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Abstract. The developments in optical metrology and computer vision require

more and more advanced camera models. Their geometric calibration is of essen-

tial importance. Usually, low-dimensional models are used, which however often

have insufficient accuracy for the respective applications. A more sophisticated

approach uses the generalized camera model. Here, each pixel is described indi-

vidually by its geometric ray properties. Our efforts in this article strive to improve

this model. Hence, we propose a new approach for calibration. Moreover, we show

how the immense number of parameters can be efficiently calculated and how the

measurement uncertainties of reference features can be effectively utilized. We

demonstrate the benefits of our method through an extensive evaluation of different

cameras, namely a standard webcam and a microlens-based light field camera.

1 Introduction

Accurate optical measurement methods are becoming increasingly important for high-

precision manufacturing. The rising demand can be satisfied by modern imaging systems

with advanced optics. The exact geometric calibration of these systems is of essential

importance for computer vision and optical metrology. Most systems use perspective

projection with a single projection center and are referred to as central cameras. They can

often be described by low-dimensional, parametric models with few intrinsic parameters,

e.g. the well-known pinhole model which even can compensate imperfections of the

system, such as lens aberrations, with the help of polynomial correction parameters [1].

In some applications in the field of optical metrology, more complex imaging systems

are needed. These can often no longer be described by a central camera model and are

in many cases non-parametric and non-central, e.g. multi camera systems, catadioptric

cameras or light field cameras [2–5]. Here, more sophisticated models are needed, which

always have to be precisely adapted to the specific camera.

The disadvantage of low-dimensional models is that they have poor explanatory

power and in modern cameras not every pixel of the many millions can be perfectly

described by these models. The more complexity an imaging system has, the more

difficult it becomes to model it. The more elaborate the optical elements are, the more

challenging it becomes to find a mathematically adequate mapping between the light

of the captured scene and the physical sensor plane of the camera. Consequently, in

the recent years, the lack of flexibility and precision has led to the development of new

camera models, where cameras can be described as generalized imaging systems, which

are independent of the specific camera type and allow high-precision calibration.
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The generalized camera model was originally introduced in the work of Grossberg

and Nayar [6, 7]. An arbitrary imaging system is modeled as a non-parametric discrete

black box containing photosensitive elements. Each pixel collects light from a bundle

of rays that enter the imaging system, referred to as raxel which consists of geometrical

ray coordinates and radiometric parameters. The set of all raxels builds the complete

generalized imaging model. The authors perform the calibration by measuring the inter-

section of camera rays with known reference targets: a monitor that is moved by a linear

translation stage with known steps. Sturm and Ramalingam [8, 9] and Ramalingam et

al. [10] excluded the radiometric properties and proposed a calibration of the generalized

model where poses may be unknown. A closed form solution can be obtained, if the same

pixel sees three points of the reference objects. The downside of their method is that the

ray distribution of the camera has to be known in advance. For example, different models

apply when the imaging system is non-central or a perspective camera and complicated

parametrization steps are necessary. Bothe et al. [11] and Miraldo et al. [12] achieve pixel

wise calibration by bypassing the estimation of the target pose by simply tracking it using

an external stereo-camera-system or an IR tracker, respectively. Some work has been done

to simplify the calibration by reducing the number of parameters by, e.g., fitting a spline

surface onto the set of rays [13, 14]. Thus, the camera is evaluated on a subset of control

points. However, this only works when the imaging system is smooth, i.e. multi camera

systems, light field cameras or more complex optical systems are excluded. The work

most similar to ours is that of Bergamasco et al. [15,16]. They assume unknown poses and

calibrate the camera by iteratively calculating the projection of the rays onto a coded cali-

bration monitor, and by minimizing the resulting coding-error on a pixel level. In a second

step, they estimate the reference pose using an adapted iterative closest point method [17].

However, they don’t use a unified global objective function during the minimization of

the calibration error and without proper initialization their method tends to diverge.

