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Abstract Plants containing pyrrolizidine alkaloids (PA) are un-
wanted contaminants in consumer products such as herbal tea
due to their toxicity to humans. The detection of these plants or
their components using hyperspectral imaging was investigated,
with focus on application in sensor-based sorting. For this, 431
hyperspectral images of leafs from three common herbs (pepper-
mint, lemon balm, stinging nettle) and the poisonous common
groundsel were acquired. By using a convolutional neural net-
work, a mean F1 score of 0.89 was obtained for the classification
of all four plant products based on the individual spectra. To
validate the neural network, significant wavelengths were deter-
mined and visualized in an attribution map.
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1 Introduction

Pyrrolizidine alkaloids (PA) are secondary plant substances that are
toxic to the genome and the liver. They can pose a health hazard, as
they are often found as a contaminant in food or medicinal plant prod-
ucts. Just a few plants per hectare e.i. of Senecio are sufficient to con-
taminate the product non marketable. Hence, regular field monitoring
and removal of appropriate weeds is necessary. This is a considerable
personnel effort that can hardly be afforded economically by the grow-
ers. Additionally, for correct identification of toxic herbs and to prevent
contamination of the products, the growers need well trained personal.
Therefore, methods to identify and remove toxic contaminants after
harvest are highly demanded.

Sensor-based sorting is a machine vision application that has found
industrial application in various fields. An accept-or-reject task is exe-
cuted by deflecting single particles from a material stream. The main
fields of application of sensor-based sorting are recycling, e.g., remov-
ing materials from glass shard streams harmful to the melting process
such as stones and ceramic glass [1]. Another field of application is the
processing of industrial minerals, mainly to remove unwanted gangue
from ore, e.g., copper-gold ore [2]. For ensuring product safety for
foodstuff and agricultural products, these methods are used for the
detection and removal of fungus-infected wheat kernels [3]. Hence,
sensor-based sorting of crops also represents an opportunity to safe
the harvest potentially contaminated with PA.

In this paper, three of the economically most important herb cultures
in Germany (peppermint, lemon balm, stinging nettle) and the most
common contaminant of these cultures (common groundsel) were char-
acterized by near infrared spectroscopy. Optical spectroscopy in near
and short-wave infrared is particularly suitable for the detection and
differentiation of organic products. Using hyperspectral camera sys-
tems, material streams can be monitored and foreign substances can be
separated after detection by implementing the techniques in a sensor-
based sorting system. Targeting this application, hyperspectral data
was acquired for the mentioned herbs and their frequent contamina-
tion in an experimental sensor-based sorting system.
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2 Material and methods

This section describes the experimental sensor-based sorting system
that was used to acquire the data. In addition, insights into the result-
ing data set are given. Finally, the novel data analysis method for the
task at hand is described.

2.1 Experimental sensor-based sorting platform with hyperspectral
camera system

In the course of this study, data for different plants are acquired us-
ing an experimental sorting platform that is equipped with an hyper-
spectral camera system, see Fig. 2.1. A thorough description of the
experimental platform is provided in [4]. The spectral sensitivity of
the InGaAs sensor of the line-scanning hyperspectral camera lies in
the range of approximately 1200 to 2200 nm that is sampled into 256
spectral bands and provides 320 pixels locally at a maximal tempo-
ral resolution of approximately 300 hz. The implemented illumination
consists of two arrays of halogen spotlights, which are locally targeted
at the scan-line of the camera. Transportation of the material is real-
ized by means of a conveyor belt that runs at 1.1 ms−1. The material
is observed directly after being discharged from the belt, i. e., during a
free flight phase. An array of pneumatic nozzles is located behind this
scan-line and serves the purpose of material separation. It consists of
16 nozzles that can be triggered individually, each of which covering a
width of 10 mm.

2.2 Dataset

The plant material for the measurements was cultivated in beds at the
JKI Berlin. The medicinal cultures were harvested twice, each time
at the beginning of flowering, as the concentration of essential oils is
highest then, using a cutting height of approx. 15 cm. For lemon balm
(Melissa officinalis) and peppermint (Mentha x piperita ’Multimentha’) 24
each and for stinging nettle (Urtica dioica) 12 and for groundsel (Senecio
vulgaris) 10 single plants were harvested.

For training, the data set was split by random sample selection. A
ratio of 75% was assigned as training and of 25% as validation data.
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Figure 2.1: Photo of the experimental sensor-based sorting platform, equipped with the
hyperspectral camera system.

Table 5.1: Description of the resulting dataset.

name trivialis samples spectra

Senecio vulgaris groundsel 84 44683
Urtica dioica stinging nettle 98 34447
Melissa officinalis lemon balm 141 17747
Mentha piperita peppermint 108 15970

The entire data set can be described with a matrix X := {�xi}i=1..N of N
spectra and a matrix Y := {�yi}i=1..N of N labels. Each spectrum �xi ∈
RQ contains the reflectance of Q = 256 spectral bands. The labels �yi ∈
RC are coded as one-hot vectors with C = 4 classes, which correspond
to the plant types. An exemplary visualization of the data is shown in
Fig. 2.2.
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Figure 2.2: Shown are the mean spectra of all four plant species. Through the intensity
differences at certain wavelengths, a classification can be done.

