowing step to learn a function for predicting instance types and domain asser-
tions using training data. Compared to the existing methods that use random
walks, our approach is much more robust with respect to the connectivity of
the graph structured data. Results show that the proposed method outperforms
current state-of-the-art models in several studied graph structured data and sets
a new baseline in link prediction on disconnected graph structured data and
grouping of nodes and links.

iv

C O N T E N T S

1 introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 3

1.3 Challenges . 4

1.4 Hypotheses and Research Questions 5

1.5 Contributions . 7

1.6 Outline . 8

2 foundations 9

2.1 Graphs . 9

2.2 Knowledge Graphs . 12

2.3 Neural Networks . 14

3 link prediction on knowledge graphs 18

3.1 Introduction . 18

3.1.1 Structure of the Chapter . 21

3.1.2 Motivating Example . 21

3.2 Related Work . 23

3.3 Learning Latent Features for Predicting Missing relations 25

3.3.1 Community-based Relation Prediction 25

3.3.2 Link Distribution Learning 31

3.4 Experimental Study . 40

3.4.1 Experimental Setup . 40

3.4.2 Performance Analysis . 42

3.4.3 Impact of the Community Structure 44

3.4.4 Impact of the Knowledge Graph Topology 46

3.4.5 Impact of the Open World Assumption 47

3.5 Summary and Future Work . 49

4 link prediction on bipartite networks 53

4.1 Introduction . 53

4.1.1 Structure of the Chapter . 55

4.1.2 Motivating Example . 55

4.2 Related Work . 57

4.3 Learning Probability Link Distribution for Link Prediction 59

4.3.1 Input . 59

4.3.2 Model . 62

4.3.3 Learning . 65

4.3.4 Predictions . 66

4.4 Experimental Study . 67

4.4.1 Experimental Setup . 67

v

contents vi

4.4.2 Area Under the ROC Curve (AUC) 68

4.4.3 Impact of the Network Topology 70

4.4.4 Error Type Analysis . 72

4.4.5 Impact of the Hyperparameters on Results 75

4.5 Summary and Future Work . 79

5 semantic grouping of nodes and links 83

5.1 Introduction . 83

5.1.1 Structure of the Chapter . 84

5.1.2 Motivating Example . 84

5.2 Related Work . 86

5.3 Ridle: Relation-Instance Distribution Learning 87

5.3.1 Learning Instance-Relation Representation 88

5.3.2 Predicting Instance Types . 91

5.3.3 Predicting Domain Assertions 92

5.4 Experimental Study . 93

5.4.1 Experimental Setup . 93

5.4.2 Effectiveness of Instance Type Predictions 94

5.4.3 Effectiveness of Domain Predictions 100

5.4.4 Impact of Encoding Incoming and Outgoing Relations . . . 104

5.4.5 Final Remarks . 106

5.5 Summary and Future Work . 107

6 conclusion 110

6.1 Summary . 110

6.2 Outlook . 112

6.3 Closing Remarks . 112

bibliography 114

List of Figures 126

List of Tables 129

List of Algorithms 131

Acronyms 131

a appendix : addendum 132

a.1 ROC Analysis of considered Bipartite Networks 133

a.2 Precision-Recall Analysis of considered Bipartite Networks 136

a.3 Analysis of used Distribution Function 139

1
I N T R O D U C T I O N

Graph structured data are ubiquitous data structures, used to model relation-
ships between entities. Graphs have become an important foundation to rep-
resent interactions between users in social networks [60, 98, 101], items in rec-
ommender systems [1, 57, 86], and interactions between drugs in bioinformat-
ics [62, 121, 124]. Graphs in their simplest form consist of nodes, which represent
entities like users in a social network and edges, which represent interactions
between these users. Furthermore, there are graphs with special characteristics
such as bipartite graphs, which assign nodes to two different types, whereby
only edges between nodes of different types are valid and not between nodes of
the same type. We define graphs in general as follows.

ó Definition 1: Graph

A graph G is an ordered pair (V ,E), where V denotes a set of nodes and E
denotes a set of edges.

Based on the concept of graphs, information can be encoded in graphs like
knowledge in so-called knowledge graphs. Knowledge Graphs (KGs) are direc-
tional labelled graphs, used to model information. Consider Figure 1 in which
knowledge about different entities – represented as nodes, e.g. Angela Merkel
and their relations – represented as directional edges, e.g. married_to is encoded
based on information from the real world.

Figure 1: Exemplary knowledge graph in which facts from the real world are encoded.

1

1.1 motivation 2

Knowledge graphs, as shown for example in Figure 1, are used in many com-
panies like Google1 and Facebook2 to enhance and improve the offered services.
However, knowledge graphs are often not complete with regard to their encoded
information. A complete knowledge graph or a graph with complete information
is crucial for an effective performance of the services like question-answering as
offered by Google [112]. In previous work, random walk procedures were often
used to encode information from graph structured data to learn a function for
completing missing information. The random walk methods are however sen-
sitive regarding the topology of the graphs. In contrast, stochastic methods are
robust regarding the topology of the graph structured data, since they do not de-
pend on random walks and thus do not remain fixed in a local topology. For this
reason, we propose an approach for learning latent features using a stochastic
factorization method to complete missing information in graph structured data.
To motivate this work in terms of learning latent features for completing the in-
formation encoded in a graph, we will discuss the motivation in more detail in
the next section.

1.1 motivation

Consider again Figure 1, representing facts about different entities. It is con-
ceivable that similar facts are also represented in the Google Knowledge Graph,
which is used by Google to improve question answering and information re-
trieval services. Whenever a Google user enters a question into the search mask,
the available information from the knowledge graph is used to find the answer
and helpful links to this search query. When assuming a user enters the follow-
ing query in Google ’What is the alma mater of Angela Merkel’, then Google would
try to answer this query based on the knowledge graph. Taking a closer look at
the knowledge graph in Figure 1 we notice that the information at which uni-
versity Angela Merkel graduated is missing and therefore Google cannot answer
the query based on this knowledge graph. A complete knowledge graph, with in-
formation about the university at which Angela Merkel graduated, could answer
this query. Using this example, we can see the value of a complete knowledge
graph for providing services such as question answering or information retrieval.
A complete knowledge graph supports these services and gives an advantage
over competitors, which in turn leads to higher success in the market. Google,
for example, has achieved a total revenue of $161,857 millions in 2019, which is
in part due to the very successful services offered, using knowledge graphs for
support.3

However, as we have seen in the above example, knowledge graphs are of-
ten not complete, either because they were created in an automatic or pay-as-
you-go KG construction process. Therefore, information might be incomplete or
missing for some entities and properties in the knowledge graph. Likewise, a
large amount of new information is created, making it hard to keep up with the
newly gained information from the real world and encode it in a knowledge

1https://blog.google/products/search/introducing-knowledge-graph-things-not/
2https://techcrunch.com/2013/01/15/facebook-announces-its-third-pillar-graph-search/
3https://abc.xyz/investor/static/pdf/2019Q4_alphabet_earnings_release.pdf

https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://techcrunch.com/2013/01/15/facebook-announces-its-third-pillar-graph-search/
https://abc.xyz/investor/static/pdf/2019Q4_alphabet_earnings_release.pdf

1.2 problem statement 3

graph. For example, 215, 800 new articles were created on Wikipedia(s) alone in
2019

4. It is not possible to manually encode this huge amount of information
in a knowledge graph. Therefore a process is needed, which determines incom-
plete facts or missing knowledge in a knowledge graph automatically. Besides,
other information can be encoded in graph structured data as described above,
e.g. drug-target interactions. The information encoded in these graphs can be
used to predict whether existing drugs can be used to target new diseases. Cur-
rently drug development of a new drug usually takes up to 10 years and are
very costly, making it highly desirable to reuse existing drugs. Reusing existing
drugs for new targets allows for reducing the time until the market introduction
(since clinical trials and regulatory requirements already exist for the existing
drug). Similar to knowledge graphs, one is interested in determining missing
interactions in the graph and to complete them if necessary.

1.2 problem statement

Based on the motivation and the example given in the previous section, we
learned that complete information is crucial for providing effective services to
gain a market advantage. For this reason we aim at completing information in
graph structured data in this thesis. Furthermore we would like to restrict the ex-
isting problem for completing information in graph structured data even further
and focus on the problem for completing the links. Often entities, which are usu-
ally represented by nodes in graphs, are not included in the knowledge graph,
making it difficult to create missing links to them automatically. However, the
knowledge of missing links might be sufficient to create advanced queries even
without the information about the corresponding entity. Consider the example in
Figure 1 and the query ’List all entities that graduated from a university’. Based
on the original knowledge graph only Helmut Schmidt is part of the solution set
of this query. However, as already described above, Angela Merkel studied at the
University of Leipzig. This information is not included, however, if we could
only infer that she has the relation almaMater, even without the information of
the object, we could extend the solution set and return Angela Merkel, besides
Helmut Schmidt, as part of the solution set.

The above example shows to what extent we want to predict missing links in
knowledge graphs. In this work we do not want to focus exclusively on knowl-
edge graphs, but develop methods that are generally applicable to graph struc-
tured data. Therefore, we define the overall problem of this thesis as follows.

� Problem 1

Given is a Graph G = (V ,E), and two nodes u, v ∈ V , predict whether u
and v should be connected in the graph G, i.e.,(u, v) ∈ E.

4https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

1.3 challenges 4

1.3 challenges

The challenges of the formulated problem for predicting links in graph struc-
tured data can be grouped into different categories, which we will discuss in
detail.
Topology. Graphs are abstract structures that represent a set of entities along
with the connections existing between these entities. The abstract definition of
graphs allows different specifications to represent different features. There are
so-called directed graphs without multi-edges in which the set of edges E con-
sists of a subset of the cartesian product of the nodes, i.e. E ⊆ V × V and are
visualized by a directed edge. Besides, directed graphs with multiple edges al-
low for modeling different directed relations between nodes. This form of graphs
is especially used for knowledge graphs as shown in Figure 1. A node can have
different labeled edges to nodes, encoding different information of the entities,
which are represented by nodes in the graph. Another very common type of
graphs are undirected graphs without multi-edges, which are often used to rep-
resent network relationships. These are used, for example, to represent friend-
ship relationships in social networks or to represent untyped interactions of
drug-target interactions in biomedical networks, since the type of relationship is
always the same and the relationship is symmetrical, i.e. both an edge (u, v) ∈ E
and (v,u) ∈ E exist. The different graph-based structures mentioned above are
only a small fraction of the possible variations, but demonstrate the multitude
of possible variations, which makes it difficult to develop a method that can be
applied to all the different variations of graphs.

Another important aspect in graphs is the connectivity, or the related number
of available connections. The term density is often used in this context, which de-
fines the number of connections in relation to the number of nodes. The denser
a graph, the more relationships exist in it and the more information is avail-
able. However, there are also graphs in which only very few edges or relations
between the nodes exist, which are called sparse graphs. The difficulty in predict-
ing links in sparse graphs is to gather enough information from the existing links
in the graph to predict new links. Furthermore, the distribution of the connec-
tions in the graph may not be equally distributed, but focused on a few nodes,
causing the degree of the nodes to vary greatly. Degree is the number of out-
going or incoming connections. This can vary significantly for different nodes,
resulting in a large number of incoming or outgoing links for some nodes, while
others have few incoming or outgoing links. Predicting new links for nodes with
a very low degree of edges can be very difficult, because there is only little infor-
mation about their relations available to predict new links.

Another aspect related to topology is that the topology can change frequently,
depending on the graph. Graphs such as the representation of drug-target re-
lationships rarely change, so there is no need to focus on a method to address
frequent changes in the graph. In contrast, social networks change very often,
with new relationships being added or removed, or new nodes being added to
the network. An inductive method for the extraction of latent features, which
even efficiently extracts latent features for previously unseen data is preferable.

1.4 hypotheses and research questions 5

In this way, the model would not have to be recomputed when the graph changes,
but could efficiently take frequent changes of the graph into account.
Semantics. As described above, there are both directed and undirected graphs,
i.e. different types of edges between the nodes. This different semantics of edges
has to be taken into account in a method, since it contains essential information
for learning latent features. Furthermore, depending on the knowledge graph,
further semantics can be stored in the graph, e.g. the domain and range of edges,
i.e. the types of nodes from which these directed edges generally go and where
they point to. In addition, schema-knowledge can be encoded for the links, e.g.
inRelationshipWith subPropertyOf married_to, so that the conclusion can be drawn
that a node also has the edge inRelationshipWith to the same node to which this
node has the edge married_to. Using scheme knowledge to enrich the graph with
additional information about the semantics of the relations allows the use of
additional information that can be exploited in computing latent feature for pre-
dicting links to nodes.
Knowledge Representation. The last major challenge in using graph structured
data is the assumption of a closed or open world assumption. The choice of one
of the two assumptions has a major impact on the methods and interpretation
of the results. While with a Closed World Assumption (CWA) the knowledge is
considered complete and therefore everything that is not modeled is considered
false, with an Open World Assumption (OWA) it is assumed that the modeled
knowledge in the graphs is possibly incomplete. Accordingly, it cannot be di-
rectly concluded that knowledge is false if it is not available in the knowledge
graph. Therefore, the methods and evaluation techniques used must also take
these assumptions into account. In practice, a Closed World Assumption is more
often assumed as it is easier to evaluate, in contrast to a Open World Assump-
tion. However, the modeling of a complete graph, e.g. in the context of interper-
sonal relationships, is very unlikely, since it cannot be guaranteed that the entire
knowledge is represented in a graph.

1.4 hypotheses and research questions

In previous work on predicting links between nodes in graph structured data,
random walk approaches were commonly used [42, 102, 95]. An advantage of
this approach is its easy implementation, as well as its efficient runtime. How-
ever, this approach requires an increased memory usage, as the different random
walks have to be stored. Furthermore, additional hyperparameters such as the
length and number of random walks have to be configured for each graph in
order to achieve an effective performance for predicting links in graphs [3]. In
contrast, factorization methods allow the decomposition of the graph into several
non-trivial factors to provide a latent representation [83]. Factorization methods
do not depend on the structure of the graph, while random walk approaches
cannot reach every node if the graph is not coherent. Thus, we would expect
that factorization methods for predicting links in graph structured data would
provide more robust results regarding the topology of the graph. In addition,
the assumption of a coherent graph is a major prerequisite that cannot always be
fulfilled in practice. For this reason, we want to focus on factorization methods

1.4 hypotheses and research questions 6

to learn latent representations of graph structured data. Using these latent rep-
resentations we will predict missing links in graphs. The underlying hypothesis
is that factorization methods have an advantage in encoding features in graphs
compared to classical random walk approaches, in particular for disconnected
graphs.

We use a stochastic factorization method due to more robust results of stochas-
tic procedures [130]. Based on the stochastic factorization method, we want to
compute the distribution of the used links of nodes. We will then use the distri-
bution of the edges to predict missing links. Besides the assumption of the better
performance regarding the topology of the graph, we expect that this method
is superior to classical random walk approaches, especially if an Open World
Assumption (OWA) is assumed. We therefore formulate the first hypothesis as
follows.

2 Hypothesis 1

Link distribution learning is suitable for predicting missing properties in
knowledge graphs which are represented under the Open World Assump-
tion.

In the first hypothesis, we consider incomplete knowledge graphs, belonging
to the category of directional multi-graphs, that are represented under the Open
World Assumption. Thus, we assume that the encoded knowledge in the graphs
is incomplete and therefore not all real world information is represented in the
knowledge graph. We will focus on predicting missing properties and show that
models that learn a distribution function over the usage of properties are suitable
for predicting missing properties in knowledge graphs. This distribution func-
tion encodes latent features of the individual nodes. We will study the impact of
the Open World Assumption on the effectiveness of the considered methods, as
well as characteristics of knowledge graphs, e.g. with respect to topology, which
can be used to learn an effective distribution function for predicting missing
properties.

As mentioned above, classical methods such as node2vec [42] or Attention
Walk [3] use random walk approaches to learn a latent representation of nodes
that can be used to predict missing links. These methods are applicable to graph
structured data. In contrast to these methods, we use a stochastic factorization
model to learn the distribution of the used links of nodes for predicting miss-
ing links. Using a stochastic factorization model, our introduced approach be-
comes independent of the topology of the graph. Therefore, we assume that this
approach performs more effective regarding the prediction of missing links, es-
pecially on disconnected graphs than previous approaches using random walk
approaches. In order to study the effectiveness of the method on bipartite graphs,
we will apply the introduced method to specific graph structured data, namely
bipartite networks. We formulate the hypothesis as follows.

2 Hypothesis 2

A stochastic factorization model is able to learn the distribution of links,
even in disconnected bipartite networks.

1.5 contributions 7

This hypothesis restricts the learning of a distribution function to stochastic
factorization models, thus a very specific model is considered here. Moreover,
bipartite networks are considered rather than knowledge graphs as in Hypoth-
esis 1. We expect that stochastic factorization models can learn the distribution
of these networks efficiently, and are especially suitable for disconnected net-
works, compared to existing methods which are often based on random walk
approaches. In this context, we will also study the characteristics of the networks
in relation to the performance of the considered methods in order to gain more
insights into the effectiveness of the methods.

On the basis of the preceding hypothesis, it can be assumed that if the stochas-
tic factorization method can be used to effectively learn latent features for pre-
dicting interactions in bipartite networks, we can apply this method in a simi-
lar way to knowledge graphs, i.e. for the classification of nodes and edges. We
therefore hypothesize that latent features can be encoded using sub-symbolic
representation for node classification. We formulate the hypothesis as follows.

2 Hypothesis 3

The sub-symbolic KG representation learned with our model encode latent
groups of nodes and links in knowledge graphs.

The stochastic factorization model can be used to learn latent features of nodes
and edges which are especially suitable for the classification of nodes and edges.
We want to verify this hypothesis by demonstrating the effectiveness of the
learned sub-symbolic KG representations by node and edge classification.

1.5 contributions

Considering existing works and studies dealing with similar topics, it can be
seen that they are often based on random walk approaches to learn latent fea-
tures from the graph structured data in order to perform link prediction, node
classification or related tasks. We want to distinguish ourselves from existing
work and use among others stochastic neural networks to learn latent features.
We expect an advantage over existing work especially regarding disconnected
graphs, since not all components of disconnected graphs can be reached by ran-
dom walk approaches.

Thereby this might also has a positive effect on knowledge graphs, since they
do not necessarily have to be connected. In addition, we would like to study our
proposed methods with regard to an Open World Assumption in comparison to
existing work. We therefore formulate the scientific contribution regarding the
first hypothesis as follows.

+ Contribution for Hypothesis 1

Approach and model for predicting missing properties of knowledge graphs
which are represented under the Open World Assumption.

Based on the second hypothesis, we will develop a model to learn latent fea-
tures especially in bipartite networks, even if these networks are not connected.

1.6 outline 8

Likewise to the first contribution, this model will also use a stochastic neural net-
work that will help us to compute the distribution of the usage of interactions of
each node of the graph structured data in order to predict missing interactions
in the networks. We formulate the second contribution as follows.

+ Contribution for Hypothesis 2

Model for capturing distributions of nodes for predicting missing links, even
in disconnected bipartite networks.

The third contribution is based on the third hypothesis and uses the model
we developed in the second contribution to learn a representation of nodes and
edges with a modified variant that is specifically tailored to knowledge graphs.
As a result of this contribution we present a sub-symbolic KG representation, en-
coding latent features on the class membership of entities and relations. Similar
to the previous hypotheses, a large number of sub-symbolic KG representations
use random walk approaches and relational learning approaches to learn sub-
symbolic KG representation. Using stochastic factorization, we expect that our
introduced method is much more robust regarding the topology of the knowl-
edge graph. Therefore, we formulate the scientific contribution based on the
third hypothesis as follows.

+ Contribution for Hypothesis 3

A sub-symbolic KG representation that captures relevant classes for entities
and properties in a KG.

1.6 outline

Each contribution is based on its own hypothesis. In the next section we will
introduce the fundamentals that are needed to comprehend this thesis. After-
wards, we will dedicate individual sections to each hypothesis in which we will
divide it into further research questions and conduct appropriate experiments in
order to address these questions. The order of the chapters is based on the hy-
potheses and contributions. In the following, Chapter 3, we will study methods
for predicting missing properties in knowledge graphs under the OWA and in-
troduce two methods that address this issue. In the further course, in Chapter 4,
we will study the problem of predicting missing links in bipartite networks. In
particular, we will consider connected and disconnected bipartite networks. In
Chapter 5 we will predict instance types, as well as domains of properties in
knowledge graphs. This problem is closely related to the first hypothesis, since
links in knowledge graphs are predicted in this context as well, but these repre-
sent very specific information, so-called schema knowledge. In Chapter 6 we will
conclude the whole work, as well as give an outlook on future research activities
in the context of the findings presented here.

2
F O U N D AT I O N S

2.1 graphs

A graph is a mathematical structure, which can be used to model relations be-
tween objects. The first paper in which graphs were used and thus are consid-
ered the beginning of graph theory was published in 1736 by Leonhard Euler
in which he described and solved the problem of the Seven Bridges of Königs-
berg [30]. A graph, denoted G, comprises a set of nodes, denoted V , and a set
of edges, E. In the simplest case, the set of edges is an unordered pairs of nodes
and is called undirected simple graph. The definition of an undirected simple
graph permitting loop is as follows.

ó Definition 2: Undirected Simple Graph

A graph G is an ordered pair G = (V ,E), where V is a set of nodes and
E ⊆ {{x,y}|x,y ∈ V}.

As defined, the edges of the graph, i.e. the connections between the nodes, are
undirected. The edges are interpreted in that way, that one edge (x,y) ∈ E is
from node x to y and vice versa. Graphically, the nodes are usually represented
as dots in a graph and the edges as links between the dots. In the case of an
undirected simple graph, the edges are visually represented as undirected lines
between the dots. Figure 2 shows a visual representation of an example of an
undirected simple graph.

Beside undirected simple graphs there is a variation in which the edges of the
graph have an orientation. This type of graph is called directed graph or digraph.
Directed graphs permitting loops are defined as follows.

ó Definition 3: Directed Graph

A Graph G is an ordered pair G = (V ,E), where V is a set of nodes and
E ⊆
{
(x,y)|(x,y) ∈ V2

}
.

When comparing the two definitions between undirected simple graphs (Def-
inition 2) and directed graphs (Definition 3), it is noticeable that only the type
of edges has changed. Instead of undirected simple graphs in which the set of
edges consists of unordered pairs, the set of edges in directed graphs is a set of

9

2.1 graphs 10

hate

married

love

love

Undirected Simple Graph Directed Graph Directed Multigraph

Figure 2: Visual representation of three different types of graphs.

ordered pairs. Thus we give the edges its orientations, which is the main differ-
ence compared to undirected simple graphs. Thereby the nodes in the context
of an edge from which the relation originate, which are named as x in the Def-
inition 3 above, are often named as source or head and the nodes to which the
edges lead, denoted as y in Definition 3, are named as sink, target or tail. Graph-
ically the nodes of a directed graph are represented as dots similar to undirected
simple graphs. Unlike undirected simple graphs the edges are shown as a di-
rected relation in which the arrow indicates to which node the edge points to.
Figure 2 shows an example of a visualization of a directed graph.

As can be seen in the definition of directed graphs, there is no distinction be-
tween the edges. Each edge has the same meaning. In order to assign several
edges between the nodes and thus different meanings to them, there is an exten-
sion to directed graphs, called directed multigraph. In the following we give the
definition of directed multigraphs permitting loops.

ó Definition 4: Directed Multigraphs

A GraphG is an ordered pairG = (V ,E,φ), where V is a set of nodes and E a
set of directed edges. φ is an incidence function φ : E→

{
(x,y) | (x,y) ∈ V2

}
.

By introducing an incidence function, different edges can be assigned to an or-
dered pair of nodes. Thus, different edges can be assigned to the same ordered
pair of nodes. Directed multigraphs are visualized similar to directed graphs.
Nodes are represented as dots and edges as a directed relation between nodes.
The difference is, that for the same directed node pairs now different directed
edges are allowed. To distinguish them visually the edges are usually labeled
according to the set E to distinguish them. Figure 2 provides an example of a vi-
sual representation of a directed multigraph. Later we will introduce knowledge
graphs, which represent a more advanced directed multigraph.

As another type of graphs we introduce bipartite graphs in the following. Bi-
partite graphs are undirected simple graphs, where the nodes of the bipartite
graph can be divided into two disjoint sets, V1 and V2. Compared to undirected
simple graphs, edges are only allowed between nodes of these two different sets.
Bipartite graphs are defined as follows.

2.1 graphs 11

ó Definition 5: Bipartite Graph

A bipartite graph G = ((V1,V2),E) is a graph G = (V ,E), whereby, V1∩V2 =

∅, such that every edge (v1, v2) ∈ E connects a node v1 ∈ V1 with a node in
v2 ∈ V2.

Bipartite graphs are often used to model affiliations in social networks, e.g.
to model information about the affiliation of users to social groups. Visually,
bipartite graphs are presented similar to undirected simple graphs. Nodes are
represented as dots and edges as connections between the corresponding dots.
The nodes are grouped according to their affiliation to one of the two sets and,
if necessary, visually marked with different colors or with a label. An example
of a visual representation of a bipartite graph is given in Figure 3.

V1 V2

Figure 3: Example of a bipartite graph.

Often the term network is used in the context of graphs, sometimes as a syn-
onym or as a special indication that the edges of a graph represent the interac-
tions between nodes. Accordingly, edges in networks, compared to graphs, de-
note interactions between nodes and in graphs in general relationships between
nodes.

Besides the graphs presented above, there are many other different types of
graphs, such as hypergraphs, which are not relevant for this work, therefore
we will not introduce them in the following. Further insights and application
examples concerning graphs can be found in textbooks [71].

Following the introduction of different graphs and their visual representation,
we would like to take a closer look at the adjacency matrix as a data structure for
the representation of finite graphs. Adjacency matrix is a square matrix where
its elements indicate whether an edge exists between two nodes or not. In the
following we will only consider binary adjacency matrices, but they can also
consist of real numbers.

2.2 knowledge graphs 12

ó Definition 6: Adjacency Matrix

Given an undirected simple graph G in which the set of edges is repre-
sented by an unordered set tuples (i, j), whereby i and j represents a natural
number of the start and end nodes of the edges. Then the elements of the
adjacency matrix A for the graph G is represented by

aij = aji =

1 if (i, j) ∈ E,

0 otherwise.

Depending on the graphs considered, there are always slightly different defi-
nitions for adjacency matrices, the above Definition 6 refers to undirected simple
graphs. In general, adjacency matrices are squared in which each row i and each
column j represents a node. Based on the undirected simple graph in Figure 2

the following adjacency matrix results.

A =

0 1 0

1 0 1

0 1 0

Using this data structure, graphs of many different types can be stored and

edited. The advantage of this data structure is the fast access time for changing
entries, which is in O(1). In contrast to this, there is the increased memory con-
sumption, which is in O(n2), where n corresponds to the number of nodes, i.e.
|V |.

2.2 knowledge graphs

Knowledge Graphs (KGs) can be considered as a model in which information
is stored. In contrast to relational databases, this information is not structured,
but semi-structured as a graph. Due to the links between the information in the
graph, knowledge is generated, thus making it a knowledge graph. The term
knowledge graph was first used by Google in 2012, after they had acquired
Metaweb and Freebase, i.e. two datasets with a variety of information5. The
knowledge graph enabled Google to integrate the information into the search
engine to further enhance the service. However, the foundation of today’s knowl-
edge graphs is based on semantic networks that were developed in the 1960s [106].

As mentioned above, knowledge graphs allow to represent information in a
semi-structured way. There are different serializations, i.e. forms for representing
the information of the knowledge graph. The information can be represented as
a list of triples in the form (h, r, t). Thereby h denotes the head, r the relation
and t the tail. Furthermore there is the distinction between entities, classes and
literals. Entities are objects which are described by a unique identifier, classes
are concepts using a unique identifier for identification. Unique identifiers are

5https://blog.google/products/search/introducing-knowledge-graph-things-not/

https://blog.google/products/search/introducing-knowledge-graph-things-not/

2.2 knowledge graphs 13

for example an IRI. Literals are represented using strings. Relations themselves
can be described with information. We denote a Knowledge graph as following.

ó Definition 7: Knowledge Graph

A knowledge graph G = (E,R,L,C), is a tuple of pair-wise disjoint sets E,
R, L, and C correspond to the set of entities, relations, literals, and types or
classes, respectively. A statement in G is modelled as a triple (h, r, t), with
h ∈ E∪R∪ C, r ∈ R, and t ∈ E∪R∪L∪ C.

An entity e is a real-world or abstract object, which can be identified by its URI.
Entities are for example real-world objects like Angela Merkel or abstract objects
like e.g. Mickey Mouse. A relation r describe entities and can be identified by its
URI as well. Relations can be any relation like e.g. birthdate, place_of_birth and pop-
ulationTotal. Classes are a set of entities that logically group entities which share
similar characteristics. Classes are e.g. Human, Animated characters and Place. Be-
cause of the abstract concept of a knowledge graph all kinds of knowledge can
be stored in it. Often there is a distinction between ABox and TBox statements.
While ABox statements describe concrete facts such as ’Angela Merkel is Chancel-
lor’, TBox Facts describe the scheme of knowledge, i.e. classes and domains such
as ’All Chancellors are humans’. This example already demonstrates that concepts
such as chancellors themselves are included in the knowledge graphs and can be
described in more detail. By describing the concepts, semantic knowledge can
be stored which can be used to conclude further knowledge. The modeling of
the information in the knowledge graph is often done using RDF. RDFS is an
extension of RDF to model schema knowledge in the knowledge graph.

For visual representations of knowledge graphs, directed multigraphs are
used (see Definition 4). Each subject and object is represented as a node whereas
the relation between them is represented by a labelled edge. In the represen-
tation of nodes, the label is often added to the node for improved readability.
Literals are represented as rectangles for better distinction them from entities.
Figure 4 illustrates an example of a knowledge graph in which knowledge about
the entitites Angela Merkel and Hamburg is encoded.

Angela_Merkel Hamburg

place_of_birth

birthdate populationTotal

“1954-07-17“^^xsd:date “1774242“^^xsd:integer

Figure 4: Example of a knowledge graph.

Knowledge graphs can contain several million different entities such as DB-
pedia6 and Wikidata7. DBpedia is a knowledge graph that extracts structured

6https://wiki.dbpedia.org/about/facts-figures
7https://www.wikidata.org/wiki/Wikidata:Statistics

https://wiki.dbpedia.org/about/facts-figures
https://www.wikidata.org/wiki/Wikidata:Statistics

2.3 neural networks 14

information from various Wikimedia projects and stores it in the knowledge
graph [9]. Thus, information from e.g. Wikipedia is available in a knowledge
graph, enriched with semantic relations. The semantics, i.e. the description of
relations, can include domain and range assertions. The domain of relations de-
scribes from which types of entities the relation starts. An example would be the
relation place_of_birth. This relation usually originates from humans, so that the
domain of this relation can be specified using Human. The range of a relation de-
scribes which type of object it should be. These can be different classes, but also
data types like dates. In the case of the relation place_of_birth the range would
usually be a location, so that the class Place could be used as range to specify the
range of this relation. By describing the relation with such information it gets
a certain meaning, therefore it is called semantics. Thus, if we consider the fact
(Angela_Merkel,place_of_birth,Hamburg) in addition to the schematic knowledge
above, we can conclude that Angela_Merkel is of type human, since the domain
of place_of_birth is Human and Hamburg must be a place, because the range of
the relation is place_of_birth is Place.

As already seen in the example above, a large amount of implicit informa-
tion can be inferred from very few facts, making it interesting to add further
facts automatically, which leads to an increased possibility of deriving further
knowledge from the knowledge graph.

2.3 neural networks

Neural networks are a group of machine learning methods, which are inspired
by biological neural networks of living beings. Warren McCulloch and Walter
Pitts established the foundations in 1943 by developing the model of neural
networks [69]. Rosenblatt created the first perceptron in 1958 [109]. Over the
years a variety of different types of neural networks have been developed. In this
section we will focus on the simplest form, the feed-forward networks. Further
types of neural networks can be looked up in literature [41].

Neural networks can be represented as a directed graph. Nodes are called
neurons and the edges represent the weights between the neurons. Neurons are
arranged in layers, whereas in feed-forward networks only directional connec-
tions exist between neurons of the next layer. A neural network always consists
of at least one input layer and one output layer, optionally there can be any num-
ber of layers between these two layers. These optional layers are called hidden
layers. Figure 5 illustrates a 4-layer neural network. In case of fully-connected
feed-forward neural networks, each neuron is connected to every other neuron
of the next layer. The idea of neural networks is that neurons receive information
from the neurons of the previous layer, process it and forward it to the neurons
of the next layer.

In the following x ∈ Rn denotes the input of the neural network and ŷ ∈
Rc the output, whereby c denotes the number of classes. Furthermore, the in-
dexing of the vector x describes the concrete elements of the vector, i.e. x =

(x1, x2, . . . , xn). The set of all samples, x, are stacked in a matrix to obtain X,
where X ∈ Rnxm. Further we denote the set of neurons of the layers as Z and the
activation values as A. Lower case letters denote individual neurons, whereas up-

2.3 neural networks 15

!"

!#

!$

%&#

Layer 4Input Layer Layer 1

Hidden Layer

Layer 2 Layer 3

Output Layer

%&"

%&'
⋮⋮

Figure 5: Illustration of a 4-layer neural network using x as input and ŷ as output.

per case letters denote all neurons of a layer. To understand which layer is meant,
we introduce the variable l, indicating which layer we are currently considering.
The number of layers is specified by L.

Considering Figure 5, L = 4, because four layers exist in the neural network.
We denote with a[1]1 the activation value of the first neuron in the first layer. In
comparison, a[3]2 describes the activation value of the second neuron in the third
layer.

In order to calculate the output of a neural network, the input is passed
through the neural network to the output layer, by multiplying the input with
the weights between the layers and applying an activation function. First the in-
put features of the neural network are multiplied with the weights W of the first
layer and adding a bias value b. The formula is as follows:

Z[1] =W[1]X+ b[1]

Afterwards an activation function is applied to the individual neurons of the
calculated values. This activation function is referred to as σ in the following.

A[1] = σ(Z[1])

After calculating the activation function, these values are forwarded to the next
layer. Thus they serve as input for the next layer. In general these two formulas
can be represented as follows.

Z[l] =W[l]A[l−1] + b[l]

A[l] = σ(Z[l])

The last layer, A[L], represents the output and is usually denoted as ŷ.

2.3 neural networks 16

The activation functions used have a great impact on the decision function
calculated within the neural network and on the performance regarding the ac-
curacy of the neural network. In the following we will present only a part of
possible activation functions. The goal of the activation function is to introduce
non-linearity into the neural network. For each layer a different activation func-
tion can be specified. The activation functions presented in the following are
shown in Figure 6.

Sigmoid Tanh ReLU

sigmoid(z) = "
"#$%& tanh(z) = $&'$%&

$&#$%&
ReLU(z) = max(0, .)

Figure 6: Illustration of different activation functions for neural networks.

Sigmoid. The sigmoid activation function is defined as follows.

sigmoid(z) = 1
1+e−z

The sigmoid activation function yields values between 0 and 1, thus sigmoid(z) ∈
(0, 1). This allows for a simple and useful interpretation of the output values of
the sigmoid activation function as probability of how much a neuron fires or how
much the downstream neurons of the next layer are activated. The disadvantage
of this activation function is the gradient, i.e. the slope of the activation function
for very large and very small values of z, as these values are very small, almost
zero. Only for values z ∈ [−2, 2] the slope is sufficient high compared to other
values, which is why the neurons converge faster in this range. The slope is im-
portant because backpropagation is used for learning neural networks, using the
gradient descent method [55] and taking the slope of the function into account
when adjusting the weights. For small gradients, only a small adjustment of the
weights results, causing a low speed of convergence of the neural network. For
this reason usually activation functions with a higher slopes are used. Neverthe-
less, the output of the sigmoid activation function is often used as probabilities
because of its easy interpretability and thus this activation function is usually
used in the output layer.
Tanh. The Tanh activation function is defined as follows.

tanh(z) = ez−e−z

ez+e−z

This function yields values in the range -1 and 1, i.e., tanh(z) ∈ (−1, 1) and thus
has a larger scope than the sigmoid activation function. Apart from that, it shares
many characteristics with the sigmoid activation function, in which the slope is
also sufficiently high only for values z ∈ [−2, 2] to allow a fast convergence of
the neural network. In practice this activation function is usually preferred over
the sigmoid activation function, as it has an higher slope. However, the Tanh
function is mostly used only in the hidden layers, because the output values of
the Tanh activation function cannot be interpreted as probabilities.

2.3 neural networks 17

ReLU. The ReLU activation function has become very popular especially in the
last few years. It is defined as follows.

ReLU(z) = max(0, z)

Due to its constantly high gradient for values greater than 0, i.e. z > 0, which is
one, the ReLU activation function generally converges faster than the previous
two activation functions. According to published studies, neural networks us-
ing the ReLU activation function converge six times faster than neural networks
compared to a Tanh activation function [53]. However, when using a ReLU acti-
vation function, there is a risk of irreversible dying of neurons during training,
especially when using a too high learning rate. A high negative update of the
weights can cause the ouput of the ReLU activation function to always be 0, and
the gradient, which is 0, given a negative input, causes the adjustment of the
weights to be 0. However, this happens rarely if the learning rate is adjusted
appropriately.

Neural networks use backpropagation to learn the weights of the networks.
Backpropagation uses the gradient descent method in conjunction with the chain
rule to learn the weights of the neural network. If we denote the cost function of
the network as J and the learning rate as α, then the formula for adjusting the
weights of the neural network is defined as follows.

W[l] =W[l] −α ∂
∂W[l] J

We will not discuss the details of the derivative of the activation functions and
implementation of the backpropagation technique, as this would go beyond the
scope of this section. More details about learning neural networks are sufficiently
described in literature [41]. Essential for this thesis is an understanding of the
structure of neural networks and the mathematical concepts for calculating the
output.

3
L I N K P R E D I C T I O N O N K N O W L E D G E G R A P H S

3.1 introduction

KGs have become an important foundation to represent knowledge exploited
in, e.g., Question Answering [66], Entity Linking [94], and recommender sys-
tems [88]. A complete knowledge graph, or a knowledge graph containing a
large amount of information, offers a considerable advantage in question answer-
ing systems and information retrieval. Search providers commonly use knowl-
edge graphs to improve their services, as does Google to improve its information
retrieval and services (Google Knowledge Graph8). The Google search provides,
when searching for entities such as Angela Merkel, in addition to the hits on
websites, likewise useful information about this entity such as place of birth, re-
lationship status and profession in an infobox. Thereby a first overview of an
entity can already be given and the most important facts can be made available
without visiting further pages. This service is an important medium to provide
users of the service a quick and clear overview of information about entities. Be-
sides using a knowledge graph for information retrieval, a knowledge graph may
also be used for question answering. Google, like other search providers, answer
simple questions using a knowledge graph. Thus, the question ’What is the alma
mater of Angela Merkel?’ in Google already returns the correct answer. Just like
the infobox, the Question Answering service is an essential service to quickly
and directly answer questions from users. In both cases a knowledge graph is
used to provide the information. A complete knowledge graph is thereby essen-
tial for both services to ensure a high coverage of information and thus to have
an advantage against competitors, which leads to a higher market success9.