Due to these disadvantages, we present in this article a new method to calibrate the

generalized imaging model, which improves the work of Bergamasco et al. Our goal

is to find a flexible calibration procedure that can accurately describe the geometrical

properties of an arbitrary imaging system. In the end, however, one does not obtain

an “image”, but rather a set of rays with corresponding intensities. Still, this does not

interfere with most applications in optical metrology, e.g., profilometry, deflectometry or

laser triangulation, where only the geometric ray properties are relevant [18–20]. For

our method, we assume unknown poses of the calibration target and iteratively solve the

subproblems of camera calibration and pose estimation, without the use of an additional

translation or rotation stage. By processing every pixel individually and updating each

pose one at a time, we can efficiently reduce the computational costs, whereby every

camera ray and each observed point contribute to the result. Our main contributions are

the following. We present a closed form least squares solution for the ray calibration

subproblem. We correctly solve the pose estimation subproblem using a gradient descend

optimization on the rotation manifold. And most importantly, we propose to use the

measurement uncertainty of the target feature to increase the accuracy of the entire

camera calibration. All is achieved by minimizing a single objective function, where

convergence can be always achieved. Finally, acceleration techniques are applied to

obtain an almost quadratic convergence rate.
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In the next sections we outline the basic calibration procedure and its difficulties. We

present how to measure reference target features and their corresponding uncertainties.

After describing how to include this uncertainty in the optimization procedure, we will

explain the individual calibration steps in more detail. Finally, experiments validate the

accuracy of the proposed calibration method by analyzing different camera systems.

2 Background

2.1 Plücker-Line

The portion of the light that is sampled by a single pixel has a cone-like shaped expansion

due to the effects of the depth-of-field. For simplicity’s sake, one models a raxel as

a ray running through the center of this cone along the direction of light propagation.

There are various possibilities for a mathematical description of rays, but in this work

the concept of Plücker-coordinates is used [21, 22]. In 6D-Plücker-space a Plücker-line

L ∈ P
6 is defined by its direction d ∈ R

3 and its moment m ∈ R
3. A line in 3D-space

has four degrees of freedom, therefore two constraints apply to the Plücker-line:

P
6 =

{(
d

m

)∣∣∣∣d ,m ∈ R
3, dT

m = 0 , ‖d‖ = 1

}
. (1)

The moment can be calculated with m = p × d, where p ∈ R
3 is an arbitrary point

on the line L. The moment vector stands perpendicular on the line and its norm ‖m‖
corresponds to the Euclidean distance of the line to the origin. The Euclidean distance of

a line L to an arbitrary point x can be found by calculating the distance to the closest

point on the line, which results in [23]:

d(L,x) = ‖x× d−m‖ . (2)

2.2 Alternating Minimization

Now, calibrating the camera just means to estimate for every single pixel its ray L, with

direction d and moment m. In conclusion, we are looking for ray parameters that mini-

mize a suitable distance measure between the camera rays and observed reference points,

whereby the positions of the references are assumed to be unknown. The calibration can

now be formulated in the sense of a least squares problem. Fig. 1 illustrates the approach.

f(R, T ,L) =
∑

k,i

d (pik,Li)
2
. (3)

Here, index i represents the individual rays and index k the reference coordinate system.

d(·) is a suitable ray-to-point distance measure and pik = Rkxik + tk are the observed

features in 3D-space, where xik is a local point on a reference target. Rk, tk are the

corresponding transformations to the camera coordinate system. And for the remainder

of this article, we define R := {R1,R2, . . . } , T := {t1, t2, . . . } ,L := {L1,L2, . . . } .
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Camera
Reference targets

Li

R1, t1 R2, t2 R3, t3

Fig. 1: Generalized calibration: The imaging system is treated as a black box that is independently

of the internal optics described by a set of vision rays. Each individual ray observes the intersected

reference target point. The ideal calibration results in a minimal distance between rays and points.

Regardless of the actual used distance measure, it is very difficult to minimize such a

problem in a reasonable time and with appropriate use of computational resources. The

ray model with six parameters and two constraints has four degrees of freedom per pixel.

Even for today’s standard cameras, this leads to a huge number of parameters that have

to be optimized (e.g. a 40-megapixel camera has 240 million parameters). In addition,

the reference target pose is in general not known. Thus, at the same time six degrees of

freedom per pose have to be estimated. The coupling of poses and rays and the immense

number of parameters results in an extremely high dimensional problem that cannot be

solved using a single optimization method. The calculation of a gradient or a Hessian

and the corresponding function evaluations would be computationally too expensive.

Therefore it is useful to divide the problem into subproblems and then solve them

iteratively in the sense of an Alternating Minimization (AM) [24]. Accordingly, problem

(3) is split into a camera calibration and a reference target pose estimation. The approach

of an AM is to fix a parameter set and to solve the resulting problem. This way one has

two particular problems to solve in each iteration:

L
(n)
i = argmin

Li∈P6

f
(
R(n−1), T (n−1),Li

)
, (4)

R
(n)
k , t

(n)
k = argmin

(Rk,tk)∈SE(3)

f
(
Rk, tk,L(n)

)
, (5)

where an appropriate initialization R(0), T (0) has to be chosen. The first problem is

solved for each pixel i individually by fixing all of the reference target poses and the

second one is solved for each single pose k by assuming fixed ray parameters.

