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Abstract A stochastic method how artificial training data for
spectral unmixing can be generated from real pure spectra is pre-
sented. Since the pure spectra are modelled as Gaussian random
vectors, spectral variability is also considered. These training
data can in turn be used to train an artificial neural network for
spectral unmixing. Non-negativity and sum-to-one constraints
are enforced by the network architecture. The approach is eval-
uated using real mixed spectra and achieves promising results
with the used datasets.
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1 Introduction

Optical measurement techniques are often used for process monitoring
in industry because they are non-contact and non-destructive. An im-
portant task is to determine the relative proportions of the components
in substance mixtures. There are applications in many fields, such as
food industry, medical technology, as well as in the processing of bulks.
This task cannot be solved sufficiently with conventional colour images,
because these only contain three colour channels (red, green, blue) per
pixel, whereas hyperspectral images have a finely gained spectrum
in each pixel that characterizes the materials much better [1]. If in-
formation of different materials is contained in one measured pixel,
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spectral unmixing (SU) is needed to get the relative proportions, the
abundances, of the pure materials in the pixel [2]. This is often done
model-based [3]. However, these models usually assume a single spec-
trum for each pure substance involved. Actually, the spectra of the
pure substances and also of the mixtures vary quite a lot [4, 5].

Artificial neural networks (ANNs) achieve excellent results in many
domains and have the benefit of not requiring model knowledge. Par-
ticularly for SU, the use of ANNs has further advantages [6]. First,
the non-negativity and the sum-to-one constraints can be enforced by
a normalising output layer. Second, spectral variability can be consid-
ered if it is contained in the training data. However, ANNs need a lot of
significant training data to perform well, which are often not available
in the domain of hyperspectral imaging.

In this approach we model the mixing characteristics including spec-
tral variability of substances and use these models to generate training
data for an ANN used for SU. Several spectra of each pure substance
are needed for this approach. Even without the availability of real
mixed spectra, most of the advantages of SU using an ANN can be
exploited. Furthermore, performance can be improved if additional
mixed spectra are available. This approach is therefore suitable for
use in an industrial environment where the pure substances involved
are known and hyperspectral images can be acquired in advance. We
have already trained ANNs with artificially generated mixed spectra
in a preceding work [7]. There, pure spectra randomly drawn from
a set were mixed using models to obtain mixed spectra. In contrast,
the approach in this paper models the spectra of the pure substances
as Gaussian distributed random vectors. There is another approach,
where SU is accomplished by directly applying Gaussian process re-
gression [8], but not for training data generation. In this contribu-
tion, to generate the training data, the random vectors are combined
for many different sets of abundances using the linear mixing model
(LMM), the Fan Model (FM), the generalized bilinear model (GBM),
and the linear quadratic model (LQM) [2, 9–11].

The rest of the paper is structured as follows: In Section 2 the ba-
sics of SU are summarized. Section 3 then provides the probabilistic
equivalents of the mixing models used. In Section 4 the experimental
results are shown. Finally the paper is summarized and conclusions
are drawn in Section 5.
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2 Spectral unmixing

The estimation of the abundances in a mixture of substances based
on its spectrum is called SU [2]. If the spectra of the pure substances
involved are known, the term supervised SU is used. This is the case
here. The estimation â = [â1, ..., âP]

T ∈ RP of the true abundances
a = [a1, ..., aP]

T ∈ RP of the up to P pure substances involved has to
fulfil constraints in order to ensure physical validity. These are the
non-negativity constraint and the sum-to-one constraint:

âp ≥ 0 ∀p ,
P

∑
p=1

âp = 1 . (2.1)

Many of the methods used for SU are model-based. The models used
here approximate the mixed spectra using a parametric function. The
most commonly used mixing model is the LMM, which works well for
many applications [2, 5, 12, 13]:

y =
P

∑
p=1

mp ap + ω = M a + ω . (2.2)