There are already a number of very large public knowledge graphs such as
Freebase [19], DBpedia [9] and Wikidata [117] that consist of millions of facts
and can be used for such services. However, even though they consist of millions
of facts, they still suffer from incompleteness which may hinder the effectiveness
of the applications where they are consumed. The problem of KG completeness
has been studied in different contexts: (i) predicting a missing component in a
head-relation-triple [11, 20, 122], (ii) predicting types of entities [128], and iii) pre-
dicting missing values in query answers [4, 5, 24]. In most of these methods em-
beddings are trained, in which the nodes and edges of the knowledge graph are
encoded into low-dimensional spaces while keeping the graph structure. Based

8https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
9Google made in 2019 a revenue of 45 billion

18

3.1 introduction 19

on these embeddings, the structure is analysed using machine learning methods
and missing head entities, relations and tail entities are predicted. This method
has proven to be very effective in predicting entities and relations on certain
knowledge graphs, but most of these methods assume a closed world assump-
tion, meaning that facts that are not encoded in the knowledge graph are consid-
ered to be false. This assumption is very useful for an evaluation of the method,
as it makes the method very easy to evaluate, but it is too restrictive when con-
sidering a real-world system. Furthermore, the existing methods are often eval-
uated on very few knowledge graphs, resulting in no well-founded evaluation
of the methods on different characteristics of knowledge graphs. Knowledge
graphs can have very different characteristics, e.g. different topologies regarding
the degree of nodes and the connectivity of a graph. Likewise, there are differ-
ent definitions of knowledge graphs and therefore different types of knowledge
graphs. In very sophisticated knowledge graphs, semantic information such as
domain and range information of relations can be encoded. In our opinion it is
important to study the methods for different characteristics of the knowledge
graph in order to select the appropriate method, given the characteristics of a
knowledge graph.

We want to address these existing limitations and create a method that pre-
dicts missing relations in knowledge graphs, even if they are represented under
the Open World Assumption (OWA) and with different level of semantics. Instead
of relying on embedding methods, as existing work does, we want to develop
two methods and compare the effectiveness of them. We will develop a method
based on rule mining and a stochastic factorization model. We thereby investi-
gate the problem of KG completeness from an entity-centric view. Our goal is
to predict missing relations, even under Open World Assumption, and thus con-
tribute to the completion of knowledge graphs to support information retrieval
and question answering. To get a common understanding of a knowledge graph,
we define the knowledge graph as follows.

ó Definition 8: Knowledge Graph

We denote a knowledge graph KG = (H∪ T ,R), where H denotes the set of
head entities, T the set of tail entities, and R the set of labelled relations. The
information in the knowledge graph KG is modeled as triples (h, r, t), with
h ∈ H denotes the head entity which has a relation r ∈ R to a tail entity,
denoted as t ∈ T .

The above Definition 8 enables a common understanding about knowledge
graphs. There are several different definitions of knowledge graphs, some of
which are much more restrictive [89]. We have decided to use a very broad
definition of a knowledge graphs, which is already sufficient for our purposes.
The use of this broad definition of knowledge graphs demonstrates the broad
use of our methods, which we will introduce later. The methods are therefore
applicable to different specific knowledge graphs.

In general, a Knowledge Graph KG consists of facts, which are modelled using
triples. The set of these facts creates the total available knowledge. As described

3.1 introduction 20

above, real-world knowledge graphs may be incomplete and, although a rela-
tion such as alma_mater should exist for an head entity such as Angela_Merkel, it
is not represented in the knowledge graph. Therefore, the knowledge graph is
incomplete, since not all facts are available in the knowledge graph. In order to
define a complete knowledge graph, we first define a function which contains
the set of all relations for a given head entity.

ó Definition 9: Set of Relations

We denote Rh(KG) as a function which is the set of relations where the
entity h appears in the head of a statement in KG, i.e., Rh(KG) = {r | ∃t ∈
T , (h, r, t) ∈ KG, r ∈ R}.

Based on the above Definition 9 we can now very easily define the ideal knowl-
edge graph KG∗ which, based on KG, is complete for all head entities regarding
the available relations.

ó Definition 10: Complete Knowledge Graph

Given a knowledge graph KG, consider KG∗ the ideal graph that contains all
the statements that should be in KG, i.e., KG ⊆ KG∗ and therefore including
all relations, i.e. Rh(KG) ⊆ Rh(KG∗).

Our goal is to develop two models to predict missing relations based only on
a head entity. One of the methods is based on rule mining and the other on a
stochastic factorization model. By using different learning paradigms, a direct
comparison of the two paradigms can take place. We want to evaluate the effec-
tiveness of both methods on different knowledge graphs. Our hypothesis is that
a stochastic factorization model can learn the distribution of the usage of rela-
tions for head entities in a knowledge graph which are represented under the
Open World Assumption. Therefore, we want to analyse the effectiveness of a
factorization model for the prediction of missing relations, given an head entity,
in knowledge graphs under the Open World Assumption and compare them
against a rule mining method. In particular, we want to study the characteristics
of knowledge graphs, for which our methods for predicting missing relations are
very effective. The goal is to be able to indicate whether a high performance can
be expected before executing our methods. In addition, the findings found can
be reflected back into our methods for refining them to improve the performance.
Furthermore, we would like to study the impact of the Open World Assumption
on the effectiveness of the methods. We would like to distinguish ourselves from
existing work and investigate the methods with respect to OWA in order to take
a step towards loosening a restrictive Closed World Assumption (CWA). The hy-
pothesis we make, including the research questions based on it, is formulated in
Research Question 1.

3.1 introduction 21

2 Research Question 1

Hypothesis: Link distribution learning is suitable for predicting missing
properties in knowledge graphs which are represented under the Open
World Assumption.

1.1 What is the effectiveness on learning KG features for link prediction
of stochastic factorization models, in contrast to rule mining methods.

1.2 What are the characteristics of knowledge graphs that allow learning
models to effectively learn the distribution of links?

1.3 What is the impact of following the Open World Assumption on the
effectiveness of the studied methods?

3.1.1 Structure of the Chapter

In this part of the thesis we will focus on the problem of predicting missing
relations in knowledge graphs. We will introduce two different methods, which
are based on different learning paradigms. For better understanding of the work
and the problem we will give an example of motivation in Section 3.1.2. The
motivating example is furthermore used to illustrate the procedures in the fol-
lowing sections with a practical example thus making the procedures more com-
prehensible. In the following section, Section 3.2, related work in the context
of knowledge graph completion, with special focus on predicting missing rela-
tions will be presented. We will discuss the existing work and distinguish them
from the methods presented. In Section 3.3 we present two approaches which
are based on different learning paradigms, but pursuing similar goals, namely
predicting missing relations in knowledge graphs. The motivating example from
Section 3.1.2 is used to illustrate the two methods and thus make them more com-
prehensible. Details about the individual aspects of our methods are given, such
as the input to our models, parameter learning, and computing the predictions,
based on our model. In the following section we will conduct experimental stud-
ies. These studies are designed to support us in answering the research questions.
We will discuss the effectiveness of our methods and compare them to baseline
methods. Furthermore, we will explain which characteristics knowledge graphs
need to have in order to guarantee a high effectiveness of our methods. Based
on these experiments we can then answer the research questions posed in the
introduction in Section 3.5. We thereby will summarize the presented work and,
based on the findings from the experiments, give an outlook for future work,
which, in our opinion, is worthwhile to continue.

3.1.2 Motivating Example

In the following, we introduce a simple scenario, which on the one hand illus-
trates the problem in more detail, and on the other hand serves as a running
example to explain the methods in more detail in the later sections and illustrate
them with a practical example. We use a knowledge graph based on Definition 8,

3.1 introduction 22

professio
n

married_to place_of_birth alma_mater

Joachim Sauer Angela Merkel

Hamburg

University Hamburg

Helmut Schmidt

Chancellor

Hannelore Glaser

married_to

place_of_birth

profession

Anchiano

Mona Lisa

Leonardo da Vinci Vitruvian man

place_of_birth notable_work

painted Polymath

profession

Figure 7: Running example for predicting missing properties in Knowledge Graphs. We
are interested in predicting missing properties for entities, such as for An-
gela_Merkel.

which is a very general definition and models the facts using triples. The knowl-
edge graph can be visualized as a graph where head and tail are nodes and
the relation is a directional labelled edge between the head and tail. In Figure 7,
a subgraph of the knowledge graph DBpedia [9] is visualized, in which differ-
ent facts of persons like Angela_Merkel and Helmut_Schmidt are represented. This
knowledge graph corresponds to a knowledge graph according to Definition 8

and can be used for improving information retrieval and question answering,
among other things. For example, this knowledge graph could be used to an-
swer the question about the birthplace of Angela_Merkel. But considering the
knowledge graph in detail, it is noticeable that there are much more relations
available to describe an entity than currently used by the entity Angela_Merkel.
For example, the entity Helmut_Schmidt uses the property alma_mater to describe
at which university the entity studied. This property is not used to describe the
University of Angela_Merkel, although both entities are very similar in terms of
the relations used, as well as the tail entities. It is questionable if alma_mater
is a missing outgoing relation of Angela_Merkel and if there are other relations
missing to describe Angela_Merkel. Identifying these potentially missing relations
manually for a small knowledge graph as shown in Figure 7 is possible with little
effort. However, it is impossible to identify them manually in a large knowledge
graph with several million entities and thousands of relations, like in DBPedia
and Wikidata. For this reason, an automatic procedure is needed to identify
missing relations, given a head entity. Adding this information to the knowl-
edge graph allows the procedures, i.e. question answering systems, that access
the knowledge graph and use the information encoded in the knowledge graph
to work even more efficiently since more information is available. Likewise, ser-
vices can be expanded and work can be done even more precisely to answer
questions such as ’What is the alma mater of Angela Merkel?’ This question cannot
be answered according to the information as shown in the knowledge graph of
Figure 7. Moreover, as described at the beginning, a complete knowledge graph
represents a significant market advantage for the provision of such services. In
this chapter we will therefore focus on developing methods for the automatic
identification of missing relations. Therefore we define our motivation for this
chapter as follows.

3.2 related work 23

÷ Motivation : Predicting missing relations in knowledge graph

Based on a knowledge graph KG = (H∪ T ,R), a function f(h, r) with h ∈ H
and r ∈ R will be learned, which indicates the likelihood of h having a
relation r to a tail entity t in KG. This function is intended to predict miss-
ing relations in the knowledge graph KG. Hence we can identify the set of
missing relations of h, i.e., the set of relations such that Rh(KG∗) \ Rh(KG).

Based on the above motivation, we are interested in a function f(h, r) which,
given a head entity h and a relation r, indicates how likely this relation will be
used to describe the head entity. In many related papers the function is based
on a triple, such that based on a head entity h and a tail entity t, a function
indicates how likely the relation r describes the relationship between the head
entity h and the tail entity t. However, we will focus and use only the head
entity h to compute the likelihood of the relation r as a missing relation for
describing the head entity h. Since, unlike in the existing work, we assume an
Open World Assumption and assume that not every entity is encoded in the
knowledge graph KG. The related work fails if, for example, the University of
Leipzig is the alma mater of Angela Merkel, since this tail entity is not included
in the knowledge graph KG. In the following section we will go into this in
more detail and present related works and distinguish ourselves from them to
emphasize the added value of our motivation.

3.2 related work

A very prominent method, which has received a lot of momentum for predicting
missing relations in knowledge graphs, is TransE [20]. TransE represents relation,
head and tail entities as vectors, so that the sum of head entity and relation vec-
tor equals the tail vector. An advantage of using TransE is its simplicity, since it
requires very few parameters and is efficient in training. However, this simplicity
comes at the cost of dealing with 1-to-N, N-to-1 and N-to-N relations. The flaws
in modelling power comes from the used scoring function. TransE is only suit-
able for 1-to-1 relations. In order to overcome this drawback, multiple extensions
to TransE were introduced like e.g. TransH [122] and TransR [59]. TransH intro-
duces distributed representations for entities when involved in different relations
in the same semantic space. TransH thus overcomes the simplicity of TransE of
dealing many-to-many relations. TransE and TransH represent the entity and
relation vectors in the same semantic space. However, entities and relations are
different objects, therefore they should not be represented in the same seman-
tic space. In contrast to this, TransR represents entities and relations in distinct
semantic spaces.

ComplEx [115] is based on the same concept as TransE, but uses complex-
valued vectors for predicting relations in knowledge graphs. Both methods are
transductive learning algorithms, making it possible to predict missing parts of
triples, given that the individual entities and relations are known to the model
in advance. In contrast to these methods, EDMAR [114] and RDF Shape In-
duction [73] are inductive methods that learn a general model from examples

3.2 related work 24

and are therefore applicable to all triples, even if entities and relations were not
known in advance while learning the model. Another very promising method
for Link Prediction is HolE [82]. This method exploits circular correlation in
relations for creating representations. RESCAL [83] is a tensor factorization ap-
proach. This approach models the KG as a tensor and uses factorization to predict
relations between entities. DistMult [125] learns relation embeddings and utilizes
the embeddings to mine logical rules. The logical rules are used to predict rela-
tions between entities. ConvE [25] and HypER [12] use both convolutional layers
for processing and predicting missing relations. TuckER [11] generalizes the pre-
vious works of RESCAL, DistMult, and ComplEx. TuckER is a linear model,
based on the TuckER decomposition. The facts are modeled in a binary tensor.
ANALOGY [61] exploits the analogical structures of the KG, similar to semantic
analogy of words in methods like e.g. Word2Vec [75] and GloVe [93].

In the context of KG completion, there are approaches that rely on the symbolic
representation of KGs. HARE [5] is an engine that detects missing values in a KG
based on the Local-Closed World Assumption. It crowdsources the missing val-
ues to complete the KG and allows for answering SPARQL queries. Other work
specifies the number of missing relations and thus measures the completeness
of the KG [92]. The information about missing relations can be used to learn
rules [38] for KG completion. For more details on KG completion, please refer to
survey paper [14]. All these methods predict relations between two given entity
nodes in the KG, while our approaches only consider the head entity as input
and predicts the missing relation.
Frequent Itemsets. Highly-correlated itemsets are based on the concept of fre-
quent itemsets [6]. This technique claims to find the items that occur very often
in the customer’s transactions. High-utility Itemsets [34, 64] is an extension to
Highly-correlated itemset mining in which the most frequent itemsets are to be
found, which yield the highest profit. The utility of the transactions is the most
important criteria. A number of procedures use Transaction-Weighted Utilization
to prune the search space [108, 65]. These procedures first generate all possible
candidates and then filter out any candidates whose utility is too low. The disad-
vantage, however, is that the procedure generates a large number of unnecessary
candidates. This results in a long runtime. Therefore, algorithms with pruning
mechanisms have been proposed to reduce the number of itemsets candidates
and thus reduce the computational complexity [34, 64]. Faster High-Utility Item-
set Mining (FHM) is a very fast High-Utility Itemset Mining algorithm [34], which
reduces the number of join operations and thus improves the runtime. However,
utilizing utility results in many itemsets which yield a high utility but correlate
only very weakly. Therefore, FHM was extended to guarantee that the itemsets
correlate strongly, besides yielding a high utility [34].
Community Detection. The identification of communities is particularly promi-
nent in the area of social network analysis [101]. Community detection, how-
ever, is not exclusively applicable to social networks. Network analyses in the
field of co-authorship are also conceivable [78]. However, an existing problem
in this research area is that there is no common definition of a community.
This has already been mentioned in previous works [33]. This leads to the ef-
fect that there are different conceptions for the term community. In general,

3.3 learning latent features for predicting missing relations 25

Highly-Correlated
Relationset Mining

Relation-Bonding
Graph Construction

Relation Community
Detection

Predicting
Relations

Community
Selection!"#$

{ }
{ }

% &'()*
!"

h ∈ -

./012

Relation-Centric Stage Prediction-Centric Stage

Figure 8: Proposed approach for the predictions of missing relations for head entities,
based on a knowledge graph KG. The relation-centric stage captures latent
knowledge between the relations. The prediction-centric stage predicts missing
relations based on the communities detected in the previous stage and the KG
G for a given head entity h.

a community is a dense subgraph. Detecting them is computationally expen-
sive. For this reason, methods have been developed which, for example, use
random walks to speed up the computations [97] or use grouping methods to
simplify computations [99]. However, a trade-off will arise here between the
quality of the results and runtime for large networks. Nevertheless, there are
also approaches that have returned reliable results on very large graphs while
exhibiting a satisfying runtime [22]. Some community methods focus on detect-
ing non-overlapping communities [22], others like e.g. Community-Affiliation
Graph Model (AGM) [126, 127] allows for detecting overlapping, non-overlapping
and hierarchically nested communities. Analyses and comparisons about exist-
ing community structure algorithms allow to explain the advantages and disad-
vantages of the individual algorithms more precisely and show to which extent
these algorithms can be improved [26, 33, 80].

3.3 learning latent features for predicting missing relations

In the following we will present two methods that allow for predicting miss-
ing relations under the Open World Assumption for head entities, based on a
knowledge graph. The first method presented, Community-based Relation Predic-
tion (CRP) is based on itemset mining and a clustering method on graph-based
data. This method is based on the idea that related relations occur in common
and can thereby be clustered into latent groups. The second method, Link Distri-
bution Learning (LDL), was developed on the basis of the collected insights of CRP,
in which it was found that similar entities have a similar distribution regarding
the use of relations.

3.3.1 Community-based Relation Prediction

Community-based Relation Prediction (CRP) exploits latent features of proper-
ties for predicting missing relations of a head entity in a knowledge graph. In
our proposed solution, we distinguish two main stages: the relation-centric stage
and the prediction stage. The relation-centric stage captures the latent features of
the relations encoded in the KG. The outcome of this stage is then used in the pre-
diction stage to predict missing relations of head entities. The proposed approach
is illustrated in Figure 8.

3.3 learning latent features for predicting missing relations 26

Angela Merkel

Helmut Schmidt

married_to

alma_mater

place_of_birth

profession

notable_work

paintedLeonardo da Vinci

Figure 9: Head-Relation Graph of the running example.

Relation-Centric Stage
The objective of this stage is to identify groups of relations that are related based
on the implicit knowledge encoded in KG. The output of this stage is a set of
communities where each community represents relations that are highly asso-
ciated according to KG. The input of the relation-centric stage is a knowledge
graph KG. To get a better view on the co-occurrence of relations we transform
KG into a bipartite graph. In this bipartite graph, nodes represent head entities
and relations, while edges encode the head-relation interactions. We denote this
graph the Head-Relation Graph and is formally defined as follows:

ó Definition 11: Head-Relation Graph

Assume a knowledge graph KG = (H ∪ T ,R). A head-relation graph is a
bipartite graph I = (V ,E), where V = H ∪ R. H corresponds to the set of
head entities, and R corresponds to the set of relations in KG. An edge
(h, r) ∈ E denotes that head node h ∈ H interacts with relation r ∈ R in KG.

Based on Definition 11, the bipartite nature of the head-relation graph I, H ∩
R = ∅ obviously holds true. To illustrate the concept of a head-relation graph,
consider the running example from Figure 7. We converted this subgraph into
a head-relation graph, shown in Figure 9. The head-relation graph corresponds
to head entities and their existing outgoing relations in the knowledge graph
KG. The head entities represent nodes H = { Angela_Merkel, Helmuth_Schmidt,
Leonardo_da_Vinci } and the relation nodes represent the relations of the knowl-
edge graph, defined as R = { married_to, profession, place_of_birth, alma_mater,
painted, notable_work }.

We will identify highly-correlated relations, based on the head-relation graph
I. To this end, we propose the application of frequent itemsets mining. Frequent
itemsets approaches rely on transactions to identify items that highly co-occur.
In our approach, the set of all relations of one head entity represents one transac-

3.3 learning latent features for predicting missing relations 27

tion. Therefore, all transactions can be determined by the union over the transac-
tion of the individual head entities. A good side effect of using frequent itemsets,
is the removal of noise in the data and filter out relations that occur very rarely.
One important aspect to consider when applying frequent pattern mining is that
many frequent patterns are not interesting and items cannot appear more than
once in a transaction. This is for the usage of itemset mining in KGs not useful,
since a head entity can have the same relation multiple times to different tail enti-
ties, e.g. profession and this might effect the computation of itemsets. At the same
time some relations which occur very infrequent but are of high interest could
be higher weighted than others that occur very frequently in a KG but are at the
same time only of limited interest. Using the Apriori algorithm [6] would identify
frequent itemsets, but could not overcome those limitations. To overcome those
two limitations, the Fast Correlated High-Utility Itemset Miner (FCHM) [35] effi-
ciently finds highly correlated itemsets, based on transaction data. FCHM prunes
the space of candidates based on a bond measure, meaning that all itemsets that
do not fulfill a minimum number of utility (minutil) and correlation (minbond)
are not pursued further for future computations, resulting in an adequate run-
time, even for very large graphs. The bond measure indicates how the items
in a frequent itemset correlate and thus expresses the relative importance of a
relationset [35, 85]. This method enables us to identify relations that correlate
and therefore occur very frequently with each other. In addition, we can identify
and remove relations that occur only very rarely in the KG. These low occurring
relations are noise in the KG and due to their low occurrence provide only very
little information for the prediction of relations.

The input for FCHM is a set of transactions. One transaction is the list of exist-
ing relations for a head entity h, i.e., Rh. Considering the head-relation graph I of
the motivating example in Figure 9, the transaction for head entity Angela_Merkel
is the following (married_to, profession, place_of_birth). Likewise, the transactions
for the other head entities describe the existing relations outgoing from the head
entity.

Having these transactions, we reduce noisy relations using FCHM by comput-
ing highly-correlated relationsets. The computation of highly-correlated relation-
sets, using a head-relation graph is formally defined as follows.

3.3 learning latent features for predicting missing relations 28

ó Definition 12: Highly-Correlated Relationsets

Let I = (H∪ R,E) be a head-relation graph, minbond ∈ {x ∈ R | 0 6 x 6 1}

be a minimum bond threshold and minutility ∈ R+ be a minimum utility
threshold. The set of interactions is D = {T1, T2, . . . , Tq} where each element
is a tuple Tx :=

(
X = {r ∈ R | ∃hx ∈ H, (hx, r) ∈ E}, |X|

)
containing the

relations of head entity hx ∈ H and the number of the relations as utility.
FCHM receives minbond, minutility and D as input parameters and

returns the set S. The set S = {S0,S1, . . . ,Sm} is a set of highly-correlated
relationsets where Sk ⊆ R and B(Sk) > minbond, for each Sk ∈ S. B(Sk)
denotes the bond measure of the highly-correlated relationset Sk and is
defined as follows:

B(Sk) =
support(Sk)

dissup(Sk)

where
support(Sk) = |{h ∈ H | ∀r ∈ Sk : (h, r) ∈ E}|,

dissup(Sk) =
∑

r∈Sk

|{h ∈ H | (h, r) ∈ E}|.

The outcome of FCHM are sets of highly correlated relations. We call them
relationsets. The returned relationsets in S are different in size and strongly over-
lapping. Thus, a relation r ∈ R can occur in different relationsets. Due to the
overlap and the differences in the sizes of these sets, the information from the re-
lationsets will be grouped. To extract information from the relationsets, we will
model the corresponding relations as nodes in an undirected, weighted graph,
which we denote relation-bonding graph.

ó Definition 13: Relation-Bonding Graph

Let S = {S0,S1, . . . ,Sm} be a set of highly-correlated relationsets. An Relation-
Bonding Graph is an undirected weighted graph KG ′ = (R ′,E ′,w), where
R ′ =

⋃
Sk∈S Sk, and for each Sk ∈ S, rx, ry ∈ Sk ⇒ (rx, ry) ∈ E ′. The weights

w are defined as a function w : R ′ × R ′ → R and computed as the sum of
the corresponding bond measure, i.e.:

w(rx, ry) =
∑

rx,ry∈Sk

B(Sk).

The graph KG ′ contains the relations from the relationsets as nodes. The Relation-
Bonding Graph for the running example is represented in Figure 10. The weights
of the graph are the summed bond measure and the links represent the co-
occurence in same frequent itemsets.

It should be noted that due to the computation of the highly-correlated rela-
tionsets, R ′ ⊆ R applies, which means that not every item r ∈ R of the original
graph KG must also be represented in KG ′. The highly-correlated relationsets
are used to remove relations with only minor relative importance in the graph
KG. Thereby the noise in the data is reduced. The edges of KG ′ represent the

3.3 learning latent features for predicting missing relations 29

alma_mater

place_of_birth

married_to

profession

notable_work

painted

0.25

0.25

0.25

0.45

0.2

0.2

0.8

Figure 10: Relation-Bonding Graph for the running example representing the strength
of the relationships among the relations.

common occurrence of relations in the same relationset. The weight of the edge
between the relations is, as given in the above definition, the sum of all bond
values of the relationsets in which both relations occur. The weight of the edge
thus expresses the strength of its tie across all relationsets.

As last step to determine the latent features from the relations, we will use
the information represented in the relation-bonding graph KG ′ to identify com-
munities. A community is a set of nodes in a graph such that each node of
the set is densely connected to each other node in the set. The identification of
communities in KG ′ is used to group relations that are strongly related. In the
case of KGs, relations of related information that often occur in common should
be identified. There are many community detection algorithms, using different
methods like e.g. minimum cut method or modularity maximization. Modularity
maximization is a very prominent method to detect communities within graphs.
Modularity is a unit of measurement of a network. The modularity describes the
strength of a network by dividing it into communities. We chose Fastgreedy al-
gorithm [22, 80] for detecting communities. This algorithm optimizes the metric
modularity when discovering communities. A benefit is that there is no need to
predefine the number of communities. This algorithm detects the best number
of communities by itself. Fastgreedy is a non-overlapping community detection
algorithm, which means that nodes in the graph are exactly assigned to one
community. This method starts by assigning each node to its own community.
It then computes the expected improvement of modularity for each pair of com-
munities. The communities with the highest expected improvement of modular-
ity are merged. This procedure is repeated until the merge of communities no
longer leads to an increase in modularity. This procedure allows Fastgreedy to
come up with results in a reasonable amount of time. This algorithm is therefore
recommended for very large networks and thus used in the following.

By using the Fastgreedy algorithm, communities will be detected in the relation-
bonding graph KG ′. These communities represent a set of relations from KG ′

3.3 learning latent features for predicting missing relations 30

!" !#

!$

Figure 11: Detected communities using Fastgreedy. In total three communities, repre-
senting latent groups of highly correlated relations.

that have a high density, with only a few connections to the other communities.
The communities are called relation communities and are defined as follows:

ó Definition 14: Relation Community Set

Let KG ′ be a relation-bonding graph. A relation community set is denoted
C = {C1,C2, . . . ,Cp}, where Cj ∈ C is a relation community defined as a
dense sub-graph of KG ′, and Ci ∩Cj = ∅, for each Ci,Cj ∈ C .

The communities are clusters of relations which are strongly related to each
other. The communities represent latent features, which we mined from the KG.
Frequently co-occurring relations are grouped into the same communities. We
will see later in the experiments an excerpt for the clustered relations from a
KG. Given the running example, Figure 11 represents the detected communi-
ties in the head-relation graph. In the running example, three latent groups are
detected using Fastgreedy, showing meaningful latent associations. With the de-
tection of the relation communities, the first stage, the relation-centric-stage, of
the presented approach, is completed. In the second stage, the prediction stage,
the focus is on using the information obtained to predict missing relations for
head entities in the knowledge graph KG.

Prediction-Centric Stage
We use the information from the knowledge graph KG and the information we
have mined from it and encoded in the relation community sets C, to predict
missing relations of head entities. In general, the number of possible relation
candidates for predicting is, depending on the number of relations in the KG,
usually very high. Therefore, in the following, we reduce the number of possible
relations for predicting. For this, we use the information from the community
sets C. We compute for a head entity h the relative number of its existing rela-
tions in the knowledge graph KG to each community set. We sort the results in

3.3 learning latent features for predicting missing relations 31

Table 1: For a given head entity, the selection of suitable relations for predictions is based
on relative number of existing relations to each community set.

Community Relative Frequency

Community C1
2
2

Community C2
1
2

Community C3 0

descending order. An exemplary sorted table for a given head-entity is given in
Table 1.

We select the first community set with the highest relative frequency, unless
the relative frequency is one. A relative frequency of one for a community means
that the head entity h is already complete with respect to the relations from this
community. Possible candidates for missing relations of a head entity h are now
all relations in this community set that the entity h does not already have. In
the case of Table 1, there are three relations missing in C1. In mathematical
terms, this means that, starting from a fixed h and Ci, we check the following
relations as possible candidates for prediction: Rcand = {r | r ∈ R : r ∈ Ci ∧

¬∃t ∈ T : (h, r, t) ∈ G}. For each of these candidates we compute a confidence of
prediction. A confidence gives the user the opportunity to assess the reliability
of the prediction. It also serves to rank the predictions. For the computation of
confidence we have tried different metrics. We first computed the entropy of the
relations. In conducted experiments, it turned out to be an insufficient metric.
One metric that has proven to be very robust is the usage of probable occurrence
of a relation. The confidence for predicting a relation r ∈ Rcand for head entity
h ∈ H is computed as follows:

conf(h, r) = |{hj | hj∈E ∧ ∃t∈T :(hj,r,t)∈G∧∃rk∈R,rk 6=r∃s,t∈T :(hj,rk,s) ∧ (h,rk,t)}|
|{hj | hj∈H∧∃t∈T :(hj,r,t)∈G}|

The above formula for computing the confidence divides the number of head en-
tities that have relation r and share at least one relation with h by the number of
entities that have relation r. We compute for each relation in Rcand its confidence
and use the top-k relations as predictions.

3.3.2 Link Distribution Learning

Based on the insights of the previous section, more precisely on the finding that a
few relations often occur in common, i.e. they correlate, and can thus be grouped
into latent communities, we have taken a closer look at the distribution of the use
of relations of the head entities. When looking at the usage of relations of head
entities, it becomes apparent that similar head entities have a similar distribution
of property usage. In order to illustrate this in more detail, consider the following
multilabel encodings, which describe head entities in terms of their usage of
relations. Next to the first vector, Angela_Merkel, the corresponding relations for
this entry are listed.

3.3 learning latent features for predicting missing relations 32

oAngela_Merkel =

1

1

1

0

0

0

married_to

profession

place_of_birth

alma_mater

painted

notable_work

oHelmut_Schmidt =

1

1

1

1

0

0

oLeonardo_da_Vinci =

0

1

1

0

1

1

Figure 12: Binary Vectors representing entities of the running example.

The above example indicates that similar head entities such as Angela_Merkel
and Helmut_Schmidt also have a similar distribution in the usage of relations. The
assumption is that the relation alma_mater is missing in Angela_Merkel, since this
head entity uses similar relations as Helmut_Schmidt, but the relation alma_mater
is missing. In the case of Leonardo_da_Vinci there is a very different distribution in
the usage of the relations, though this head entity is significantly different from
the two above. Thus, in the case of Leonardo_da_Vinci it is not suspected that the
relation alma_mater is missing for this entity. In the following we would like to
use this characteristic that similar head entities have a similar distribution of the
used relations for our method Link Distribution Learning (LDL) for predicting
missing relations of head entities.

For this, a Restricted Boltzmann Machine (RBM) is used as a basis for determin-
ing the target distribution of the usage of relations of the head entities. RBMs
are energy-based models representing a stochastic neural network with a visible
layer and a hidden layer. Unlike feed-forward networks, RBMs are undirected
neural networks, which attempt to restore an input after compression. A further
difference to regular neural networks is the use of stochastic units in the hidden
layer, in which a distribution function is used in addition to an activation func-
tion. When applying RBMs, the reconstructed input, which corresponds to the
output of the network, should follow the same distribution as the input. Since
the goal of the network is not to reconstruct the input exactly, but to determine
the distribution of the usage of relations, this is not a supervised problem, but
an unsupervised problem. Thus there are no labels available for computing the
error. We will later go into more detail about the description of the model and
the reconstruction of the input, as well as about learning the parameters of the
neural network. But first we have to define a suitable representation of the input
features for the stochastic neural network.

3.3 learning latent features for predicting missing relations 33

Input
As in any neural network, the input for the RBM must be numerical. We define
the input as v an index it with zero (v0) indicating that this is the initial input.
Gibbs Sampling, which is an iterative method for determining a distribution, is
later used when learning the parameters. Therefore, v0 is used to indicate the
initial input to the model. The goal is to use the model for predicting missing
relations for a head entity. A head entity can have the same relation only to dif-
ferent tail entities such as for the relation profession. Therefore, a head entity such
as Angela_Merkel may have two professions with different tail entities according
to their professions. However, we are not interested in predicting the amount
of missing relations to tail entities for a particular head entity and relation, but
rather new unknown relations that are not yet represented in the knowledge
graph. As in our running example we want to predict if alma_mater is a miss-
ing relation of Angela_Merkel, since exactly this relation is not available for the
head entity Angela_Merkel in the knowledge graph. Consequently, we are not in-
terested in finding out whether Angela_Merkel has other profession relations to
other tail entities, since we already know from the knowledge graph that this
entity has at least one profession relation, but finding out new unknown relations.
For the representation of a head entity it is therefore necessary to specify which
relation is used and which is not. For this reason, we use multi-label encoding
for the representation of relations of a head entity. We define the representation
of a head entity as follows.

ó Definition 15: Head Entity Representation

Assume a knowledge graph KG = (H ∪ T ,R). A head entity h ∈ H is repre-
sented as a binary vector, denoted as oh. The length of the vector is defined
by the number of relations in KG: |oh| = |R|. For each relation, the binary
vector oh indicates the presence of a relation for the head entity h.

oh[r] =

1, if r ∈ Rh for head entity h

0, otherwise

Following the above Definition 15, we can represent any head entity as a vector
of its existing relations. Thus we get the binary vectors for the running example,
represented in Figure 12.

Using these vectors as input for the machine learning model, the distribution
function of the used relations can be identified to determine missing relations.
As already described in Definition 15, the length of the vectors is determined
by the number of relations in the knowledge graph. Depending on the number
of existing relations in the knowledge graph the number of dimensions of the
head entities can become very large, which leads to the conclusion that there
might be an increased memory consumption10. However, these are binary vec-
tors, meaning that each entry in the vector can be represented by a single bit.
Overall, the memory consumption is therefore relatively low, even with many

10The knowledge graph DBPedia_2016-10 has about 100,000 relations

3.3 learning latent features for predicting missing relations 34

!(#$|&$)&$

1

1

0

0

0

1

#$&*

0.62

0.62

0.02

0.02

0.02

0.62

0.70

0.25

0.40

1

0

1

married_to

profession

place_of_birth

alma_mater

painted

notable_work

OAngela_Merkel

Figure 13: Left is the input for the head entity Angela_Merkel of the running example.
Based on this input the probability P(h0|v0) to activate the hidden state
is computed. On the right side the hidden state was determined based on
P(h0|v0) and the Bernoulli distribution. Two neurons have been activated,
representing two latent features which are fed back for reconstructing the in-
put. The goal is to make the distribution of the reconstruction equal to that of
the original input.

available relations in knowledge graphs, and can be processed efficiently with
modern computers.

We have defined a meaningful and efficient representation of the head entities,
which is used as input for the machine learning model. In the following we will
introduce the model that is used to determine the target distribution based on
the input in order to predict missing relations.

Model
As described above, a Restricted Boltzmann Machine (RBM) is used as basis for
determining the target distribution. An RBM is an unsupervised machine learn-
ing method, consisting of an input layer and a hidden layer. The number of
neurons in the hidden layer is a positive integer, greater than zero, and can be
arbitrarily defined apart from this restriction. The number of input neurons is
defined by the number of dimensions of the input vector. Unlike common feed-
forward networks, an RBM is not a feed-forward network, but an undirected,
generative stochastic artificial neural network. The two main differences are that
it tries to restore the input, using the same weights to compute the hidden layer,
and using a stochastic distribution function in the hidden layer. The model is
shown in Figure 13 and illustrates the steps in the computations. In the follow-
ing, the individual steps are described in more detail.

Restricted Boltzmann Machines (RBMs) are Energy Based Models which consist
out of one visible layer and one hidden layer. As described above the input is
called v0 and the hidden state is called h0. The indexing indicates in which step
the data is currently in the process of reconstruction. The indexing is essential as
the Gibbs Sampling method is used later for learning the parameters, which is
an iterative process to determine a distribution. Hence, based on the notation, v0

is the initial input and v1 is the input restored from v0. Within Gibbs sampling,

3.3 learning latent features for predicting missing relations 35

v1 itself can be used as an input to further train the model. However, we will
only perform one Gibbs sampling step, since related work suggest that one Gibbs
sampling step is already sufficient for training a model [32]. Later, as we describe
the learning of the parameters, we will discuss the Gibbs sampling technique and
the reasons for using a single Gibbs sampling step. The model does not have an
explicit output layer, since it tries to restore the distribution of the data in an
unsupervised manner.

Energy based probabilistic models use a probability distribution through an
energy function to measure the quality, similar to cost functions of machine learn-
ing models. Having the hidden layer as latent variables to increase the expressive
power of the model, we get the following energy-based probabilistic function
(Gibbs distribution) which denotes that a certain state v can be observed:

P(v) =
1

Z

∑
h

e−E(v,h) (1)

where Z is the sum from all possible states and called the normalizing factor:

Z =
∑
v,h

e−E(v,h) (2)

Having a low energy E(v, h) leads to a high probability, whereas a high energy
translates to a low probability. The goal of the model is to increase the probability
of the energy-based probabilistic function P(v), leading to the goal of minimizing
the energy function E(v, h) to obtain a high probability P(v). The energy function
E(v, h) for an RBM with its input v and hidden state h is the following:

E(v, h) = −vTWh − aTv − bTh (3)

W represents the weight matrix between visible layer and hidden layer. a and
b each represent the bias of the respective layer.

In the first step the multi-label representation of a head entity is used as input
to determine the hidden state h0. Using the input v0 and the parameter W, the
probability of activation of the hidden state h0 is computed as follows, using k
as index for representing the current gibbs sampling step:

P(hk|vk) = σ(Wvk + b) (4)

In this context, σ represents the sigmoid activation function, which is defined
as follows: σ(x) = 1

1+e−x . The sigmoid activation function has the advantage
that its output can be interpreted as probability as the sigmoid activation func-
tion returns results in the range (0, 1). Thus, the output of the sigmoid function,
P(h0|v0), can be interpreted as the probability of a hidden state being activated
based on the input v0. The disadvantage of using the sigmoid activation function
is that the derivation for very large and very small input values is very small,
meaning that when applying the gradient descent method, very small parame-
ter updates may occur. If the input values become very large, there is even the
danger of dying neurons, as the parameters are hardly adjusted to adapt the

3.3 learning latent features for predicting missing relations 36

output of the sigmoid function according to the desired direction given an input.
If the input values are in the range of [−1, 1] this is a negligible problem, as in
this case the sigmoid function has a suitable gradient to adjust the parameters
quickly using the gradient descent method, thus the gradient descent approach
converges quickly and does not run into the problem of dying neurons.