2.3 Dense Feature Acquisition

To present the camera calibration as a per pixel problem and to treat each pixel inde-

pendently from its neighbors, sufficient observations of reference features have to be

available for every pixel. However, the widely used checkerboard patterns can provide

only sparse features which aren’t nearly enough for a generalized camera calibration.

Instead, it is a good idea to use active targets, e.g. flat monitor displays, and active

encoding strategies, to assign each camera ray a 2D point in the local reference target

plane. Thus, each ray can observe one feature per pose.
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The detection of features in the reference target plane and with it the registration of

camera rays Li to monitor display points xik is found in our approach via a temporal

coding of the monitor pixels. Phase shift methods are particularly suitable because they

are robust against noise, low-pass filtering by defocusing of the camera and variation of

ambient light [25]. They encode a normalized reference coordinate x ∈ [0, 1], where the

encoding is done in horizontal and vertical direction separately, by generating a signal

sequence of K sinusoidal patterns shifted by Ψk = 2πk
K

with phase ϕ(x) = 2πfx:

gk(x) = A+B cos (ϕ(x) + Ψk) . (6)

The camera records the signal sequence g̃k with k = 0 . . .K − 1, calculates the phase

and decodes the reference coordinate from it x = ϕ
2πf , with:

ϕ = atan2(−a, b) mod 2π, a =

K−1∑

k=0

g̃k sin (Ψk) , b =

K−1∑

k=0

g̃k cos (Ψk) . (7)

For symmetric K step phase shift methods, the uncertainty of the phase measurement

σϕ can be specified as a function of the sensor noise σI [26]:

σϕ =
1

f

√
2

K

σI

B̂
, (8)

where B̂ = 2
K

√
a2 + b2 is an estimate of the modulation B of the signal. By using multi

frequency phase shift coding methods [27], dense features and their local coordinates

can be found for every camera ray in subpixel precision, with respect to monitor pixels.

In addition, the uncertainty of this measurement can be quantified and used in the

subsequent calibration procedure. The interested reader is advised to refer to the literature

for more details [26, 28].

3 Generalized Camera Calibration

With the previous results, we can define an objective function that needs to be minimized

in order to calibrate the camera and find all ray parameters di,mi . Simultaneously, we

estimate the pose of the calibration targets Rk, tk with respect to the camera. This is

done in a weighted least squares sense by minimizing the distance between uncertain

target points xik with uncertainty σik and their corresponding camera rays. To this end,

we utilize the phase shift coding strategy to estimate the uncertainties of the reference

target points which results in a weighting factor wik = σ−2
ik . In conclusion, we obtain

the objective function:

f(R, T ,L) =
∑

i,k

wik ‖(Rkxik + tk)× di −mi‖2 . (9)

As mentioned before, even with today’s computing power, it is very difficult (or even

impossible) to estimate the enormous number of parameters of this problem simulta-

neously and in a reasonable time. We therefore divide it into two subproblems, one for

camera calibration and another for pose estimation, which are then handled iteratively.

This allows to solve the subproblems more easily and to get an optimal result, which

further leads to the overall problem converging towards a solution.
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3.1 Camera Ray Calibration

One step in the camera calibration procedure is to estimate the ray parameters by assum-

ing known poses of the calibration targets. This greatly reduces the complexity. Instead

of calculating every parameter at once, we can calibrate the ray Li = (dT
i ,m

T
i )

T ∈ L
of each pixel individually (or in parallel). Hence, for every single ray we obtain a new

optimization problem which we can write in a more compact form:

f(di,mi) =
∑

k

wik ‖pik × di −mi‖2

= d
T
i Add,idi +mT

i Amd,idi + amm,i‖mi‖2 . (10)

Here, pik = Rkxik + tk represents the target point in camera coordinates and Add,i =∑
k wik [pik]

T
×
[pik]× , Amd,i =

∑
k 2wik [pik]

T
×

, amm,i =
∑

k wik are found by

summing over the pose index k, reordering and extracting the ray parameters di and mi.

In addition, for better readability, we neglect the index i in the remainder of this section.

It can be easily shown that Add is almost always positive definite and invertible. Thus,

problem (10) is convex. Considering the characteristics of the Plücker-rays (1), finding

the optimal rays results in minimizing a quadratic program with quadratic equality

constraints: ‖d‖ = 1 , dT
m = 0. Although the minimization of such a problem in

general requires a difficult nonlinear minimization, we are able to find a global minimum

in this specific case, using a few simple steps.

