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A B S T R A C T

This paper investigates a promising new approach of magnetic chromatography to improve particle fractiona-
tion in industrial-scale production. To understand the still challenging multidimensional separation mechanism,
we develop a novel method to simulate magnetic nanoparticles’ behavior in a magnetized chromatographic
column based on a lattice Boltzmann method. In contrast to conventional numerical studies, the Euler–Euler
approach is applied by utilizing the advection–diffusion equation to describe the particle component. As a
result, the consideration of the magnetic force, the drag force, and a realistic diffusion are possible. Also,
enormous computational costs are saved. We show that the column can be modeled from a combination of two
unit cells, and a separation effect can be detected even with small magnetic fields. Furthermore, we compare
the numerical results to practical experiments. Both results are in good accordance. We additionally determine
potential improvements. Besides improving the setup by using stronger magnetic fields, the structure of the
column’s matrix plays an important role. Thus, we find that higher porosity leads to higher retention times.

1. Introduction

Technical nanoparticles are of increasing interest in novel ther
apeutic processes or the production of high quality products [1 3].
However, the synthesis of such nanoparticles shows an improvable
homogeneity of the final products. For this purpose, fractionation pro
cesses are applied after production. Classical size fracturing processes
reach their limits if industrially relevant quantities are to be pro
vided since, in this size range, the physical separation principles used
so far lose their effectiveness and selectivity. Established separation
processes applicable in this size range, such as ultracentrifugation or
ultrafiltration, provide mass flows on an analytical scale.

A novel approach for the size fractionation of nanoparticles is a
magnetic chromatography mode, as explained in a recent work [4].
This technique consists of a method known from liquid chromatogra
phy. For this purpose, a stationary phase of steel spheres is formed,
which serves as a separation matrix. Nanoparticles to be fractionated
are passed through this separation matrix as a suspension in an aqueous
mobile phase. By an external magnetic field, the matrix material can be
magnetized to attract magnetic reactive nanoparticles. This separation
technique is based on the fact that three forces acting on the nanopar
ticles are mainly responsible for the retention time in the separation
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matrix: the diffusion force, the drag force, and the magnetic force. By
varying the particle size, the ratio of these forces can be shifted so that a
change in the retention time occurs. This change can now be exploited
to obtain a fractionation of nanoparticles. This process’s functionality
is shown in a present paper for nanoparticles with a diameter from 50
to 400 nm [4]. One advantage of such a chromatography method is
the scalability, which can be achieved by varying the column length
and thickness. For this scalability, however, a precise knowledge of
the processes within the separation matrix is required. Therefore, a
suitable method for a computer simulation is developed and used for
the investigation.

In contrast to conventional liquid chromatography for molecular
fractionation [5 7], magnetic chromatography has received little atten
tion in numerical studies. Although there are methods that deal with
similar processes, e.g., High Gradient Magnetic Separation (HGMS)
utilizing wires [8,9], these examine significantly larger particles which
are nonselectively separated and neglect diffusion. Thus, the proposed
models do not represent all necessary mechanisms to model ultrafine
particles’ behavior in magnetic separation, as suggested by previous
studies [10,11] and are, therefore, not suitable. Nevertheless, another
method considers smaller, unresolved particles and diffusion in a two
dimensional channel [12]. It was developed to deal with an application,



also known as magnetic chromatography [13]. However, this system
does not have a stationary phase within the fluid channel and is, for
this reason, fundamentally different from the novel chromatography
considered in this work, which utilizes a stationary phase consisting
of spheres. Furthermore, this study also solely examines the separation
of ultrafine particles, but not the suitability of such a system for size
fractionation. Further development of this method considers HGMS
with magnetic filter wires [14], but it examines simpler geometries than
a pebble bed and is still only a two dimensional consideration.

Thus, it is still necessary to develop a method that describes the
three dimensional shape of magnetized pebble beds and the resulting
magnetic force on magnetic nanoparticles. Additionally, the method
must represent these particles’ diffusion and fluid convection in a phys
ically correct way. All listed requirements are mandatory while per
formance is of utmost importance as we must consider high resolution
3D geometries due to large gradients and the chromatography column
matrix’s geometric properties.

In this work, we chose to meet the aforementioned requirements by
solving the advection diffusion equation (ADE) and, therefore, using an
Euler Euler approach. Because the ADE offers an established diffusion
model and the computational effort only scales with the simulation do
main’s resolution. In contrast to this, an Euler Lagrange approach leads
to a tremendous computational effort to achieve adequate accuracy by
utilizing a sufficiently large number of particles [15,16].

We utilize lattice Boltzmann methods (LBM) for the ADE’s solution
because the parallelization is easy due to the costly computations
being local [17], making it very well accessible for high performance
computing, especially on parallel architectures [18]. LBM also work
well to simulate multicomponent flows in complex geometries [17]
and offer many other benefits [18]. For these reasons, we extend the
approach previously presented by Trunk et al. [16] to observe a mag
netic force stemming from several spheres of the ball matrix and that
the simulation runs stable with an application of a realistic diffusion.
Consequently, it is unnecessary to apply a larger diffusion coefficient
or add artificial diffusion via numerical stabilization approaches, as
discussed by John [19] and Augustine et al. [20], which would lead to
deviations due to a non physical diffusion. The necessary novel method
is developed utilizing the software package OpenLB [21,22].