Using the running example as illustration, Figure 13 shows in the left panel
the computed probability to activate the hidden states P(h0|v0), based on the
input v0. The computation is performed as defined in Equation 4. Given the run-
ning example, the model has three neurons in the hidden layer, which obtain
the following probability P(h0|v0) (0.70, 0.25, 0.40)T . Thus the probability that
the first hidden state is activated is 70%, the second hidden state is 25% and
the last hidden state is 40%. Based on the computed probabilities P(h|v), we
sample the values h0 based on a Bernoulli distribution function. In general, the
choice of the distribution function in the hidden layer is arbitrary, but has a great
impact on the result of the model. However, the model presented in this chap-
ter, and thus used for predicting relations in knowledge graphs, uses only the
Bernoulli distribution. This will be relaxed in the next chapter, considering fur-
ther distribution functions for the hidden layer in the model. Using the Bernoulli
distribution function leads to Bernoulli sampling, meaning that values are sam-
pled randomly based on the Bernoulli distribution. The advantage of using the
Bernoulli distribution function is that each sample has the same probability. We
define BernoulliX(P(h0|v0)) as Bernoulli sampling, which samples the hidden
state h0 based on the Bernoulli distribution, the stochastic variable X and the
probabilities P(h0|v0).

BernoulliX(P(h0|v0)) =

0 if P(h0|v0) < X

1 otherwise
(5)

Introducing a stochastic distribution function extends the neurons to stochastic
neurons. The Bernoulli distribution only has the values 0 or 1. The binary values
of the neurons for the hidden states h0 are obtained by sampling from a Bernoulli
distribution BernoulliX using the probability P(h0|v0). A high P(h0|v0) leads to
a high probability of having a positive hidden state h0, whereby a low probabil-
ity leads to a zero output. Thus, as described above, the output of the sigmoid
function P(h0|v0) can be interpreted as probabilities of activating the hidden
state, since the binary vector of the hidden state can either be activated or not
activated, depending on P(h0|v0). Each neuron can be considered as a latent
feature, which is activated once the head entity has a certain combination of rela-
tions. If the combinations of relations of a head entity are not sufficient to result
in a sufficiently high probability of P(h0|v0), then the corresponding neuron in
the hidden state is not activated. The hidden state can, therefore, be interpreted
as an activation of the latent features, based on the input v0, of the hidden layer.
This is illustrated in the right part of the Figure 13 for the running example.
It illustrates the sampling, which determines the hidden states based on the
Bernoulli distribution. A random variable X ∈ [0, 1] is generated for each neuron.
If the probability of the hidden state P(h0|v0) is less than the random variable X,
the neuron is not activated by setting it to the value 0, otherwise it is activated

3.3 learning latent features for predicting missing relations 37

by setting it to the value 1. Using this example it is obvious that the output of
the sigmoid function P(h0|v0) can easily be interpreted as the probability of the
neuron being activated. Based on the vector (0.70, 0.25, 0.40)T and the Bernoulli
distribution the hidden state h0 = (1, 0, 1)T was sampled.

The hidden state h0 describes which latent features of an input v0 are acti-
vated. Based on these latent features the input is reconstructed. When recon-
structing the input, the same weight matrix W is used, but transposed to ensure
the computation due to the dimensions. Following this, the hidden state is multi-
plied by the transposed weight matrix W and added up with a bias b. Afterwards
an activation function is applied, which is a sigmoid activation function in the
presented model. Since the input is a binary vector, and our goal is to reconstruct
the vector, applying a sigmoid function is useful, since its output is in the range
(0, 1) and can be interpreted as probabilities. The output in the visible layer can
be seen as reconstruction or approximation of the original input. The formula
for reconstructing P(v1|h0) is the following:

P(v1|h0) = σ(WTh0 + b) (6)

The reconstruction of the input v0 is denoted as v1 and corresponds to the
computation of P(v0|h0) in Equation 6. The reconstruction v1 describes the prob-
ability that a relation for a head entity should be present. This is determined by
the relations described in the input vector of the head entity v0 and the latent
features in the hidden layer. The target distribution is specified in the model
using the above equations. In Figure 13 the reconstruction v1 in the right part
is exemplarily indicated with (0.62, 0.62, 0.62, 0.02, 0.02, 0.02)T . According to the
interpretation of the output as probabilities there is a 62% likelihood that the
entity Angela_Merkel has the relation married_to. Considering its actual relations,
we see that the entity Angela_Merkel already has the relation married_to. Thus,
the model is not yet fully fitted, since this probability should be much higher.
Therefore, the parameters need to be adjusted in order to achieve a better recon-
struction and thus a better distribution. Based on the reconstruction v1 of the
input v0 the error is now computed and the parameters are adjusted to reduce
the error. We will explain this learning in more detail below.

Learning
In supervised learning procedures, a loss function is used to determine the error
between the prediction and the actual value, and the parameters of the model
are adjusted on the basis of this error. The challenge in the present model is that
it is an unsupervised learning problem, i.e. no labels are available for comput-
ing the error and in particular the input values v0 should not be reconstructed
exactly, but the goal is to learn a target distribution in order to be able to repro-
duce the distribution of the input data. For this reason, we will not use a loss
function such as categorical crossentropy based on the above energy function
E(v0, h0), but rather, due to our unsupervised problem, we will use another loss
function to minimize the error. We are interested in determining the error in the
distribution between the actual and reconstructed input values. The idea is that
we create the reconstructed values using samples from the model distribution.

3.3 learning latent features for predicting missing relations 38

In stochastics, Markov chains [37] are used for an infinite time to ensure sta-
tionarity and thus convergence to the actual distribution. However, this is very
time consuming due to infinite time and therefore not suitable in practice. Coun-
teracting this there is the possibility of contrastive divergence (CD-k), in which
instead of sampling from the RBM distribution, a Gibbs chain for only k steps is
run. Contrastive divergence is an approximation of the log-likelihood gradient
that has been found to be a successful update rule for training RBMs.

The use of Contrastive Divergence (CD) to approximate the gradients has be-
come a standard for training RBMs [31]. CD is based on Gibbs chain in which k
denotes the length of a single sample of the Gibbs chain. It has been shown in the
literature and later in our experiments that Gibbs chain is sufficient to achieve
very good results at k = 1. We will therefore also apply k-step contrastive di-
vergence (CD-k) with k = 1 for learning the parameters of the presented Model.
Using the indexing of the input v and hidden states h introduced above, we can
identify which Gibbs step the model is in. After one iteration of the Gibbs chain,
the error between the distribution of the reconstructed data and the actual dis-
tribution of the input is determined. Based on this error, the parameters of the
model are adjusted to reduce the error. The time complexity of CD is O(n2),
where n is the number of neurons in the hidden layer. This time complexity is
due to the vector multiplication which requires O(n2) and at first appearst to be
a poor complexity, but it is by far better than related work.

As described above, the input to our model is described by v0, the reconstruc-
tion using CD-k with k = 1 and thus the output is denoted as v1 and is computed
by P(v|h). As loss function we use the deviation of the energy function E(v, h)
between the input and its reconstruction. To simplify this expression even fur-
ther we use the log-likelihood. The gradient w.r.t. log-likelihood for one training
sample v0 is then approximated by the following formula [16].

CD(W, v0) = −
∑

h

P(h0|v0)
∂E(v0, h0)

∂W
+
∑

h

P(h0|v1)
∂E(v1, h0)

∂W
(7)

The left part of the equation denotes the actual distribution of the data while
the right part denotes the distribution of the reconstructed input v1, computed
by our Machine Learning model. The difference between these two distributions
should be minimized and is our loss function for our model. Having this loss
function, we can apply learning algorithms, i.e. Gradient Descent and its exten-
sion like e.g. Adam Optimizer [51], for adapting the parameters in the model.
The basic equation for adapting a parameter W using the Gradient Descent Ap-
proach is the following:

W = W −α∆W (8)

⇔W = W −α
∂CD(W, v0)

∂W
(9)

3.3 learning latent features for predicting missing relations 39

Computed Model after Learning

!(#$|&$)&$

1

1

0

0

0

1

#$&*

0.96

0.97

0.89

0.02

0.02

0.96

0.70

0.25

0.40

1

0

1

married_to

profession

place_of_birth

alma_mater

painted

notable_work

OAngela_Merkel

Figure 14: Left is the input for a the head entity Angela_Merkel of our running example.
Based on this, the probability P(h0|v0) to activate the hidden state is com-
puted. On the right side the hidden state was determined based on P(h0|v0)

and a Bernoulli distribution. The hidden state is fed back to reconstruct the in-
put. The reconstruction v1 corresponds to the distribution of relations based
on the input and is used to predict missing relations.

Based on the Gradient Descent Approach and the Equation 8 we get the fol-
lowing updates of the parameters:

∆W = P(h0 = 1|v0) · v0 − P(h0 = 1|v1) · v1 (10)

∆a = v0 − v1 (11)

∆b = P(h0 = 1|v0) − P(h0 = 1|v1) (12)

We use mini-batch with Adam Optimizer [51] to update the parameters. The
parameters converge so that the distribution of the reconstructions v1 corre-
sponds to the distribution of the input v0.

Repeating the learning for a large number of iterations minimizes the error.
Based on the learning method, the parameters of the model are adjusted in such
a way that the distribution of the reconstructed input converges to the distri-
bution of the input. Figure 14 shows the trained model and the reconstruction
of the input. Based on many head entities and their distribution on using the
relations and several iterations, the reconstructed input from the head entity
Angela_Merkel is as follows: (0.96, 0.97, 0.96, 0.89, 0.02, 0.14)T . The distribution of
this reconstruction corresponds to the distribution of the head entities, which use
similar relations as the head entity Angela_Merkel. Based on this reconstruction,
we will show below how we predict missing relations in the knowledge graph
for a given head entity.

3.4 experimental study 40

Predictions
The reconstruction of the input is used to predict missing relations of a head
entity. Since the reconstruction v1 follows the distribution of the use of relations
in a knowledge graph the assumption is that variations from it are based on
missing relations. We therefore use for a given head entity its reconstruction v1

for predicting missing relations of the head entity. Therefore, the input v0 is pro-
cessed according to the equations described above to obtain the reconstruction
v1. As a result of using the sigmoid function in the visible layer, the reconstruc-
tion, v1, can be interpreted as probabilities for the presence of relations. Based
on the reconstruction of a head entity and the reconstruction of its used relations,
we exclude all already known relations in the prediction, since we are only in-
terested in the unknown relations. The remaining relations can then be sorted
according to the probability P(v1|h0) to obtain, for example, the relation with the
highest probability. According to the example in Figure 14 we get a probability
of 89% that the relation alma_mater for the head entity Angela_Merkel is missing.

3.4 experimental study

In the following we will evaluate our two introduced approaches with respect to
their effectiveness in predicting missing properties on twelve knowledge graphs.
The evaluation is based on well-known metrics, which are commonly used in
related work. By using known metrics of related work, we enable the compara-
bility of our method. After the presentation of the experimental setup we will
present the results. Based on the results, we will then critically evaluate the two
introduced methods in a discussion.

3.4.1 Experimental Setup

Datasets. We use twelve knowledge graphs for the evaluation of our methods,
containing information from different domains. Among them are FB15k which
is a subgraph of Freebase [19] and contains cross-domain knowledge, and WN18

which is a knowledge graph based on WordNet [76]. Both were introduced in
2013 by Bordes et al. [20]. However, in both of these datasets a large test leakage
was found due to inverse relations in the datasets. Thereby, a large part of the
triples of the test set can be generated correctly by inverting the triples from
the training dataset. Therefore Toutanova et al. introduced the dataset FB15k-
237 [113], representing a subgraph of FB15k in which inverse relations have
been removed. Similar to Toutanova et al, Dettmers et al. introduced the graph
WN18RR, which contains 11 relations, no pair of which is reciprocal. These four
datasets are frequently used in related work to evaluate link prediction methods,
and are therefore also used in this study in order to enable greater compara-
bility with related work. In recent years the non-bias datasets FB15k-237 and
WN18RR have been used in particular. In addition to these records, we have ex-
tracted subgraphs from DBpedia (DBp) [9] and Wikidata (WD) [117] which do
not contain cross-domain knowledge, but information on specific topics. These
subgraphs contain facts about entities in the classes Person (Pers), Company
(Comp), Movie (Mov) and Songs. For each knowledge graph, the splitting into

3.4 experimental study 41

Table 2: Overview of the knowledge graphs and the experimental configurations. At the
top of the table is a summary of the characteristics and at the bottom of the table
are the parameters used to compute the communities for the CRP approach.

Metric FB15k FB15k-237 WN18 WN18RR Pers(DBp) Pers(WD) Comp(DBp) Comp(WD) Mov(DBp) Mov(WD) Songs(DBp) Songs(WD)

#Entities 14,951 14,541 40,943 40,943 229,613 190,419 63,545 10,925 231,637 287,775 39,619 126,606

#Relations 1,345 237 18 11 2,239 1,509 1,189 304 959 382 332 321

#Train 483,142 272,115 141,442 86,835 313,296 229,059 142,887 12,103 396,834 390,295 95,833 184,542

#Valid 50,000 17,535 5,000 3,034 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000

#Test 59,071 20,466 5,000 3,134 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000

minbond 0.1 0.1 0 0 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1

minutility 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

training, validation and test data is already available. By the variation of dif-
ferent topics like cross-domain knowledge but also specific facts of individual
classes we get a good insight into our methods how they perform on different
knowledge graphs. An overview of the knowledge graph is given in Table 2.

Metrics. Following related link prediction models on knowledge graphs [20, 115],
we use Hits@k (with k = 1, 3, and 10) as evaluation metric. Hits@k measures the
proportion of correct relations in top-k ranked relations.

Silver Standards. We call the test dataset silver standard, as the test sets may
suffer from incompleteness originated in the KG, thus, creating spurious false
positives. In other words, a prediction may be correct but the relations might
be missing in the KG and hence in the test set. This is a common problem in
link prediction methods under the OWA. Therefore, evaluating a link prediction
method using a silver standard is very common under OWA. We will discuss in
detail the predictions of missing relations for individual knowledge graphs in
the experiments and explain the reasons for which some predictions make sense
but are classified as false due to the silver standard and, therefore, reduce the
performance with respect to the evaluation metric.

Baselines. We compare our approaches Community-based Property Prediction (CRP)
and Link Distribution Learning (LDL) with well-known state-of-the-art models in
Link Prediction on Knowledge Graphs. We chose TransE [20], as it was one of
the first methods to transform entities and relations into low-dimensional vector
spaces and use them to predict missing entities and relations. Additionally, this
method scales very well to large datasets. Besides TransE we use ComplEx [115]
as another baseline method. This method extends TransE by using the complex
number and can therefore represent symmetry/antisymmetry relations better
than TransE. In both methods subject as well as object entity information are
used to predict missing relations. The comparison with the presented methods
is therefore not quite possible, but we still want to compare them to see how well
our methods perform compared to methods that have full information. For the
reason of insufficient comparability, we have also decided not to introduce any
more recently published work as a baseline.

Preprocessing. For the DBpedia and Wikidata subgraphs, we removed regularly
appearing relations for all head entities, e.g., wikiPageID, wikiPageRevisionID, and

3.4 experimental study 42

P31.11 We removed them for making predictions more challenging by deleting
regularly occurring relations. Otherwise, our approach would have and increase
in performance, because if such regularly appearing relations are missing, then
it would be an easy guess.

Implementation. We implemented our method in Python3. We performed hy-
perparameter tuning on the validation dataset. The hyperparameter settings for
CRP can be found in Table 2. For LDL, we chose for each dataset a learning rate
α = 0.01 and 1, 000 iterations. We used for all datasets 50 hidden units for LDL,
except for WN18 and WN18RR in which the number of hidden units was set to
2. The experiments were performed on a server with Intel(R) Xeon(R) Gold 6142

CPU@ 2.60GHz, 32 physical cores and 188GB RAM.

3.4.2 Performance Analysis

We will first discuss the performance of our methods compared to the baseline
models using the metric Hits@k. The results of the methods are shown in Table 3.
While comparing the performance of the different methods, the first thing to no-
tice is the lack of a definitive winner. Depending on the dataset and metrics, dif-
ferent methods perform better or worse. Both CRP and LDL on the cross-domain
knowledge graphs FB15k-237 and FB15k do not perform as well as the baseline
methods on Hits@1 and Hits@3. The reason for the low performance of CRP is
the large impact of community size on the Hits@k metric. We will look at this
impact in more detail later. Considering Hits@10, LDL performs much better on
these two datasets than CRP. Considering the knowledge graph WN18RR, we see
that LDL performs better than the baseline methods, but only from Hits@3 on-
wards, while at Hits@1 the performance of both models, LDL and CRP, does not
match the performance of ComplEx. We will discuss this later in detail and show
that the predictions at Hits@1 are very good, but are classified as false due to the
silver standard, causing the Hits@k metric to suffer, which is particularly notice-
able for the metric Hits@1. However, it should be noted that our models only use
the head information to predict missing relations while the baseline models use
both head entity and tail entity information to predict missing relations. Con-
sidering this fact, the achieved results are remarkable. Considering Hits@3, we
see an improved performance, especially of LDL, compared to Hits@1 across all
datasets. In general, one can see a significant performance increase of both meth-
ods between Hits@1 and Hits@3. This performance increase is much stronger
for our methods than for the baseline methods. This increase in performance is
particularly noticeable between Hits@3 and Hits@10, and especially noticeable
for LDL, so that LDL performs better on most knowledge graphs with respect to
the metric Hits@10 than the other methods. This is especially remarkable when
considering that this method only uses information about the head entity, but
no tail information as with TransE and ComplEx. Both of our methods perform
very well on several DBpedia and Wikidata subgraphs, such as Pers(DBp), and
can exceed the baseline methods, but cannot exceed the baseline models on the

11These are DBpedia- and Wikipedia-specific relations to denote information about the
Wikipedia page and the class of an entity, respectively.

3.4 experimental study 43

Table 3: Comparison of our approach with state-of-the-art algorithms. Our approaches
(LDL and CRP) uses the head entity to predict missing relations. The compared
methods uses head and tail entity to predict missing relations.

Hits@1 Hits@3 Hits@10

KG LDL CRP TransE ComplEx LDL CRP TransE ComplEx LDL CRP TransE ComplEx

FB15k-237 0.268 0.237 0.666 0.699 0.577 0.231 0.764 0.878 0.827 0.285 0.841 0.947

FB15k 0.181 0.389 0.667 0.519 0.427 0.473 0.885 0.800 0.772 0.698 0.974 0.940

WN18RR 0.655 0.484 0.220 0.716 0.838 0.518 0.447 0.833 1.000 0.678 0.966 0.979

WN18 0.645 0.561 0.924 0.945 0.812 0.650 0.974 0.986 0.946 0.900 0.997 0.995

Pers(DBp) 0.475 0.438 0.085 0.085 0.622 0.490 0.149 0.233 0.782 0.655 0.246 0.292

Pers(WD) 0.270 0.253 0.328 0.273 0.468 0.254 0.431 0.468 0.663 0.367 0.517 0.618

Comp(DBp) 0.309 0.275 0.185 0.319 0.595 0.345 0.326 0.699 0.832 0.580 0.452 0.780

Comp(WD) 0.415 0.635 0.483 0.008 0.600 0.647 0.603 0.017 0.776 0.674 0.692 0.058

Mov(DBp) 0.244 0.393 0.453 0.106 0.494 0.615 0.515 0.222 0.847 0.900 0.582 0.347

Mov(WD) 0.373 0.471 0.383 0.205 0.662 0.567 0.450 0.424 0.879 0.833 0.527 0.553

Songs(DBp) 0.349 0.398 0.444 0.409 0.696 0.498 0.898 0.736 0.924 0.811 0.980 0.887

Songs(WD) 0.296 0.488 0.788 0.203 0.542 0.654 0.941 0.359 0.819 0.825 0.986 0.452

Table 4: Overview of the structure of determined communities for the studied KGs.
Metric FB15k FB15k-237 WN18 WN18RR Pers(DBp) Pers(WD) Comp(DBp) Comp(WD) Mov(DBp) Mov(WD) Songs(DBp) Songs(WD)

Relations 86.47% 86.08% 100% 100% 72.53% 84.84% 78.47% 71.38% 51.02% 37.07% 77.27% 44.59%

Communities 110 24 3 2 244 76 77 28 104 31 29 31

mean Com. 10.57 8.5 6 5.5 6.52 16.58 12.12 7.75 4.55 4.48 8.21 4.52

std. Com. 15.49 9.165 4 0.707 16.9 44.83 39.53 10.30 4.32 8.60 10.28 4.68

max Com. 71 30 10 6 213 313 313 47 40 44 39 24

min Com. 2 2 2 5 2 2 2 2 2 2 2 2

cross-domain knowledge graph FB15k-237 and FB15k. However, having in mind
the lack of information they use, their performance with respect to the metric
Hits@k is remarkable.

Comparing LDL and CRP directly, it is noticeable that for Hits@3 and Hits@10

the performance of LDL is generally better than CRP. LDL can generally pre-
dict missing relations of head entities with respect to the metrics Hits@3 and
Hits@10 very precisely. Especially in the non-biased knowledge graph FB15k-
237, LDL performs much better than CRP and has a significant advantage in
cross-domain knowledge by computing the distribution function. Considering
the performance of both methods with respect to the metric Hits@1, it is remark-
able that CRP often performs better than LDL among the different knowledge
graphs. Thus, the predictions are much more precise than those of LDL when
using only one relation. While LDL performs better at Hits@3 and Hits@10 in
most knowledge graphs, CRP manages to outperform LDL when considering
the metric Hits@1. The reason for the different efficiency at Hits@k depends on
two factors. First, the efficiency depends on the determined communities of CRP,
and second, on the impact of the Open World Assumption. We will first look
individually at the influences of those factors regarding the effectiveness of the
methods separately and then combine the gained insights.

In the following we will first focus on CRP, which predicts missing relations on
the basis of communities. In order to analyze the impact of the communities on
the performance, Table 4 shows aggregated information about the determined
communities of the individual knowledge graphs.

3.4 experimental study 44

Table 5: Examples of some communities of the FB15k and the relations they contain.
The exemplary communities illustrate the latent associations among the KG
relations.

Community Relations

Com 18 nominated_for, honored_for, award_nominee

Com 23 writing_system, language_family

Com 25 symptom_of, diseases, causes, risk_factors

Com 31 writer, producer, artists, distributor, location

Com 39 current_club, players, gender, position

Com 55 institution, major_field_of_study, specialization

Com 79 noble_person, noble_rank

Com 108 rank, military_person

Com 109 producer, program

We first consider the cross-domain knowledge graph FB15k. CRP performs
better than LDL but cannot keep up with the performance of the baseline meth-
ods. A total of 110 communities were determined on this knowledge graph and
the determined communities are certainly reasonable. In Table 5 an extract of the
determined communities is shown to get a better impression of them.

3.4.3 Impact of the Community Structure

As can be seen, the grouping is certainly reasonable, meaning that similar or
related relations have been grouped into the same community. The coverage
of relations is very high, 86.47%, as shown in Table 4. However, CRP does not
perform as well as the baseline methods. One reason for this is the size of the
determined communities, which at an average of 10.57 relations per community,
is too high to allow an efficient prediction of missing relations when considering
Hits@k. The number of possible relations per community is too high to make an
efficient prediction. Considering the metrics in Table 4 again, we also see that the
standard deviation of the communities is very high at 15.49, resulting in a large
variance in the size of the communities. Thus, there are some communities that
contain many relations in the present knowledge graph, and some communities
with only very few relations. This large discrepancy in the different sizes of the
communities is due to the cross-domain knowledge in the knowledge graph,
causing this high standard deviation. This effect is due to the fact that some top-
ics in the knowledge graph are covered with more relations than other topics.
As the communities represent the latent subject areas in the knowledge graph, a
high standard deviation occurs. Following the CRP approach, once a community
has been selected for predicting missing relations, the high average size of the
communities results in a large number of possible relations, leading to a poor
performance with respect to Hits@k. The communities should therefore contain
fewer relations in order to make a more precise prediction and thereby improve

3.4 experimental study 45

the performance of CRP with respect to Hits@k. Considering another knowledge
graph with a high average size of communities like Pers(WD), the hypothesis is
confirmed that a large average community size has a negative impact on the
performance of CRP with respect to Hits@k. Pers(WD) has an average number
of relations per community of 16.58, and has a much higher standard deviation
than FB15k, namely 44.83, making the performance of CRP with Hits@1 of 0.253
not satisfactory either. Even with increasing k there is only an insignificant in-
crease in performance with respect to Hits@k, meaning that CRP cannot keep up
with the other methods. Considering instead a knowledge graph on which CRP
has determined communities with only a small average number of relations, we
see that the performance with respect to Hits@k is improved to the previuos
considered knowledge graphs. Regarding the knowledge graph Mov(WD), CRP
has computed an average number of relations per community of 4.48 and with a
standard deviation of 8.60. Considering the performance with respect to Hits@k,
CRP was always better than the baseline methods, only being outperformed
in Hits@3 and Hits@10 by LDL. Likewise with Mov(DBp), the positive impact
of a small average size of the communities and standard deviation on the per-
formance of Hits@k can be seen. Here, however, CRP can only outperform the
baseline methods with increasing k and perform better with respect to Hits@k.
Likewise when considering the knowledge graph Songs(WD) the average num-
ber of relations per community and the standard deviation of the communities is
low, however, the performance is not better than expected and not better than the
baseline methods. Nevertheless, we see in Table 4 that the coverage of relations
is very low at 44.59% and therefore relations in the test dataset are not present in
the prediction. The reason for this low coverage is due to the pre-processing of
the data in the Highly-Correlated Relationsets step (cf. Definition 12) in which
itemsets are calculated. A large number of itemsets were determined, resulting
in excessive memory consumption. Therefore we increased the minbond value,
although this leads to many missing relations in the test set. However, if suffi-
cient resources are available, it is recommended to reduce the minbond value,
so that there is a higher coverage of relations in this knowledge graph. The low
coverage of relations with only 44.57% has a negative impact on the performance
of predicting missing relations, thus TransE could not be outperformed. Consid-
ering the low coverage of relations, the performance with respect to Hits@k is
still satisfactory and better than ComplEx. We can state that the processing steps,
such as the computation of itemsets and communities, have a strong impact on
the performance of CRP with respect to Hits@k. A small average size of com-
munities and a low standard deviation has a positive impact on the efficiency
of learning the model. Whereas a large average size of the communities and a
high standard deviation has a negative impact on the efficiency of CRP, as does a
low coverage of the relations. Thus, CRP generally has a worse initial situation on
cross-domain knowledge graphs, as different topics are usually represented with
a varying number of relations. This results in CRP communities with a high stan-
dard deviation regarding the number of relations per community, which leads to
a worse performance with respect to Hits@k. Therefore, much more effort must
be put into the computation of the communities to keep the number of relations
and standard deviation of the communities low. We will discuss future work to

3.4 experimental study 46

improve the method in more detail in the section 3.5. One of the possible tasks
is to put more effort into the computation of the communities and to keep them
small, even when applying CRP on cross-domain knowledge graphs.

3.4.4 Impact of the Knowledge Graph Topology

Comparing the results of LDL among the different knowledge graphs, a large
discrepancy in the achieved performance can be seen. LDL achieved only 0.772
on the knowledge graph FB15k with respect to metric Hits@10 and thus has a
lower performance than the baseline methods, but achieved a Hits@10 of 0.879
on the knowledge graph Mov(WD) and thus a much better performance than
the baseline methods. In the following we want to discuss the difference in per-
formance across the knowledge graphs and explain the reasons for the different
efficiency of LDL on the knowledge graphs.

There are two factors affecting the performance of LDL, which is on the one
hand the density of the usage of the relations for which LDL determines a target
distribution and on the other hand the impact of the Open World Assumption
on the predictions. We will have a closer look at the latter of the two in the next
section and focus now on the density of the usage of the relations. As explained
in Section 3.3, LDL generates a head-relation graph encoding the use of relations
for each head entity. The density of this graph reflects the actual usage of rela-
tions compared to the potential usage of relations. The higher the density, the
more relations the head entities use. The density of the Head-Relation Graph
is an indicator of LDL’s performance, as when many interactions of relations
exist, the more LDL can use them to compute a target distribution. Thereby no
complete graph, i.e. a Head-Relation Graph where every head entity uses ev-
ery relation, but only a critical number of interactions between a head entity
and relations has to be reached, thus making it sufficient to learn a target dis-
tribution. Therefore the density for each knowledge graph is shown in Table 6.
When considering the knowledge graph Song(WD) in Table 6, the knowledge
graph has a density of 0.222e−3, which is much lower than the other knowledge
graphs. Having this low density in mind and considering the achieved result
with respect to Hits@10 on this knowledge graph, we see that the performance
with 0.819 is lower than the performance on other knowledge graphs. The per-
formance of LDL on the knowledge graph Songs(WD) is particularly worse than
the performance of CRP, which is surprising, as LDL is usually better than CRP
with increasing k in Hits@k. Nevertheless, LDL is not able to determine a mean-
ingful target distribution on the knowledge graph to achieve a high performance
with respect to Hits@k. The reason is the low density of the head-relation graph,
indicating that for some head entities only very few relations are used, thus not
enough information is available to determine a meaningful target distribution. A
similar result is obtained on the knowledge graph Mov(DBp), which also has a
low density. Although LDL is able to outperform the baseline methods, it is not
able to determine a meaningful target distribution due to the low density, lead-
ing to a Hits@10 of 0.847 and thus a worse performance than CRP. In contrast,
the density of the knowledge graph Comp(DBp) in Table 6 is with a density of
2.641e− 3 very high compared to the other knowledge graphs. Its performance

3.4 experimental study 47

Table 6: Density of the Head-Relation Graphs for the knowledge graphs considered.
Metric FB15k FB15k-237 WN18 WN18RR Pers(DBp) Pers(WD) Comp(DBp) Comp(WD) Mov(DBp) Mov(WD) Songs(DBp) Songs(WD)

Density 1.112e-3 0.946e-3 0.104e-3 0.079e-3 0.146e-3 4.884e-3 2.641e-3 0.634e-3 0.163e-3 9.493e-3 4.986e-3 0.222e-3

is, compared to the other methods with a Hits@10 of 0.832, much better than
the other methods. However, when considering this knowledge graph and the
different Hits@k metrics, it is apparent that LDL does not perform as well as
the baseline models with respect to the Hits@1 and Hits@3 metrics, despite the
higher density. Similarly, the knowledge graph Songs(DBp), which has a density
of 4, 986e− 3, is much higher than the other knowledge graphs. The achieved
result of LDL with a Hits@10 of 0.924 on Songs(DBp) is as well very good and
confirms the hypothesis that a high density generally leads to a better result,
but LDL is outperformed on this knowledge graph by TransE. Nevertheless, the
performance is remarkable, considering that only head-relation information was
used to predict missing relations. However, even on this knowledge graph LDL
does not perform as well as the baseline models with respect to the metrics
Hits@1 and Hits@3. For completeness we want to mention the knowledge graph
Mov(WD) with a density of 9.493e − 3, which has a high density as well, but
LDL does not perform as well as on other knowledge graphs with respect to the
metrics Hits@1 and Hits@3. The performance of LDL on Mov(WD) is better than
the other methods with respect to Hits@10, but with 0.879 less than expected, al-
though there is a high density for this knowledge graph. We can thus state that
the density of the head-relation graph has an impact on the effectiveness of learn-
ing a target-distribution of relations and thus on the performance of LDL with
respect to Hits@k, but there are some knowledge graphs where this conclusion
is not entirely valid. The performance of LDL with respect to Hits@k is gener-
ally worse than the other methods with a small k, and only with increasing k
does LDL achieve better performance. The question remains why LDL performs
worse than expected with respect to Hits@k with a small k and why, despite
a high density of the head-relation graph, the performance of LDL sometimes
deviates from the expectation, as in the case of Pers(WD), which only achieved a
Hits@10 of 0.663 despite a high density of 4.884e−3. Thus, there must be another
factor affecting the effectiveness of LDL. Based on the conducted experiments it
turned out that this influencing factor does not only affect LDL, but also CRP.
This influencing factor is due to the Open World Assumption and the resulting
limitation of the evaluation by means of a silver standard. This will be discussed
in more detail in the following.

3.4.5 Impact of the Open World Assumption

A significant impact on the efficiency of the two introduced methods is the Open
World Assumption and the resulting silver standard, which may be incomplete.
Thus, relations may be predicted to be missing, but due to the incomplete facts
of the silver standard, these may be evaluated to be wrong, although they may
still be correct. We refer to those cases in which a predicted relation for a given
head entity is mistakenly considered to be false as spurious false positives. We

3.4 experimental study 48

Table 7: Samples of spurious false positives across all considered knowledge graphs.

Dataset Head Entity Actual Relation LDL CRP

FB15k-237 The Matrix Reloaded nominated for film festivals award winner

FB15k Marshall time zones county time zones

WN18RR Fugaciousness synset domain topic of member meronym derivationally related form

WN18 Fugaciousness synset domain topic of member meronym derivationally related form

Pers(DBp) Deven Marrero bats throws throws

Pers(WD) Jiajing Emperor of Ming cell line military rank given name

Comp(DBp) Zubaan Books distribution headquarters foundation

Comp(WD) Google China headquarters location named after headquarters location

Mov(DBp) The Naked Gun language basedOn basedOn

Mov(WD) Harry Potter and the Cham-
ber of Secrets

executive producer screenwriter screenwriter

Songs(DBp) All Summer Long (The Beach
Boys song)

recorded released released

Songs(WD) Calling You language of work or name lyrics by follows

can manually identify these cases and include them in our metrics accordingly,
however, this is an extremely time-consuming process that would not be appro-
priate given the large number of knowledge graphs. We will therefore present a
few examples below to indicate that the actual performance of CRP and LDL is
much better than previously presented, but cannot be presented due to the Open
World Assumption and the lack of a suitable evaluation option. This aspect of
the incompleteness of the KGs must be considered while evaluating the results.
Consider the movie The_Naked_Gun in the Mov(DBp) dataset. We predicted with
CRP among others basedOn as missing relation for this head entity. According to
our silver standard, this prediction is considered to be a false positive because
this head entity does not contain a basedOn relation in the KG, therefore, it is not
part of the Silver Standard. However, assuming complete knowledge about the
film, the prediction of our approach would be correct, because the film is based
on the american television comedy Police Squad!. Similar cases of spurious false
positives are encountered in other KGs, e.g. Pers(DBp). For example, the head
entity Deven_Marrero describes an american professional baseball player. Both of
our approaches predicted throws as missing relation. Again, this prediction was
considered a false positive, as there is no throws relation for the head entity De-
ven_Marrero in the original KG. However, we can confirm that this information is
indeed missing, because this baseball player actually throws baseballs with his
right hand. Likewise, relations for other entities e.g. Dave_Dictor is missing. Our
approaches predicted instrument as missing relation, while it is known that this
entity is an american musician which plays the guitar.

Cases of spurious false positives occur across all knowledge graphs, not only
on the above mentioned ones, but also, for example, on the cross-domain knowl-
edge graphs FB15k and FB15k-237. In the case of the knowledge graph FB15k-
237, the relation film_festivals was predicted for the head entity The_Matrix_Reloaded
by LDL as missing relation. However, the entity does not use the relation film_festivals
in the test data set, although the film was premiered at the Cannes International
Film Festival and, therefore, this relation would have been reasonable. Table 7

shows samples for each knowledge graph of spurious false positives for both
methods. The above examples illustrate the problems involved in evaluating KG

3.5 summary and future work 49

completeness. Although in some cases the predictions are correct, the evalua-
tion classifies them as wrong because the information is not available in the KG.
Due to the incompleteness of the KGs, the actual effectiveness of the predic-
tions cannot be assessed with absolute certainty. Assuming that all information
is available to us, the performance will increase, because more information tends
to improve the results. Consider Hits@10 for a head entity. More information in
the test dataset cannot lead to changing the predictions made for the head entity.
A correct prediction will be a correct prediction since KG ⊆ KG∗ (with KG∗, the
complete version of KG). However, a previously false prediction may turn into
a correct prediction, as more information may cause this information not to be
available in KG.

The above examples indicate that Open World Assumption has a huge im-
pact on the measured effectiveness of both LDL and CRP methods. We have
shown that the predictions of both methods are useful in many cases, but due
to the limitations of the silver standard it is difficult to measure the actual ef-
fectiveness. A more detailed analysis of the effectiveness of the methods, which
reduces the limitations of the Open World Assumption, would go beyond the
scope of this work, hence we decided against it. Nevertheless, despite the Open
World Assumption, the effectiveness of our methods is competitive with those
of the baseline models. Both methods performed in general well with respect to
Hits@k, especially with increasing k. LDL generally performed better than CRP,
especially with increasing k. One reason for this is the fact that with increasing
k the impact of the Open World Assumption decreases, since more relations are
proposed as missing relations. As k increases, the effect of the spurious false pos-
itive decreases, causing the first relation proposed, which should be obviously
correct, but is classified as false, to be offset by the other proposed relations. In
other words, with increasing k the metric Hits@k increases, while the impact of
the Open World Assumption decreases and the effectiveness according to Hits@k
of our methods increases.

3.5 summary and future work

In this chapter we have addressed the problem of predicting missing relations
in knowledge graphs which are represented under the Open World Assumption.
For this purpose, two different methods for predicting relations in knowledge
graphs were introduced, both based on machine learning methods. First, CRP

was introduced, which first identifies correlating relations and represents them
as a graph. Then, based on this graph, a clustering method is applied to the
graph to determine latent groups of relations, which are then used for the pre-
diction of missing relations. We showed in the experiments that the clusters
contain coherent relations, even in cross-domain knowledge graphs like FB15k.
In the experiments, this method achieved satisfying results despite the assump-
tion of an Open World Assumption, but has the disadvantage, due to the itemset
mining, of having a much worse runtime than the baseline methods. In addition,
the experiments showed that the determined communities have a great impact
on the performance of this method. If the communities consist of too many rela-
tions, their latent representation becomes blurred, since too many relations with

3.5 summary and future work 50

different semantics are assigned to one community, and the efficiency of CRP
is reduced. The number of relations per community should therefore be low to
ensure high performance. Later we will discuss this in more detail and give an
outlook on how this issue can be addressed in the future.