At first, it should be obvious that the solution of the constraint problem is scale

ambiguous and that the norm of the ray direction ‖d‖ does not influence the actual ray

properties [22]. Thus, after having found a solution, we can apply a normalization to the

ray Ln = L/ ‖d‖ = (d/ ‖d‖ , m/ ‖d‖) to obtain a geometrical meaningful point-to-ray

distance (2). To deal with the inequality constraints, we formulate the Lagrangian:

g = d
T
Addd+mTAmdd+ amm‖m‖2+λdT

m+ µ
(
d
T
d− 1

)
, (11)

with the Lagrange multipliers λ, µ. Further, the first order conditions for a minimum are:

∂g

∂d
= 2Addd+AT

mdm+ λm+ 2µd
!
= 0 , (12)

∂g

∂m
= 2ammm+Amdd+ λd

!
= 0 , (13)

∂g

∂λ
= d

T
m

!
= 0 , (14)

∂g

∂µ
= ‖d‖2−1

!
= 0 . (15)

Using (13) and (14), this results in a solution for the ray moment m and λ:

m = − 1

2amm
(Amd + λI)d , (16)

d
T
m = − 1

2amm
d
T (Amd + λI)d

!
= 0 , (17)

⇒ λ =
d
T
Amdd

d
T
d

(15)
= d

T
Amdd = d

T

(
∑

k

2wik [pik]
T
×

)
d

= −d
T
((∑

k
2wikpik

)
× d

)
= 0 , (18)
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where the last equation holds because d is orthogonal to p × d , ∀ p ∈ R
3. Inserting

these results into (12) leads to a simple eigenvalue problem for the solution of the ray

direction d and Lagrange multiplier µ:

(
Add − 1

4amm
AT

mdAmd

)
d = µd . (19)

These equations still contain the trivial solution d = m = 0 which however has

no geometric meaning for the calibration and is excluded by (15). Apart from that, the

solution space of (19) consists of three eigenvalues µj with corresponding eigenvectors

dj . After estimating a possible dj and corresponding Lagrange multiplier µj , we need

to scale the eigenvalue probem to normalize the ray such that ‖dj‖ = 1 in order to keep

the geometrical meaning of (2) and to obtain an unambiguous scaling. We can get the

corresponding ray momentum mj through (16). And finally, from these at most three

possible stationary points, we select the one with the smallest objective function value

(11) to be the optimal solution. In conclusion, we find a closed form solution for the

least squares problem of the weighted ray-to-point distance minimization.

3.2 Generalized Pose Estimation

As before, the estimation of the calibration target pose can drastically be simplified by

assuming known ray parameters. Therefore we optimize each pose individually. The

objective function for each pose k becomes:

f(Rk, tk) =
∑

i

wik ‖(Rkxik + tk)× di −mi‖2 . (20)

However, solving for a pose Rk, tk is non-trivial because the solution space is re-

stricted to the special Euclidean group SE(3), which combines rotations and translations

in three dimensions, Rk ∈ SO(3) and tk ∈ R
3, respectively. Directly applying a nonlin-

ear optimization procedure is not advisable, because every function evaluation results in

the summation over all rays and is thus computationally very expensive. Therefore, as

before, we need to find a more compact form of this quadratic function. Again for the

sake of brevity, we omit the index k for the remainder of this section. Further, we use the

vectorization operator r = vec (R) ∈ R
9 that stacks the columns of the 3× 3 matrix R.

While computing the summation over all ray indices i only once, we obtain independence

of the actual number of rays, which simplifies and speeds up later optimization steps:

min f(R, t) = rTArrr+ tTAttt+ tTAtrr+ b
T
r r+ b

T
t t+ h

s.t. r = vec (R) , (R, t) ∈ SE(3) .
(21)

While observing the constraint quadratic objective (21), we notice that the main constraint

lies in the rotational part and moreover the objective is convex in the translation part.

Thus, the problem can further be reduced by decoupling of translation and rotation,

which means that t can be expressed in terms of R. We can find the optimal translation

vector with the first order condition for a minimum, using
∂f(R,t)

∂t

!
= 0 . This leads to:

t = −1

2
A−1

tt (Atrr+ bt) . (22)
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Inserting (22) into (21) results in the decoupling of the rotation and translation subprob-

lem, which then again yields a quadratic optimization problem (A,b, c are calculated

from Arr,Att,Atr,br,bt, h, see supplemental material for more details):

f(R) = rTAr+ b
T
r+ c , s.t. r = vec (R) , R ∈ SO(3) . (23)

After finding a solution for the rotation matrix we obtain the optimal translation

vector with (22), assuming invertibility of Att. It can be shown that Att is positive

definite in most cases with the exception of a few exotic camera ray distributions (e.g.

parallel rays, telecentric optics), and hence we truly get the minimum of the objective

with respect to the translation.