2.3 Data analysis using the convolutional neural network AnniNet

A new neural network architecture, AnniNet, has been developed at
Fraunhofer IOSB. This architecture is particularly suitable for the anal-
ysis of near-infrared spectra. AnniNet consists of three components,
namely an encoder network for feature extraction, a decoder network
to improve feature extraction and a classification network that esti-
mates the class membership of a spectrum. All three networks are
trained in parallel through multi-task learning. The feature extraction
structure does not require any type of spectral data pre-processing.
The individual parts of AnniNet and multi-task learning are presented
in the following.

Encoder network

The encoder layer is used for feature extraction. For this purpose, a
layer with different one-dimensional convolution kernels is trained and
applied to the spectrum. This layer can be compared with wavelet-
based methods that are already successfully used in chemometrics [5].
It has been shown that wavelets are successful in reducing noise [6]
and suppressing background effects [7]. This enabled improved re-
sults [8], even the transfer of chemometric models was improved [9].
The features determined by means of the convolutional layer are sent to
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a pooling layer. This layer has a very practical effect besides reducing
the parameters for the following layers. The feature extraction becomes
more robust against shifts in the wavelength. This is especially a dis-
turbing effect known as smiley keystone distortion in hyperspectral
cameras.

Decoder network

End-to-end learning in artificial neural networks with high dimen-
sional inputs such as hyperspectral measurements requires a large
amount of labeled training samples due to a high count of weights
which are iteratively adjusted. Autoencoders are used to learn the rep-
resentation of a dataset in a unsupervised manner. Adding a decoder
network creates such an autoencoder within AnniNet and improves
training results without the need for additional labels.

Classification network

To evaluate the overlapping information from the individual absorp-
tion bands, fully connected (dense) layers were used. In correspon-
dence with the exponential behavior of absorption processes (Beer-
Lambert law), the Scaled Exponential Linear Units (SELU) activation
function

f (x) =

{
λα(ex − 1), if x < 0
λx, otherwise

(2.1)

was chosen for the first dense layer. Finally, a fully connected layer
with the softmax activation function is applied. The output of the clas-
sification network is a normalized probability density function of the
estimated class memberships.
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Figure 2.3: AnniNet consists of three components. First, an encoder network extracts
spectral features using a convolutional layer. During training, a decoder net-
work is used as an autoencoder to improve feature extraction. The classifica-
tion network analyses the non-linear and overlapping spectral features.

Multi-task-learning

Using multi-task-learning, all four classes and the reconstruction of the
autoencoder were trained in parallel. The categorical cross entropy

CCE = − 1
N

N

∑
i=1

C

∑
j=1

yi,j log ŷi,j (2.2)

was used as a loss function to optimize the classification results for all
classes C. The reconstruction of the spectral data using the autoencoder
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was optimized by minimizing the Root Mean Square Error

RMSE =
1
N

N

∑
i=1

√
∑Q

j=1(x̂i,j − xi,j)2

n
(2.3)

for the autoencoder, which improves the feature extraction.

3 Results and discussion

The classification was carried out using AnniNet without any spectral
pre-processing. To validate the results in the following, only spectra
from samples that were not included in the training were used. To
check the plausibility of the classification results, a sensitivity analysis
was performed and compared with the spectral data.

3.1 Classification results

The results of the classification are shown in the confusion matrix in
Fig. 3.1. For all classes, the classification achieves a rather high accu-
racy. The application of a majority vote for the respective samples has
led to a completely correct mapping in the validation data set. The
quality of the classification results can be quantified by the so-called F1
score

F1 =
tp

tp + 0.5(fp + tp)
, (3.1)

which is the harmonic mean of precision and recall. The evaluation
calculation is based on the false (fp) and true (tp) positive classification
results. For the present four-class classification, the F1 score was deter-
mined for the individual classes and averaged. The score determined
in this way is F1 = 0.89.

3.2 Spectral attribution map

Neural networks cannot be interpreted by humans due to their high
number of parameters and high-dimensional transformations. How-
ever, when evaluating hyperspectral data, it is interesting to see which
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Figure 3.1: The normalised confusions matrix shows the probabilities of the estimated
class memberships in the individual fields. The estimation of the class mem-
bership by single spectra is mostly correct. It is important here that by major-
ity vote of all spectra of a sample, all test samples could be correctly classified.

absorption bands have an influence on the classification result. One
possibility for investigating neural networks is the creation of a so-
called attribution map. For this purpose, individual areas of the spec-
trum are successively masked and then the classification quality is eval-
uated. For the classification task at hand, such attribution maps were
determined and are visualized in Fig. 4.1. As can be seen, the classifi-
cation result is mainly depend on data in the range between 1400 nm
and 1900 nm. This range is between the absorption’s by water and
can therefore be considered robust. In addition, areas are selected or
weighted differently for the different class memberships, which is an-
other indicator of robust classification.

4 Summary

Leaves from four different plants were recorded with a hyperspectral
camera built in a senor-based sorting system. The data were used with-
out spectral pre-processing to train a neural network designed for this
classification task. The trained network was able to predict individual
spectra of the validation data of all four classes at a high accuracy. Us-
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ing a majority vote per sample, all validation samples were correctly
classified. An attribution map was used to investigate which spectral
ranges dominate the classification decision. The result shows differ-
ent spectral ranges for the individual classes, apart from absorption by
water.

Figure 4.1: The attribution maps show the classification error caused by masking out
individual spectral channels, highlighting the importance of information in
the range of 1400 nm and 1900 nm.
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