Although the results of CRP could keep up with the baseline methods in many
knowledge graphs despite the Open World Assumption, yet not on cross-domain
knowledge graphs, we wanted to improve the performance even further. Due to
the latent communities we have identified that the usage of relations for the
head entities follow a certain distribution. Based on this finding, we introduced
an unsupervised stochastic neural network, which computes a target distribu-
tion based on the usage of relations in the knowledge graph. Using this target
distribution and the previously used relations for a given head entity, the proba-
bility of using further relations for head entities can be computed. The basis for
this method, called LDL, was a Restricted Boltzmann Machine. We have adapted
the model to handle these with the characteristics of a knowledge graph. We eval-
uated LDL on the same twelve knowledge graphs as CRP and its performance
was more than satisfying, in many cases even outperforming baseline methods
that use more information for predicting missing relations. When analyzing the
results in detail, we noticed that the density of the head-relation graph, i.e. the
graph indicating which relations are used by which head entities, has a great
impact on the performance. As a consequence, when head entities are described
by very few relations, LDL cannot learn a meaningful target distribution. How-
ever, we also found that despite a high density, LDL performs poorly on some
knowledge graphs, and in general, when using the metric Hits@k, is generally
better than CRP only with higher k. It has been shown that due to the limitation
of the evaluation by means of a silver standard, due to the Open World Assump-
tion, CRP, as well as LDL, predicted relations, which are quite useful and could
actually be considered to be correct, but the information was not available in
the test dataset and was therefore classified as incorrect. As a result, the perfor-
mance of Hits@k is generally lower, which is especially noticeable with small k,
since with higher k and thus more proposed missing relations, this disadvantage
balances itself out to a certain extent. Nevertheless, these spurious false positives
have a huge impact on the measured performance of CRP and LDL, making it
difficult to accurately determine the actual efficiency of both methods. We will
later discuss in more detail how we can address this problem in the future.

The hypothesis made at the beginning and the research questions derived
from it are answered on the basis of the methods introduced in this chapter and
the insights from the experiments in the following.

3.5 summary and future work 51

◎ Answering Research Questions

Hypothesis: Link distribution learning is suitable for predicting missing
properties in knowledge graphs which are represented under the Open
World Assumption.

1.1 What is the effectiveness on learning KG features for link prediction
of stochastic factorization models, in contrast to rule mining methods.

Answ. Stochastic factorization models are generally more effective in pre-
dicting missing relations than rule mining methods.

1.2 What are the characteristics of knowledge graphs that allow learning
models to effectively learn the distribution of links?

Answ. Important characteristics of the stochastic factorisation model are
the sufficient use of relations to generate a dense head-relation graph.
Similarly, in the case of rule mining methods, relations should be
used frequently and grouped in smaller communities.

1.3 What is the impact of following the Open World Assumption on the
effectiveness of the studied methods?

Answ. The performance of the methods is generally reported to be lower
than it actually is. Due to the OWA, a comprehensive study of the
effectiveness cannot be guaranteed.

Based on the insights gained from the experiments, some of the topics of this
work can be studied more closely in the future. On the one hand, we have shown
the impact of the number of relations in the determined communities on the
performance of CRP, which demonstrates the possibility to go into more detail
and improve CRP with respect to the computation of communities. The cur-
rently used method to determine the communities, Fastgreedy, determines the
number of communities itself, which has the advantage that no domain knowl-
edge is needed for determining the communities. The disadvantage, however,
is that communities with different sizes are then determined. Using a commu-
nity algorithm with a fixed number of communities could counteract this effect,
allowing a larger number of communities to be specified, which leads to fewer
relations per community. As the experiments have shown, this would have a pos-
itive impact on the performance of CRP with respect to Hits@k. A disadvantage
resulting from this is a further hyperparameter, namely the specification of the
number of communities, which has to be tuned depending on the knowledge
graph. Thus, domain knowledge is required or a validation dataset on which the
number of communities for the knowledge graph can be tuned. This would add
further complexity and effort to the application of CRP. Resolving this tension
must be solved individually. Besides the use of a suitable community clustering
algorithm, the question of using another itemset mining algorithm arises. We
chose FCHM because of its good runtime and bonding value. In general, the item-
set mining has only a minor impact on the performance, since it only filters out
noisy relations. However, having a complexity of O(2n) the runtime of FCHM is

3.5 summary and future work 52

very complex. Within FCHM, combinations of relations which do not correlate
are pruned at an early stage, but the worst-case complexity of O(2n) remains.
In general, FCHM is already a powerful method, but further research could be
done to develop an itemset mining method which has a better performance re-
garding the determination of itemsets. The experiments also showed that the
comparison with the baseline methods, which follow the Closed World Assump-
tion, is only possible to a very limited extent due to the silver standard used.
There were cases of spurious false predictions, i.e. supposedly wrong predicted
relations which, on closer examination, turned out to be correct predictions, but
were classified as false due to the incompleteness of the silver standard. These
cases occurred during the evaluation of both methods presented. We showed
that the performance of the metric Hits@k was reduced due to this and that a
meaningful comparison between our methods and the baseline methods is thus
not given. This problem should be addressed in the future to evaluate methods
based on an Open World Assumption in order to determine their actual per-
formance more precisely. Using full text from the web and NLP methods, the
predicted relations of the methods can be validated to check if they match the
extracted information from full text from the web. Again, this does not represent
complete information, but is an extension of the knowledge already available,
allowing the performance of methods following an Open World Assumption to
be examined more precisely. A challenge is to use appropriate NLP methods
that validate a fact with high certainty. This method should scale, considering
the amount of information available on the web, allowing a fact to be validated
quickly based on the large amount of information available.

Considering the excellent performance of both methods, especially of LDL, re-
garding the prediction of missing relations in a knowledge graph, it would be
interesting to investigate these methods in more detail to what extent they are
suitable for the prediction of missing relations on other graph structured data.
In this way these methods could be applied generally to graphs or even hyper-
graphs to predict missing links. In the next chapter, we will partially address this
by modifying the LDL method presented in this chapter to such an extent that
it can be used for the prediction of missing interactions in bipartite networks.
We chose LDL for its outstanding performance and better runtime complexity.
As will be shown in the experiments in the next chapter, LDL can be applied to
complex bipartite networks and outperform the existing and very strong base-
line methods in the prediction of missing interactions.

4
L I N K P R E D I C T I O N O N B I PA RT I T E N E T W O R K S

4.1 introduction

Bipartite networks are ubiquitous data structures, used to model relationships
between two types of entities. This data structure has become an important foun-
dation to represent interactions between users and items in recommender sys-
tems [57], users connected to subjects in social networks [21], and interactions
between drugs and targets in bioinformatics [124]. One major difference of bi-
partite networks, compared to knowledge graphs, is the different structure and
characteristics. For a common understanding of bipartite networks, we define
them in the following.

ó Definition 16: Bipartite Network

A bipartite network BN = ((V1,V2),E) is a Network G = (V ,E), whereby
V1 ∩ V2 = ∅, and for every edge (v1, v2) ∈ E: v1 ∈ V1 and v2 ∈ V2. This
results in the following properties:

1. The two different sets of nodes, V1 and V2 have no common elements,
are therefore disjoint (V1 ∩ V2 = ∅), and when combined, result in all
nodes.

2. Edges only connect nodes of different sets. Within the node sets, V1

and V2, no edges connect the nodes.

The above definition already shows the major differences between knowledge
graphs and bipartite networks. A major difference to knowledge graphs is the
absence of labelled edges in the bipartite networks we are considering. Thus, all
edges have the same meaning. Another difference is that only edges between
the two sets of nodes are possible. Both results in a lower complexity of bipar-
tite networks compared to knowledge graphs. The lower complexity makes the
problem of predicting missing links seem simpler, but in fact the prediction can
be more difficult as the missing semantics in the relationships between nodes in
bipartite networks are not represented. This may result in our model not having
enough information to learn a function that allows precise predictions of miss-
ing links. As a result, the risk of a possible underfitting is increased. We want to
extend the problem a little bit further and focus this work on a special type of
bipartite networks, namely complex bipartite networks. Bipartite networks used
to model real-world applications are typically called complex.

53

4.1 introduction 54

The analysis of complex bipartite networks includes node clustering [13], node
classification [7] and link prediction [57]. The link prediction task is in bioinfor-
matics of special interest toward the identification and development of new uses
of existing or discontinued drugs since drug development is currently time con-
suming and expensive.12

In recent years, network embeddings are often trained for encoding the nodes
of a network into a low-dimensional space whilst preserving the graph structure.
Based on the trained embeddings, machine learning techniques are applied to
perform network analysis, such as link prediction. These methods have demon-
strated good performance but vary significantly based on the settings of their
hyperparameters and dataset on which they are applied [58]. For instance, the
length of the random walks of DeepWalk [95] or of node2vec [42] has a signif-
icant impact on the learned embeddings and the subsequent machine learning
tasks. In addition, most of the methods for link prediction are evaluated on con-
nected networks, e.g., AttentionWalk [3] and node2vec [42]. The performance of
these methods, however, also varies significantly depending on the topology of
the networks. This may lead to unsatisfactory results when applying these meth-
ods to complex bipartite networks, since these networks might consist of many
components. We want to address these existing limitations and create a method
that predicts missing links in complex bipartite networks, even if the network
is disconnected. Instead of relying on random walk methods, as existing work
does, we want to develop a method based on stochastic factorization. The goal
of our stochastic factorization model is to compute a target distribution over the
interactions of complex bipartite networks and use this distribution to predict
missing links. Our hypothesis is that a stochastic factorization model can learn
the distribution of interactions of nodes in a bipartite network, which can be
used to predict missing links in the bipartite networks, achieving a high perfor-
mance regarding predicting missing interaction. Therefore, we want to analyse
the effectiveness of a factorization model for the prediction of missing links in
complex bipartite networks, even if the complex bipartite networks are discon-
nected. In particular, we want to compare the performance to existing work and
highlight differences with respect to various metrics and requirements. Thereby
we want to develop a deeper understanding of the results and their causes in
order to expand our model in the future and adapt it to different requirements.
Furthermore, we want to investigate the impact of the characteristics of bipar-
tite networks on the performance of the stochastic factorization model. We are
interested in the network properties, such as graph density and the number
of components, which might have an impact on the performance of our model.
Based on this information, we are able to estimate the performance of our model,
even before it is applied. This allows for determining the area of application and
characteristics of bipartite networks in which the stochastic factorization model
achieves good performance. Finally, we want to analyse the impact of different
hyperparameters, especially the impact of the distribution function in the hid-
den layer, on the performance of the stochastic factorization model. We expect to
derive a recommendation for the choice of hyperparameters based on the find-

12It typically takes more than 10 years and more than 1 billion dollars [28]

4.1 introduction 55

ings of this analysis. The hypothesis we make, including the research questions
based on it, is formulated in Research Question 2.

2 Research Question 2

Hypothesis: A stochastic factorization model is able to learn the distribution
of links, even in disconnected bipartite networks.

2.1 How effective are stochastic factorization models in link prediction,
even in disconnected bipartite networks?

2.2 What are the characteristics of bipartite networks that allow stochastic
factorization models to effectively learn the distribution of links?

2.3 What is the impact of the hyperparameters, especially the distribution
function in the stochastic unit, on the evaluation measurements?

4.1.1 Structure of the Chapter

The structure of this chapter is similar to the previous chapter. In the following
Section 4.1.2, we will introduce the problem in more detail using a motivating
example. The motivating example is in the following sections used to explain
the procedure of our method based on a practical example, making it easier to
comprehend the procedure. In the following section, Section 4.2, related work
in the context of Link Prediction, and thus our work, will be presented. We
will discuss the existing work and distinguish the existing methods from our
own. The focus is not exclusively on methods for predicting missing links in
bipartite networks. We will broaden the focus to gain insights from existing
work on related problems in order to take them into account in our approach, if
applicable. In Section 4.3 we present our method for predicting missing links in
complex bipartite networks. The motivating example from Section 4.1.2 is used
to illustrate the method and make it more comprehensible. In several subsections,
details about the individual aspects of our method is given, such as the input to
our model, how the parameters are learned, and how the predictions are made.
In the following section we will conduct experimental studies. These studies are
designed to support us in answering the research questions. We will discuss the
effectiveness of our method and compare it with other strong baseline methods.
Furthermore, we will explain which characteristics complex bipartite networks
need to have in order to guarantee a high effectiveness of our method. Based
on these experiments we can then answer the research questions, posed in the
introduction, in Section 4.5. We thereby will summarize the presented work and,
based on the findings from the experiments, give an outlook to future work.

4.1.2 Motivating Example

As already introduced, complex bipartite networks model interactions of real-
world applications, such as in social networks or in bioinformatics to model
the relationships between drugs and targets, i.e. the drugs and the diseases for

4.1 introduction 56

CID000000444

CID000002156

1131
CID000002370

1132

1128

1129

1133

4160

Drugs Targets

Figure 15: Running example using a subgraph of the complex bipartite network ChG-
Miner. We are interested in predicting missing interactions, such as between
CID000002370 and 1131.

which they are used. In our running example, we would like to focus on the
latter, while clearly emphasizing that our method is applicable to all bipartite
networks, and not exclusively to complex bipartite networks in bioinformatics.
As already discussed in Definition 16, the nodes of a bipartite network can be
divided into two disjoint subsets and there can only be interactions between the
nodes of these two sets, but not between nodes of the same set. Looking at the
issue of drug-target interactions, we find that this exactly reflects the definition
of a bipartite network. There are exactly two sets of nodes, the drugs and the
targets. Each node of the network can therefore be assigned to exactly one set,
the set of drugs or the set of targets. Likewise, there are no interactions between
the nodes in a node set, meaning that a drug does not interact with another
drug, but only with a target. Based on this scenario and the Definition 16 we can
model the drug-target interactions as a bipartite network. We have modeled this
as an example of a subgraph of the ChG-Miner dataset from Stanford SNAP in
Figure 15.

Based on the bipartite network shown in Figure 15, we want to predict miss-
ing interactions in the network. A possible missing interaction is shown as a
red arrow in Figure 15. We want to predict if there should be an interaction be-
tween Drug CID000002370 and Target 1131. This would generally allow us to
identify drugs that can be applied to new targets and, thus, increase the pace of
identifying new treatments. We formulate the motivation in the following.

4.2 related work 57

÷ Motivation : Link Prediction on Bipartite Networks

Based on a bipartite network BN = ((V1,V2),E), a function f(ni,nj) should
be learned, which indicates the likelihood of an interaction between a node
pair n1 ∈ V1 and nj ∈ V2. This function is intended to predict missing
interactions in the bipartite network BN.

Based on Figure 15 node2vec could be applied, which allows for transform-
ing the nodes into a low-dimensional space whilst preserving the distribution
of interactions. Based on these embeddings, a machine learning model such as
logistic regression can be trained to predict whether an interaction between two
nodes exists or not. However, node2vec is a transductive methods, meaning that
if a new node is added to the network, the model must be retrained to embed
and learn from the new node. This is very time-consuming when using node2vec
which we would like to avoid. In addition, we would prefer not to train a down-
stream machine learning model such as Logistic Regression. Our goal is to build
an end-to-end pipeline that predicts missing interactions without extensive pre-
processing and downstream processing. Hence, our goal is to implement a func-
tion f(ni,nj) which computes the probability of an interaction between nodes
ni and nj in a bipartite network. This function may be learned on the basis of
existing interactions of the bipartite network using machine learning methods.
With the help of such a function on a bipartite network, as shown in Figure 15,
previously unknown interactions between drugs and targets can be predicted.
This is of particular interest for bioinformatics in order to apply existing drugs
to a wider range of diseases beyond the intended use of the drugs for their treat-
ment. This reduces the time-to-market for the treatment of diseases, as described
above, as existing drugs can be reused instead of developing new drugs which
have to undergo very long tests. In addition, the costs for the market launch are
reduced as research and development costs are omitted.

4.2 related work

Our work focuses on link prediction in complex bipartite networks. In contrast
to existing work, we learn a target distribution over the bipartite network interac-
tions allowing to predict unknown links. BiNe [39] is a method which is also fo-
cused on bipartite networks. BiNE learns low-dimensional node representations
for bipartite networks, based on explicit and implicit relations. Explicit relations
are modeled by using the KL-divergence to minimize the co-occurring probabil-
ity between nodes and the reconstructed distribution. Implicit relations are mod-
eled by using a Skip-gram model [74]. Both relations models are combined by a
joint optimization framework. Interaction Graph Embedding (IGE) [132] allows
for encoding nodes of bipartite attributed interaction graphs. Thus, temporal
events in interaction graphs and heterogeneous attributes on edges are encoded
in the embeddings. There is also the possibility to leverage the hierarchical struc-
ture of bipartite networks for recommending items based on communities in
the network [56]. Previous works in the biomedical domain on the prediction
of interactions in bipartite networks have focused on similarity metrics based

4.2 related work 58

on similar relationships (Weighted profile method) or similar chemical composi-
tions (Nearest profile method) [124]. In other works, these additional attributes
were used to learn features using auto-encoders [119]. We do not consider the lat-
ter method since we assume that additional attributes, i.e. chemical composition
of nodes, is not available to us.

We use a Restricted Boltzmann Machine (RBM) to learn a target distribution
over the bipartite network interactions allowing to predict unknown links. RBMs
have been applied in the past especially for dimensionality reduction [46], learn-
ing and reconstructing sparse representations of the input [100] and collaborative
filtering [15]. Although first attempts were made to apply (Conditional) RBMs
to predict different types of interactions in bipartite networks [121], they differ
significantly in the encoding of the bipartite network as input, as well as in the
encoding of the information in the hidden states. In a previous work [121], the
input and hidden states were represented as multidimensional matrices. The
results look promising, even though the method has only been evaluated on
very small bipartite networks. We will evaluate our approach on a larger num-
ber of complex bipartite networks, considering only bipartite networks with the
same type of interactions. An extension of RBMs, the so-called Deep Belief Net-
works (DBNs), which are stacked RBMs, were used in social networks to pre-
dict missing links [60]. However, due to the increased complexity of the DBNs,
more data must be available to train the network sufficiently. Bipartite networks
usually have a lower number of interactions between nodes. Therefore, DBNs
probably cannot be trained sufficiently to achieve good performance.

Besides the above mentioned related work for link prediction with special
focus on bipartite networks, there are many methods for link predictions on net-
works in general, also applicable on bipartite networks. Many of these method
focus on learning a low-dimensional node representation. Node2Vec [42] and
DeepWalk [95] are very prominent methods that use random walks as sampling
strategy. The learning of the embeddings is done using the Skip-gram model [74].
However, these methods are, due to the random walk approach not robust in
terms of the connectivity of the input network. Methods that rely on a random
walk approach usually perform poor when having disconnected networks as
input. Due to the fact that our method is not based on a random walk strat-
egy, we hope to achieve better results, particularly in the case of disconnected
networks. In addition, transductive methods like e.g. node2vec [42] and Deep-
Walk [95], meaning that if a new node is added to the network, the model must
be retrained to embed and learn from the new node, GraphSage [44] is an in-
ductive framework that leverages features from a nodeâs local neighborhood
to efficiently generate representations on previously unseen data. We use an in-
ductive method as well, so that our model once learned can also be used for
considering new nodes. In order to overcome the manually tuning of hyperpa-
rameters (e.g. length of random walks or number of walks) for every network,
AttentionWalk [3] allows for automatically learn the hyperparameters via back-
propagation. This is especially useful with a large number of hyperparameters,
such as in node2vec. Compared to existing link prediction methods, our method
uses only a small number of hyperparameters, so that automatic learning seems
unnecessary in our opinion. Community structure based methods leverages the

4.3 learning probability link distribution for link prediction 59

organizational structures and functional components of networks to learn em-
beddings [63, 120]. NetMF [98] is a factorization model that explicitly factorize
the closed-form matrices, which is implicitly approximated by DeepWalk [95]
and LINE [111]. Besides these topological methods, there are probabilistic meth-
ods that estimate the joint co-occurrence probability of two nodes. Hierarchical
Bayesian model [118] captures high-dimensional node attributes and link struc-
tures with layers of latent variables. Variational Graph Auto-Encoders (VAEs) [52]
are end-to-end trainable neural network models for unsupervised learning on
graph-structured data. The model achieves competitive results on link prediction
task, but cannot keep up with state-of-the-art methods. Compared to our model,
VAE assume a Gaussian distribution. Generative Adversarial Networks (GANs)
allow for learning node distributions and capture, based on the relation-aware
design, the rich semantics of the relations. [47]. In order to explicitly model edges
in a network, a representation of edges can be learned via a low-Rank projec-
tion [2]. Diffusion-based representations [8] allows for a latent representation of
the graph-structured data which can be used for link prediction. In addition,
such an approach is very runtime efficient. For more details on network repre-
sentation learning and link prediction, please refer to survey papers [40, 129].

4.3 learning probability link distribution for link prediction

Due to the success of LDL in predicting missing relations in knowledge graphs
(see Chapter 3), we use this model as the basis for predicting missing links in
complex bipartite networks, even if they are disconnected. However, LDL cannot
be applied directly to bipartite networks, but must be adapted for application to
complex bipartite networks. Since there are differences between bipartite net-
works and knowledge graphs, such as no labelled edges between nodes, and
characteristic features of bipartite networks, such as the fact that connections are
only possible between nodes of different types, we have to take into account for
an appropriate application of LDL to complex bipartite networks. In the follow-
ing sections we will discuss and explain the individual components of the model.
This includes the input of the model, the model itself, the learning of the param-
eters, and how our model preforms the predictions using the learnt parameters.
The motivating example from section 4.1.2 will be used as a running example to
explain the different components with a practical example. We will follow the
running example from creating the input for the model, through the learning of
the parameters, to the prediction of missing edges.

4.3.1 Input

The input of the model is based on a numerical representation. Since a distribu-
tion of the interactions of the nodes in the bipartite network is to be determined
in order to make predictions with their help, it must additionally contain the
interactions of each individual node. Bipartite networks have the special charac-
teristic of allowing the set of nodes to be divided into two disjoint subsets, so
that only connections between nodes of these two sets are valid, but no connec-
tions between nodes within a subset. This can be exploited when defining the

4.3 learning probability link distribution for link prediction 60

input to the model for reducing the number of nodes considered, and thus the
complexity. However, if statements are made using this model about all nodes,
then the bipartite network structure cannot be exploited to reduce complexity. In
the following both possible definitions for the input of the model are presented
and advantages and disadvantages are discussed. Depending on the application
scenario it is recommended to choose the appropriate input. Regardless of which
of the two model input definitions presented below is chosen, the method pre-
sented can handle it. The fundamental difference lies in the number of nodes
to be considered and thus the number of dimensions for the model as input
features. In the following we define the input to our model, which exploits the
characteristic feature of bipartite networks, namely that there are only edges
between two different types of nodes, for reducing the complexity of the input.

ó Definition 17: Model Input

The model input is a bipartite network BN = ((V1,V2),E), where V1 and
V2 corresponds to nodes and E to links. Based on BN, our approach builds
a vector v for a given node ni ∈ V1, such that v[j] is 1 if (ni,nj) ∈ E with
nj ∈ V2, and 0 otherwise.

In the above Definition 17, depending on the application scenario, it has to
be decided whether to consider the interactions starting from V1 or V2 and use
them to compute the distribution function. For example, to determine missing
edges in V1 starting from node ni ∈ V1, it is recommended to define the input
according to this node set. In this case, however, only the target distribution for
this node set is determined and, based on this, only statements regarding this
node set can be made. Focusing the analysis on a specific node set results in the
number of dimensions of the vector v corresponding to the number of nodes of
the considered node set. In our running example, we can define the drugs as
node set V1 and the targets as node set V2. Assuming we only want to make
statements about the interactions of the Drug nodes, i.e., V1 node set, the vec-
tors v would have six dimensions, as defined above, since we have six nodes in
the target node set (see Figure 15). If we consider the target, V2, the number of
dimensions of the vectors v would be three, since there are three nodes in the
drug node set. This reduction in the number of nodes to be considered has the
advantage of lower complexity and thus faster computation, since the number of
parameters in the Stochastic Neural Network is lower due to the reduced dimen-
sions of the input vectors. However, the reduced complexity also has an impact
on the expressivity of the model, as now not all nodes are considered. Due to the
reduced complexity, we can only make statements for a limited number of nodes,
corresponding to the number of nodes in the set considered. There is therefore
a trade-off between a lower complexity of the model and thus a faster computa-
tion, and the expressive power of the model. For this reason, in the following we
define the input to our model in the case that statements are to be made about
all nodes of the bipartite network.

4.3 learning probability link distribution for link prediction 61

ó Definition 18: Model Input - Complex

The model input is a bipartite network BN = ((V1,V2),E), where V1 and V2

corresponds to nodes and E to links. We denote V = V1 ∪ V2. Based on BN,
we build a vector v for a given node ni ∈ V , such that v[j] is 1 if (ni,nj) ∈ E
with nj ∈ V , and 0 otherwise.

It is important to note that the Definition 18 is generally applicable to net-
works, and not only to bipartite networks. However, the focus of this study is
on bipartite networks, although networks in general could be considered using
this definition. The Definition 18 has the advantage that all nodes are considered
and thus statements about all nodes of the network can be made, however, the
number of parameters to be learned and thus the complexity, due to the higher
number of dimensions of the input, increases. We would like to explain this in
the following using our running example. We consider the node set Drug (V1),
Target (V2) and the total node set (V = V1 ∪ V2) and look at the number of pa-
rameters to be learned and thus the complexity. The input to the model is the
number of dimensions of the input vector and a bias value. Therefore, the num-
ber of parameters, assuming |h| neurons in the hidden layer is (|v|+ 1) · |h|. If we
assume that the final model consists of two neurons in the hidden layer (|h| = 2),
then the number of parameters to be learned corresponds to (|v|+ 1) · 2 This re-
sults in the following number of parameters for the running example according
to the number of input features.

• Considering V1: (6+ 1) · 2 = 14 parameters

• Considering V2: (3+ 1) · 2 = 8 parameters

• Considering V : (9+ 1) · 2 = 20 parameters

The above example demonstrates clearly that a larger number of nodes in the
target set increases the number of parameters and thus the complexity of the
model. The trade-off between a lower complexity of the model and thus a faster
computation, and the expressivity of the model, must be solved individually
depending on the application and the problem to be addressed. In the case of
making statements only about a certain number of nodes or in the case of a
risk of overfitting and hence the complexity of the model should be reduced, we
recommend generating the input for the model according to the simple Defini-
tion 17. If our model is used to make statements about all nodes, we recommend
generating the input for the model according to the more complex Definition 18.
In the following, we will use the more complex definition of the input to ensure
greater expressiveness of the model.

In the two definitions above, nodes are represented by a binary vector. This
binary vector represents whether a link to another node exists or not. This type
of representation is a very simple, but also a very common one in the field
of networks. Due to the characteristics of the bipartite network, namely that
there are no semantic relations, no node can have two edges to the same node.
Therefore, the entries of a vector at the positions representing the corresponding

4.3 learning probability link distribution for link prediction 62

nodes nj of the other set can have a maximum value of one, since there can be
at most one edge from node ni ∈ V1 to another node nj ∈ V2. We will show
later in Chapter 5 how to use the model to learn a representation of the nodes
that implicitly encodes the semantic relationship between nodes and thus has a
significant advantage over the currently used binary representation.

4.3.2 Model

Restricted Boltzmann Machines (RBMs) belong to the energy based models which
consist out of one visible layer and one hidden layer. The input for the visible
layer is denoted as v and the result of the hidden layer denoted as h. There
is no explicit output layer, since the model tries to reconstruct the input and
uses the reconstructed data as output. Energy based probabilistic models use
a probability distribution through an energy function to measure the quality,
similar to cost functions of machine learning models. Having the hidden layer
as latent variables to increase the expressive power of the model, we get the
following energy-based probabilistic function (Gibbs distribution) which denotes
that a certain state v can be observed.

P(v) =
1

Z

∑
h

e−E(v,h) (13)

where Z is the sum from all possible states and called the normalizing factor:

Z =
∑
v,h

e−E(v,h) (14)

Having a low energy E(v, h) leads to a high probability, whereas a high en-
ergy translates to a low probability. The goal of the method is to increase the
probability of the energy-based probabilistic function P(v). Therefore the energy
function E(v, h) must be minimal to get a high probability P(v). The energy func-
tion E(v, h) for an RBM with its input v and hidden state h is the following.

E(v, h) = −vTWh − aTv − bTh (15)

W represents the weight matrix between visible layer and hidden layer. a and
b each represent the bias of the respective layer.

The first step in the computation of the hidden states h is similarly to a Feed-
Forward Neural Network. We compute the probability of the hidden state, based
on an input v as following.

P(h|v) = σ(Wv + b) (16)

σ is the sigmoid activation function denoted by σ(x) = 1
1+e−x . The sigmoid ac-

tivation function projects the weighted sum of the input into the range (0, 1). The
output of the sigmoid function, P(h|v), can be interpreted as the probability of a
hidden state being activated. Considering the running example in Figure 16, the
node CID000002370 is converted to a binary vector according to the Definition 17,
then P(h|v) is computed. These values can be interpreted as probabilities, which,

4.3 learning probability link distribution for link prediction 63

CID000000444

CID000002156

1131
CID000002370

1132

1128

1129

1133

4160

!"#$%%%%%&'(% =

*(,-|/-)/-

Drugs Targets

1

1

1

1

0

0 3!"#$%%%%%&'(% =

,-/4

0.56

0.56

0.56

0.56

0.01

0.04

0.80

0.24

0.92

1

0

1

Figure 16: Computation of the output of the model, based on an input and using the
Bernoulli distribution in the hidden layer.

based on the distribution function applied below, indicate the probability of a
neuron being activated. According to the running example, there is an 80% prob-
ability that the first neuron in the hidden layer will be activated. Accordingly,
the second neuron has a 24% probability of being activated. The determination
of the activation of a neuron depends on the distribution function. Based on the
computed probabilities P(h|v), we sample the values h based on a given distri-
bution function. The choice of the distribution function is arbitrary, but it has a
significant impact on the result, as will be shown later in the experiments. In the
following, FX(x) will be an arbitrary but fixed distribution function which will
be used to sample the hidden states and X is a real random variable

h ∼ FX(P(h|v)) (17)

Introducing a stochastic distribution function extends the neurons to stochastic
neurons. The binary values of the neurons for the hidden states h are obtained
by sampling from a distribution function FX using the probability P(h|v). A high
P(h|v) leads to a high probability of having a positive hidden state h, whereby
a low probability leads to a zero output. For instance, the Bernoulli distribution
can be selected as a distribution function. This distribution only assumes the
values 0 or 1. The Bernoulli distribution for our model is defined as follows.

BernoulliX(P(h|v)) =

0 if P(h|v) < X

1 otherwise
(18)

In the running example in Figure 16 the Bernoulli distribution was applied to
determine the hidden states. For this purpose, a random variable X ∈ [0, 1] is
generated for each neuron, if the probability of the hidden state P(h|v) is less
than the random variable X, the neuron will not be activated by setting it to
the value 0, otherwise it will be activated by setting it to the value 1. Using this
example, the output of the sigmoid function P(h|v) can easily be interpreted as
the probability of the neuron being activated. In our running example, we used
the Bernoulli distribution as a distribution function, sampling the hidden state

4.3 learning probability link distribution for link prediction 64

!(#)

!(%)

!(&)
'(() ! + +) ℎ- ' (.- + +

.-
(#)

.-
(%)

.-
(&)

ℎ-~01(2) ℎ-
2 ℎ- = 1|.-⋮ ⋮

Regular Neural Network Unit Stochastic Neural Network Unit

Figure 17: Comparison between a regular unit and a stochastic unit. The difference is in
the application of a distribution function after applying an activation function
on the weighted input.

h based on the vector (0.80, 0.24, 0.92)T and the Bernoulli distribution. In the
current example, we have used the Bernoulli distribution, but other distribution
functions such as the Gaussian or Beta distribution can be used to compute the
hidden state h as well.

Both units are compared in Figure 17 for a better understanding of a stochastic
unit and its differentiation from regular units of a neural network.

On the left in Figure 17, a regular unit is shown. It computes the weighted sum
using the input x and the parameters W. Afterwards an activation function σ is
applied and this result is passed on to the next layer. A stochastic unit is an ex-
tension of the regular unit by applying additionally a distribution function. First
the weighted sum of the input v is computed using the parameters W and an
activation function σ is applied. The activation function σ in the stochastic neural
network unit is always a sigmoid function in the considered model. Afterwards
the hidden state h is calculated using the distribution function FX. This value h
is then passed on to the next layer. The hidden state h is used to reconstruct the
input data v in an unsupervised way, by using h as input and backwarded in the
neural network. The hidden state h is multiplied with the same weight matrix
W as it was computed and a bias value b added. Finally, the sigmoid activation
function is applied. Since the input is a binary vector, and our goal is to recon-
struct the distirbution of the inpu vector, applying a sigmoid function is useful,
since its output is in the range (0, 1) and can be interpreted as probabilities. The
output in the visible layer can be seen as reconstruction or approximation of the
original input. The formula for the reconstruction P(v|h) is the following.

P(v|h) = σ(WTh + b) (19)

We index the input, reconstruction and hidden state since the reconstruction
itself can be used as input to reconstruct them again. We denote v0 as initial
input, according to the Definition 18, h0 is the hidden state based on v0, and v1 is
the reconstruction of v0 based on h0. The reconstruction v1 can be used as input
for reconstructing it again. The result of this reconstruction would be denoted as

4.3 learning probability link distribution for link prediction 65

v2. As this indicates, this is a Gibbs sampling process, which will later be used
to learn the parameters. However, the Gibbs sampling process is run once, so the
reconstruction v1 is not used as input for another step in the process. In contrast
to the hidden layer, there is no distribution function applied in the visible layer.
The right plot in the running example in Figure 16 shows the reconstruction of
the input v0, based on the hidden state h0. The reconstruction can be interpreted
as the likelihood that a connection between the input node represented by v0 and
the edge v[j] exists. Considering the running example, there is a 56% probability
that an edge exists between Drug CID000002370 and target 1128. In contrast,
according to the reconstruction v1, there is a 1% probability that there is an edge
between Drug CID000002370 and target 4160. Based on the input v0 and the
associated reconstruction by our model v1, the parameters W, a and b must now
be adapted to improve the reconstruction. We will go into this in more detail
below and show how the learning of the parameter is done.

4.3.3 Learning

In typical supervised machine learning problems, a loss function is used to cal-
culate the error between expected and predicted values. Based on this error, the
parameters of the neural network are adjusted to minimize the error. This is re-
ferred to as learning in machine learning methods. However, the problem is that
no labels are available, hence the error between the expected and the predicted
values cannot be calculated. Furthermore, we are not interested in predicting
the exact edges of the bipartite network, i.e. we do not want to restore the ex-
act binary input vector, but rather learn a function that reflects the distribution
of interactions in the bipartite network. For this reason, we will not use a loss
function such as Categorical Cross-entropy based on the above energy function
E(v, h), but rather, due to the unsupervised problem, we will use another loss
function to minimize the error. The idea is to use a function that represents the
error of the distributions between the actual and reconstructed interactions of
the bipartite network.

The aim is to create the reconstructed values using samples from the model
distribution. In stochastics there is the possibility to run Markov chains for an
infinite time to ensure stationarity and thus a convergence to the actual distri-
bution. However, due to infinite time, it is a very complex procedure and not
suitable in practice. To counteract this there is the possibility of contrastive diver-
gence (CD-k), in which instead of sampling from the RBM distribution, a Gibbs
chain is run for only k steps. Contrastive divergence is an approximation of the
log-likelihood gradient that has been found to be a successful update rule for
training RBMs. Approximating the gradients using CD learning has become a
standard way to train RBMs [31]. k denotes how often gibbs chain is performed
for a single sample. In related work, as well as in our experiments, it has been
demonstrated that k = 1 is sufficient for a good performance. Therefore, we use
k-step contrastive divergence (CD-k) with k = 1 for learning the parameters of
the RBM. Using a single iteration, k = 1, we will determine the error between
the actual distribution and the distribution of our model using CD and adapt

4.3 learning probability link distribution for link prediction 66

the parameters based on this error. Using CD to learn the parameters, the time
complexity is in O(n2), where n is the number of neurons in the hidden layer h.

The input of the RBM is denoted as v0 (initially v0 = v), the reconstruction and
thus the output is denoted as v1 and is computed by P(v|h). The gradient w.r.t.
log-likelihood for one training pattern v0 is then approximated by the following
formula[16].

CD(W, v0) = −
∑

h

P(h0|v0)
∂E(v0, h0)

∂W︸ ︷︷ ︸
actual distribution

+
∑

h

P(h0|v1)
∂E(v1, h0)

∂W︸ ︷︷ ︸
computed distribution

(20)

The difference between these two distributions should be minimized and is
this our loss function for our model. Having this loss function, we can apply
learning algorithms, i.e. Gradient Descent and its extension like e.g. Adam Op-
timizer [51], for adapting the parameters in the model. The basic equation for
adapting a parameter W using the Gradient Descent Approach is the following.

W = W −α∆W

⇔W = W −α
∂CD(W, v0)

∂W

(21)

Based on the Gradient Descent Approach and the equation in 20 we get the
following updates of the parameters:

∆W = P(h0 = 1|v0) · v0 − P(h0 = 1|v1) · v1 (22)

∆a = v0 − v1 (23)

∆b = P(h0 = 1|v0) − P(h0 = 1|v1) (24)

We use mini-batch with Adam Optimizer [51] to update the parameters. The
parameters converge so that the distribution of the reconstructions v1 corre-
sponds to the distribution of the input v0. Repeating the learning for a large
number of iterations converges the error CD(W, v0). After applying 1,000 itera-
tions on the running example, the output of the reconstruction of the binary in-
put vector of node CID000002156 is the following (0.96, 0.97, 0.79, 0.98, 0.99, 0.04),
shown in Figure 18. Based on this output, we will show below how we predict
the missing interactions in the bipartite network.

4.3.4 Predictions

We predict missing links for a given node based on the reconstruction of a node’s
link distribution in the network. The input into our model is a binary vector
representing the links of an entity to the target nodes in the complex bipartite

4.4 experimental study 67

CID000000444

CID000002156

1131
CID000002370

1132

1128

1129

1133

4160

!"#$%%%%%&'(% =

*(,-|/-)/-

Drugs Targets

1

1

1

1

0

0 3!"#$%%%%%&'(% =

,-/4

0.96

0.97

0.98

0.99

0.04

0.79

0.68

0.12

0.93

1

0

1

Figure 18: Computation of the output of the model, based on an input and the Bernoulli
distribution in the hidden layer.

network (see Figure 18), denoted as v0. Based on the binary vector and a distri-
bution function in the hidden layer, we compute the hidden states in the hidden
layer (see Equations 25 and 26), denoted as h0. The hidden states are fed back
into the RBM to reconstruct the input data (Equation 27). The output, denoted as
v1, can be interpreted as probability of the node’s likelihood of having a link to
the entity of the other set. We exclude already known links in v1, when predict-
ing new connections. Considering the running example, we already know about
interactions from node CID000002156 to other nodes in the network. These exist-
ing interactions are excluded from predictions and we take, from the other pos-
sible interactions, those with a probability higher than 0.5, since the likelihood
is closer to a possible interaction than that there is no interaction. Following the
example from Figure 18, we get a likelihood of 79% of a missing link between
nodes CID000002370 and 1131, thus an interaction between the two nodes will
be predicted.