Although minimization of (23) seems simple at first, we have the constraint to find an

optimum in SO(3). This is equivalent to a non-convex problem with quadratic and cubic

constraints on the rotation parameters. Bergamasco et al. [15] use an iterative closest

point algorithm that iteratively calculates the transformation from the observed points

to the closest point on the corresponding rays, which however only converges near the

optimum. Kanatani [29] suggests a fast method by first calculating an Euclidean solution,

with R ∈ R
3×3, and projecting it onto the SO(3)-manifold using singular value decom-

position, which results in a not entirely correct minimization. Schweighofer and Pinz [30]

solve the problem using sum-of-squares optimization and constrain the algorithm to

SO(3). Ventura et al. [31] and Kneip et al. [32] find a solution computationally very effi-

cient, using Gröbner basis [33]. This however requires further “root polishing” to resolve

ambiguities and to achieve good results. Hence, since our main focus is not real-time

optimization, but rather highly precise pose estimation, we are obliged to find an accurate

minimum to ensure convergence of the AM calibration. In order to find this, we there-

fore directly use a gradient-based optimization approach on the Riemannian manifold

SO(3) = {R ∈ R
3×3 |RTR = I, det (R) = 1}, which implicitly considers all con-

straints. The mapping from any element of the tangent space η ∈ so(3) to R ∈ SO(3) is

called the exponential map R = e[η]× , and the reverse map is called the logarithmic map

[η]
×
= log(R). Both can be calculated in closed form, using the skew operator [34]:

[η]
×
=




0 −η3 η2
η3 0 −η1
−η2 η1 0


 . (24)

If a function is to be optimized on the manifold, the corresponding direction of

descent must be sought in the local tangent space fη(R) = f(e[η]×R). In order to use

conventional optimization methods, a valid representation for both the gradient and the

Hessian must be identified. These can be easily found by using directional derivatives of

the locally parameterized manifold in the direction of the tangent space [35]:

Dfη (R) [η] = lim
ε→0

∂

∂ε
fηε (R) = η

Tgrad(f) , (25)

D grad(f)[η] = lim
ε→0

η
T ∂

∂ε
grad(f) = η

THess(f)η . (26)

Looking back at our original problem (23), this approach leads to the explicit formu-

las for the Riemannian gradient and Riemannian Hessian (the interested reader is advised
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to refer to the supplementary material or the literature for further details [35, 36]):

grad(f) = 2HT (R⊗ I) (Ar+ b) , (27)

Hess(f) = 2HT
(
(R⊗ I)A (R⊗ I)

T − I⊗mat (Ar+ b)RT
)
H . (28)

Here, the reshape operator mat(·) is the inverse of vec(·). ⊗ is the Kronecker product,

e1, e2, e3 are unit base vectors and H =
[
vec([e1]×), vec([e2]×), vec([e3]×)

]
∈ R

9×3.

After the formulas for the gradient and the Hesse matrix have been established, we

can build a quadratic model of the local tangent space and are then able to minimize the

objective (23) with the help of an appropriate Newton descend algorithm. Apart from

important differences, the procedure is quite similar to the classic Euclidean approach.

For the current iterate, we calculate gradf(R(n)) and Hessf(R(n)) . After the search

direction η
(n) has been found by solving the Newton equation, one has to calculate a

projection of the tangent space back to the manifold to obtain a valid descend [36]:

Hessf(R(n)) η(n) = −gradf(R(n)) , (29)

R(n+1) = e

(

α[η(n)]
×

)

R(n) . (30)

Finally, a subsequent 1D backtracking line search in SO(3) finds a sufficient step size α
and accelerates the convergence. In order to initialize the algorithm an appropriate start

is required, where in the context of an AM-camera-calibration, the pose estimate from

the previous iteration may be used.