Here y ∈ RΛ is a discrete spectrum sampled at Λ wavelength channels
and M = [m1, ..., mP] ∈ RΛ×P are the spectra of the up to P involved
pure substances. Differences between y and the weighted sum of the
pure material spectra are considered by ω ∈ RΛ. The LMM is based
on the assumptions that mixing takes place on a macroscopic scale and
that photons interact with only one material before they hit the sensor
[14]. There are also non-linear mixing models that are summarized
in [3]. In this paper the GBM [10]

y =
P

∑
p=1

mp ap +
P−1

∑
p=1

P

∑
q=p+1

γpq ap aq mp � mq + ω (2.3)

and the LQM [11]

y =
P

∑
p=1

mp ap +
P

∑
p=1

P

∑
q=1

bpq mp � mq + ω (2.4)
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are used, where γpq and bpq are the non-linearity coefficients and � is
the element-wise product. For γpq = 1 ∀p, q the GBM is equivalent to
the FM [9]. These mixing models also consider light that has interacted
with up to two substances before hitting the sensor.

A commonly used approach considering (2.1) is the Fully Con-
strained Least Squares (FCLS) algorithm [15]. Here, the Lagrangian
L : RP+1 → R with Lagrange multiplier l ∈ R is optimized:

L(a, l) = �y − M a�2
2 − l

(
P

∑
p=1

ap − 1

)
. (2.5)

It is an iterative process that removes negative âp and the correspond-
ing pure spectra. For estimations based on non-linear mixing models,
gradient based line search methods can be used [10].

The presented mixing models assume that each pure substance is
represented by a single spectrum. In reality, however, pure substances
may have varying spectra [4]. These variations are referred to as spec-
tral variability, which is primarily caused by surface structure. There
are also unmixing algorithms considering the spectral variability such
as the extended linear mixing model (ELMM) [16]. The ELMM extends
the LMM by a set of parameters that allow scaling of the pure material
spectra.

The presented approach considers spectral variability by including it
in the generated training data. The process of generating these data is
described in the following section.

3 Stochastic mixing models

For the approach used in this paper the spectra mp of the pure
substances are modelled as Gaussian distributed random variables
Mp ∈ RΛ. These can be entirely described by their mean vector
μMp

= μp ∈ RΛ and their covariance matrix ΣMp ,Mp = Σp,p ∈ RΛ×Λ.
Mean vectors and covariance matrices of pure spectra are estimated
using real data, which is why a set of measured spectra is required for
each pure substance. Since the pure spectra of different pure materi-
als do not depend on each other, they are assumed to be stochastically
independent and therefore the cross-covariance matrix is Σp,q = 0 if

132



Modelling spectral variability using Gaussian random variables

p �= q. A mixed spectrum Y ∈ RΛ is also modelled as a Gaussian
distributed random vector with mean vector μY ∈ RΛ and covariance
matrix ΣY,Y ∈ RΛ×Λ. The following moments result for the LMM:

μY =
P

∑
p=1

ap μp , ΣY,Y =
P

∑
p=1

a2
p Σp,p . (3.1)

Appropriate non-linearity coefficients γpq and bpq must be deter-
mined for the GBM and the LQM. In this paper a constant value is used
for this purpose, which means for all p and q: γpq = γ and bpq = b .
This is a limitation, but in practice it allows better results compared
to the LMM and the FM. To determine suitable values, a small valida-
tion dataset with some real mixed spectra is required. The mean vector
μY for the GBM can be obtained by replacing mp by μp in (2.3). The
following covariance matrix results for the GBM:

ΣY,Y =
P

∑
p=1

a2
p Σp,p +

P−1

∑
p=1

P

∑
q=p+1

γ2 a2
p a2

q Σp�q,p�q

+
P

∑
p=1

P

∑
q=1
q �=p

γ a2
p aq

(
Σp,p�q + Σp�q,p

)
(3.2)

+
P

∑
p=1

P−1

∑
q=1
q �=p

P

∑
l=q+1

l �=p

γ2 a2
p aq al

(
Σp�q,p�l + Σp�l,p�q

)
.