4.4 experimental study

In the following we will evaluate our approach with respect to its efficiency on
eight bipartite networks. The evaluation is based on well-known metrics, which
are commonly used in related work. By using known metrics of related work, we
enable the comparability of our method. After the presentation of the experimen-
tal setup we will present the results. Based on the results, we will then critically
evaluate our method in a discussion.

4.4.1 Experimental Setup

Datasets. We use eight well-known complex bipartite networks from the biomed-
ical domain: ChG-ID, ChG-Miner, ChG-TD, ChSe-D, DCh-Miner, DF-Miner, DG-
AM, DG-Miner. While our approach is not domain specific, we have chosen this
domain due to the large number of available networks. The networks differ in
their graph structure, such as number of nodes, number of interactions and den-
sity distribution of the interactions of the nodes. An overview of the bipartite

4.4 experimental study 68

Table 8: Overview of the bipartite networks on which the experiments were conducted.

Metric ChG-ID ChG-Miner ChG-TD ChSe-D DCh-Miner DF-Miner DG-AM DG-Miner

#Entities V1 1,774 5,018 284 639 5,535 4,294 519 5,664

#Entities V2 7795 2325 3648 10,184 1,662 16,255 7,294 17,822

#Interactions 131,034 15,139 18,690 174,977 466,656 802,760 21,357 15,509,619

networks is given in Table 13. All datasets are available online13. When split-
ting the data, we use for each conducted experiment a different random seed,
but used the same seeds for the available datasets. Thereby, we guarantee that
the splits differ in each experiment, but the same data for training and testing
is applied to each method. We tested the methods under the assumption of a
connected network as well as under the assumption of a network with several
components.

Metrics. Following related link prediction models, we use Area-under-Curve
(AUC) and Precision-Recall-Curve (PR) as evaluation metric. We conducted each
experiment ten times and report on the average results.

Baselines. We compare our approach Link Distribution Learning (LDL) with cur-
rent state-of-the-art models in Link Prediction. The models include strong base-
lines, e.g., AttentionWalk (AW) [3]. The selection of the models was based on
their focus on biparite networks (e.g. BiNE [39]), excellent performance and nov-
elty, e.g., node2vec (N2V) [42] and VAE [52]. In addition, we studied popular
heuristics: Jaccard Coefficient (JC) [48] and preferential attachment (PA) [79].

Implementation. We implemented our method in Python3. We did not perform
any hyperparameter tuning on the datasets. We used the same hyperparameter
setting on each bipartite network. We chose a learning rate α = 0.01 with a
hidden layer size of 100 and 1, 000 iterations. The experiments were performed
on a server with Intel(R) Xeon(R) Gold 6142 CPU@ 2.60GHz, 32 physical cores
and 188GB RAM.

4.4.2 Area Under the ROC Curve (AUC)

We study the performance of the studied approaches on connected networks as
well as on disconnected networks, in which the links were randomly removed so
that the network falls apart into several components. The bipartite network DG-
Miner already consists of three components. There is no split for the network
DF-Miner which allows to remove 30% or more edges of the network so that the
network still remains connected. Therefore we did not evaluate AUC Connected
Network on these networks.

In the first experimental setup, we removed 30% of the links of the bipartite
networks. The results of the experiments are shown in Table 9a. In the case of
having a connected input network, our method achieves competitive results but
cannot outperform AW, except for the dataset DCh-Miner. These results confirm

13https://snap.stanford.edu/biodata/index.html

https://snap.stanford.edu/biodata/index.html

4.4 experimental study 69

Table 9: AUC of the studied approaches. On the left are the results where the network
remains connected after link removal. n/a indicates that no connected training
dataset could be created for the network. On the right are the results where
the network is split into several components after link removal. Best results are
marked in bold, second best in italics.

(a) Results of removing 30% links from the input networks.

AUC Connected Network AUC Disconnected Network

Dataset JC PA BiNE N2V VAE AW LDL JC PA BiNE N2V VAE AW LDL

ChG-ID .329 .938 .966 .931 .977 .993 .979 .333 .970 .965 .927 .967 .979 .979

ChG-Miner .497 .944 .749 .917 .902 .947 .925 .496 .710 .698 .746 .784 .751 .873

ChG-TD .247 .990 .938 .981 .975 .997 .990 .369 .861 .475 .886 .863 .834 .988

ChSe-D .428 .965 .888 .649 .941 .981 .969 .429 .960 .890 .695 .931 .964 .968

DCh-Miner .295 .968 .939 .536 .927 .971 .986 .298 .966 .938 .587 .930 .970 .986

DF-Miner n/a n/a n/a n/a n/a n/a n/a .363 .962 .941 .870 .933 .968 .983

DG-AM .489 .961 .499 .695 .805 .967 .963 .491 .789 .696 .664 .713 .762 .962

DG-Miner n/a n/a n/a n/a n/a n/a n/a .183 .977 .968 .942 .952 .952 .988

(b) Results of removing 50% links from the input networks.

AUC Connected Network AUC Disconnected Network

Dataset JC PA BiNE N2V VAE AW LDL JC PA BiNE N2V VAE AW LDL

ChG-ID .386 .960 .961 .899 .964 .994 .983 .386 .960 .945 .903 .954 .970 .981

ChG-Miner .498 .713 .528 .868 .806 .874 .897 .497 .713 .713 .718 .741 .725 .863

ChG-TD .433 .874 .886 .974 .971 .994 .989 .431 .874 .633 .888 .869 .829 .987

ChSe-D .454 .956 .850 .617 .925 .980 .966 .454 .956 .845 .699 .919 .957 .965

DCh-Miner .331 .965 .930 .519 .912 .971 .985 .330 .965 .929 .617 .911 .969 .984

DF-Miner n/a n/a n/a n/a n/a n/a n/a .397 .961 .931 .846 .920 .966 .980

DG-AM .495 .775 .679 .670 .701 .930 .958 .495 .774 .567 .675 .666 .707 .958

DG-Miner n/a n/a n/a n/a n/a n/a n/a .185 .977 .966 .931 .937 .942 .989

that attention mechanisms can effectively learn link distributions in connected
networks. In contrast to the other approaches, our proposed solution LDL out-
performs the other baselines in the studied datasets, including BiNE which is
tailored to bipartite networks. Looking at the results of AUC Disconnected Net-
work in Table 9a we observe that our method outperforms the other methods
in this scenario. The reason for the robustness of our results, even in discon-
nected networks, is that the learned target distribution does not highly depend
on the topology of the network. Furthermore, in general, the results of all the
studied solutions decreases, compared to the experimental results when using a
connected network as input. This indicates that effectively learning network rep-
resentations is more challenging in the presence of several components. However,
we observe that the negative impact of having a disconnected network is rather
minor on LDL. AW in particular suffers significantly in disconnected networks,
resulting in a strong performance loss in all studied networks except DCh-Miner.
On the networks DG-AM and ChG-Miner this loss is particularly significant with
a change in performance of 0.205 and 0.196. Similarly, the loss of performance
of BiNE on ChG-TD is clearly apparent with a change in AUC of 0.463. BiNE
suffers from a mode collapse on this dataset and predicts positive links between
all given nodes, leading to this result.

4.4 experimental study 70

The mean absolute difference (MAE) of the results with respect to AUC be-
tween the connected and disconnected networks of the baseline methods BiNE
(0.119), AW (0.099), N2V(0.062) and VAE (0.058) are significantly larger than
those of LDL with 0.009. Surprisingly, on some networks, N2V and BiNE even
achieved a performance improvement on the disconnected networks, compared
to connected networks. Results have shown that N2V and BiNE tend to predict
the existence of a link between nodes in disconnected networks, compared to
connected networks.

In order to further study the robustness of our method in the presence of
highly disconnected networks, we conducted another experiment in which 50%
of the links were removed. The results of the experiments are shown in Table 9b.
The findings of this experimental setup confirm the robustness of LDL, as re-
ported in the study with 30% link removal. Similarly to the previous study, AW
still exhibits the best performance in the case of connected networks. Still, LDL
achieves good results and can clearly keep up with the existing methods, achiev-
ing in most of the experimental results the second best result of AUC Connected
Network. Yet, when considering the results of AUC Disconnected Network, we
observe that LDL clearly outperforms the existing methods. Likewise to the find-
ings of removing 30% of the links (Table 9a), we observe that the results of the
other methods decrease significantly when having disconnected networks as in-
put. In contrast, the results of LDL also slightly decrease, but not as strong as
the baseline. The mean absolute difference of LDL compared to connected net-
works is 0.007, whereas AW (0.098), BiNE (0.095), N2V (0.071) and VAE (0.037)
suffer much stronger performance losses. The change in performance when con-
sidering 50% removal of links is thus even smaller for LDL than for removing
30% links. This provides further evidence about the robustness of our method
with respect to the connectivity of the network. When comparing results be-
tween 30% and 50% removal of links, the performance of most of the studied
methods is consistently lower or equal with respect to AUC. Due to the lower
amount of available network information from 50% removal of links, this result
was also to be expected. Surprisingly, however, the effect of N2V and BiNE, in
principle more likely to predict links between nodes, increased in the second
experiment conducted, when removing 50% links, resulting in N2V achieving
even better results on many disconnected datasets. Yet even when comparing re-
moving 30% and 50% links in the bipartite networks, LDL achieves more robust
performance compared to the other methods, with the result that the mean abso-
lute difference when considering connected networks is smaller for LDL (0.013)
than for the baseline methods BiNE (0.084), N2V (0.054), VAE (0.041) and AW
(0.019). This robustness becomes even more evident when comparing the results
between 30% and 50% links in the bipartite networks in which LDL has a mean
absolute difference of 0.004, whereas the baselines BiNE (0.055), VAE (0.022),
N2V (0.018) and AW (0.015) show a much higher difference.

4.4.3 Impact of the Network Topology

We showed that the results of the existing methods clearly depend on the con-
nectivity of the network, while our method is much more robust with respect

4.4 experimental study 71

Table 10: Average number of components in which the networks fall apart when ran-
domly removing.

ChG-ID ChG-Miner ChG-TD ChSe-D DCh-Miner DF-Miner DG-AM DG-Miner

10% removal 96 637 310 205 60 167 389 238

30% removal 380 1606 945 725 195 576 1271 699

50% removal 878 2701 1595 1458 407 1192 2317 1191

Density 0.00286 0.00056 0.00241 0.00299 0.01802 0.00380 0.00070 0.05624

to the connectivity of the network. This finding is confirmed when consider-
ing both the metric AUC and PR. To support the hypothesis of robustness of
our method with respect to the connectivity, we show in Table 10 the average
number of components in which the bipartite networks fall apart by randomly
removing links. The correlation between the number of components and the re-
sults of the random walk methods becomes obvious. The DG-AM network falls
in case of 30% link removal into more than 1, 200 components. The results of
the random walk approaches decreases tremendously compared to a connected
input network (see Table 9a). While considering DCh-Miner, the network falls
apart on average into 195 components when randomly removing 30% of the
links, and the results of all the approaches in the disconnected network remains
very stable comparing to a connected network. This shows the huge impact of
the connectivity of the input network to the results. In contrast, LDL does not
rely on the connectivity of the network. Even though DG-AM falls apart into
more than 1, 200 components, the results of our approach remain stable, which
clearly indicates the robustness of our method with respect to the connectivity.
Likewise, the results of our method are stable, if the network falls apart into
a few components, i.e. DCh-Miner. The same conclusions can be drawn when
considering the experiments at 50% link removal. We can therefore state that our
method outperforms the existing methods in the case of disconnected networks
and, in the case of a highly disconnected bipartite network, our method provides
much better and more robust results than the baseline methods.

Although our method LDL outperforms the baselines (c.f. Table 9a, AUC Dis-
connected Network), the effectiveness varies across the considered networks.
This is clearly reflected in the different performance of LDL, for example, be-
tween the two bipartite networks DCh-Miner and ChG-Miner, considering the
Metric 30% link removal AUC Disconnected Network (Table 9a). In order to
understand the results of our method and its performance on different bipar-
tite networks, we have conducted experiments on the network structures. These
studies have shown that the density of the network has an impact on the ef-
fectiveness of our method. To elaborate more on this, we provide the density
of the networks in Table 10. Considering DCh-Miner, we see that the density
of this network is with 0.001802 rather high, compared to the others networks.
Now considering the results in Table 9a, we see a very good performance with
an AUC of 0.986 in disconnected network. In contrast, if we consider a network
with a low density, i.e. the network ChG-Miner with a density of 0.00056, we
achieved a performance of 0.873 on AUC Disconnected Network. We still could
outperform the other methods, but compared to the results of our method on

4.4 experimental study 72

the other disconnected networks, we achieve a lower performance with respect
to AUC and PR. The same can be seen with AUC Connected Networks, meaning
that our method performs very well when applied to high density networks, but
is less effective on low density networks. Using the metric PR confirms exactly
the same findings, LDL performs much better on a high-density bipartite net-
work than on a low-density network. It is irrelevant whether the test split is 30%
or 50%. The findings are the same in both splits.

To further support this hypothesis, we have applied our method on two addi-
tional bipartite networks (GF-Miner and GP-Miner) from the SNAP dataset. With
a density of 0.00006124 and 0.00001306, these two networks each have a much
lower density than the networks in our study above. Our method applied to these
networks achieved on GF-Miner an AUC of 0.48 (PR: 0.578) and on GP-Miner
an AUC of 0.46 (PR: 0.562). This confirms our hypothesis that LDL achieves a
much better performance on denser graphs. The performance of LDL is related
to the number of interactions in a bipartite network. LDL uses the existing inter-
actions between the nodes in a bipartite network to learn a target distribution
over the interactions. If there are few interactions available in a network, they
are not sufficient to fit LDL adequately and thus learning a target distribution
that sufficiently describes the network structure. For this reason, LDL does not
perform well on sparse networks, i.e. networks that have only a very small num-
ber of interactions. In contrast, LDL performs very well on high-density bipartite
networks as there are many interactions available to learn a target distribution
over the interactions.

4.4.4 Error Type Analysis

To get a better understanding of the quality of our predictions, we illustrate the
ROC of the considered methods for connected as well as disconnected DG-AM
and ChG-Miner when removing 30% links in Figure 19. First of all, it can be
seen that the standard deviation in the conducted experiments is very small,
so the variance of the results for all methods is marginal. It can also be seen
that AW can predict correct links between the nodes much faster, when having a
smaller sample size in all considered networks, regardless of connectivity. As the
size of the sample increases, LDL achieves a better True Positive Rate (TPR) than
AW and the other methods. In the case of connected networks, LDL achieves
a slightly better TPR than AW with increasing sample size. However, due to
the lower TPR at the beginning, LDL achieves a lower AUC than AW in both
connected networks, DG-AM and ChG-Miner. LDL suffers much less from false
positives (Type I Error) than from false negatives (Type II Error). Compared to
the other methods, the TPR is slightly lower at the beginning, which leads to the
conclusion that we have much more Type II errors. As a result, LDL tends not
to predict interactions even though they exist. Only above a certain threshold
LDL is better at TPR and FPR. This inevitably leads to the fact that the preci-
sion of LDL tends to be higher, since the Recall is lower. We will go into this
in more detail later when we look at the Precision Recall Curve. When compar-
ing the ROCs of DG-AM connected and disconnected network, we see that our
approach is robust and has a similar performance, despite the high number of

4.4 experimental study 73

Figure 19: Average ROC for DG-AM and ChG-Miner, both for Connected and Discon-
nected Networks when removing 30% links. Comparing connected and dis-
connected networks, our method provides more robust results with respect
to AUC.

components. While other models suffer significantly from the disconnection of
the network, leading to lower performance, meaning that the baseline methods
are no longer able to clearly identify whether a link between two nodes exist or
not. It can be clearly seen how the baseline methods show a strong TPR collapse.
This means that the baseline methods tend not to predict a link between the
nodes, even though there should be a positive prediction. Considering ROC Dis-
connected DG-AM, AW achieves again a slightly better TPR with a small sample
size but remains constant at a low threshold (at False Positive Rate of 0.2), so
that no more links between nodes are predicted, which mostly likely is due to
the number of components of the network. Likewise, when considering ROC Dis-
connected ChG-Miner, LDL has a lower TPR at the beginning, but outperforms
the other models with increasing sample size, thus achieves better performance
when considering AUC.

As mentioned above, there is a tendency for LDL to have a better precision
than the other methods, but inevitably a worse recall. This relationship can be
illustrated very well using a precision recall curve. Figure 20 shows, for the two
bipartite networks DG-AM and ChG-Miner, the Precision Recall curves for the
case of a connected network and a disconnected network. The curves are shown
with a split of 0.3. In general, a high Precision value leads to a low Recall value
and vice versa. Looking at the Precision-Recall-Curve of Connected-DG-AM we

4.4 experimental study 74

see that LDL can preserve its Precision value longer, even at a higher Recall
value, than e.g. AW. As already mentioned above for AUC, this is due to the
fact that LDL has a lower Type I Error than the other methods. Hence LDL is
much more accurate and reliable with positive predictions. However, LDL has
a slightly lower recall value, because not all positive connections are identified.
The Precision Recall Curve of Connected-DG-AM clearly shows that with in-
creasing recall value, Precision can be preserved longer than compared to the
baselines, but decreases significantly above a certain recall value. This decrease
is much stronger than with AW, which means that the area below the Precision
Recall Curve (AP) is slightly smaller than with AW. Nevertheless, it can be stated
here that LDL generally has a higher precision than the baseline methods, which
is why LDL should be preferred if the quality of the predictions should be very
precise. However, if the focus of the predictions is more on the sensitivity, LDL is
less preferable. The correlation of the improved precision over the recall becomes
even more obvious when looking at the Precision-Recall-Curve of Disconnected
DG-AM. As with ROC, there is a significant drop in the performance of baseline
methods, compared to connected bipartite network. The area below the curves
of the baseline methods is much smaller, resulting in a lower AP for the base-
line methods. In contrast, the performance of LDL remains approximately the
same, so that, compared to connected DG-AM, an equal performance can be
achieved. Likewise, the precision can be preserved longer, but then decreases
significantly at a certain recall value, so that the precision of LDL is worse than
that of AW for the same recall value. The reason for this is that LDL tends to
predict connections as negative, which inevitably leads to a higher false negative
ratio and thus a higher Type II error. As a result, the recall is worse. However,
this is not decisive when considering the area below the Precision-Recall-Curve
Disconnected DG-AM, so even with a higher Type II Error, LDL outperforms
the baseline methods. Nevertheless, this may have an impact when choosing a
suitable method, depending on the quality of the predictions with respect to pre-
cision and recall. The progression of the Precision-Recall curve of LDL on the
Connected ChG-Miner network is mostly below the baseline methods, which
leads to a lower AP result compared to the baseline methods. This is caused, as
discussed above, by the lower density of the network. As a result of the lower
density, the network does not have a sufficient number of interactions to learn a
meaningful representative distribution. The result is a lower AP compared to the
baseline methods. However, considering the result on Disconnected ChG-Miner,
the AP of LDL is much higher than the baseline methods. The cumulative result
of LDL is therefore better than that of the other methods. LDL is capable of learn-
ing a target distribution that outperforms the baseline methods despite the lack
of network connectivity. However, LDL also suffers from a stronger decrease of
precision at higher recall values, so that with higher recall values the precision
is worse than with AW. Nevertheless, considering AP as the cumulative result of
our method, the result is significantly better than the others, so LDL outperforms
the other methods.

The gained findings are confirmed when considering the other networks. The
ROC and AP curves on the other networks are shown in the appendix.

4.4 experimental study 75

Figure 20: Average PR for DG-AM and ChG-Miner, both for Connected and Discon-
nected Networks when removing 30% links.

4.4.5 Impact of the Hyperparameters on Results

In the following part of this evaluation we want to find out to what extent the ap-
plied distribution function in the stochastic hidden units affects the performance
of LDL. So far, we have used a Bernoulli distribution. However, in order to find
out how the hyperparameters, especially the distribution function, affects the
performance of our method, we would like to study more distribution functions.
We will study different configurations of the hyperparameters, in particular the
number of hidden units and the distribution function in the stochastic hidden
units, and evaluate them using AUC.

Table 11 shows the results regarding AUC and PR using different distribution
functions in the hidden units of LDL. The number of hidden units is the same
as in the above experiments (100 hidden units) to guarantee comparability with
the above results. We removed 30% of the interactions for testing. We used for
the Gaussian distribution a mean of µ = 0.5 and a standard deviation of σ = 0.5.

In most cases, our method achieves the best performance by using a Bernoulli
distribution in the hidden layer. Using the Beta distribution in the hidden layer
results only in a few cases in a better performance (in the networks ChG-ID and
ChSe-Decagon). Yet this is a very small performance improvement. In general, it
can be pointed out that the variations in performance between using a Bernoulli
distribution and a Beta distribution are marginal, but nevertheless noticeable.
Considering the performance of a Gaussian distribution in the hidden layer, the

4.4 experimental study 76

Table 11: AUC and PR results on Disconnected Networks applying different distribu-
tion functions in the hidden layer. We removed 30% of edges from the input
networks.

AUC Disconnected Network PR Disconnected Network

Dataset Bernoulli Gaussian Beta Bernoulli Gaussian Beta

ChG-ID .982 .853 .988 .981 .899 .989

ChG-Miner .873 .677 .834 .890 .759 .863

ChG-TD .988 .884 .960 .989 .923 .971

ChSe-Decagon .968 .807 .976 .958 .847 .968

DCh-Miner .986 .943 .984 .983 .957 .982

DF-Miner .983 .827 .975 .983 .868 .976

DG-AM .962 .804 .948 .942 .860 .941

DG-Miner .988 .978 .819 .984 .973 .835

results are much lower compared to the others, causing the Gaussian distribu-
tion not to keep up with the other distribution functions. The same findings are
obtained when removing 50% of the interactions from the networks for testing.
The results of this experimental setup are shown in Table 12. Likewise, the Gaus-
sian distribution cannot keep up with the other distribution functions. In most
cases, our method using the Bernoulli distribution performs best in terms of
AUC and PR.

Comparing removing 30% and 50% of interactions (see Table 11 and Table 12)
shows that although the results are lower due to the higher split in the case of
50%, the drop in performance is not significant. The results, even when 50% of
the interactions are removed, are nearly constant compared to 30%.

With respect to the varying performance of the distribution functions (cf. Ta-
ble 11), we would like to focus on three more questions in the following. First,
we want to understand the reasons for the lower performance of the Gaussian
distribution compared to the other two distributions. And second, we want to
study which distribution function converges and thus is fitted faster. In order to
answer the questions, the progress of the loss function over the epochs must be
considered. The loss functions of the two networks DG-AM and ChG-Miner are
shown in Figure 21).

Both curves show that the Gaussian distribution has already at the beginning a
loss of nearly 0. There are small volatilities over the epochs and hardly anything
learned, since the loss is already very good. However, the performance using the
Gaussian distribution is worse in terms of AUC and PR compared to the other
distribution functions. The reason for this is the use of a very high standard
deviation of σ = 0.5. This high standard deviation leads to a high variance in
the hidden layer, so that the values in the hidden layer and, thus, the stochastic
neural network in general, behave very unpredictably. This means that although
a very precise target distribution over the interactions of the network is learned
from our method (cf. very small loss in Figure 21), the predictions are subject to

4.4 experimental study 77

Table 12: AUC and PR results on Disconnected Networks applying different distribu-
tion functions in the hidden layer. We removed 50% of edges from the input
networks.

AUC Disconnected Network PR Disconnected Network

Dataset Bernoulli Gaussian Beta Bernoulli Gaussian Beta

ChG-ID .981 .846 .985 .980 .893 .986

ChG-Miner .863 .661 .830 .880 .746 .858

ChG-TD .987 .838 .938 .988 .893 .953

ChSe-Decagon .965 .799 .968 .950 .842 .959

DCh-Miner .984 .889 .981 .981 .912 .979

DF-Miner .980 .820 .970 .980 .862 .971

DG-AM .958 .802 .945 .941 .858 .939

DG-Miner .989 .979 .816 .984 .975 .834

a very large variance in the hidden layer (cf. Table 11), which leads to a worse
performance with respect to the metrics AUC and PR, compared to the other
distribution functions. In order to reduce this large variance and make the pre-
dictions more accurate, we recommend reducing the standard deviation of the
Gaussian distribution. This would lead to a lower variance in the hidden layer
and thus to a better performance of the metrics AUC and PR.

Considering the progress of the loss functions on the networks DG-AM and
ChG-Miner in Figure 21), we also notice that the distribution functions require
different numbers of epochs to converge. Furthermore, they behave similarly on
both networks. The Gaussian distribution models the distribution of the inter-
actions very well from the beginning. This suggests that probably the interac-
tions in the networks follow a Gaussian distribution. The lack in performance
regarding AUC and PR is caused by a high standard deviation of the Gaussian
distribution in the hidden layer, as discussed above. The Bernoulli distribution
converges very fast and then remains stable over the remaining epochs with a
very low loss. The reason for the fast convergence is the very high derivative
of the Bernoulli distribution, leading to high adjustments. The Beta distribution
function converges very slowly and requires many epochs, but finally converges
as well. The reason for the slow convergence is the derivative of the function.
The derivative of the Beta distribution is Beta ′(x) = 1

B(p,q)x
p−1(1− x)q−1 and

is therefore very high for very small and very high values and small for values
close to 0.5. This function converges very slowly for hidden values close to 0.5.
The gradient of the Beta distribution is high in a certain range of values (ap-
prox. [0, 0.3] and [0.3, 1]), which leads to high adjustments of the parameters and,
therefore to a faster convergence. When the gradient is too small, there are only
minor adjustments of the parameters, when the gradient is too big, the parame-
ter adjustments may be too large and the network may diverge.

In the two bipartite networks considered, the parameters in the stochastic neu-
ral network are very high for this distribution function at the beginning, which

4.4 experimental study 78

Figure 21: Progression of loss using different distribution function in the hidden layer.

leads to high adjustments. However, these adjustments cause the minimum point
to be skipped, but, due to a low learning rate α = 0.01, not so much that LDL
diverges. The volatility is reduced by a high batch size in the stochastic neural
network. The gradient flips around the minimum point and slowly converges
towards it. Starting at an epoch of 80 of the Beta distribution, the parameters
converge to zero without jumping gradients. The progression of the loss function
of the Beta distribution, combined with the knowledge of the volatile gradient,
indicates that the Beta distribution takes much longer to converge than the other
distribution functions. Therefore, we can conclude that the Bernoulli function is
recommended when a very good performance, without major hyperparameter
adjustments, is desired and only few resources are available to quickly fit the
model. When using the Gaussian distribution, the hyperparameters such as the
standard deviation must be adjusted to guarantee good performance.

The findings from these two networks, DG-AM and ChG-Miner, are confirmed
when considering the other bipartite networks. In this context we would like to
point out the progress of the loss function of the Beta distribution on the network
ChG-TD, where 100 epochs were not sufficient for convergence.

The remaining question we want to discuss, namely the impact of the number
of hidden units, we would like to address using the Figure 22.

Figure 22 shows the AUC for different bipartite networks, based on the num-
ber of hidden units and the distribution function used. The number of hidden
units chosen are: 50, 100, 300, and 500, which are very common for embedding
as they represent a good compromise between a large number of units to encode
a large amount of information and a small number of units to use as few re-
sources for training and storage. Across all the bipartite networks shown, it can
be seen that the Bernoulli and Beta distributions provide consistent performance
regardless of the number of hidden units used. Minor variances result from low
volatility during training. Nevertheless, this shows that even 50 hidden units are
sufficient to learn a representative distribution over the interactions of the bipar-
tite network, allowing to make good predictions. A smaller number of hidden
units leads to a faster training, however, this has no effect on the general complex-
ity of our method. Figure 22 also clearly illustrates the improved performance of
our method using the Bernoulli and Beta distribution, considering AUC. Only on
DG-Miner the Gaussian distribution can keep up with the Bernoulli distribution.

4.5 summary and future work 79

50 100 300 500
Number of hidden units

0.6

0.7

0.8

0.9

1.0

AU
C

0.964 0.966 0.966 0.969

0.806 0.805
0.747 0.728

0.954 0.947 0.94 0.94

AUC on Disconnected DG-AM

Bernoulli
Gaussian
Beta

50 100 300 500
Number of hidden units

0.6

0.7

0.8

0.9

1.0

AU
C

0.901 0.898 0.888 0.9

0.696 0.691
0.663 0.648

0.842 0.83 0.813 0.821

AUC on Disconnected ChG-Miner
Bernoulli
Gaussian
Beta

50 100 300 500
Number of hidden units

0.6

0.7

0.8

0.9

1.0

AU
C

0.966 0.968 0.966 0.962

0.835 0.826
0.782 0.788

0.975 0.975 0.976 0.975

AUC on Disconnected ChSe-Decagon

Bernoulli
Gaussian
Beta

50 100 300 500
Number of hidden units

0.6

0.7

0.8

0.9

1.0

AU
C

0.985 0.988 0.989 0.990.967 0.977 0.983 0.986

0.813 0.817 0.814 0.838

AUC on Disconnected DG-Miner

Bernoulli
Gaussian
Beta

Figure 22: Performance with respect to AUC using different number of hidden units and
distributions.

When considering the individual bipartite networks, the Gaussian distribution
shows a high variance in the results obtained with respect to the number of hid-
den units. Only on DG-Miner the Gaussian distribution shows a small variance
in the number of hidden units. The reason for this is the standard deviation
of σ = 0.5, which is too large as mentioned above. This high standard deviation
leads to a high variance in the hidden layer, so that the values in the hidden layer,
and thus the stochastic neural network in general, behave very unpredictably. As
the number of hidden units increases, the variance in the hidden layer increases
further, causing the performance of the stochastic neural network to decrease
with respect to AUC. This is best illustrated in the diagrams in Figure 22, espe-
cially when considering AUC on disconnected DG-AM. The more hidden units
are present in the stochastic neural network, the lower the performance with re-
spect to AUC. Therefore, as already described above, we recommend to reduce
the standard deviation of the Gaussian distribution σ. Reducing the standard
deviation of the Gaussian distribution can lead to better results with respect to
AUC, as well as to a lower variance of the results with respect to the number
of hidden units. In a further step it would have to be considered whether the
number of hidden units also has to be reduced or whether the sole correction of
the standard deviation σ leads to sufficient results. On the bipartite network DG-
Miner, our method using the Gaussian distribution achieves better performance
even with an increasing number of dimensions in the hidden layer. This indicates
that the Gaussian distribution provides likewise constant results, regardless of
the number of hidden units used, similar to Bernoulli and Beta distribution.

4.5 summary and future work

In this chapter we have addressed the problem of predicting missing links on
bipartite networks that may not be connected. We introduced an unsupervised

4.5 summary and future work 80

inductive stochastic factorization model for predicting missing links. The basis
of our method, called LDL, was a Restricted Boltzmann Machine. We adapted it
to model the characteristics of a bipartite network. Our method learns a target
distribution by means of the interactions of the nodes in a bipartite network. This
target distribution is used to predict missing links in the bipartite network. In
contrast to existing approaches, our inductive method does not require relearn-
ing our model as the network is changed, e.g. by adding a new node.

We evaluated LDL on eight complex bipartite networks, each with different
split sizes, and reported competitive results to existing methods using connected
networks. Considering disconnected bipartite networks, LDL outperformed the
existing methods for all networks without exception. The results were much
more robust with respect to the connectivity of the networks compared to the
baseline methods. An essential aspect contributing to the better performance on
bipartite networks and the robustness with respect to the connectivity is not
to rely on random walks like most of the existing methods. In disconnected net-
works, random walks starting from a fixed node, cannot reach all nodes since the
network is divided into different components, resulting in a worse performance.
However, we have also shown that the performance of LDL highly depends on
the density of the network, i.e. the number of interactions. Given a high-density
network, i.e. many interactions within the network, LDL can learn a representa-
tive target distribution across the interactions of the network, resulting in very
good performance with respect to AUC and PR. Given a low number of in-
teractions in a network, however, this superior performance cannot be assured,
meaning that the performance of LDL will be lower. We, therefore, recommend
LDL without exception for disconnected bipartite networks and, regardless of
the connectivity, for very dense bipartite networks.

In the further part of the experiments, we conducted different studies regard-
ing the impact of the hyperparameters, with special focus on the distribution
function used in the hidden layer. The findings showed that the Bernoulli distri-
bution is generally the preferred choice as it does not include further hyperpa-
rameters, performs very well and converges very fast, leading to a shorter train-
ing time. Another tested function, the Beta distribution, also performed very
well with respect to AUC and PR, but converged more slowly than the Bernoulli
distribution, resulting in a longer training time. We therefore recommend the
Bernoulli distribution before the Beta distribution. Likewise, we studied LDL
with respect to the usage of the Gaussian distribution in the hidden layer. The
Gaussian distribution performed worst, but, as stated in the experiments, due
to a too high standard deviation. The high standard deviation caused the val-
ues in the hidden layer to be subject to a high variance. Although the target
distribution was promising, the AUC and PR performance was not sufficient to
keep up with the other distributions. Only on the complex bipartite network DG-
Miner the choice of σ = 0.5 was suitable to keep up with the other distributions.
The varying performance on the different networks shows the increased effort
caused by additional hyperparameters. The additional hyperparameters, µ and
σ of the Gaussian distribution must be adapted to each of the bipartite networks
to achieve optimal performance. The number of hidden units used had only
a minor impact on the performance with respect to AUC and PR, regardless

4.5 summary and future work 81

of the distribution function used. The performance was almost identical in all
conducted experiments. However, when using the Gaussian distribution, if the
choice of σ = 0.5 was too high, an increased number of hidden units caused the
variance in the hidden layer to increase, which in turn had the effect of reducing
the performance of AUC and PR.

Given the introduced approach and the insights gained in the experiments, we
can answer the research question as follows.

◎ Answering Research Questions

Hypothesis: A stochastic factorization model is able to learn the distribution
of links, even in disconnected bipartite networks.

2.1 How effective are stochastic factorization models in link prediction,
even in disconnected bipartite networks?

Answ. Stochastic factorization models achieve a comparable effectiveness
compared to existing methods and a significantly better performance
on disconnected networks than existing methods.

2.2 What are the characteristics of bipartite networks that allow stochastic
factorization models to effectively learn the distribution of links?

Answ. More dense networks allow a more effective learning of a distri-
bution function.

2.3 What is the impact of the hyperparameters, especially the distribution
function in the stochastic unit, on the evaluation measurements?

Answ. Hyperparameter, especially the distribution function in the stochas-
tic unit, has a significant impact on performance. More complex dis-
tribution functions require an adjustment of the hyperparameters
depending on the network to ensure high performance.

Based on related problems and the findings of the conducted experiments, we
want to study in the future to what extent the learned parameters are suitable
as embeddings, i.e. as representation of nodes. As evaluation criterion we will
use the classification of nodes. Our hypothesis is that nodes which have a sim-
ilar target-distribution of links can be grouped into the same class. In the next
chapter we will analyse this to a certain extent, but not for complex bipartite
networks. In addition, we want to analyse to what extent the computed target
distribution of the bipartite networks can be used to approximate or support the
computation of node similarity. Our hypothesis here is that similar nodes have
a similar distribution over the interactions of the bipartite network. Thereby we
want to exploit the learned target distribution over the interactions in the bipar-
tite network to specify similarities between nodes. These similarities can be used
in subsequent procedures, i.e. to improve the predictions of missing links in
other methods. Many methods are built on the basis of similarities. semEP [87]
is a method that exploits similarities between nodes to predict missing links in
bipartite networks. Another method is SimTransE [68], which considers the simi-

4.5 summary and future work 82

larities between nodes and the topology of the bipartite network to predict miss-
ing links. However, these methods can only be used if similarities between nodes
are present. Since not all bipartite networks have pre-calculated similarities be-
tween nodes, these methods cannot always be applied. Using our learned target
distribution, we could specify the similarities between the nodes and transfer
them to the downstream procedures like semEP and SimTransE. We can there-
fore close an important gap and apply these methods to a wider range of bipar-
tite networks, especially to those networks on which these methods could not be
applied due to missing pre-calculated similarities.

In addition to these application scenarios, there is the potential to apply our
method to networks in general, without the special focus on complex bipar-
tite networks. Likewise to the problem of missing links in complex bipartite
networks, a target distribution between the interactions of the nodes could be
learned to predict missing links in networks. Extending our method to networks
in general opens it to a wider range of applications. Although this allows to
apply the method to a larger number of networks, other network characteristics
that are not present in bipartite networks have to be considered. Thus, the restric-
tion that interactions are only possible between two different types of nodes no
longer applies. As a result, the density could be much lower, i.e. there are fewer
interactions in comparison to nodes in the network. As shown in the experi-
ments, this lower density has a significant impact on our method, resulting in a
lower performance. In order to avoid this, data augmentation techniques could
be used to generate more data and thus provide more interactions for learning
a representative target distribution over the interactions of the nodes in the net-
work. Data augmentation is a common technique in Computer Vision to improve
results and avoid overfitting, however to the best of our knowledge not yet ap-
plied on graph structured data. Data augmentation techniques generate, given
an image, several images by flipping the image either vertically or horizontally
or by cropping the image to leave only the essential part visible. Likewise, we
would apply augmentation techniques to networks for generating more training
samples. Currently each node in the bipartite network, represented by a vector,
is passed to our method which incorporates all interactions of that node. By us-
ing augmentation techniques, we would create additional virtual nodes based
on one node, containing only a subset of the interactions of the original node.
Thus, we generate more samples for learning the target distribution over the
interactions of the network. Using the larger amount of data, we could solve
the problem of lower density and thus achieve better performance of LDL. The
above mentioned augmentation technique on networks could also be applied to
bipartite networks. This novel application of an existing technique could be very
promising to improve the performance on networks and to avoid overfitting.

5
S E M A N T I C G R O U P I N G O F N O D E S A N D L I N K S

5.1 introduction

Knowledge Graphs (KGs) use schema assertions or axioms to model concepts
and relations that serve as the foundation for describing entities and their con-
nections in the KG. These schema assertions typically define the meaning and
associations between classes, relations, and class memberships. Furthermore, rea-
soners can use schema axioms to logically deduce additional facts from the KG
or to detect inconsistencies between statements encoded in the KG. Therefore,
having complete schema assertions in KGs is key to fully exploit the power of se-
mantics in graphs, yet, these assertions may be incomplete due to several reasons.
For example, KGs created in a pay-as-you-go fashion can suffer from this kind of
incompleteness since new instances, classes, and properties are sometimes added
to the KG with partial information that is available at the time of insertion. Sim-
ilar situation may occur when building KGs from unstructured or incomplete
sources. Furthermore, some schema assertions require domain-specific knowl-
edge provided by experts, but manually completing schema assertions is not a
feasible solution for KGs with a large number of classes or relations.

Despite the relevance of schema assertions, recent advances in KG completion
have been proposed to complete instance-level statements [20, 83, 116], i.e., en-
hancing the descriptions of entities or instances in the KG. To address problems
of schema assertions, existing solutions focus on the problem of instance type
prediction which associate entities to classes in the KG. To solve this problem,
either specific approaches [90] have been devised or some of the aforementioned
solutions [77] have also been applied. In this work, we go beyond instance type
predictions and additionally target the problem of predicting domain assertions,
which state the type of entities that can participate in a relation.