3.3 Convergence, Acceleration and Summary

The camera ray calibration provides the globally optimal solution in every step. Further-

more, the pose estimation converges towards a minimum and provides no inferior result

than the previous iteration. Following the researches in the field of AM [24, 37], it is

easy to show the convergence of the optimization procedure to a stationary point with

an O
(
1
n

)
convergence rate (see supplementary material). In order to obtain a faster con-

vergence, acceleration techniques may be applied. We modified Nesterov’s acceleration

scheme to obtain an almost O
(

1
n2

)
convergence rate [38]. During the acceleration step,

a weighted rate of the change of the pose parameters is added to the next estimate. When

accelerating the rotation, of course, this has to be done on the SO(3)-manifold: The

current rotation is reversed by the previous rotation, projected onto the so(3) tangent

space using the log-map, weighted by an acceleration parameter and finally transformed

back into a rotation matrix using the exp-map and multiplied onto the current estimate.

Algorithm 1 summarizes the complete AM calibration.

Although we have a strictly convergent algorithm, of course, there does not exist a

unique solution. Depending on the starting value, the optimization runs into an arbitrary

coordinate system. Therefore, it is advisable to initialize the algorithm with a rough

estimate of the reference target poses, which could for example be obtained using

standard model-based approaches presented in the literature [1, 39] or the generalized

approach by Ramalingam et al. [10]. However, here it is of utmost importance that

the camera model is properly chosen. Of course, one can also randomly select starting
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Algorithm 1 Alternating minimization

Input: For every pixel i and target pose k: measure monitor coordinates xik and weight wik

Output: Calibrated ray Li for each pixel and pose Rk, tk of all reference targets

Initialize: Set poses of reference targets R(0), T (0) (e.g. use Ramalingam et al. [10])

Set acceleration parameter β0 = 0
1: for n = 1, 2, 3, . . . do

2: for i = 1, 2, 3, . . . do

3: Hold pose parameters and optimize rays

4: L
(n+1)
i = argmin

Li∈P6

f
(

R(n), T (n),Li

)

5: end for

6: for k = 1, 2, 3, . . . do

7: Hold ray parameters and optimize poses

8: R
∗

k, t
∗

k = argmin
(Rk,tk)∈SE(3)

f
(

Rk, tk,L
(n+1)

)

9: Accelerate translation and rotation update

10: t
(n+1)
k = t

∗

k + βn

(

t
∗

k − t
(n)
k

)

11: R
(n+1)
k = e

βn log
(

R
T(n)
k

R
∗

k

)

R
∗

k

12: with a sequence βn as defined by Nesterov [38].

13: end for

14: end for

poses with the downside of an increased optimization time and the risk to converge

to a non-optimal local minimum. Nonetheless, the arbitrary coordinate system doesn’t

change the geometrical properties of the rays and, accordingly, the calibrated camera

can be used without loss of accuracy. Even more, the final calibration can be easily

transformed to a standardized coordinate system, e.g. by defining the origin to be the

point that is closest to all rays and by selecting the z-axis to be the mean ray direction.

4 Experiments

For the evaluation, a 27” monitor with a resolution of 2560× 1440 and a pixel pitch of

233 µm was used to display the necessary calibration patterns. Two different imaging

systems were used to evaluate the proposed method: A standard webcam (Logitech

C920 HD Pro Webcam) and a more exotic example, a microlens-based light field camera

(Lytro Illum). The latter one has a microlens array placed in front of the sensor, which

allows to sample the plenoptic function of a scene [3,40–42]. This ultimately results in a

non-central camera with multiple projection centers, which can be used as a 3D-camera

and in addition requires a much more complex camera model to be efficiently calibrated.

The monitor was captured from 30 different poses, whereby several phase shift patterns

have to be recorded at each pose to encode the target features [28]. The distances between

monitor and camera were in the range of 5 cm to 2m. In order to compare the proposed

technique to the classic methods, checkerboard patterns were displayed at the same

positions. The webcam was calibrated using OpenCV [39] and Zhang’s algorithm [1].

The light field camera was calibrated using the state-of-the-art method by Bok et al. [43].
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Fig. 2: Convergence of the calibration: Depict are the observed area of the monitor, the calibrated

camera rays and the mean Euclidean distances at start and end. Even with an initially very bad

pose estimation, the procedure converges towards reasonable results. Note the difference in scale.

Both methods use checker patterns. The proposed generalized calibration procedure

was initialized with a rough pose estimation. The webcam was initialized with OpenCV

and for the light field camera we used the calibration by Bok et al. with a succeeding

standard pose estimation. As an alternative, one could also initialize using the generalized

relative pose estimation algorithm proposed by Ramalingam et al. [10]. In many cases,

we observed that it was acceptable to just “guess” the positions of the monitor, e.g. see

Fig. 2, where the monitor poses at start and after convergence are shown. We eventually

terminated the alternating minimization after 100 iterations, due to sufficient convergence.