The (cross-)covariance matrices are calculated by:

Σp�q,p�q = D(μp)Σq,q D(μp) +D(μq)Σp,p D(μq) + Σp,p � Σq,q ,

Σp,p�q + Σp�q,p = Σp,p D(μq) +D(μq)Σp,p , (3.3)

Σp�q,p�l + Σp�l,p�q = D(μq)Σp,p D(μl) +D(μl)Σp,p D(μq) .

Here, the output of operator D( · ) is a diagonal matrix with the ele-
ments of the input vector as its diagonal elements. If the input is a
matrix, the output is a vector whose elements are the diagonal ele-
ments of the input matrix. The moments for the FM can be obtained
by setting γ = 1.
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The LQM also takes element-wise squared spectra into account. The
following mean vector formula results for the LQM after transforming:

μY =
P

∑
p=1

ap μp + b μp�p +
P−1

∑
p=1

P

∑
q=p+1

2 b μp � μq , (3.4)

where μp�p = μp � μp + D(Σp,p). The covariance matrix of a mixed
spectrum is not shown for the LQM because it is similar to the one
of the GBM. As for the other mixing models, all covariance and cross-
covariance matrices are taken into account.

Using the Gaussian random variables calculated with the mixing
models, training data for an ANN can now be generated. If training is
performed over several epochs, new samples of mixed spectra can be
drawn in every epoch. After data sampling, the spectra generated with
non-linear mixing models are normalized. For this purpose they are
multiplied by dGBM or dLQM, respectively:

dGBM =

(
1 +

P−1

∑
p=1

P

∑
q=p+1

γ ap aq

)−1

, dLQM =
(

1 + P2 b
)−1

. (3.5)

This is necessary because, unlike the LMM, the prefactors do not add
up to 1. However, since the light that contributes to the linear compo-
nent cannot contribute additionally to the quadratic component, this
normalization is useful [7]. Thus, values for γ and b greater than 1 are
also reasonable. In the next section the described approach is evaluated
with real hyperspectral datasets.

4 Experimental results

To evaluate our approach we use real hyperspectral data acquired in
our image processing lab. All datasets have 91 wavelength channels
with an average width of 4 nm from 450 nm to 810 nm and 400 spectra
per mixture. Two of the datasets consist of mixtures of coloured quartz
sand. The first of them (quartz-3) contains 45 mixtures of maximum 3
components including pure substances, which vary in abundance steps
of 0.125 . The second one (quartz-4) contains 56 mixtures of maximum
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4 components including pure substances, which vary in abundance
steps of 0.2 . The third dataset consists of 56 mixtures of colour pow-
ders (colour-4), which also have a maximum of 4 components each.
Here, the components are varied in steps of 0.2, too. Only pure spectra
are used for training. For all datasets, 12 mixtures are used for valida-
tion and the rest (30 respectively 40) to test. We train our ANN using
the artificial mixtures generated with the approach in Section 3. The
validation datasets are used to determine good non-linear coefficients
for the GBM and the LQM. After training we test the ANN with the
real mixtures in our test datasets. The root-mean-square error

ΔRMSE =

√√√√ 1
N

N

∑
n=1

1
P

P

∑
p=1

(âpn − apn)2 , (4.1)

based on all N spectra including all mixtures of a test dataset, is used
as a measure of performance. The results are compared to the FCLS
algorithm and the ELMM based SU.

The ANN we used for the evaluation is the convolutional neural
network (CNN) from [17], which is the one dimensional version of [7].
It has three convolutional layers and two fully connected layers. The
length of the convolution kernels is 3 and the numbers of feature maps
from input layer to output layer are 1, 16, 32, 64, 64, and 1. The number
of epochs depends on the dataset. Therefore, the CNN is trained with
quartz-3 dataset for 251 epochs, quartz-4 dataset for 61, and colour-4
dataset for 31 epochs.

Different training datasets are generated using all presented mix-
ing models and different step sizes s ∈ R for the abundances a (see
Fig. 4.1). In every epoch there are 400 spectra per mixture drawn from
the previously determined Gaussian random vectors of the mixtures.
Figure 4.1 shows the results for the different methods. The prefix CNN
indicates that a CNN was trained for SU in order to get this result. The
training data were generated with the corresponding stochastic mixing
model.