In order to achieve our goal, we will extend the previously introduced ap-
proach LDL from Chapter 4 for learning representations of entities and relations
in KGs, specifically tailored to predict schema assertions, i.e. instance type and
domain assertions. Our proposed approach, Ridle (Relation-Instance Distribution
Learning), is able to learn the distribution of relations in the knowledge graph
which, in turns, allows for predicting schema assertions. The hypothesis of this
work is that instances from the same class are described with the same predicates
in the KG which, in turn, allows for predicting the types of similar instances or
even uncovering the domain for the relations. This hypothesis is shown as a
motivating example in section 5.1.2.

83

5.1 introduction 84

The underlying idea of Ridle is to exploit these characteristics and compute
a target distribution over the occurrence of relations and instances to learn a
compressed representation of the KG, in which this distribution is latently en-
coded, allowing for classifying nodes and relations. The hypothesis is expressed
in the Research Question 3. We will evaluate the proposed approach by compar-
ing it to strong baseline methods in the field of knowledge graph embedding for
instance-type classification. In this context we will evaluate which information
– information about outgoing edges of nodes or information about incoming
edges to nodes – are better for encoding information about nodes for instance
type prediction. Furthermore we will evaluate the sub-symbolic representations
of relations regarding their effectiveness for predicting domain assertions.

2 Research Question 3

The sub-symbolic KG representation learned with our model encode latent
groups of nodes and links in knowledge graphs.

3.1 How effective are the learned sub-symbolic KG representation of nodes
from our models for node classification?

3.2 In the sub-symbolic representation of nodes, what kind of links – in-
coming or outgoing – contribute the most to node classification?

3.3 How effective are the learned sub-symbolic KG representation of links
from our models for domain classification?

5.1.1 Structure of the Chapter

Similar to the previous chapters we will motivate this chapter in the following
with an example, using it to describe the problem in more detail. In the following
section, we will explain the use-case in more detail using a motivating example.
Subsequently, we will discuss related work in Section 5.2 and distinguish this
work from the others. In this context, we will discuss works that have been used
in the past in the context of instance type and domain assertion prediction. Af-
terwards we will introduce the proposed approach in Section 5.3, discuss the
individual components of the approach, and using the motivating example to
illustrate the approach and make it more comprehensible. We will conduct eval-
uations in Section 5.4 in order to compare the performance of our proposed
approach with other methods. We will use the insights gained from the experi-
ments to answer the research questions in Section 5.5 and to give an outlook on
further research ideas.

5.1.2 Motivating Example

In order to illustrate the underlying problem for this chapter, we provide a mo-
tivating example in the following. Consider the KG from Figure 23, where the
entity Donald Knuth is not associated with any class. Yet, the description of Don-
ald Knuth has some relations in common with the entity Tom Barret of type Person,

5.1 introduction 85

Figure 23: Motivating example. Entities from the same classes use the same predicates
for description. We leverage this to predict missing type information for Don-
ald Knuth and domain assertions of relations.

e.g., birthDate, birthPlace and almaMater. In contrast, Donald Knuth does not have
relations in common with the entity Milwaukee of type City. Based on this infor-
mation, Donald Knuth might also belong to the class Person. Note that the objects
of the predicates are different for Donald Knuth and Tom Barret, still, by just look-
ing at the relations used in their descriptions we can predict the class affiliation
for Donald Knuth. This example shows that the occurrences of instances and re-
lations can be an effective predictor for instance types. Thus we observe, that
entities of certain classes use a similar distribution of used relations, allowing
for concluding unknown classes of entities.

Further we consider the relation author, which originates from the book The Art
of Computer Programming. In general, entities of type Person are usually author of
a book, which can be latently encoded in the use of the relation in a knowledge
graph. Thus besides using information of outgoing relations of entities we can
use information of incoming relations as well to conclude, that Donald Knuth is
most likely of type Person, as authors of books are persons in general.

In addition to the aim of predicting the instance type in this chapter, we want
to predict the domain of relations. The underlying hypothesis is similar to the
prediction of instance types, namely, that relations of certain domains are mostly
originated from entities with a similar distribution of used relations. Consider in
this context the relation birthdate and the assumption that we know that Donald
Knuth is like Tom Barret of type Person. Both entities use similar relations like
almaMater and birthdate for both the domain Person is defined. Therefore, it is
reasonable to assume that birthdate also has Person as domain, as this relation is
originated from entities with a similar distribution of used relations. We want to
exploit this to predict the domain of relations.

5.2 related work 86

Based on the above two scenarios, we define the motivation of this chapter as
follows.

÷ Motivation : Semantic grouping of nodes and links

Given a knowledge graph G, the goal is to learn a function f, indicating the
probability of an instance e belonging to the class c, i.e. f(e, c). Furthermore
we want to learn a function to predict the probability of classes c being
domain of relations r, i.e. f2(r, c).

5.2 related work

Our work focuses on learning a representation for entities and relations in knowl-
edge graphs for predicting instance types and domain assertions. Previous work
has focused particularly on instance type prediction. Different approaches have
been used, including SDType [90] as heuristic link-based type inference mecha-
nism and RDF2Vec [102], an approach for learning latent numerical representa-
tions of entities in RDF graphs. As pointed out in related works [49, 96] tradi-
tional reasoning methods tend to struggle with noisy data, false or unforeseen
schemas. The heuristic method SDType uses a statistical distribution of the actu-
ally used scheme in the computation and thus making it more robust. This char-
acteristic of robustness of statistical distributions is used in this paper as well, in
order to deal with noise in the data, but in contrast to SDType we use a stochastic
factorization model learn representations of entities and relations based on the
use of relations of instances. Based on the representations, we learn a model for
predicting instance types and domain assertions respectively. RDF2Vec [102] is
an adaptation of the language model Word2Vec [74, 75] by using random walks
and Weisfeiler-Lehman Subtree RDF graph kernels to create sequences of nodes
that are passed to Word2Vec for learning low-dimensional numerical representa-
tions of entities and relations. Despite the promising results of previous studies
on instance type prediction using RDF2Vec [17, 50, 107], we consider RDF2Vec
especially suitable for measuring the semantic similarity of entities [23, 102, 103],
as well as the entity alignment between knowledge graphs [10], due to the use
of Word2Vec and thus the ability to represent relationships between entities ac-
curately. Using a random walk approach, the performance of RDF2Vec varies
significantly depending on the topology of the knowledge graphs and the ran-
dom walk strategy. In contrast, we learn features based on a target distribution
and thus do not depend on topology of the knowledge graph or the chosen
random walk strategy. We prefer the low-dimensional representation of entities
and relations as learned by RDF2Vec, but consider that the complete triple is not
relevant for the prediction schema assertions and thus consider RDF2Vec to be
too complex for this task. In a further related work on instance type prediction,
entities were classified exclusively on the basis of the relations used [72]. For
the sole use of the relation of entities, the results are very promising. However,
this approach focuses only on the prediction of instance types and not on the
representation, and it neglects the semantic relationship, as well as correlations
expressed in latent features, between the relations. In contrast, we want to pro-

5.3 ridle : relation-instance distribution learning 87

vide representations of entities as well as relations by using a target distribution
over the usage of relations of entities and thus the identification of latent features
based on relation usage of entities.

While in previous work the focus was mostly on the prediction of instance
types, the prediction of domain assertions has been addressed less in the liter-
ature. There has been a first attempt to use deep learning techniques to learn
semantic reasoning-RDFS rules [67]. However, the focus was less on predicting
schemas based on facts, but rather on modeling RDFS rules. Besides that, most
of the work focused on the completion of facts [29]. There are also a number
of embedding methods, such as RDF2Vec [102], RESCAL [83], InteractE [116]
and TransE [20], which can be used for predicting facts. RESCAL is a relational
learning approach based on the factorization of a three-way tensor. Hereby, the
representations learned by RESCAL capture the semantic meaning entities with
relationships will have similar latent representations [84]. Further factorization
methods were introduced [29, 36], although these methods were not exclusively
used to learn representations for knowledge graph completion tasks.

We use a Restricted Boltzmann Machine (RBM) to learn a target distribution
over the usage of relations of entities allowing to use the hidden layer as latent
features for representation of entities and the learned weights as representation
of relations. RBMs have been applied in the past especially for dimensional-
ity reduction [46], learning and reconstructing sparse representations of the in-
put [100], collaborative filtering [15, 104] and link prediction [60, 121]. Although
first attempts were made to apply RBMs for feature learning [54, 81], it hasn’t
been applied for learning features in knowledge graphs. In addition we want
to mention in this context, that RBMs share a similar idea as auto-encoders,
but use stochastic units. Instead of reconstructing the exact input as done with
auto-encoders, we are trying to identify the distribution of the used relations to
determine latent features, which we will use as representation of entities.

5.3 ridle : relation-instance distribution learning

For the downstream tasks, the prediction of instance types and domain assertion,
we need a semantically meaningful representation of entities and relations. Our
hypothesis is that the relations used by the instances are most relevant for their
classification. For example, considering the knowledge graph in Figure 23, we
notice that Donald Knuth has among others the relations birthplace and birthdate.
Knowing only these relations, already gives a hint, that this instance is most
likely of type person, as both relations are in general used only by entities of the
class Person. The complete statements, i.e., in which place exactly Donald Knuth
was born or at which date, is less relevant to predict the instance type. Likewise,
we notice in this example, that certain relations are more likely to occur in the
context of certain types of instances than others and thus there is a distribution
of used relations.

We devise an approach to exploit the aforementioned two characteristics about
associations between instances and relations in knowledge graphs. Our pro-
posed approach, Ridle (Relation-Instance Distribution Learning), is able to learn
the distribution of relations in the knowledge graph which, in turns, allow for

5.3 ridle : relation-instance distribution learning 88

(a) Vector representation of
the entity Donald Knuth.
Learning representation
for target distribution of
the used relations using a
RBM.

(b) Using latent features to
perform instance type
prediction.

(c) Using weights of each re-
lations for domain asser-
tion predictions.

Figure 24: Proposed approach to instance type and domain assertion prediction. Left:
Representation of entities as a binary vector, encoding the usage of relations.
Middle: Learning a target distribution over the used relations using RBM.
Afterwards the compressed vector representation of the hidden layer P(h0|v0)

is used as representation of the entities and the weights W as representation
of the relations. Right: Using 2-layer neural networks for predicting instance
types and domain assertions.

predicting instance types and domains of relations. Figure 24 depicts the three
components of Ridle: (a) a representation model based on instance-relation occur-
rences in the knowledge graph, (b) a neural network for predicting instance types
based on the learned entity representations, and (c) a neural network for pre-
dicting domain assertions based on the latent information of instance-relations
associations. In the following, we describe each of these components.

5.3.1 Learning Instance-Relation Representation

The goal of the first component of Ridle is to learn a representation of a given
knowledge graph. For this, we we define a knowledge graph in this chapter as
follows:

ó Definition 19: Knowledge Graph

A knowledge graph G = (E,R,L,T), is a tuple of pair-wise disjoint sets E,
R, L, and T correspond to the set of entities, relations, literals, and types or
classes, respectively. A statement in G is modelled as a triple (s,p,o), with
s ∈ E∪R∪ T, p ∈ R, and o ∈ E∪R∪L∪ T.

We denote the predicates rdf:type and rdfs:domain, defined in the RDF [123] and
RDFS [43] specifications, as the relations type ∈ R and dom ∈ R, respectively.
In addition, we denote R− ⊂ R the set of domain-specific relations, which ex-
cludes type, dom, and further predicates from meta-models or general-purpose
ontologies.

5.3 ridle : relation-instance distribution learning 89

To learn an effective instance-relation representation, our approach encodes
each entity of the knowledge graph G based on its properties. Ridle focuses on
domain-specific properties R−, which allow for uncovering entities with similar
semantic descriptions. General-purpose predicates are left out from the entity
representation as they might hinder the learning process for two reasons: (i)
these predicates alone do not provide information that allow for distinguishing
entities from different classes,14 and (ii) these predicates typically occur in the
majority of entities. Therefore, Ridle models an entity s ∈ E as a binary |R−|-
vector v, where:

v[i] =

 1 if (s, ri,o) ∈ G, for some o ∈ E∪R− ∪L∪ T

0 otherwise

Note that we choose a binary representation as the frequency of the used rela-
tions is irrelevant for the downstream classification of instance types. Figure 24a
shows an example of this representation of the instance Donald Knuth encoded
as the vector v.

Then, the binary vector v serves as input for a Restricted Boltzmann Machine
(RBM), for which the relation distribution in a knowledge graph G is learned. An
RBM is a generative model to simulate input distributions of binary data, con-
sisting of one visible layer, denoted as v, and one hidden layer h with size h. In
RBMs, there is no explicit output layer, since the unsupervised model tries ap-
proximate the distribution of the input data. The distribution is used to compute
latent features in the hidden layer, which can be seen as a compressed represen-
tation of the input data.

In RBMs, the weights or parameters between the layers represent the impact
of the individual input nodes on the latent features in the hidden layer. The
learning of the parameters in our approach is done by means of Gibbs-sampling.
Therefore, in the following notations, the indexing is used to indicate the step of
the Gibb-sampling process. The input v0 is multiplied with a weight matrix W
and added with a bias a. Similar to a feed-forward neural network, a sigmoid
activation function σ is used to compute the hidden values, denoted as P(h0|v0).

P(h0|v0) = σ(Wv0 + a) (25)

Afterwards, samples based on the computation of the hidden layer P(h0|v0),
are taken from a Bernoulli distribution to compute the hidden state h0.

h0 ∼ Bernoulli(P(h0|v0)) (26)

Introducing a stochastic distribution function extends the neurons to stochastic
neurons. While a high P(h0|v0) results in a high probability of having a positive
hidden state h0, a low probability results in zero output. Based on the hidden

14Note that the object of triples are not considered in our representation. Therefore, encoding
that e.g. the predicate type occurs in an entity is not informative to predict the class to which the
entity belongs to.

5.3 ridle : relation-instance distribution learning 90

state h0, the input data v0 will be reconstructed by using the hidden state h0

as input and backwarded in the neural network. Hereby, the hidden state h0 is
multiplied with the same weight matrix W as it was computed, but transposed,
and a bias value b added. Afterwards, the sigmoid activation function is applied
to this weighted sum. The resulting vector, denoted as P(v1|h0), in the visible
layer can be seen as an approximation of the original input.

P(v1|h0) = σ(WTh0 + b) (27)

RBMs are energy-based probabilistic models, using a probability distribution
through an energy function to measure the quality, similar to cost functions of
machine learning models. The hidden layer serves as latent variable to increase
the expressiveness of the model, therefore the following energy-based probabilis-
tic function (Gibbs distribution) specifies that a certain state v can be observed:

P(v) =
1

Z

∑
h

e−E(v,h) (28)

where Z is the sum from all possible states and called the normalizing factor:

Z =
∑
v,h

e−E(v,h) (29)

Using the Eq. 28 we can conclude that a low energy E(v, h) leads to a high
probability P(v), while a high energy leads to a low probability P(v). In order to
increase the probability P(v) we therefore have to minimize the energy function
E(v, h). The energy function E(v, h) for an RBM with its input v and hidden state
h is the following:

E(v, h) = −vTWh − aTv − bTh (30)

The aim is to approximate the distribution, therefore the difference in the
distribution of the input data v0 and the reconstructed input data P(v1|h0)

should be minimized. Thus, the energy functions described in equation 30 of
these two distributions are to be aligned. In previous work it has been shown
that contrastive divergence with Gibbs-sampling, as an approximation of the log-
likelihood gradient, is a very efficient method to learn the parameters of the RBM
to compute the target distribution [31]. The number how often the Gibbs chain
is applied for a single sample is denoted by the parameter k. In related studies
as well as in preliminary conducted experiments, it has been shown that k = 1

already achieves sufficient results in the approximation of the target distribution.
Therefore, similar to related work, we use k-step contrastive divergence to learn
the parameters of the RBM. The gradient w.r.t. log-likelihood for one sample v0

is then approximated by the following formula [16].

CD(W, v0) = −
∑

h

P(h0|v0)
∂E(v0, h0)

∂W

+
∑

h

P(h0|v1)
∂E(v1, h0)

∂W

(31)

5.3 ridle : relation-instance distribution learning 91

Based on Equation 31 we get the following updates of the parameters:

∆W = P(h0 = 1|v0) · v0 − P(h0 = 1|v1) · v1 (32)

∆a = v0 − v1 (33)

∆b = P(h0 = 1|v0) − P(h0 = 1|v1) (34)

Using the update rules the parameters converge so that the distribution of the
reconstructions v1 corresponds to the distribution of the input v0.

5.3.2 Predicting Instance Types

We model the problem of instance type prediction as a multi-label classification
problem, since entities can belong to several classes in G. To perform the predic-
tions, Ridle exploits the latent features of entities learned with the RBM, which
are fed into a supervised learning algorithm. For every entity s ∈ E modelled
as v0 in the RBM, Ridle obtains the learned representation es = P(v0|h0) (c.f.
Figure 24b). I.e., instances in Ridle are represented as the learned probabilities of
activating a hidden state. This representation was chosen over the binary vector
h0 obtained after the Bernoulli sampling, as P(v0|h0) ∈ [0, 1]h corresponds to
the likelihood of membership to the latent features that encode classes in the
KG and, therefore, carries more in information than binary values. Then, Ridle
constructs a vector with the classes to which the entity s belongs to, i.e., ts[i] = 1
if (s, type, ti) ∈ G for some ti ∈ T, ts[i] = 0 otherwise. The vector ts is used as
labels in the classification problem.

For the supervised learning algorithm, Ridle implements a 2-layer neural net-
work,15 with input layer size h and output layer size |T|. In the hidden layer, Ridle
uses an approximation of the GELU activation function. We propose the GELU
activation function due to its excellent performance in related machine learning
tasks, as shown in BERT [27]. For an input x in the network, the used approxi-
mation of the GELU function, as described in more detail in the corresponding
paper [45], is defined as follows and illustrated in Figure 25:

GELU(x) =
1

2
x

(
1+ tanh

[√ 2

π
(x+ 0.044715x3)

])
(35)

In the output layer Ridle applies a sigmoid function, thus the results can be
interpreted as probability that an instance belongs to a certain class or type.

15We conducted a preliminary evaluation using neural networks with varying number of layers.
However, the 2-layer setting exhibited the best F1 performance.

5.3 ridle : relation-instance distribution learning 92

2 1 0 1 2
x

0.0

0.5

1.0

1.5

2.0

2.5

G
EL

U
(x

)

GELU Function

Figure 25: Approximation of the GELU activation function used in the hidden layer.

5.3.3 Predicting Domain Assertions

In the general case, the prediction of domain assertions can be modelled as a
multi-label classification problem. Under this assumption, this problem could be
solved with the architecture presented in Section 5.3.2. Yet, current KGs that are
publicly available specify domain assertions using only one class per predicate.
Based on this observation, we then model the problem of domain prediction as
a single-label multi-class classification problem.

To perform domain predictions, Ridle exploits the latent features of relations
learned with the RBM, which are fed into a supervised learning algorithm. The
associations of the relations to the latent features of the hidden layer encoded in
the weight matrix W. Therefore, Ridle represents each relation ri ∈ R− in the
KG as eri = Wki with k ∈ {0,h} (cf. Figure 24c). Due to the use of the outgoing
relations of an instance, this model is particularly suitable for the prediction of
domain assertions. Then, Ridle obtains the subset of classes T ′ ⊆ T that occur
as domain for the domain-specific relations in the KG i.e., T ′ = {t | (r,dom, t) ∈
G, for some r ∈ R−}. The labels used for the classification task for a relation ri
are codified as tri [j] = 1 if (ri,dom, tj) ∈ G, tri [j] = 0 otherwise.

Similar to the prediction of instance types, Ridle implements a 2-layer neural
network with the GELU [45] activation function for the hidden layer. The size
of the input and output layers, in this case, is |R−| and |T ′|, respectively. For
the activation function of the output layer, we propose the usage of a softmax
function, a generalized sigmoid function, which is typically used in single-label
classification problems. In Ridle, this function can also be interpreted as the
probability of assigning the domain of a relation to a class in the KG.

5.4 experimental study 93

5.4 experimental study

In the following we will evaluate the introduced method with respect to the
effectiveness in instace type classification and domain assertion prediction. The
evaluation is based on well-known metrics, which are commonly used in related
work.

5.4.1 Experimental Setup

Datasets. Following related work [70, 90], we use well-known public KGs such as
english DBpedia [9] (3.8 and 2016-04), Wikidata (WD_2017-03-13) [117], YAGO4 [110],
UMLS [18] and DBLP16. In the DBpedia graphs, we removed common relations
including prov:wasDerivedFrom, dbo:wikiPageRevisionID, and dbo:wikiPageID. All
those relations occur in most instances and, therefore, do not provide class-
specific information. Furthermore we have removed schema assertions i.e. rdf:type
and rdfs:domain to not bias the downstream prediction tasks. Given the size of the
KGs and limited computational resources, we performed a data pre-processing
step on DBpedia, Wikidata and YAGO4, where only a subset of entities that oc-
cur in at least 10 triples and at most in 1, 000 triples are considered17. In addition,
we extracted category-based subgraphs from DBp_2016-04 (DBp) and WD_2017-
03-13 (WD) to study the performance of approaches in KGs limited to specific
topics: persons (Pers), books (Books), chemical compounds (Chem), companies
(Comp), movies (Mov), songs (Songs), and universities (Uni). Table 13 describes
the datasets.
Metrics. We use F1-score for measuring the effectiveness of the approaches in
both tasks: instance type and domain assertion predictions. We report on both
F1-Macro and F1-Micro for the aggregation of multi-label performance in order
to show the impact of prediction errors in more detail. In addition, we report
on the hierarchical F1-Micro [70]. This metric is a micro-averaged measurement
incorporating the taxonomy of the classes by extending both the correct labels
and predictions using the transitive superclasses. For a resource i, we extend
the predictive labels T̂i and the actual classes T∗i with with the corresponding
ancestors using the transitive closure of the subclass relation, i.e., T̂i := T̂i ∪
{tj | (ti, rdfs:subClassOf ∗, tj) ∈ G, ti ∈ T̂i} and T∗i := T∗i ∪ {tj | (ti, rdfs:subClassOf ∗, tj) ∈
G, tj ∈ T∗i }. We conducted each experiment by using 10-fold cross-validation and
report on the average F1-score. The results can be reproduced using the k-fold
cross-validator implemented in scikit-learn [91] using a seed of 42.
Baselines. We compare our approach, Ridle, with current state-of-the-art mod-
els in schema knowledge prediction. The models include strong baselines, e.g.,
RDF2Vec [102]. The selection of the models was based on their focus on in-
stance type prediction in RDF data e.g. SDType [90], excellent performance,
e.g., TransE [20] and RESCAL [83], as well as latest developments in link pre-
dictions, e.g. InteractE [116]. Since the focus of SDType is only on the prediction
of instance types, this method was not used for predicting domain assertions.
The state-of-the-art methods were used to learn a KG representation for each of

16https://dblp.org
17This pre-processing step removes noisy entities with too many or too few descriptions.

https://dblp.org

5.4 experimental study 94

Table 13: Characteristics of the studied KGs. For each KG G, |G|=number of triples,
|E|=number of subjects, |R|=number of relations, |T|=number of classes,
|T ′|=number of classes as domains of relations.

KG |G| |E| |R| |T| |T ′|

DBp_3.8 3,246,924 31,952 10,200 294 121

DBp_2016-04 2,457,561 49,004 11,070 354 142

WD_2017-03-13 3,141,087 49,884 1,763 1,939 27

YAGO4 2,230,760 147,464 109 823 49

UMLS 6,029 135 45 46 0

DBLP 2,712,914 136,485 26 11 0

Pers(DBp) 333,296 64,423 2,239 126 1

Pers(WD) 249,059 8,400 1,509 53 28

Books(DBp) 242,989 13,361 619 17 3

Books(WD) 285,757 59,819 519 461 27

Chem(DBp) 58,952 9,674 265 5 3

Chem(WD) 268,534 16,872 339 1,008 25

Comp(DBp) 162,887 9,531 1,274 40 7

Comp(WD) 14,943 6,456 330 217 24

Movies(DBp) 416,834 69,761 959 13 0

Movies(WD) 410,295 8,807 382 74 26

Songs(DBp) 115,833 6,200 332 9 3

Songs(WD) 204,542 41,990 321 230 27

Uni(DBp) 183,700 9,029 2,021 13 5

Uni(WD) 66,182 12,133 472 274 27

the datasets described in Table 13. Then, for a direct comparison, each learned
representation was fed to the same neural network architecture detailed in sec-
tion 5.3.2 and section 5.3.3. The only exception is SDType, as it does not learn a
KG representation, but directly produces an instance type prediction.

Implementation. We implemented our method in Python3. We used the same
hyperparameter settings on every knowledge graph. We chose a learning rate
α = 0.01 with a hidden layer size of 50 and 100 iterations for learning the rep-
resentations. The experiments were performed on a server with Intel(R) Xeon(R)
Gold 6142 CPU@2.60GHz, 32 physical cores and 188GB RAM. For the baselines,
we used the standard hyperparameters recommended by the authors. The pre-
trained RDF2Vec vectors were trained by the authors [23] using Page Rank split
strategy on DBp_2016-04 and is available online18.

5.4.2 Effectiveness of Instance Type Predictions

In this section, we compare the correctness of the instance type predictions of the
studied approaches. We analyse the F1-score (Sect. 5.4.2.1) achieved when pre-
dicting the exact statements from the test set. Then, we analyse the performance
in terms of the Hierarchical F1-score (Sect. 5.4.2.2) taking into account the class
hierarchies in the KG ontology, i.e., when predicting classes linked to the correct
classes in the test set via sub-class relationships. In Sect. 5.4.2.3, we visualise the
learned representations with Principal Component Analysis (PCA).

18https://zenodo.org/record/1320042#.X43POy8RrOR

https://zenodo.org/record/1320042#.X43POy8RrOR

5.4 experimental study 95

Table 14: Results for predicting instance types specified with the predicates rdf:type (DB-
pedia) and wd:P31 (Wikidata). Bold values represent best average results.

(a) Results for cross-domain knowledge graphs

F1-Macro F1-Micro

KG Ridle SDType RDF2Vec RESCAL IntE TransE Ridle SDType RDF2Vec RESCAL IntE TransE

DBp_3.8 .840±.01 .224±.02 .331±.02 .370±.01 .098±.01 .376±.01 .965±.00 .662±.01 .000±.00 .688±.00 .002±.00 .716±.00

DBp_2016-04 .846±.01 .222±.01 .209±.02 .317±.02 .188±.02 .371±.02 .968±.00 .595±.01 .000±.00 .624±.00 .000±.00 .715±.00

WD_2017-03-13 .805±.01 .115±.01 .774±.01 .784±.01 .784±.01 .779±.01 .590±.01 .563±.01 .000±.00 .751±.00 .752±.00 .801±.00

YAGO4 .727±.01 .056±.00 .693±.02 .623±.01 .657±.01 .621±.01 .965±.00 .888±.00 .643±.00 .889±.00 .725±.00 .890±.00

(b) Results for category-specific knowledge graphs

F1-Macro F1-Micro

KG Ridle SDType RDF2Vec RESCAL IntE TransE Ridle SDType RDF2Vec RESCAL IntE TransE

UMLS .669±.04 .064±.02 .555±.06 .617±.05 .557±.06 .387±.18 .598±.08 .281±.08 .315±.06 .524±.09 .318±.05 .508±.12

DBLP .803±.04 .018±.00 .198±.05 .593±.00 .134±.03 .645±.01 .995±.00 .051±.00 .630±.01 .970±.00 .504±.01 .970±.00

Pers(DBp) .680±.03 .329±.01 .210±.02 .331±.03 .212±.03 .375±.02 .943±.00 .880±.00 .735±.00 .842±.00 .743±.01 .879±.00

Pers(WD) .844±.08 .322±.23 .848±.10 .848±.10 .848±.10 .848±.10 .997±.00 .997±.00 .997±.00 .997±.00 .997±.00 .997±.00

Books(DBp) .859±.10 .603±.18 .865±.12 .770±.24 .865±.12 .865±.12 .999±.00 .999±.00 .999±.00 .999±.00 .999±.00 .999±.00

Books(WD) .734±.01 .036±.01 .712±.02 .720±.02 .712±.02 .720±.02 .932±.00 .901±.00 .912±.00 .914±.00 .912±.00 .916±.00

Chem(DBp) .820±.19 .729±.18 .820±.19 .820±.19 .820±.19 .820±.19 .999±.00 .994±.00 .999±.00 .999±.00 .999±.00 .999±.00

Chem(WD) .765±.01 .012±.00 .766±.02 .766±.02 .766±.02 .766±.02 .847±.01 .816±.01 .797±.01 .798±.01 .797±.01 .831±.01

Comp(DBp) .762±.07 .386±.14 .681±.13 .737±.13 .681±.13 .753±.13 .993±.00 .980±.00 .969±.00 .981±.00 .969±.00 .990±.00

Comp(WD) .828±.03 .070±.02 .819±.03 .819±.03 .819±.03 .819±.03 .939±.01 .892±.01 .935±.01 .935±.01 .935±.01 .935±.01

Movies(DBp) .650±.18 .331±.11 .608±.13 .608±.13 .608±.13 .608±.13 .999±.00 .998±.00 .999±.00 .999±.00 .999±.00 .999±.00

Movies(WD) .785±.08 .197±.08 .787±.07 .685±.22 .787±.07 .787±.07 .989±.00 .989±.00 .989±.00 .985±.01 .989±.00 .989±.00

Songs(DBp) .854±.10 .739±.10 .731±.10 .837±.10 .733±.10 .842±.10 .990±.00 .989±.00 .952±.00 .986±.00 .952±.00 .989±.00

Songs(WD) .745±.02 .062±.01 .731±.03 .736±.03 .731±.03 .740±.03 .917±.00 .806±.00 .889±.00 .895±.00 .889±.00 .911±.00

Uni(DBp) .766±.16 .613±.20 .708±.11 .683±.14 .708±.11 .708±.11 .998±.00 .998±.00 .998±.00 .998±.00 .998±.00 .998±.00

Uni(WD) .710±.03 .047±.01 .701±.03 .704±.03 .701±.03 .704±.03 .854±.01 .790±.01 .824±.01 .828±.01 .824±.01 .831±.01

5.4.2.1 F1-score Performance

The effectiveness of the approaches in terms of the F1-Macro and F1-Micro is pre-
sented in Table 14. Overall, we can observe that none of the methods completely
outperforms the other methods throughout all the studied graphs.

Considering the cross-domain KGs (cf. Table 14a), Ridle significantly outper-
forms the state-of-the-art methods with respect to the metric F1-Macro. This
indicates that, even in the presence of large KGs with a high number of classes
and relations like is the case of DBpedia, Wikidata, and YAGO, our proposed
solution is still able to produce accurate predictions. The main reason for this is
that the KG representation learned with the RBM model (cf. sect. 5.3.1) is able
to capture the distribution of relations across the entity in the KG. This, in turn,
enables the identification of entities that belong to the same classes based on
the relations used to describe the entity. In contrast, the studied baselines are
mostly tailored to learn statement-level representations which cannot effectively
encode the knowledge about instance types when considering large KGs with
a high number of classes and relations. With respect to the metric F1-Micro, we
can observe that Ridle clearly outperforms the other approaches except for the
Wikidata KG. In this case, Ridle cannot correctly predict entities for the most
popular classes, i.e., classes with a large number of entities like human settlement
(wd:Q486972). The reason for this behavior is that the entities (i.e. wd:Q13071219)

5.4 experimental study 96

in the most popular Wikidata classes contain a few class-specific relations, thus,
affecting the performance of Ridle. In contrast, the baseline methods use ad-
ditional object information while learning the KG representations, which allows
for differentiating subjects from different classes. These results confirm that Ridle
achieve a high performance in scenarios where entities in the KG are described
with sufficient class-specific relations. In the rest of the KGs, Ridle can correctly
classify entities for both large and small classes as shown with both metrics.
Another important result is the low F1-Micro values achieved by RDF2Vec in
DBpedia and Wikidata. In particular, RDF2Vec is always predicting foaf:Agent as
class, which is considered a false positive according to the test data.

Next, we look at the performance of the approaches in the category-specific
KGs (cf. Table 14a). We can observe that, in some KGs, the performance of all
approaches is significantly higher in comparison to the cross-domain KGs. This
indicates that the correct classification of entities is easier in certain classes of a
given KG. In terms of average F1-Macro, Ridle outperforms the state of the art in
12 out of the 16 studied KGs. Still, in the other 4 KGs – Pers(WD), Books(DBp),
Chem(WD), and Movies(WD) – we can conclude that Ridle achieves competi-
tive performance in comparison to the best approaches when considering the
difference between the average F1-Macro (in the order of 10−2) and the standard
deviation (in the order of 10−1). In terms of F1-Micro, Ridle achieves a very high
performance on average. Furthermore, the other approaches also achieve a high
performance for the datasets Pers(WD), Books(DBp), Chem(DBp), Movies(DBp),
Movies(WD), and Uni(DBp). These KGs are mostly characterized by having a
low to moderate number of classes (|T| between 5 and 53), and hundreds of rela-
tions (|R| between 265 and 959) with the exception of Pers(WD) with |R| = 1509.
Yet, even in category-specific KGs with hundreds of classes or few relations, our
approach outperforms the state of the art.

In the previous analyses, we compared Ridle to current solutions in pre-processed
datasets. Nonetheless, Ridle is also computationally efficient, i.e., it is able to
run in full KGs (without pre-processing) using our hardware commodities. To
perform a fair comparison with the state of the art, we obtained pre-trained
RDF2Vec vectors (RDF2Vec(p)) for DBp_2016-04 computed with biased graph
walks. Then, we learned a representation for the same KG with Ridle. To mea-
sure the ability to transfer the encoded knowledge to other DBpedia graphs,
we applied the learned Ridle and RDF2Vec(p) representations to perform pre-
dictions on DBp_3.8 and the category-specific KGs extracted from DBp_2016-04.
The results are presented in Table 15, which shows that the learned representa-
tions from DBp_2016-04 with both approaches can be transferred to other graphs
derive from DBpedia. Moreover, for the F1-Macro scores, we observe the same
trends as in the results presented in Table 14: Ridle outperforms RDF2Vec(p) in
cross-domain KGs, while achieving better or competitive average performance in
the category-specific KGs. However, we observe an improvement for RDF2Vec(p)
in terms of F1-Micro especially in the cross-domain KGs. The improvement of
RDF2Vec(p) could be two-fold: (1) the pre-processed datasets with less entities
are negatively affecting the random walks of RDF2Vec, (2) the biased graph
walks of RDF2Vec(p) are actually contributing to the class prediction. To fur-
ther analyse the performance of our proposed solution on full KGs, we applied

5.4 experimental study 97

Table 15: Results for predicting instance types with representations learned from the full
KG DBp_2016-04.

F1-Macro F1-Micro

KG Ridle RDF2Vec(p) Ridle RDF2Vec(p)

DBp_3.8 .880±.01 .792±.03 .966±.00 .938±.00

DBp_2016-04 .872±.01 .736±.01 .971±.00 .926±.00

Pers(DBp) .851±.03 .755±.03 .982±.00 .962±.00

Books(DBp) .870±.11 .876±.11 .999±.00 .999±.00

Chem(DBp) .900±.10 .880±.13 .999±.00 .999±.00

Comp(DBp) .809±.09 .794±.08 .994±.00 .993±.00

Movies(DBp) .662±.16 .681±.16 .999±.00 .999±.00

Songs(DBp) .863±.10 .855±.10 .989±.00 .987±.00

Uni(DBp) .775±.13 .683±.11 .998±.00 .998±.00

Ridle to the entire Wikidata KG,19 achieving a performance of .806 in F1-Macro
and of .590 in F1-Micro. This performance is comparable to the results on the
pre-processed dataset, reported in Table 14.

Overall, when comparing the F1-Macro and F1-Micro values presented in Ta-
ble 14 and Table 15, we observe that all the approaches achieve a higher per-
formance in the F1-Micro metric. This result confirms that accurately classifying
instances into popular classes is an easier tasks, as the probability of correct
predictions is higher. However, predicting instance types for smaller classes is
a more challenging tasks for all the studied approaches, as captured in the F1-
Macro scores. The reason for this is that these classes might not have sufficient
entities (and associated descriptions) to learn an effective representation from
these. Yet, Ridle shows on average a better performance for this case than the
state of the art.

5.4.2.2 Hierarchical F1-score Performance

To further understand the performance of the studied approaches, similar to
the related work [70, 105], we analyse the quality of the predictions while con-
sidering the hierarchical relation of the classes in the KGs. We measure the hi-
erarchical F1-Micro scores of the approaches. By definition, a high increase in
the hierarchical F1-Micro values, indicates that the predictions are not exact but
close to the actual value in the taxonomy of classes. On the contrary, a lower
value than the classical F1-Micro indicates that the predictions are far away from
the actual values with respect to the taxonomy. Therefore, in Table 16, we re-
port on the difference in performance with respect to the results report in the
previous section.

In the cross-domain KGs, Ridle still outperforms the others methods except
in Wikidata, where now RESCAL achieves a better performance than TransE. In
general, the performance of all methods – except for SDType – slightly increased

19To the best of our knowledge, there are no pre-trained RDF2Vec representations for Wikidata.
Hence, a comparison for this dataset is not possible.

5.4 experimental study 98

Table 16: Difference between the F1-Micro (cf. Table 14) and the hierarchical F1-Micro.
n/a indicates no class hierarchy available for that KG. Values in bold indicate
the highest value with respect to the hierarchical F1-Micro score.

Hierarchical F1-Micro

KG Ridle SDType RDF2Vec RESCAL IntE TransE

DBp_3.8 +.012 +.084 +.000 +.063 +.002 +.064

DBp_2016-04 +.011 +.111 +.000 +.072 +.000 +.069

WD_2017-03-13 +.042 +.124 +.000 +.013 +.013 +.000

YAGO4 +.009 +.000 +.080 +.036 +.090 +.035

UMLS +.019 +.000 +.000 +.000 +.001 +.011

DBLP n/a n/a n/a n/a n/a n/a

Pers(DBp) +.014 +.026 +.056 +.039 +.052 +.029

Pers(WD) +.002 +.002 +.002 +.002 +.002 +.002
Books(DBp) +.000 +.000 +.000 +.000 +.000 +.000
Books(WD) +.013 +.024 +.022 +.021 +.022 +.017

Chem(DBp) +.000 +.000 +.000 +.000 +.000 +.000
Chem(WD) +.024 +.033 +.040 +.040 +.040 +.028

Comp(DBp) +.002 +.004 +.007 +.004 +.007 +.002

Comp(WD) +.002 +.000 +.001 +.001 +.001 +.001

Movies(DBp) +.001 +.001 +.001 +.001 +.001 +.001
Movies(WD) +.010 +.010 +.010 +.010 +.010 +.010
Songs(DBp) +.004 +.004 +.019 +.005 +.019 +.004

Songs(WD) +.078 +.174 +.105 +.099 +.105 +.083

Uni(DBp) +.000 +.000 +.000 +.000 +.000 +.000
Uni(WD) +.098 +.106 +.111 +.110 +.111 +.111

by around 10−2 w.r.t F1-Micro scores. This indicates that when the approaches
produce false positives, these classes are not connected via rdfs:subClassOf rela-
tions to the actual classes. In contrast, SDType benefits significantly when con-
sidering hierarchies, achieving a larger improvement of 10−1. These results show
that SDType predictions deviate only slightly from the actual class in the taxon-
omy.