Since each ray is independent from one another, it is possible to process them in parallel,

using a GPU. The optimization of 40 million pixels (Lytro Illum) thus only takes a

few seconds per iteration (Intel Core i7-6700, Nvidia GTX 1080 Ti, 16GB RAM). The

calibration procedure therefore converges after 10 minutes, whereas the method by Bok

et al. uses a highly advanced model which takes more than three hours to calibrate. Our

method is even faster when calibrating the two megapixel webcam.

Fig. 3 shows the convergence of the proposed method as a function of the root

mean square error (RMSE) over the number of iterations. The plot shows the calibration

of the webcam, which was initialized with the model-based OpenCV pose estimation.

To investigate the robustness against bad initialization, the convergence behavior was

investigated for 100 trials while random translations in the range ±10 cm and rotations

±10◦ were added to each initialization. Therefore, the start of the plot corresponds

approximately to the error of the OpenCV calibration. For comparison, the convergence

behavior of the generalized calibration method of Bergamasco et al. [15] was also

investigated, using the same initializations. Fig. 3 shows that the proposed method

converges significantly faster than their method and that it is less sensitive to a bad

initialization, which is shown by the smaller standard deviation in the RMSE.

Theoretical we need two different point observations to fit a ray, then Add is positive

definite. And to fit a pose, we need three non-parallel rays (then Att is positive definite)

that observe different points (then Arr is positive definite). With only two reference
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Fig. 3: Convergence and initialization of AM-

calibration: The plot shows the mean value

and the ±σ-range of the convergence.

Fig. 4: Dependency on the number of patterns:

The plot shows the mean value and the ±σ-

range of the error.

targets, we always converge to a perfect fit, which of course is useless. An unambiguous

solution however can theoretically be obtained with at least three reference poses [10].

But of course, because we use a least squares based minimization approach and we want

to reduce the impact of noise, we need more reference targets. This becomes apparent in

Fig. 4. Here, we investigate the calibration error when different numbers of reference

targets are used. For this purpose, the camera was calibrated 100 times, where each time

a fixed number of target patterns was randomly selected from a total set of 60 poses.

The mean error of all calibrations and their ±σ standard deviation are plotted over the

number of used patterns. It can be seen that the overall calibration error needs at least a

minimum of 15-20 poses to result in a good calibration, whereas more poses increase

the overall robustness of the method. Too few patterns, on the other hand, result in a

very unreliable calibration. We see similar results for the OpenCV calibration, although

the dependency on the number of patterns is not as strong as compared to the proposed

method. In summary, the proposed calibration needs more reference poses to correctly

estimate the immense number of parameters. However, even with fewer poses, the error

of the proposed calibration is several times smaller than the model-based calibration.

To ensure a fair comparison between the calibration methods, we examined the

different models with regard to their point-to-ray distance of each ray to every observed

feature in every monitor plane. The comparison is here done using normalized values,

which results in a weighted distance dw = (
∑

wik)
−1
∑

wik‖pik×di−mi‖. For a

demonstration of the benefit of using additional uncertainty information, the Euclidean

distances de were evaluated, too. A comparison of the commonly used re-projection

error is not possible, because in a generalized camera model there isn’t anything like an

“image plane”, just a set of rays. Table 1 summarizes the respective calibration results.

We can see that the proposed method produces the best results. Even for the webcam,

with its relatively simple optics, the generalized approach delivers both a smaller mean

error and RMSE, resulting in a more precise geometric calibration with fewer outliers at

the same time. In the classic model, these outliers cannot be used because they are too far

away from the model description. The generalized model, however, can effectively use

each individual pixel as a source of information. This becomes particularly visible for the

webcam if only the error regarding the checkerboard features is evaluated. Here, the error

is smaller than when all phase shift features are used for every pixel. This demonstrates

that the classic calibrations optimize the camera model for only a part of the pixels, by
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Table 1: Calibration errors: Methods with the suffix ”checker” were evaluated only at the sparsely

detected checker features. For all others, the error was calculated over all observed phase-shift

features. ”Proposed (E)” does not use the uncertainty and only minimizes the Euclidean distance.