It is evident that in almost all cases the presented approach leads to
an improvement of the results compared to the FCLS or the ELMM
based approach. This is due to spectral variability being modelled
based on data and taken into account by the CNN. Which mixing
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model yields the best results depends on the unmixing task. In the
datasets used here the non-linear mixing models perform better. The
FM delivers quite good results, although like LMM, it does not need
any additional parameters. The colour-4 dataset shows, however, that
the choice of the right mixing model can achieve a significant improve-
ment. Smaller step sizes and thus more large training datasets lead in
most cases to an improvement.

Figure 4.1: Root-mean-square error of the abundances for the compared methods ap-
plied on the quartz-3 (top), the quartz-4 (middle), and the colour-4 (bottom)
dataset, respectively.
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5 Summary

In this paper an approach is presented where artificial mixed spectra
are generated using stochastic mixing models. These mixed spectra can
then be used to train a CNN for SU. In this way, spectral variability is
considered. Compared to methods from literature, which in part also
include spectral variability, better results can be achieved with regard to
the error of the estimated abundances. The choice of the mixing model
in dependence of the problem significantly influences the quality of the
estimation. Finer step sizes in the specified abundances for the training
data can lead to an additional improvement.

In the future, the approach could be extended in such a way that the
mean vectors and covariance matrices of the random vectors of mixed
spectra are determined based on data instead of models. However,
larger training datasets would be needed to train these networks.

References

1. A. Gowen, C. O’Donnell, P. Cullen, G. Downey, and J. Frias, “Hyperspectral
imaging – an emerging process analytical tool for food quality and safety
control,” Trends in Food Science & Technology, vol. 18, no. 12, pp. 590–598,
2007.

2. N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE signal processing
magazine, vol. 19, no. 1, pp. 44–57, 2002.

3. N. Dobigeon, Y. Altmann, N. Brun, and S. Moussaoui, “Linear and non-
linear unmixing in hyperspectral imaging,” in Data Handling in Science and
Technology, C. Ruckebusch, Ed. Elsevier, 2016, vol. 30, pp. 185–224.

4. R. A. Borsoi, T. Imbiriba, J. C. M. Bermudez, C. Richard, J. Chanussot,
L. Drumetz, J.-Y. Tourneret, A. Zare, and C. Jutten, “Spectral variability
in hyperspectral data unmixing: A comprehensive review,” arXiv preprint
arXiv:2001.07307, 2020.

5. W. Krippner, S. Bauer, and F. Puente León, “Considering spectral variability
for optical material abundance estimation,” tm – Technisches Messen, vol. 85,
no. 3, pp. 149–158, 2018.

6. J. Anastasiadis and F. Puente León, “Spatially resolved spectral unmixing
using convolutional neural networks (German paper),” tm – Technisches
Messen, vol. 86, no. s1, pp. 122–126, 2019.

137



J. Anastasiadis et al.

7. J. Anastasiadis, P. Benzing, and F. Puente León, “Generation of artificial
data sets to train convolutional neural networks for spectral unmixing (Ger-
man paper),” tm – Technisches Messen, vol. 87, no. 9, pp. 542–552, 2020.

8. Y. Altmann, N. Dobigeon, S. McLaughlin, and J. Tourneret, “Nonlinear
spectral unmixing of hyperspectral images using Gaussian processes,”
IEEE Transactions on Signal Processing, vol. 61, no. 10, pp. 2442–2453, 2013.

9. W. Fan, B. Hu, J. Miller, and M. Li, “Comparative study between a
new nonlinear model and common linear model for analysing laboratory
simulated-forest hyperspectral data,” International Journal of Remote Sensing,
vol. 30, no. 11, pp. 2951–2962, 2009.

10. A. Halimi, Y. Altmann, N. Dobigeon, and J.-Y. Tourneret, “Nonlinear un-
mixing of hyperspectral images using a generalized bilinear model,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 49, no. 11, pp. 4153–4162,
2011.
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