In the category-specific KGs, Ridle is still among the best approaches. Further-
more, when comparing the increase in performance between the cross-domain
and the category-specific KGs, we observe a larger improvement for the cross-
domain KGs. In the selected cross-domain KGs exist larger taxonomies, resulting
in a stronger effect on the hierarchical performance than with small taxonomies
as it is the case for the topic-based KGs.

Lastly, we observe in Table 16 that Ridle benefits the least (on average 0.018)
from including hierarchical information in the evaluation. This indicates that the
false positives produced by Ridle are generally not related to the actual classes
with respect to the hierarchy. This occurs in cases where instances from different
classes are annotated with a few, similar predicates in the KG. Therefore, the
representation learned with Ridle does not allow for accurately distinguishing
the class membership of those entities, as their representation based on entity-
relation frequency is very similar.

5.4 experimental study 99

Figure 26: PCA projections for learned entity representations. Popular classes from cross-
domain KGs were selected for visualization. Ridle allows for a better separa-
tion of the instances into their respective classes.

5.4.2.3 Visualizing Entities from the Learned KG Representations.

To get insights into the effectiveness of our solution in instance type predictions,
we computed Principal Component Analysis (PCA) projections of the learned
entity representations into a two-dimensional space. Besides Ridle, we present
the results for RDF2Vec(p) (in DBpedia) and RDF2Vec (in Wikidata and YAGO),
as two exemplary approaches that exhibit a good performance in the category-
specific KGs. In the following, we analyse the results for selected classes in the
KGs in Figure 26.

For the DBpedia KG, we focus on the top four most popular classes20. We
can observe that, although the class Agent is broad in both representations, Ri-
dle allows for better distinguishing the classes Work and Place from Agent. This
separation in vectors from different classes is essential to achieve a high perfor-
mance in the downstream task for predicting instance types. The representations
of RDF2Vec(p), in contrast, are suggesting that the classes Work and Place are (se-
mantically) related to Agent, which does not hold in DBpedia. Furthermore, the
class Species is not visible in RDF2Vec(p) since it is covered by the representation
Agent.

Next, we analyse the learned representations of the top four classes from the
Pers(DBp) KG. In both approaches, we observe that the instances of the classes
OfficeHolder and Politician are strongly interwoven and are difficult to distinguish
from each other. A closer look at the instances of OfficeHolder and Politician re-
vealed that these instances frequently use the same relations and that there is no
variety of specific relations for these classes. In regards to the classes Athlete and
Artist, Ridle achieves a greater separation of the computed vectors in compari-
son to RDF2Vec(p). The reason for this is that RDF2Vec(p) considers the object
values in the triples, therefore, under this representation the classes Athlete and
Politician are considered similar as their instances share in some cases the same
object. This behaviour, however, negatively affects the instance type prediction
capabilities of RDF2Vec(p).

20The DBpedia Ontology hierarchy is available at http://mappings.dbpedia.org/server/

ontology/classes/

http://mappings.dbpedia.org/server/ontology/classes/
http://mappings.dbpedia.org/server/ontology/classes/

5.4 experimental study 100

To analyse the results for Wikidata and YAGO, we selected some similar and
some dissimilar classes to show the behavior of Ridle in different scenarios. In
Wikidata, Ridle clearly distinguishes distant classes – i.e., protein and river – and
represents closely those with semantic proximity – i.e., river and lake, which often
use similar relations e.g. located in the administrative territorial entity (P131) and
tributary (P974). Similar to previous results, the YAGO instance representations
of Ridle allow for distinguishing the different classes,21 although entities using
similar relations, e.g, entities of the classes Painting and Movie, are closer to each
other due to the frequent use of the same relations. In contrast, RDF2Vec cannot
effectively distinguish the entity types in these datasets.

Using the insights gained from the PCA projections, we can further compre-
hend the results for predicting the instance types presented Table 14. In the cross-
domain KGs like DBp_2016-04 and YAGO4, there exist a larger number of classes
whose instances are mostly described by class-specific relations. By computing a
target distribution over the usage of these relations, the representation of Ridle
can classify the entities more accurately on average than the baseline methods.
Including the object information of the statements, as done by the baseline meth-
ods, a closer proximity of the instances is caused, leading to a more difficult
classification of the instances into their correct classes. This was observed, for
example, in RDF2Vec(p) with the classes Agent and Place in DBp_2016-04. By
using very few class-specific relations to describe instances, Ridle can no longer
distinguish between classes, causing a loss of performance with respect to the
F1-score. Overall, we can conclude that when entities are described with class-
specific relations, Ridle is able to obtain a representation that effectively encodes
both semantically similar and dissimilar classes.

5.4.3 Effectiveness of Domain Predictions

In this section, we investigate the effectiveness of the approaches when predict-
ing property domain assertions. In the studied KGs, these assertions are repre-
sented with the predicate rdfs:domain, except for Wikidata where the domain of
relations can be expressed via the predicate wd:P2302.22 Similar to the previous
analyses, we first look into the F1-scores when predicting exact statements in
Sect. 5.4.3.1. In sect. 5.4.3.2, we analyse the Hierarchical F1-score, in which we
include the class hierarchy for evaluation. Lastly, in sect. 5.4.3.3, we visualize the
learned representations with PCA. To the best of our knowledge, there are no
pre-trained RDF2Vec representations of relations available. Hence, a comparison
of Ridle with pre-trained RDF2Vec vectors for this task was not possible.

21The plot includes all the entities, but they are superimposed. Ridle maps many of the entities
from the class Scholarly Article to the same point in space.

22While wd:P2302 and rdfs:domain are not semantically equivalent, we follow the Wikidata data
model described inhttps://www.wikidata.org/wiki/Wikidata:Relation_between_properties_
in_RDF_and_in_Wikidata

https://www.wikidata.org/wiki/Wikidata:Relation_between_properties_in_RDF_and_in_Wikidata
https://www.wikidata.org/wiki/Wikidata:Relation_between_properties_in_RDF_and_in_Wikidata

5.4 experimental study 101

Table 17: Using the representations of the relations for predicting domain asser-
tions. n/a indicates that either no domain assertions were available (UMLS
and DBLP) or the number of relations with domain assertions was not
enough to evaluate using k-fold cross-validation (Pers(DBp), Chem(DBp) and
Movies(DBp). Bold values represent best average results.

(a) Results for cross-domain knowledge graphs

F1-Macro F1-Micro

KG Ridle RDF2Vec RESCAL IntE TransE Ridle RDF2Vec RESCAL IntE TransE

DBp_3.8-en .538±.05 .002±.00 .142±.04 .014±.01 .066±.02 .687±.04 .041±.02 .187±.03 .041±.02 .157±.03

DBp_2016-04 .528±.08 .002±.00 .098±.02 .007±.01 .088±.03 .671±.07 .058±.02 .155±.03 .019±.01 .187±.03

WD_2017-03-13 .275±.05 .200±.02 .173±.01 .214±.02 .217±.02 .620±.03 .586±.02 .357±.02 .586±.02 .589±.03

YAGO4 .274±.07 .029±.02 .076±.05 .039±.03 .104±.06 .505±.10 .128±.06 .223±.15 .119±.07 .259±.14

(b) Results for category-specific knowledge graphs

F1-Macro F1-Micro

KG Ridle RDF2Vec RESCAL IntE TransE Ridle RDF2Vec RESCAL IntE TransE

UMLS n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

DBLP n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Pers(DBp) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Pers(WD) .431±.03 .339±.05 .152±.01 .403±.05 .374±.05 .763±.02 .732±.03 .426±.04 .763±.02 .754±.03

Books(DBp) .567±.37 .233±.30 .333±.37 .300±.38 .400±.33 .650±.32 .300±.33 .400±.37 .350±.39 .500±.32

Books(WD) .384±.06 .334±.09 .147±.02 .421±.08 .347±.09 .471±.06 .421±.06 .352±.04 .559±.04 .428±.05

Chem(DBp) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Chem(WD) .406±.05 .283±.06 .142±.03 .274±.10 .326±.07 .424±.06 .297±.05 .282±.04 .478±.03 .331±.08

Comp(DBp) .478±.33 .128±.11 .540±.28 .350±.33 .416±.34 .550±.31 .242±.18 .608±.26 .417±.33 .508±.32

Comp(WD) .376±.12 .369±.06 .182±.02 .368±.05 .369±.05 .521±.04 .531±.05 .349±.03 .504±.04 .501±.04

Movies(DBp) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Movies(WD) .417±.13 .428±.12 .166±.02 .477±.12 .446±.12 .603±.06 .611±.08 .429±.04 .663±.05 .622±.06

Songs(DBp) .333±.45 .533±.48 .233±.40 .600±.49 .433±.47 .350±.45 .550±.47 .250±.40 .600±.49 .450±.47

Songs(WD) .436±.09 .360±.07 .134±.02 .438±.07 .379±.08 .388±.06 .254±.04 .258±.04 .425±.05 .315±.03

Uni(DBp) .206±.30 .238±.14 .359±.34 .322±.36 .222±.17 .267±.32 .383±.22 .450±.33 .400±.35 .317±.23

Uni(WD) .413±.09 .413±.07 .164±.01 .413±.07 .412±.07 .567±.03 .600±.05 .327±.02 .586±.06 .591±.06

5.4.3.1 F1-score Performance

The effectiveness of the approaches for this task is presented in Table 17. We
observe that there is no representation that outperforms the other methods. De-
pending on the KG, different representations achieve a better performance with
respect to the F1-Macro and F1-Micro scores.

In the cross-domain KGs, Ridle significantly outperforms the state of the art in
both F1-Macro and F1-Micro scores (cf. Table 17a). In particular, Ridle achieves
a good performance in the DBpedia KGs, in contrast to the Wikidata and YAGO
KGs. One explanation for this is the low number of classes (27 in Wikidata and
49 in YAGO) that occur as relation domains in those KGs (cf. Table 13). Despite
this, Ridle still produces more accurate predictions than the other approaches,
even in the presence of a small training set.

Regarding the category-specific KGs, we observe a more heterogeneous per-
formance. In 5 out of the 11 studied KGs, Ridle showed a better average per-
formance in terms of F1-Macro. All these graphs are characterized for hav-

5.4 experimental study 102

ing T ′ > 20. Furthermore, in the Movies(WD) and Songs(WD) KGs (also with
T ′ > 20), Ridle did not achieve the highest average F1-Macro, yet, its perfor-
mance is competitive with the best method IntE. In particular, IntE exhibits
a good F1-Macro performance when considering category-specific knowledge
graphs, as the feature permutation used by IntE allows for learning more com-
plex relationships, especially suitable for KGs extracted from Wikidata, in which
the relation wd:P2302 is used for both, domain and range assertions. Conversely,
it is challenging for Ridle to predict exact domain assertions for classes that par-
ticipate as domain of several relations, as reflected in the F1-Micro results.

In general, the performance of the models with respect to F1-Micro is higher
than with respect to F1-Macro. The only exception is the case of Songs(WD)
in which all methods, except RESCAL, were less accurate. The improved per-
formance of the methods with respect to the F1-Micro score is to be expected,
since classes with a small number of samples tend to be predicted less correctly
and classes with a large number of samples are generally predicted more ac-
curately. The greater the discrepancy in class distributions, the greater the dif-
ference between F1-Macro and F1-Micro. Surprisingly, however, in the case of
Songs(WD) F1-Micro is lower than F1-Macro, indicating that there is a frequent
number of false positives in the most popular classes (i.e. allowed qualifiers con-
straint (Q21510851)) is present. This is due to the use of wd:P2302 as an assertion,
used for both domain and range constraints, and thus used in different contexts
(e.g., relation characters (P674) to restrict to voice speaker or ISBN-10 (P957) to re-
strict the publisher), which is not considered in our model. It is therefore difficult
for all models to find a distinct pattern for prediction.

5.4.3.2 Hierarchical F1-score Performance

Table 18 presents the difference between the hierarchical and the regular F1-
Micro scores (cf. Table 17). A positive number means that predictions are close
to the actual class in the hierarchy; a negative number means otherwise.

In the cross-domain KGs, Ridle is able to achieve the best hierarchical F1-
scores and most approaches improve in the Wikidata and YAGO datasets. For
the DBpedia dataset, the improvement is either marginal or it slightly decreases,
as is the case of RDF2Vec. These results indicate that the other approaches are
predicting classes that are not hierarchically related to the actual class. For ex-
ample, RDF2Vec tends to predict always the class Person, as this is a popular
class in DBpedia. We hypothesize that this behavior of the other approaches is
caused by (i) including object information in the learned representation, which
perturbs the encoding of the domains, and (ii) incorrect statements in the KG, as
we further discuss in Sect. 5.4.5, which makes the domain prediction task more
challenging. In the following, we illustrate the predictions of Ridle and TransE
for DBp_2016-04; ⊆ and ⊇ indicate subclass and superclass of the actual class,
respectively.

5.4 experimental study 103

Table 18: Difference between F1-Micro (cf. Table 17) and hierarchical F1-Micro for evalu-
ating the quality of the domain assertion. n/a indicates no sufficient domain
assertions available for evaluation. Values in bold indicate the highest value
with respect to the hierarchical F1-Micro score.

Hierarchical F1-Micro

KG Ridle RDF2Vec RESCAL IntE TransE

DBp_3.8 +.032 -.001 -.002 -.001 +.004

DBp_2016-04 +.021 +.000 +.004 +.006 +.004

WD_2017-03-13 +.301 +.327 +.502 +.307 +.305

YAGO4 +.129 +.342 +.250 +.303 +.281

UMLS n/a n/a n/a n/a n/a

DBLP n/a n/a n/a n/a n/a

Pers(DBp) n/a n/a n/a n/a n/a

Pers(WD) +.193 +.223 +.466 +.196 +.193

Books(DBp) +.185 +.000 +.100 +.150 +.000

Books(WD) +.407 +.479 +.507 +.358 +.447

Chem(DBp) n/a n/a n/a n/a n/a

Chem(WD) +.330 +.654 +.562 +.401 +.530

Comp(DBp) +.033 +.000 +.017 +.000 +.092

Comp(WD) +.355 +.375 +.515 +.360 +.367

Movies(DBp) n/a n/a n/a n/a n/a

Movies(WD) +.304 +.301 +.452 +.274 +.264

Songs(DBp) +.300 +.000 +.000 +.000 +.000

Songs(WD) +.472 +.616 +.590 +.464 +.550

Uni(DBp) +.100 +.000 +.050 +.000 -.034

Uni(WD) +.330 +.321 +.536 +.308 +.296

Relation Actual Domain Ridle TransE

placeOfBurial Person Saint (⊆) Software

draftTeam Athlete IceHockeyPlayer (⊆) Person (⊇)

fileSize Work Software (⊆) SpaceMission

alumni EducationalInstitution School (⊇) MilitaryUnit

With respect to the category-specific KGs, most of the approaches show a
strong hierarchical F1-Micro improvement, particularly in the graphs extracted
from Wikidata. The improvement may be due to the fact that most of the classes
in the category-specific KGs are related in the ontology hierarchy. Still, in case of
predicting a class that is far away from the actual class would cause a high de-
crease in performance, which is not the case. Furthermore, we look into the kinds
of predictions (sub- or superclasses) produced by the approaches to get insights
into the results. Overall, the approaches predict sub-classes in around 24% of the
cases, while superclasses are predicted around 18% of the cases, which together
contribute to the increase in the hierarchical F1-scores observed in Table 18.

5.4.3.3 Visualizing Relation Representation

To understand the performance of Ridle when predicting domain assertions, we
visualize the PCA projections of relations for selected KGs in Figure 27. Similar
to the insights we gained in the visualization of instance vectors, the represen-

5.4 experimental study 104

Figure 27: PCA projections for learned relation representations. Popular domain classes
from cross-domain KGs were selected for visualization. Overall, the Ridle rep-
resentations allow for a better separation of the relations into their respective
domains.

tations of Ridle are more separable by their domain classes than the representa-
tions learned with RDF2Vec.

For the DBpedia KGs, we selected the top 4 domains as shown in Figure 27.
We observe that the representations of Ridle allows for (i) encoding the semantic
similarity of the relations, and (ii) providing a clear distinction between relations
with dissimilar domain classes. For example, in DBp_2016-04, the relations with
domains Place and PopulatedPlace are represented closely and, in fact, Populated-
Place is a subclass of Place. Note that ontological information was not provided
to the approaches during the learning process, yet, these results indicate that Ri-
dle is able to reconstruct these semantic associations from the instance-relation
distributions. This proximity that we can observe in the representation of Ridle
is contributing to the increase of performance when considering the hierarchi-
cal F1-Micro score. Conversely, relations with dissimilar domains, e.g. Person in
both DBpedia KGs and SpaceMission in DBp_3.8, are represented slightly further
from the other relations. The insights from these KGs are also confirmed with
the YAGO KG.

Lastly, the representations of Ridle for Wikidata relations do not allow for a
precise separation by domain class, which explains the relatively low F1-scores
reported in Table 17a. The reason for this is most likely the mixing of different
constraints using the property wd:P2302, causing Ridle to be less effective in this
KG.

5.4.4 Impact of Encoding Incoming and Outgoing Relations

In the following we will, in addition to the outgoing edges, also encode the
incoming edges in the binary representation of the entities to include more infor-
mation into the computation of learning a latent representation. The hypothesis
is, that an incoming relation like e.g. author of a book is descriptive for a person
just like the outgoing relations of this entity, so that incoming relations can be
used to learn a latent reparation as well.

5.4 experimental study 105

Table 19: Comparison of the different encoding of incoming and outgoing relations to
learn latent representations for predicting instance types.

F1-Macro F1-Micro

KG Outgoing Inc/Out Outgoing Inc/Out

DBp_3.8 .840±.01 .802±.02 965±.00 .965±.00

DBp_2016-04 .846±.01 .802±.01 .968±.00 .936±.00

WD_2017-03-13 .805±.01 .120±.00 .590±.01 .828±.00

YAGO4 .725±.01 .729±.14 .965±.00 .999±.00

Therefore we define the binary vectors of the entities s ∈ E which serve as
input for Ridle as follows.

v[i] =

 1 if (s, ri,o) ∈ G or (o, ri, s) ∈ G, for some o ∈ E∪R− ∪L∪ T

0 otherwise

Based on these vectors we train latent representations and use them for pre-
dicting instance types. The model for predicting instance types is the same as
described in section 5.3.2. Table 19 shows the results of these experiments (In-
c/Out) compared to the results with the encoding described in section 5.3 using
only the outgoing relations to describe the entities (Outgoing). The experiments
were performed only on the cross-domain knowledge graph due to too few in-
coming entity relations on the category-specific knowledge graphs to get signifi-
cant results.

Considering the results in Table 19 we notice that there are different results, de-
pending on the knowledge graphs examined. In general, on the DBpedia knowl-
edge graphs, the additional inclusion of the incoming relations leads to a deteri-
oration of the performance with respect to F1-Macro. In contrast, the additional
inclusion of the incoming relations leads to an improvement of the performance
of Ridle with respect to F1-Macro and F1-Micro on YAGO4. Considering the
number of incoming relations in detail, we see that DBpedia has much more
incoming relations to describe the entities than for instance YAGO4. DBpedia-
3.8 has a total of 3.53% triples with incoming relations to describe the entities
whereas YAGO4 has only 0.435%. Thus DBpedia has more incoming relations of
entities. This is confirmed by the use of incoming relations for describing the in-
dividual entities on YAGO4 compared to DBpedia-3.8. On the knowledge graph
YAGO4, the individual entities have much fewer incoming edges for describing
them than in DBPedia. According to the results in Table 19 it can be assumed,
that the incoming relations for description, in addition to the outgoing relations,
have a disturbance and thus a certain negative impact on the learned latent rep-
resentations. Therefore, the performance for predicting instance type generally
deteriorates with respect to F1 scores. On average, YAGO4 has a better perfor-
mance with respect to F1-Macro, however, the standard deviation is also signifi-
cantly higher. Taking this increased standard deviation into account, the results
are not as good as expected with regard to the inclusion of incoming relations.

5.4 experimental study 106

Table 20: Difference between the F1-Micro (cf. Table 19) and the hierarchical F1-Micro.
Values in bold indicate the highest value with respect to the hierarchical F1-
Micro score.

Hierarchical F1-Micro

KG Ridle Ridle-Inc/Out

DBp_3.8 +.012 .000

DBp_2016-04 +.011 .000

WD_2017-03-13 +.301 .000

YAGO4 +.129 .000

The results on the DBpedia knowledge graphs even indicate a clear deterioration
of the performance with respect to F1-Macro, whereby considerably more incom-
ing relations are used for description compared to YAGO4. This confirms, that
the incoming relations are not as good as expected for the description of entities
and input for Ridle and thus learning latent representations. This is confirmed by
the Wikidata knowledge graph, for which the performance of the F1-Macro dete-
riorates significantly when considering incoming relations. The larger amount of
information leads to a greater distortion, resulting in the learned representations
not being effective for the prediction of instance types.

Similar to the experiments in section 5.4.2.2, we evaluated the performance
of the different encodings with respect to the hierarchical F1-Micro score. The
results in Table 20 confirm the findings from Table 19. Including incoming rela-
tions in Ridle to learn a representation of entities has no positive effect on perfor-
mance. Instead, the additional information about incoming relations introduces
noise, causing a lower performance with respect to the F1-score. A common ex-
ample in the examined knowledge graphs is the relation author. The relation
describes that a book has a certain author. The hypothesis was that this entity
is usually a person, but organizations can also be authors of e.g. a tech report,
leading to an incorrect prediction of the class of the entity, which results in a
decrease in performance with respect to the correct classification.

5.4.5 Final Remarks

When comparing the achieved results of the methods for instance type and do-
main assertion prediction, we observe that the performance with respect to F1-
score for predicting domain assertions is generally lower than the performance
of instance type prediction. Based on our experimental evaluation, we identify
two main reasons for this behavior: incorrect statements in KGs, and the limited
number of samples available about domain assertions.

Regarding incorrect statements, there are inconsistent uses of relations with
respect to the domains defined in the ontology of the KG. For example, the on-
tology of the DBp_2016-04 KG defines the class SoccerClub as the domain of the
relation ground23; this domain assertion states that soccer clubs have home stadi-

23http://dbpedia.org/ontology/ground

http://dbpedia.org/ontology/ground

5.5 summary and future work 107

ums (or grounds). However, we found the triple (Dinamo_Zagreb_season, ground,
Stadion_Maksimir), where the entity Dinamo_Zagreb_season24 is of type SoccerClub-
Season, and it is not an instance of SoccerClub or any of its subclasses. This is an
example of incorrect statements that might perturb the learning process for do-
main assertions, especially, if the number of incorrect statements is relatively
large. For example, in the latest DBpedia dataset25, we encountered 6, 026 en-
tities from the class SoccerClubSeason with the ground predicate (i.e. incorrect
usage), and 16, 825 entities from the class SoccerClub (i.e. correct usage).26 Based
on the frequency that entities from SoccerClubSeason co-occur with the relation
ground, the learning process of Ridle may also encode these inconsistencies in the
obtained representation which, in turn, affect the performance of downstream
prediction tasks of domains assertions.

In addition, the prediction of domain assertions is intrinsically restricted by the
number of samples in the KGs. In this case, the set of labels or correct relation-
domain pairs is limited to the number of predicates in the KG, which in general
is relatively low. In contrast to the task of instance type prediction, KGs usually
have thousands of entities that can be used during training and validation. For
domain prediction, our empirical results suggest that in most of the cases, the
amount of data is not sufficient for the models to produce accurate predictions,
as shown with the F1-scores.

The evaluation regarding the impact of incoming relations for learning latent
representations has shown that this does not lead to a significant improvement
in performance. For this reason, the unconditional use of incoming relations for
learning latent representations cannot be recommended. Some incoming rela-
tions like author are not descriptive enough and sometimes lead to a distortion
of the available information.

5.5 summary and future work

In this chapter, we presented an inductive stochastic factorization model to rep-
resent entities and relations of knowledge graphs (KGs), suitable for predict-
ing schema knowledge. Our approach, Ridle, first implements an unsupervised
learning model based on Restricted Boltzmann Machines (RBMs) to leverage the
distribution over the usage of relations in instances in KGs. We then devise entity
and relation representations based on the latent features learned with the RBM.
Using the learned representations, Ridle then implements two neural network ar-
chitectures for predicting instance type and domain assertions respectively. The
experimental results showed that Ridle on average outperforms current state-of-
the-art models in several KGs, which sets a new baseline in the tasks of predict-
ing instance types and domain assertions. Furthermore we have shown in the
experiments that the encoding of outgoing relations provides much more infor-
mation than the encoding of incoming relations, leading to a better performance
regarding instance type predictions. When using a hybrid encoding system for
both outgoing and incoming relations, it has been shown that while the per-

24http://dbpedia.org/page/2009-10_NK_Dinamo_Zagreb_season
25Queryable at http://dbpedia.org/sparql
26Here we denote (in)correct usage w.r.t. the domain definition in the ontology.

http://dbpedia.org/page/2009-10_NK_Dinamo_Zagreb_season
http://dbpedia.org/sparql

5.5 summary and future work 108

formance with respect to the F1-score was slightly better regarding the instance
type predictions, the performance was not significant enough to recommend this
encoding system without restrictions, especially considering the higher runtime.
The visualization of the learned KG representation shows that Ridle is able to
correctly group entities with similar distribution of relations, whereas dissimilar
entities are represented far away. This property of Ridle is key for achieving a
high performance in entity prediction. Likewise, Ridle was able to reconstruct se-
mantic associations between relations from instance-relation distributions, even
though ontological information was not available during training. This learned
semantic associations in the relation representation of Ridle is a decisive factor
for the downstream performance of the schema predictions.

Based on the experiments performed and the insights gained from them, we
can answer the research questions posed at the beginning of this chapter in the
following.

◎ Answering Research Questions

Hypothesis: The sub-symbolic KG representation learned with our model
encode latent groups of nodes and links in knowledge graphs.

3.1 How effective are the learned sub-symbolic KG representation of nodes
from our models for node classification?

Answ. The introduced sub-symbolic KG representations could clearly show
the effectiveness in the performed experiments and outperform base-
line methods. The effectiveness of the representations could be shown
especially on cross-domain knowledge graphs.

3.2 In the sub-symbolic representation of nodes, what kind of links – in-
coming or outgoing – contribute the most to node classification?

Answ. The outgoing links contribute the most to node classification. In-
cluding incoming links generally causes a distortion of information
and therefore results in a lower performance regarding node classi-
fication.

3.3 How effective are the learned sub-symbolic KG representation of links
from our models for domain classification?

Answ. The effectiveness of the learned sub-symbolic KG representations
could clearly be shown for predicting domain assertions. As with the
sub-symbolic KG representations of nodes, the effectiveness com-
pared to the baseline methods was shown in cross-domain knowl-
edge graphs, in which they were outperformed.

Future work may focus on studying the problem of range assertion predic-
tions. In order to enable this, the process for learning an effective representation
must be extended in two ways: (i) to encode information from the objects, and
(ii) to handle literal values. Besides, we want to further study the kinds of predic-
tions (sub- or superclasses) in instance types and domain assertions predictions

5.5 summary and future work 109

both in terms of their contribution to the hierarchical F1-score and their rele-
vance in real-world application systems. In addition, we plan to investigate the
instance representation for their usefulness in creating a taxonomy. As shown
in this chapter, instances using a similar target distribution are closed in dimen-
sional space and thus provide a reasonable representation with respect to the
class membership. Based on the learned representations, a hierarchical cluster-
ing method could provide a reasonable taxonomy.

6
C O N C L U S I O N

6.1 summary

In this thesis, we focused on learning latent features of graph structured data us-
ing Stochastic Neural Networks. We used the distribution function of the links of
the nodes to encode latent information into the representations. We considered
different types of graph structured data to learn latent features such as knowl-
edge graphs in Chapter 3 and bipartite networks in Chapter 4, which were used
to predict new links in the graph, as well as knowledge graphs in Chapter 5

to use the latent features to predict instance types and domain assertions for
the relations. We adapted the methods according to the considered graph and
problem, given the different properties of the graphs. In knowledge graphs the
different types of edges are taken into account, while in bipartite networks the
method and the input are adapted in such a way that they do not take into
account different types of edges, as they were not present in this considered
problem. The methods introduced for predicting missing properties in knowl-
edge graphs have shown that learning a link distribution is capable of predicting
missing properties even if an Open World Assumption is present. Although the
distribution function encodes latent features that can be used to identify missing
properties, the corresponding object cannot be identified. However, even with
this information, the services have more information at their disposal that can
be used in question answering, as shown in the beginning of this thesis, in the
motivation. In a further downstream process the triple can be completed using
existing methods such as ComplexE [115] and QuatE [131]. With the knowledge
gained we can answer Hypothesis 1 introduced in the introduction as follows.

� Hypothesis 1

Link distribution learning is suitable for predicting missing properties in
knowledge graphs which are represented under the Open World Assump-
tion.

Learning latent features using the link distribution allows for effective
predictions of missing properties in knowledge graphs, even if they fol-
low the Open World Assumption.

In the evaluation of the method in the context of bipartite networks in Chap-
ter 4 we have shown that the latent features learned with our method are par-
ticularly suitable for predicting interactions in disconnected networks. Previous

110

6.1 summary 111

methods mostly use random walk approaches which cannot reach all nodes in a
graph consisting of different components. As a result, only limited information
is available from the corresponding components. In comparison, the method in-
troduced in this thesis can also take into account information from different com-
ponents and can therefore be recommended without restriction for disconnected
networks. This allows for much more robust results with respect to the topology
of the considered graph. A study to evaluate the applied distribution function
has shown that the Bernoulli distribution, although very simple, achieves the
best performance regarding the correct prediction of interactions. The second
hypothesis, introduced in the beginning of this thesis, can now be answered on
the basis of the studies conducted in this thesis.

� Hypothesis 2

A stochastic factorization model is able to learn the distribution of links,
even in disconnected bipartite networks.

The introduced stochastic factorization model was able to keep up in
terms of performance for the prediction of missing interactions with exist-
ing approaches in connected bipartite networks, and outperformed them
when disconnected bipartite networks were considered.

Due to the excellent results in predicting links in knowledge graphs under
the Open World Assumption and interactions in bipartite networks, we have
adapted the method in Chapter 5 to learn latent features in knowledge graphs
for entities and relations, especially suitable for instance type classification and
predicting domain assertions. In particular with cross-domain knowledge graphs
we could show that the latent features learned with our method can distinguish
the subtleties of the different types of instances and domains of relations much
better, which led to a better performance compared to the previous methods.
Hypothesis 3 addressed the analysis of the encoded latent groups of nodes and
links in the sub-symbolic KG representations of the knowledge graphs. Based on
the experiments performed in this thesis we can now answer this hypothesis.

� Hypothesis 3

The sub-symbolic KG representation learned with our model encode latent
groups of nodes and links in knowledge graphs.

Using our model, we could encode latent features about the group affilia-
tion of nodes and links within the sub-symbolic KG representations. The
experiments showed that these representations are highly effective for in-
stance type prediction and domain assertions, especially for cross-domain
knowledge graphs.

In summary, our introduced model, which learns latent features using stochas-
tic neural networks, provides much more robust results regarding the topology
of graph structured data, as well as the ability to easily apply them to different
types of graphs.

6.2 outlook 112

6.2 outlook

Based on the insights gained from this thesis, new problems arise which can
be tackled in the future. In Hypothesis 1, we have predicted links considering
the Open World Assumption. This could also be extended to other graphs like
bipartite networks and thus addressed to what extent the insights gained from
knowledge graphs can be applied to other types of graphs. Thus, even in bipar-
tite networks it can be assumed that the modelled information in the networks is
not complete. This assumption is particularly useful for systems using an open
world assumption, as for example in bioinformatics for modeling information
between drugs and targets, in which it cannot be guaranteed that the available
information is complete. Therefore, it would also be useful to study this assump-
tion in the context of predicting interactions in networks, using an open world
assumption.

Within this work the focus was put on general graph structured data. We
specified for each hypothesis and research question which graphs we were con-
sidering in detail, for example, we considered knowledge graphs and bipartite
networks. But despite this broad focus, there are many other graphs on which the
developed methods can be applied. Thus, latent features in undirected graphs
with multiple edges, multigraphs and hypergraphs could be learned to predict
links within these graphs. The extension to the other graphs, like e.g. hyper-
graphs is especially important in domains where these graphs are used, such as
physics and chemistry, to help identify new compounds in the graphs. Due to
the different types of graphs there would be different structures available, which
has to be considered when learning latent features.

In the context of learning about latent features of relations, we have focused
on predicting domain assertions. Within this context the focus could be extended
to predict the ranges of relations. However, the currently used approach would
have to be changed to include the information of the nodes to which the relation
point to. Currently the focus is on the outgoing nodes. Possibly a context-related
representation of the relations would be useful, depending on the focus on pre-
dicting domain and range assertions, in order to use the appropriate representa-
tion and the knowledge encoded therein.

Furthermore, the representations of the individual entities could be aggre-
gated according to their class affiliation to create a representation of the classes.
With the help of these representations it can be tried to create class alignments
between different knowledge graphs. Besides, the information of the latent fea-
tures could also be used to identify prominent relations of entities within the
classes, which are particularly prominent for the corresponding entities within
the classes. This information can be used for entity summarization to identify
class-specific relations, which are highly descriptive for entities of a specific class.

6.3 closing remarks

This thesis attempted to learn latent features in graph structured data. While we
used the learned latent features mostly for predicting missing links and classi-
fying nodes and links, this is only a small part of what can be done with the

6.3 closing remarks 113

learned features. Using the learned features of the individual components of the
graph, it is possible to aggregate them to generate a complete representation of
the graph. While the models are applicable to all graph structured data, we have
focused on specific graphs in answering the research questions. This allowed us
to perform in-depth analyses of the methods with respect to the specific graphs,
but has the disadvantage that some types of graphs, such hypergraphs, were not
addressed.

Furthermore, an efficient runtime of the methods was never the focus of this
work. The limitation of current matrix-vector multiplication algorithm is O(n2)

using a sequential implementation. Due to the use of such an implementation,
the runtime of the introduced methods are O(n2). This runtime is generally un-
satisfactory within computer science. However, as already mentioned, the focus
is less on the efficient runtime and more on the effectiveness of learning latent
features in graph structured data, in which we have shown the advantages of
a stochastic neural network over classical methods and the robustness of the
results.

R E F E R E N C E S

[1] Collaborative filtering and deep learning based recommendation system
for cold start items. Expert Systems with Applications, 69:29 – 39, 2017.

[2] Sami Abu-El-Haija, Bryan Perozzi, and Rami Al-Rfou. Learning edge rep-
resentations via low-rank asymmetric projections. In Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, CIKM’17,
pages 1787 – 1796, New York, NY, USA, 2017. Association for Comput-
ing Machinery. ISBN 9781450349185. doi: 10.1145/3132847.3132959. URL
https://doi.org/10.1145/3132847.3132959.

[3] Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, and Alex Alemi. Watch
your step: Learning node embeddings via graph attention. In Proceedings
of the 32nd International Conference on Neural Information Processing Systems,
NIPS’18, pages 9198 – 9208, Red Hook, NY, USA, 2018. Curran Associates
Inc.

[4] Maribel Acosta, Elena Simperl, Fabian Flöck, and Maria-Esther Vidal.
HARE: A hybrid SPARQL engine to enhance query answers via crowd-
sourcing. In Proceedings of the 8th International Conference on Knowledge Cap-
ture 2015, pages 11:1–11:8.

[5] Maribel Acosta, Elena Simperl, Fabian Flöck, and Maria-Esther Vidal. En-
hancing answer completeness of SPARQL queries via crowdsourcing. J.
Web Semant., 45:41–62, 2017.

[6] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules in large databases. In Proceedings of VLDB ’94, pages 487–
499. Morgan Kaufmann Publishers Inc., 1994.

[7] Leman Akoglu. Quantifying political polarity based on bipartite opin-
ion networks. In Eytan Adar, Paul Resnick, Munmun De Choudhury,
Bernie Hogan, and Alice H. Oh, editors, Proceedings of the Eighth Inter-
national Conference on Weblogs and Social Media, ICWSM 2014, Ann Ar-
bor, Michigan, USA, June 1-4, 2014. The AAAI Press, 2014. URL http:

//www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8073.

[8] James Atwood and Don Towsley. Diffusion-convolutional neural networks.
In Proceedings of the 30th International Conference on Neural Information Pro-
cessing Systems, NIPS’16, pages 2001 – 2009, Red Hook, NY, USA, 2016.
Curran Associates Inc. ISBN 9781510838819.

[9] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cy-
ganiak, and Zachary Ives. DBpedia: A Nucleus for a Web of Open Data.
In Proceedings of ISWC, pages 722–735. Springer, 2007.

114

https://doi.org/10.1145/3132847.3132959
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8073
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8073

bibliography 115

[10] Michael Azmy, Peng Shi, Jimmy Lin, and Ihab F. Ilyas. Matching enti-
ties across different knowledge graphs with graph embeddings. CoRR,
abs/1903.06607, 2019.

[11] I. Balažević, C. Allen, and T. M. Hospedales. TuckER: Tensor Factorization
for Knowledge Graph Completion. arXiv e-prints, January 2019.

[12] Ivana Balazevic, Carl Allen, and Timothy M. Hospedales. Hypernetwork
knowledge graph embeddings. CoRR, 2018. URL http://arxiv.org/abs/

1808.07018.

[13] Michael J. Barber. Modularity and community detection in bipartite
networks. Physical Review E, 76(6), Dec 2007. ISSN 1550-2376. doi:
10.1103/physreve.76.066102. URL http://dx.doi.org/10.1103/PhysRevE.

76.066102.

[14] Carlo Batini, Cinzia Cappiello, Chiara Francalanci, and Andrea Maurino.
Methodologies for data quality assessment and improvement. ACM Com-
put. Surv., 41(3):16:1–16:52, July 2009.

[15] Robert M. Bell and Yehuda Koren. Lessons from the netflix prize chal-
lenge. SIGKDD Explor. Newsl., 9(2):75 – 79, December 2007. ISSN 1931-0145.
doi: 10.1145/1345448.1345465. URL https://doi.org/10.1145/1345448.

1345465.