Logitech Webcam Lytro Illum

dw in µm de in µm dw in µm de in µm

Mean RMSE Mean RMSE Mean RMSE Mean RMSE

OpenCV [39] (checker) – – 267.4 340.0 – – – –

OpenCV 243.1 323.8 343.3 375.3 – – – –

Bok et al. [43] (checker) – – – – – – 448.4 851.8

Bok et al. – – – – 375.6 758.8 7165.1 8686.0

Bergamasco et al. [15] 88.8 121.0 93.9 130.3 922.1 1696.5 1041.8 1720.5

Proposed (E) 83.3 117.6 86.8 124.3 77.1 185.3 163.1 438.5

Proposed 81.6 117.0 84.6 125.5 49.4 105.8 155.5 457.4

neglecting outliers, while the generalized model optimally calibrates every pixel. Also,

our proposed method performs better than the generalized approach by Bergamasco et

al., even if we don’t take the uncertainties into account and only minimize the Euclidean

distance. Furthermore, it can be seen that additional information about the coordinate

uncertainty improves the calibration even more. Inaccurate points are weighted less

strongly and therefore have a weaker effect on the result. Fig. 5a illustrates the results by

showing the distribution of all point-to-ray distances.

Similar conclusions can be drawn with the Lytro Illum camera. Due to the more

complex optics and the more extensive optimization associated with it, the differences

here are much greater and the superiority of the proposed generalized calibration becomes

even clearer. Although the model by Bok et al. is highly advanced, it is strongly adapted

to the few checker features and only produces good results here. But if the model is

evaluated using the phase shift features for every pixel, then this leads to high RMSE

values caused by many outliers. In this case, we can see particularly well that a low

dimensional model-based approach cannot ideally describe every pixel of a camera

with complex optics, such as the light field camera. Moreover, the benefit of using

uncertainties becomes very well apparent: the quality of pixels in microlens-based light

field cameras (and the ability to accurately model the corresponding rays) deteriorates

towards the edges of the microlenses [43, 44], leading to increased uncertainties. These

can however be effectively suppressed by the proposed procedure, leading to much

smaller mean errors and RMSE values. The method by Bok et al. can calibrate the center

of each microlens very well. Here, their calibration error reduces to about 60 µm for the

best pixels. But, the more the pixels move away from the center, the worse becomes the

error. This reduces the overall calibration quality, as seen in the results. Also, the method

by Bok et al. returns only 35 million of the total 41 million pixels. The worst pixels,

which are between neighboring microlenses, cannot be modeled and are therefore cut

off. Thus, they cannot be analyzed in the evaluation made here. However, our proposed

model can effectively calibrate the rays of every pixel of the sensor, whereby we not

only get good calibration results in the centers of the microlenses, but also at the edges,

where it is very difficult to describe the light field camera with a uniform model. While
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(a) Histogram of errors (Logitech Webcam). (b) Histogram of errors (Lytro Illum).

Fig. 5: The generalized model creates a much tighter distribution with less outliers as compared to

the classical calibrations. Outliers can be suppressed even more with uncertainty information.

the method by Bergamasco et al. delivers good results for the webcam, we weren’t

able to get a good calibration for the light field camera. Although the calibration of the

webcam shows that their approach works, it seems that it does not generalize as well

as the proposed method and that it has difficulties with the poor quality of the pixels

at the edges of the microlenses. The procedure diverged in our experiments. Only after

improving the initialization for a few iterations using our method and by excluding

the pixels with highest uncertainty, we were able to obtain a convergent result for their

method, which still has a smaller error than the calibration by Bok et al.

Fig. 5b summarizes these results and shows the distribution of all point-to-ray

distances for the Lytro Illum. The method by Bok et al. results in a flat distribution with

a peak at 60 µm. Also, several peaks systematically appear at higher distances, which are

due to the difficulties of modeling a light field camera. The method by Bergamasco et al.

results in an overall flat distribution with errors at high values (more than 1mm). Our

proposed methods, on the other hand, are much tighter with peaks at far lower values.

Moreover, larger errors from minimizing only the Euclidean distance can be shifted to

smaller ones by using the generalized calibration with uncertainty-based weighting.

5 Summary

We presented a new calibration technique for the generalized imaging model. We pro-

posed to split the calibration into two parts, ray calibration and pose estimation, and

to apply an alternating minimization to efficiently optimize the immense number of

parameters. Dense calibration features were obtained using phase shifting techniques,

where we accounted for the measurement uncertainty that were estimated during the

pre-processing. We presented a simple analytical solution to minimize the ray subpoblem.

And further, we optimized the pose by decoupling rotation and translation and by using

a gradient descent on the rotation manifold. Finally, experimental evaluation verified the

advantages of the proposed method over conventional and other generalized approaches

and demonstrated the benefit of using additional information about the uncertainty of the

calibration target coordinates. We make the source code of our method publicly available

and encourage others to use it to their own needs [45].
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