[16] Yoshua Bengio and Olivier Delalleau. Justifying and generalizing con-
trastive divergence. Neural Comput., 21(6):1601 – 1621, June 2009. ISSN
0899-7667. doi: 10.1162/neco.2008.11-07-647. URL https://doi.org/10.

1162/neco.2008.11-07-647.

[17] Russa Biswas, Rima Türker, F. B. Moghaddam, Maria Koutraki, and
H. Sack. Wikipedia infobox type prediction using embeddings. In
DL4KGS@ESWC, 2018.

[18] O. Bodenreider. The unified medical language system (umls): integrating
biomedical terminology. Nucleic acids research, 32 Database issue:D267–70,
2004.

[19] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Tay-
lor. Freebase: A collaboratively created graph database for structuring hu-
man knowledge. In Proceedings of ACM SIGMOD, pages 1247–1250. ACM,
2008.

[20] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston,
and Oksana Yakhnenko. Translating embeddings for modeling multi-
relational data. In Proceedings of NIPS, pages 2787–2795, 2013.

[21] Francois Caron. Bayesian nonparametric models for bipartite graphs. Ad-
vances in Neural Information Processing Systems, 25:2051–2059, 2012.

[22] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding commu-
nity structure in very large networks. Phys. Rev. E, 70, Dec 2004.

http://arxiv.org/abs/1808.07018
http://arxiv.org/abs/1808.07018
http://dx.doi.org/10.1103/PhysRevE.76.066102
http://dx.doi.org/10.1103/PhysRevE.76.066102
https://doi.org/10.1145/1345448.1345465
https://doi.org/10.1145/1345448.1345465
https://doi.org/10.1162/neco.2008.11-07-647
https://doi.org/10.1162/neco.2008.11-07-647

bibliography 116

[23] Michael Cochez, Petar Ristoski, Simone Paolo Ponzetto, and Heiko Paul-
heim. Biased graph walks for rdf graph embeddings. In Proceedings of the
7th International Conference on Web Intelligence, Mining and Semantics, WIMS
’17. Association for Computing Machinery, 2017.

[24] Fariz Darari, Werner Nutt, Giuseppe Pirrò, and Simon Razniewski. Com-
pleteness management for RDF data sources. TWEB, 12(3):18:1–18:53, 2018.

[25] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel.
Convolutional 2d knowledge graph embeddings. CoRR, abs/1707.01476,
2017. URL http://arxiv.org/abs/1707.01476.

[26] J. Chitra Devi and E. Poovammal. An analysis of overlapping community
detection algorithms in social networks. Procedia Computer Science, 89:349–
358, 2016.

[27] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understand-
ing. CoRR, abs/1810.04805, 2018.

[28] Joseph A. DiMasi, Henry G. Grabowski, and Ronald W. Hansen. Innova-
tion in the pharmaceutical industry: New estimates of R&D costs. Journal
of Health Economics, 47(C):20–33, 2016. doi: 10.1016/j.jhealeco.2016.0. URL
https://ideas.repec.org/a/eee/jhecon/v47y2016icp20-33.html.

[29] Lucas Drumond, Steffen Rendle, and Lars Schmidt-Thieme. Predicting
rdf triples in incomplete knowledge bases with tensor factorization. In
Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC
’12, pages 326 – 331. Association for Computing Machinery, 2012.

[30] Leonhard Euler. Solutio problematis ad geometriam situs pertinentis. Com-
mentarii academiae scientiarum Petropolitanae, pages 128–140, 1741.

[31] Asja Fischer and Christian Igel. An introduction to restricted boltzmann
machines. In Luis Alvarez, Marta Mejail, Luis Gomez, and Julio Jacobo,
editors, Progress in Pattern Recognition, Image Analysis, Computer Vision, and
Applications, pages 14–36, Berlin, Heidelberg, 2012. Springer Berlin Heidel-
berg. ISBN 978-3-642-33275-3.

[32] Asja Fischer and Christian Igel. Training restricted boltzmann machines:
An introduction. Pattern Recognition, 47(1):25–39, 2014.

[33] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3):
75–174, 2010.

[34] Philippe Fournier-Viger, Cheng-Wei Wu, Souleymane Zida, and Vincent S.
Tseng. Fhm: Faster high-utility itemset mining using estimated utility
co-occurrence pruning. In Foundations of Intelligent Systems, pages 83–92.
Springer, 2014.

[35] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tai Dinh, and Hoai Bac Le.
Mining correlated high-utility itemsets using the bond measure. In Hybrid
Artificial Intelligent Systems, pages 53–65. Springer, 2016.

http://arxiv.org/abs/1707.01476
https://ideas.repec.org/a/eee/jhecon/v47y2016icp20-33.html

bibliography 117

[36] Thomas Franz, Antje Schultz, Sergej Sizov, and Steffen Staab. Triplerank:
Ranking semantic web data by tensor decomposition. In The Semantic Web
- ISWC 2009, pages 213–228. Springer Berlin Heidelberg, 2009.

[37] Paul A Gagniuc. Markov chains: from theory to implementation and experimen-
tation. John Wiley & Sons, 2017.

[38] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian
Suchanek. Amie: Association rule mining under incomplete evidence in
ontological knowledge bases. In Proceedings of WWW, pages 413–422. ACM,
2013.

[39] Ming Gao, Leihui Chen, Xiangnan He, and Aoying Zhou. Bine: Bipartite
network embedding. In The 41st International ACM SIGIR Conference on
Research Development in Information Retrieval, SIGIR’18, pages 715 – 724,
New York, NY, USA, 2018. Association for Computing Machinery. ISBN
9781450356572. doi: 10.1145/3209978.3209987. URL https://doi.org/10.

1145/3209978.3209987.

[40] Palash Goyal and Emilio Ferrara. Graph embedding techniques, appli-
cations, and performance: A survey. CoRR, abs/1705.02801, 2017. URL
http://arxiv.org/abs/1705.02801.

[41] Daniel Graupe. Principles of artificial neural networks, volume 7. World
Scientific, 2013.

[42] Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD’16, pages 855 – 864,
New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450342322. doi: 10.1145/2939672.2939754. URL https://doi.org/10.

1145/2939672.2939754.

[43] Ramanathan Guha and Dan Brickley. RDF schema 1.1. W3C recom-
mendation, W3C, February 2014. https://www.w3.org/TR/2014/REC-
rdf-schema-20140225/.

[44] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representa-
tion learning on large graphs. In Proceedings of the 31st International Confer-
ence on Neural Information Processing Systems, NIPS’17, pages 1025 – 1035,
Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

[45] Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic
regularizers with gaussian error linear units. CoRR, abs/1606.08415, 2016.

[46] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science, 313(5786):504–507, 2006. ISSN 0036-
8075. doi: 10.1126/science.1127647. URL https://science.sciencemag.

org/content/313/5786/504.

https://doi.org/10.1145/3209978.3209987
https://doi.org/10.1145/3209978.3209987
http://arxiv.org/abs/1705.02801
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://science.sciencemag.org/content/313/5786/504
https://science.sciencemag.org/content/313/5786/504

bibliography 118

[47] Binbin Hu, Yuan Fang, and Chuan Shi. Adversarial learning on heteroge-
neous information networks. In Proceedings of the 25th ACM SIGKDD In-
ternational Conference on Knowledge Discovery Data Mining, KDD’19, pages
120 – 129, New York, NY, USA, 2019. Association for Computing Machin-
ery. ISBN 9781450362016. doi: 10.1145/3292500.3330970. URL https:

//doi.org/10.1145/3292500.3330970.

[48] Paul Jaccard. Étude comparative de la distribution florale dans une portion
des alpes et des jura. Bulletin del la Société Vaudoise des Sciences Naturelles,
37:547–579, 1901.

[49] Qiu Ji, Zhiqiang Gao, and Zhisheng Huang. Reasoning with noisy se-
mantic data. In The Semanic Web: Research and Applications, pages 497–502.
Springer Berlin Heidelberg, 2011.

[50] Mayank Kejriwal and Pedro A. Szekely. Supervised typing of big graphs
using semantic embeddings. CoRR, abs/1703.07805, 2017.

[51] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[52] Thomas N. Kipf and Max Welling. Variational graph auto-encoders, 2016.

[53] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-
fication with deep convolutional neural networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems, volume 25, pages 1097–1105. Curran Asso-
ciates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/

file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[54] Hugo Larochelle and Yoshua Bengio. Classification using discriminative
restricted boltzmann machines. In Proceedings of the 25th International Con-
ference on Machine Learning, ICML’08, pages 536 – 543. Association for Com-
puting Machinery, 2008.

[55] Claude Lemaréchal. Cauchy and the gradient method, 2012.

[56] Chong Li, Kunyang Jia, Dan Shen, C.J. Richard Shi, and Hongxia Yang.
Hierarchical representation learning for bipartite graphs. In Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI-19, pages 2873–2879. International Joint Conferences on Artificial
Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/398. URL
https://doi.org/10.24963/ijcai.2019/398.

[57] Xin Li and Hsinchun Chen. Recommendation as link prediction in bi-
partite graphs: A graph kernel-based machine learning approach. Deci-
sion Support Systems, 54(2):880 – 890, 2013. ISSN 0167-9236. doi: https://
doi.org/10.1016/j.dss.2012.09.019. URL http://www.sciencedirect.com/

science/article/pii/S0167923612002540.

https://doi.org/10.1145/3292500.3330970
https://doi.org/10.1145/3292500.3330970
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.24963/ijcai.2019/398
http://www.sciencedirect.com/science/article/pii/S0167923612002540
http://www.sciencedirect.com/science/article/pii/S0167923612002540

bibliography 119

[58] David Liben-Nowell and Jon Kleinberg. The link prediction problem for so-
cial networks. In Proceedings of the Twelfth International Conference on Informa-
tion and Knowledge Management, CIKM’03, pages 556 – 559, New York, NY,
USA, 2003. Association for Computing Machinery. ISBN 1581137230. doi:
10.1145/956863.956972. URL https://doi.org/10.1145/956863.956972.

[59] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learn-
ing entity and relation embeddings for knowledge graph completion. In
Proceedings of AAAI, pages 2181–2187. AAAI Press, 2015.

[60] Feng Liu, Bingquan Liu, Chengjie Sun, Ming Liu, and Xiaolong Wang.
Deep learning approaches for link prediction in social network services.
In Minho Lee, Akira Hirose, Zeng-Guang Hou, and Rhee Man Kil, edi-
tors, Neural Information Processing, pages 425–432, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg. ISBN 978-3-642-42042-9.

[61] Hanxiao Liu, Yuexin Wu, and Yiming Yang. Analogical inference for multi-
relational embeddings. In Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, pages 2168–2178. JMLR.org.

[62] Xi Liu, Peng Lu, Xiaohan Zuo, Jianxin Chen, Hongjun Yang, Yiping Yang,
and Yibo Gao. Prediction of network drug target based on improved model
of bipartite graph valuation. China journal of Chinese materia medica, 37 2:
125–9, 2012.

[63] Xin Liu, Tsuyoshi Murata, Kyoung-Sook Kim, Chatchawan Kotarasu, and
Chenyi Zhuang. A general view for network embedding as matrix factor-
ization. In Proceedings of the Twelfth ACM International Conference on Web
Search and Data Mining, WSDM’19, pages 375 – 383, New York, NY, USA,
2019. Association for Computing Machinery. ISBN 9781450359405. doi: 10.
1145/3289600.3291029. URL https://doi.org/10.1145/3289600.3291029.

[64] Ying Liu, Wei-keng Liao, and Alok Choudhary. A fast high utility itemsets
mining algorithm. In Proceedings of UBDM ’05, pages 90–99. ACM, 2005.

[65] Ying Liu, Wei-keng Liao, and Alok Choudhary. A two-phase algorithm for
fast discovery of high utility itemsets. In Proceedings of PAKDD’05, pages
689–695. Springer, 2005.

[66] Gaurav Maheshwari, Priyansh Trivedi, Denis Lukovnikov, Nilesh
Chakraborty, Asja Fischer, and Jens Lehmann. Learning to rank query
graphs for complex question answering over knowledge graphs. In Chiara
Ghidini, Olaf Hartig, Maria Maleshkova, Vojtěch Svátek, Isabel Cruz,
Aidan Hogan, Jie Song, Maxime Lefrançois, and Fabien Gandon, editors,
The Semantic Web – ISWC 2019, pages 487–504, Cham, 2019. Springer Inter-
national Publishing. ISBN 978-3-030-30793-6.

[67] Bassem Makni and James Hendler. Deep learning for noise-tolerant rdfs
reasoning. Semantic Web, 10(5):823–862, 2019.

https://doi.org/10.1145/956863.956972
https://doi.org/10.1145/3289600.3291029

bibliography 120

[68] Awais Manzoor Bajwa, Diego Collarana, and Maria-Esther Vidal. Interac-
tion network analysis using semantic similarity based on translation em-
beddings. In Maribel Acosta, Philippe Cudré-Mauroux, Maria Maleshkova,
Tassilo Pellegrini, Harald Sack, and York Sure-Vetter, editors, Semantic Sys-
tems. The Power of AI and Knowledge Graphs, pages 249–255, Cham, 2019.
Springer International Publishing. ISBN 978-3-030-33220-4.

[69] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas imma-
nent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133,
1943.

[70] André Melo, Heiko Paulheim, and Johanna Völker. Type prediction in rdf
knowledge bases using hierarchical multilabel classification. In Proceedings
of the 6th International Conference on Web Intelligence, Mining and Semantics,
pages 1–10, 2016.

[71] R. Merris. Graph Theory. Wiley Series in Discrete Mathematics and Opti-
mization. Wiley, 2011. ISBN 9781118031292. URL https://books.google.

de/books?id=dsf6wcWYgrgC.

[72] Nandana Mihindukulasooriya and Mariano Rico. Type prediction of rdf
knowledge graphs using binary classifiers with structural data. In Current
Trends in Web Engineering, pages 279–287. Springer International Publish-
ing, 2018.

[73] Nandana Mihindukulasooriya, Mohammad Rifat Ahmmad Rashid,
Giuseppe Rizzo, Raúl García-Castro, Oscar Corcho, and Marco Torchiano.
Rdf shape induction using knowledge base profiling. In Proceedings of ACM
SAC, SAC’18, pages 1952 – 1959, New York, NY, USA, 2018. Association
for Computing Machinery.

[74] Thomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. In 1st International
Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA,
May 2-4, 2013, Workshop Track Proceedings, 2013.

[75] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their composition-
ality. In Proceedings of the 26th International Conference on Neural Information
Processing Systems, NIPS’13, pages 3111–3119. Curran Associates Inc.

[76] George A. Miller. Wordnet: A lexical database for english. Commun. ACM,
38(11):39–41, November 1995.

[77] Changsung Moon, Paul Jones, and Nagiza F. Samatova. Learning entity
type embeddings for knowledge graph completion. CIKM ’17, pages 2215

– 2218. Association for Computing Machinery, 2017. ISBN 9781450349185.

[78] M. E. J. Newman. The structure of scientific collaboration networks. Pro-
ceedings of the National Academy of Sciences, 98(2):404–409, 2001.

https://books.google.de/books?id=dsf6wcWYgrgC
https://books.google.de/books?id=dsf6wcWYgrgC

bibliography 121

[79] M. E. J. Newman. Clustering and preferential attachment in growing
networks. Physical Review E, 64(2), Jul 2001. ISSN 1095-3787. doi:
10.1103/physreve.64.025102. URL http://dx.doi.org/10.1103/PhysRevE.

64.025102.

[80] M. E. J. Newman and M. Girvan. Finding and evaluating community
structure in networks. Phys. Rev. E, 69:026113, Feb 2004.

[81] Tu Dinh Nguyen, Truyen Tran, Dinh Phung, and Svetha Venkatesh. Latent
patient profile modelling and applications with mixed-variate restricted
boltzmann machine. In Advances in Knowledge Discovery and Data Mining,
pages 123–135. Springer Berlin Heidelberg, 2013.

[82] Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic
embeddings of knowledge graphs. In Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence, AAAI’16, pages 1955–1961. AAAI Press.

[83] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way
model for collective learning on multi-relational data. In Proceedings of the
28th International Conference on International Conference on Machine Learning,
ICML’11, pages 809–816, USA, 2011. Omnipress.

[84] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. Factorizing yago:
Scalable machine learning for linked data. In Proceedings of the 21st Inter-
national Conference on World Wide Web, WWW ’12, pages 271 – 280. Associ-
ation for Computing Machinery, 2012.

[85] Edward R. Omiecinski. Alternative interest measures for mining associa-
tions in databases. IEEE TKDE, 15(1):57–69, January 2003.

[86] Sergio Oramas, Vito Claudio Ostuni, Tommaso Di Noia, Xavier Serra, and
Eugenio Di Sciascio. Sound and music recommendation with knowledge
graphs. ACM Trans. Intell. Syst. Technol., 8(2):21:1–21:21, October 2016.

[87] Guillermo Palma, Maria-Esther Vidal, and Louiqa Raschid. Drug-target
interaction prediction using semantic similarity and edge partitioning.
In Peter Mika, Tania Tudorache, Abraham Bernstein, Chris Welty, Craig
Knoblock, Denny Vrandečić, Paul Groth, Natasha Noy, Krzysztof Janowicz,
and Carole Goble, editors, The Semantic Web – ISWC 2014, pages 131–146,
Cham, 2014. Springer International Publishing. ISBN 978-3-319-11964-9.

[88] Alexandre Passant. dbrec — music recommendations using dbpedia. In
Peter F. Patel-Schneider, Yue Pan, Pascal Hitzler, Peter Mika, Lei Zhang,
Jeff Z. Pan, Ian Horrocks, and Birte Glimm, editors, The Semantic Web –
ISWC 2010, pages 209–224, Berlin, Heidelberg, 2010. Springer Berlin Hei-
delberg. ISBN 978-3-642-17749-1.

[89] Heiko Paulheim. Knowledge graph refinement: A survey of approaches
and evaluation methods. Semantic Web, 8:489–508, 2017.

http://dx.doi.org/10.1103/PhysRevE.64.025102
http://dx.doi.org/10.1103/PhysRevE.64.025102

bibliography 122

[90] Heiko Paulheim and Christian Bizer. Type inference on noisy rdf data. In
The Semantic Web – ISWC 2013, pages 510–525. Springer Berlin Heidelberg,
2013.

[91] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[92] Thomas Pellissier Tanon, Daria Stepanova, Simon Razniewski, Paramita
Mirza, and Gerhard Weikum. Completeness-aware rule learning from
knowledge graphs. In Proceedings of ISWC, pages 507–525, 2017.

[93] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove:
Global vectors for word representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pages
1532–1543. Association for Computational Linguistics, October .

[94] Bianca Pereira. Entity linking with multiple knowledge bases: An ontology
modularization approach. In Peter Mika, Tania Tudorache, Abraham Bern-
stein, Chris Welty, Craig Knoblock, Denny Vrandečić, Paul Groth, Natasha
Noy, Krzysztof Janowicz, and Carole Goble, editors, The Semantic Web –
ISWC 2014, pages 513–520, Cham, 2014. Springer International Publishing.
ISBN 978-3-319-11915-1.

[95] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learn-
ing of social representations. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD’14,
pages 701 – 710, New York, NY, USA, 2014. Association for Computing
Machinery. ISBN 9781450329569. doi: 10.1145/2623330.2623732. URL
https://doi.org/10.1145/2623330.2623732.

[96] Axel Polleres, Aidan Hogan, Andreas Harth, and Stefan Decker. Can we
ever catch up with the web? Semantic Web, 1(1, 2):45–52, 2010.

[97] Pascal Pons and Matthieu Latapy. Computing communities in large net-
works using random walks. In Proceedings of ISCIS’05, 2005.

[98] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang.
Network embedding as matrix factorization: Unifying deepwalk, line, pte,
and node2vec. In Proceedings of the Eleventh ACM International Conference
on Web Search and Data Mining, WSDM’18, pages 459 – 467, New York, NY,
USA, 2018. Association for Computing Machinery. ISBN 9781450355810.
doi: 10.1145/3159652.3159706. URL https://doi.org/10.1145/3159652.

3159706.

[99] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near lin-
ear time algorithm to detect community structures in large-scale networks.
Phys. Rev. E, 76, Sep 2007.

https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/3159652.3159706
https://doi.org/10.1145/3159652.3159706

bibliography 123

[100] Marc’ Aurelio Ranzato, Y-Lan Boureau, and Yann LeCun. Sparse fea-
ture learning for deep belief networks. In Proceedings of the 20th Interna-
tional Conference on Neural Information Processing Systems, NIPS’07, pages
1185 – 1192, Red Hook, NY, USA, 2007. Curran Associates Inc. ISBN
9781605603520.

[101] Wala Rebhi, Nesrine Ben Yahia, and Narjs Bellamine Ben Saoud. Hybrid
modeling approach for contextualized community detection in multilayer
social network. Procedia Comput. Sci., 112(C):673–682, September 2017.

[102] Petar Ristoski and Heiko Paulheim. Rdf2vec: Rdf graph embeddings for
data mining. In The Semantic Web - ISWC 2016 : 15th International Semantic
Web Conference, Kobe, Japan, October 17-21, 2016, Proceedings, Part I, volume
9981, pages 498–514. Springer International Publishing, 2016.

[103] Petar Ristoski, Jessica Rosati, Tommaso Di Noia, Renato De Leone, and
Heiko Paulheim. Rdf2vec: Rdf graph embeddings and their applications.
Semantic Web, 10(4):721–752, 2019.

[104] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted
boltzmann machines for collaborative filtering. In Proceedings of the 24th
International Conference on Machine Learning, ICML’07, pages 791 – 798. As-
sociation for Computing Machinery, 2007.

[105] Carlos N Silla and Alex A Freitas. A survey of hierarchical classification
across different application domains. Data Mining and Knowledge Discovery,
22(1-2):31–72, 2011.

[106] Robert F Simmons. Synthetic language behavior. System Development Cor-
poration, 1963.

[107] Radina Sofronova, M. Alam, and H. Sack. Entity typing based on rdf2vec
using supervised and unsupervised methods. 2020.

[108] Wei Song, Yu Liu, and Jinhong Li. Bahui: Fast and memory efficient mining
of high utility itemsets based on bitmap. Int. J. Data Warehous. Min., 10(1):
1–15, January 2014.

[109] Karl Steinbuch. Die lernmatrix. Kybernetik, 1(1):36–45, 1961.

[110] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A Core
of Semantic Knowledge. In 16th International Conference on the World Wide
Web, pages 697–706, 2007.

[111] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu
Mei. Line: Large-scale information network embedding. In Proceedings of
the 24th International Conference on World Wide Web, WWW’15, pages 1067

– 1077, Republic and Canton of Geneva, CHE, 2015. International World
Wide Web Conferences Steering Committee. ISBN 9781450334693. doi: 10.
1145/2736277.2741093. URL https://doi.org/10.1145/2736277.2741093.

https://doi.org/10.1145/2736277.2741093

bibliography 124

[112] Peihao Tong, Qifan Zhang, and Junjie Yao. Leveraging domain context for
question answering over knowledge graph. Data Science and Engineering, 4

(4):323–335, 2019.

[113] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi
Choudhury, and Michael Gamon. Representing text for joint embedding of
text and knowledge bases. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1499–1509, Lisbon, Portugal,
September 2015. Association for Computational Linguistics. doi: 10.18653/
v1/D15-1174. URL https://www.aclweb.org/anthology/D15-1174.

[114] Minh Duc Tran, Claudia d’Amato, Binh Thanh Nguyen, and Andrea G. B.
Tettamanzi. An evolutionary algorithm for discovering multi-relational
association rules in the semantic web. In Proceedings of GECCO, GECCO’17,
pages 513 – 520, New York, NY, USA, 2017. ACM.

[115] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guil-
laume Bouchard. Complex embeddings for simple link prediction. In
Proceedings of ICML, pages 2071–2080. JMLR.org, 2016.

[116] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, Nilesh Agrawal, and
Partha Talukdar. Interacte: Improving convolution-based knowledge
graph embeddings by increasing feature interactions. In Proceedings of the
34th AAAI Conference on Artificial Intelligence, pages 3009–3016. AAAI Press,
2020.

[117] Denny Vrandečić and Markus Krötzsch. Wikidata: A free collaborative
knowledgebase. Commun. ACM, 57(10):78–85, September 2014.

[118] Hao Wang, Xingjian Shi, and Dit-Yan Yeung. Relational deep learning: A
deep latent variable model for link prediction. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, AAAI’17, pages 2688 – 2694.
AAAI Press, 2017.

[119] Huiqing Wang, Jingjing Wang, Chunlin Dong, Yuanyuan Lian, Dan Liu,
and Zhiliang Yan. A novel approach for drug-target interactions prediction
based on multimodal deep autoencoder. Frontiers in Pharmacology, 10:1592,
2020. ISSN 1663-9812. doi: 10.3389/fphar.2019.01592. URL https://www.

frontiersin.org/article/10.3389/fphar.2019.01592.

[120] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang
Yang. Community preserving network embedding, 2017. URL https://

aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14589.

[121] Yuhao Wang and Jianyang Zeng. Predicting drug-target interactions using
restricted boltzmann machines. In Bioinform., 2013.

[122] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge
graph embedding by translating on hyperplanes. In Proceedings of AAAI,
pages 1112–1119, 2014.

https://www.aclweb.org/anthology/D15-1174
https://www.frontiersin.org/article/10.3389/fphar.2019.01592
https://www.frontiersin.org/article/10.3389/fphar.2019.01592
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14589
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14589

bibliography 125

[123] David Wood, Richard Cyganiak, and Markus Lanthaler. RDF 1.1 con-
cepts and abstract syntax. W3C recommendation, W3C, February 2014.
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/.

[124] Yoshihiro Yamanishi, Michihiro Araki, Alex Gutteridge, Wataru Honda,
and Minoru Kanehisa. Prediction of drugâtarget interaction networks from
the integration of chemical and genomic spaces. Bioinformatics, 24(13):i232–
i240, 07 2008. ISSN 1367-4803. doi: 10.1093/bioinformatics/btn162. URL
https://doi.org/10.1093/bioinformatics/btn162.

[125] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Em-
bedding entities and relations for learning and inference in knowledge
bases. In Proceedings of ICLR, 2015.

[126] Jaewon Yang and Jure Leskovec. Community-affiliation graph model for
overlapping network community detection. In Proceedings of the 2012 IEEE
12th International Conference on Data Mining, pages 1170–1175. IEEE Com-
puter Society.

[127] Jaewon Yang and Jure Leskovec. Overlapping communities explain core-
periphery organization of networks. Proceedings of the IEEE, 102:1892–1902,
2014.

[128] Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. Local
higher-order graph clustering. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’17,
pages 555–564. ACM.

[129] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. Network
representation learning: A survey. CoRR, abs/1801.05852, 2018. URL http:

//arxiv.org/abs/1801.05852.

[130] Peng Zhang, Xiang Wang, Futian Wang, An Zeng, and Jinghua Xiao. Mea-
suring the robustness of link prediction algorithms under noisy environ-
ment. Scientific reports, 6(1):1–7, 2016.

[131] Shuai Zhang, Yi Tay, L. Yao, and Q. Liu. Quaternion knowledge graph
embeddings. In NeurIPS, 2019.

[132] Yao Zhang, Yun Xiong, Xiangnan Kong, and Yangyong Zhu. Learning
node embeddings in interaction graphs. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management, CIKM’17, pages 397

– 406, New York, NY, USA, 2017. Association for Computing Machinery.
ISBN 9781450349185. doi: 10.1145/3132847.3132918. URL https://doi.

org/10.1145/3132847.3132918.

https://doi.org/10.1093/bioinformatics/btn162
http://arxiv.org/abs/1801.05852
http://arxiv.org/abs/1801.05852
https://doi.org/10.1145/3132847.3132918
https://doi.org/10.1145/3132847.3132918

L I S T O F F I G U R E S

Figure 1 Exemplary knowledge graph in which facts from the real
world are encoded. 1

Figure 2 Visual representation of three different types of graphs. . . 10

Figure 3 Example of a bipartite graph. 11

Figure 4 Example of a knowledge graph. 13

Figure 5 Illustration of a 4-layer neural network using x as input
and ŷ as output. 15

Figure 6 Illustration of different activation functions for neural net-
works. 16

Figure 7 Running example for predicting missing properties in Knowl-
edge Graphs. We are interested in predicting missing prop-
erties for entities, such as for Angela_Merkel. 22

Figure 8 Proposed approach for the predictions of missing rela-
tions for head entities, based on a knowledge graph KG.
The relation-centric stage captures latent knowledge be-
tween the relations. The prediction-centric stage predicts
missing relations based on the communities detected in
the previous stage and the KG G for a given head entity h. 25

Figure 9 Head-Relation Graph of the running example. 26

Figure 10 Relation-Bonding Graph for the running example repre-
senting the strength of the relationships among the rela-
tions. 29

Figure 11 Detected communities using Fastgreedy. In total three com-
munities, representing latent groups of highly correlated
relations. 30

Figure 12 Binary Vectors representing entities of the running example. 32

Figure 13 Left is the input for the head entity Angela_Merkel of the
running example. Based on this input the probability P(h0|v0)

to activate the hidden state is computed. On the right side
the hidden state was determined based on P(h0|v0) and
the Bernoulli distribution. Two neurons have been acti-
vated, representing two latent features which are fed back
for reconstructing the input. The goal is to make the dis-
tribution of the reconstruction equal to that of the original
input. 34

126

list of figures 127

Figure 14 Left is the input for a the head entity Angela_Merkel of our
running example. Based on this, the probability P(h0|v0)

to activate the hidden state is computed. On the right side
the hidden state was determined based on P(h0|v0) and
a Bernoulli distribution. The hidden state is fed back to
reconstruct the input. The reconstruction v1 corresponds
to the distribution of relations based on the input and is
used to predict missing relations. 39

Figure 15 Running example using a subgraph of the complex bipar-
tite network ChG-Miner. We are interested in predicting
missing interactions, such as between CID000002370 and
1131. 56

Figure 16 Computation of the output of the model, based on an in-
put and using the Bernoulli distribution in the hidden layer. 63

Figure 17 Comparison between a regular unit and a stochastic unit.
The difference is in the application of a distribution func-
tion after applying an activation function on the weighted
input. 64

Figure 18 Computation of the output of the model, based on an in-
put and the Bernoulli distribution in the hidden layer. . . . 67

Figure 19 Average ROC for DG-AM and ChG-Miner, both for Con-
nected and Disconnected Networks when removing 30%
links. Comparing connected and disconnected networks,
our method provides more robust results with respect to
AUC. 73

Figure 20 Average PR for DG-AM and ChG-Miner, both for Con-
nected and Disconnected Networks when removing 30%
links. 75

Figure 21 Progression of loss using different distribution function in
the hidden layer. 78

Figure 22 Performance with respect to AUC using different number
of hidden units and distributions. 79

Figure 23 Motivating example. Entities from the same classes use
the same predicates for description. We leverage this to
predict missing type information for Donald Knuth and
domain assertions of relations. 85

Figure 24 Proposed approach to instance type and domain asser-
tion prediction. Left: Representation of entities as a binary
vector, encoding the usage of relations. Middle: Learning
a target distribution over the used relations using RBM.
Afterwards the compressed vector representation of the
hidden layer P(h0|v0) is used as representation of the en-
tities and the weights W as representation of the relations.
Right: Using 2-layer neural networks for predicting in-
stance types and domain assertions. 88

Figure 25 Approximation of the GELU activation function used in
the hidden layer. 92

list of figures 128

Figure 26 PCA projections for learned entity representations. Pop-
ular classes from cross-domain KGs were selected for vi-
sualization. Ridle allows for a better separation of the in-
stances into their respective classes. 99

Figure 27 PCA projections for learned relation representations. Pop-
ular domain classes from cross-domain KGs were selected
for visualization. Overall, the Ridle representations allow
for a better separation of the relations into their respective
domains. 104

Figure 28 Average ROC for all networks, both for connected and
disconnected Networks when removing 30% links. 134

Figure 29 Average Precision-Recall Curve for all networks, both for
connected and disconnected Networks when removing
30% links. 137

Figure 30 Progression of loss using different distribution function in
the hidden layer. 139

L I S T O F TA B L E S

Table 1 For a given head entity, the selection of suitable relations
for predictions is based on relative number of existing re-
lations to each community set. 31

Table 2 Overview of the knowledge graphs and the experimental
configurations. At the top of the table is a summary of
the characteristics and at the bottom of the table are the
parameters used to compute the communities for the CRP
approach. 41

Table 3 Comparison of our approach with state-of-the-art algo-
rithms. Our approaches (LDL and CRP) uses the head en-
tity to predict missing relations. The compared methods
uses head and tail entity to predict missing relations. . . . 43

Table 4 Overview of the structure of determined communities for
the studied KGs. 43

Table 5 Examples of some communities of the FB15k and the rela-
tions they contain. The exemplary communities illustrate
the latent associations among the KG relations. 44

Table 6 Density of the Head-Relation Graphs for the knowledge
graphs considered. 47

Table 7 Samples of spurious false positives across all considered
knowledge graphs. 48

Table 8 Overview of the bipartite networks on which the experi-
ments were conducted. 68

Table 9 AUC of the studied approaches. On the left are the results
where the network remains connected after link removal.
n/a indicates that no connected training dataset could
be created for the network. On the right are the results
where the network is split into several components after
link removal. Best results are marked in bold, second best
in italics. 69

Table 10 Average number of components in which the networks
fall apart when randomly removing. 71

Table 11 AUC and PR results on Disconnected Networks applying
different distribution functions in the hidden layer. We re-
moved 30% of edges from the input networks. 76

Table 12 AUC and PR results on Disconnected Networks applying
different distribution functions in the hidden layer. We re-
moved 50% of edges from the input networks. 77

Table 13 Characteristics of the studied KGs. For each KG G, |G|=number
of triples, |E|=number of subjects, |R|=number of relations,
|T|=number of classes, |T ′|=number of classes as domains
of relations. 94

129

list of tables 130

Table 14 Results for predicting instance types specified with the
predicates rdf:type (DBpedia) and wd:P31 (Wikidata). Bold
values represent best average results. 95

Table 15 Results for predicting instance types with representations
learned from the full KG DBp_2016-04. 97

Table 16 Difference between the F1-Micro (cf. Table 14) and the
hierarchical F1-Micro. n/a indicates no class hierarchy
available for that KG. Values in bold indicate the highest
value with respect to the hierarchical F1-Micro score. . . . 98

Table 17 Using the representations of the relations for predicting
domain assertions. n/a indicates that either no domain
assertions were available (UMLS and DBLP) or the num-
ber of relations with domain assertions was not enough to
evaluate using k-fold cross-validation (Pers(DBp), Chem(DBp)
and Movies(DBp). Bold values represent best average re-
sults. 101

Table 18 Difference between F1-Micro (cf. Table 17) and hierarchi-
cal F1-Micro for evaluating the quality of the domain as-
sertion. n/a indicates no sufficient domain assertions avail-
able for evaluation. Values in bold indicate the highest
value with respect to the hierarchical F1-Micro score. . . . 103

Table 19 Comparison of the different encoding of incoming and
outgoing relations to learn latent representations for pre-
dicting instance types. 105

Table 20 Difference between the F1-Micro (cf. Table 19) and the hi-
erarchical F1-Micro. Values in bold indicate the highest
value with respect to the hierarchical F1-Micro score. . . . 106

A C R O N Y M S

KG Knowledge Graph

FHM Faster High-Utility Itemset Mining

AGM Community-Affiliation Graph Model

CRP Community-based Relation Prediction

PCA Principal Component Analysis

LDL Link Distribution Learning

FCHM Fast Correlated High-Utility Itemset Miner

RBM Restricted Boltzmann Machine

CD Contrastive Divergence

CWA Closed World Assumption

OWA Open World Assumption

IGE Interaction Graph Embedding

DBN Deep Belief Network

VAE Variational Graph Auto-Encoder

GAN Generative Adversarial Network

AUC Area-under-Curve

PR Precision-Recall-Curve

TPR True Positive Rate

Ridle Relation-Instance Distribution Learning

131

132

addendum 133

A
A P P E N D I X : A D D E N D U M

a.1 roc analysis of considered bipartite networks

addendum 134

Figure 28: Average ROC for all networks, both for connected and disconnected Net-
works when removing 30% links.

addendum 135

addendum 136

a.2 precision-recall analysis of considered bipartite networks

addendum 137

Figure 29: Average Precision-Recall Curve for all networks, both for connected and dis-
connected Networks when removing 30% links.

addendum 138

addendum 139

a.3 analysis of used distribution function

Figure 30: Progression of loss using different distribution function in the hidden layer.

	Dedication
	Abstract
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Challenges
	1.4 Hypotheses and Research Questions
	1.5 Contributions
	1.6 Outline

	2 Foundations
	2.1 Graphs
	2.2 Knowledge Graphs
	2.3 Neural Networks

	3 Link Prediction on Knowledge Graphs
	3.1 Introduction
	3.1.1 Structure of the Chapter
	3.1.2 Motivating Example

	3.2 Related Work
	3.3 Learning Latent Features for Predicting Missing relations
	3.3.1 Community-based Relation Prediction
	3.3.2 Link Distribution Learning

	3.4 Experimental Study
	3.4.1 Experimental Setup
	3.4.2 Performance Analysis
	3.4.3 Impact of the Community Structure
	3.4.4 Impact of the Knowledge Graph Topology
	3.4.5 Impact of the Open World Assumption

	3.5 Summary and Future Work

	4 Link Prediction on Bipartite Networks
	4.1 Introduction
	4.1.1 Structure of the Chapter
	4.1.2 Motivating Example

	4.2 Related Work
	4.3 Learning Probability Link Distribution for Link Prediction
	4.3.1 Input
	4.3.2 Model
	4.3.3 Learning
	4.3.4 Predictions

	4.4 Experimental Study
	4.4.1 Experimental Setup
	4.4.2 Area Under the ROC Curve (AUC)
	4.4.3 Impact of the Network Topology
	4.4.4 Error Type Analysis
	4.4.5 Impact of the Hyperparameters on Results

	4.5 Summary and Future Work

	5 Semantic Grouping of Nodes and Links
	5.1 Introduction
	5.1.1 Structure of the Chapter
	5.1.2 Motivating Example

	5.2 Related Work
	5.3 Ridle: Relation-Instance Distribution Learning
	5.3.1 Learning Instance-Relation Representation
	5.3.2 Predicting Instance Types
	5.3.3 Predicting Domain Assertions

	5.4 Experimental Study
	5.4.1 Experimental Setup
	5.4.2 Effectiveness of Instance Type Predictions
	5.4.3 Effectiveness of Domain Predictions
	5.4.4 Impact of Encoding Incoming and Outgoing Relations
	5.4.5 Final Remarks

	5.5 Summary and Future Work

	6 Conclusion
	6.1 Summary
	6.2 Outlook
	6.3 Closing Remarks

	Bibliography
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	A Appendix: Addendum
	A.1 ROC Analysis of considered Bipartite Networks
	A.2 Precision-Recall Analysis of considered Bipartite Networks
	A.3 Analysis of used Distribution Function