This paper is structured as follows. In Section 2, we present the
underlying mathematical equations, the Navier Stokes equation and
the ADE. Furthermore, we explain the numerical methods utilizing
LBM to solve these equations. Section 3 deals with the setup of the
experiments under consideration. The corresponding results are listed
and discussed in Section 4. Additionally, the results obtained by the
practical and numerical experiments are compared. Finally, Section 5
summarizes and concludes this article.

2. Mathematical modeling and numerical methods

The physical process can be broken down into three different parts:
the description of the two individual components, i.e., fluid and parti
cles, and the coupling of these phases. Only one way coupling, which
solely concerns the particle component, is considered. This procedure
is adequate for the low particle concentrations used.

In the following, we describe the process divided into the individual
components.

2.1. Fluid component

Since the fluid under consideration here is almost pure water, it
is justified to use the incompressible Navier Stokes equation, which is
given by

𝜌𝑓

(

𝐷𝐮f
𝐷𝑡

)

= −∇𝑝 + 𝜂∇2𝐮f + 𝐟 , (1)

where 𝐮f denotes the fluid velocity, 𝑝 the pressure, 𝑡 the time, 𝐟 a body
force, 𝜌f and 𝜂 the fluid density and dynamic viscosity, to describe it.

Due to the flow through the ball matrix in the chromatography
column, a pressure drop occurs. The Ergun equation [23], used to
describe the pressure loss 𝛥𝑝 over the distance 𝐿, reads

𝛥𝑝
𝐿

=
150𝜂
4𝑎2

(1 − 𝜀)2

𝜀3
u𝑠 +

1.75𝜌𝑓
2𝑎

1 − 𝜀
𝜀3

us ||us|| . (2)

In this equation, 𝑎 is the radius of the uniformly sized spheres that form
the chromatography matrix, 𝜀 the void fraction and us the superficial
velocity.

The Boltzmann equation encompasses the incompressible Navier
Stokes equation. Therefore, we solve it numerically by utilizing an LBM.
However, as this article’s focus is different, we refer to the relevant
literature [18] for more in depth information.

The standard LBM with forces is utilized since it allows us to
account for the pressure drop 𝛥𝑝 via a body force and thus obtain the
velocity field within a pebble bed. Therefore, a source term 𝑆𝑖 related
to the forces is needed in the lattice Boltzmann equation (LBE). Thus,
following Guo et al. [24] the collision step can be written as

𝑓 ∗
𝑖 (𝒙, 𝑡) = 𝑓𝑖(𝒙, 𝑡) +

(

𝛺𝑖(𝑓 ) + 𝑆𝑖
)

𝛥𝑡, (3)

with the lattice location 𝒙, the lattice time 𝑡, a collision operator 𝛺𝑖(𝑓 )
and the particle populations before the collision 𝑓𝑖 as well as after it
𝑓 ∗
𝑖 . The streaming step, which reads

𝑓𝑖(𝒙 + 𝝃𝑖𝛥𝑡, 𝑡 + 𝛥𝑡) = 𝑓 ∗
𝑖 (𝒙, 𝑡), (4)

where 𝝃𝑖 are discrete velocities, on the other hand, remains untouched.
In this work, the Bhatnagar Gross Krook (BGK) collision operator [25]
and a D3Q19 velocity set is chosen for the calculation of the fluid
component. As a result of the former, the particle populations, 𝑓𝑖 relax
towards their equilibrium 𝑓 eq

𝑖 , at a certain rate. This rate is defined by
the relaxation time

𝜏f = 3𝜈 + 1
2
, (5)

which can be calculated from the kinematic viscosity 𝜈.
Furthermore, periodical boundaries in each spatial direction are

applied. The bounce back method, as shown by Ladd [26], is utilized
to realize the macroscopic no slip boundary condition.

2.2. Particle component

The particle components description is analogous to the description
by Trunk et al. [16], but we extend this consideration with the purpose
that magnetic forces can be taken into account, and a stable simulation
despite small diffusion coefficients is obtained.

To illustrate the procedure, we first go into the basic macroscopic
equation, the advection diffusion equation, and give an overview of the
forces the particles experience. Finally, we present how the problem is
solved using the LBM.

2.2.1. Advection diffusion equation
To calculate the distribution of the particle concentration 𝑐, we

chose the advection diffusion equation, without sink nor source terms
and assume that the diffusivity D is homogeneous:
𝜕𝑐
𝜕𝑡

= D𝛥𝑐 − 𝐮p𝑐, (6)

with the particle velocity 𝐮p. The latter can be calculated by the
so called Stokes Einstein equation [27]:

D =
𝑘B𝑇
6𝜋𝜂𝑟p

, (7)

where 𝑘B is the Boltzmann constant, 𝑇 the temperature, and 𝑟p the
hydrodynamic radius of the diffusing particle.



2.2.2. Influences on particles
Apart from diffusion, other influences are decisive for the particle

movement. While some forces, such as gravitational force and buoy
ancy, can be neglected due to the small particle size, the drag 𝐹St and
magnetic force 𝐹m, on the other hand, are among the competing forces.
By considering these two forces, we can estimate the particle velocity
by applying Newton’s second law of motion, which in this case reads

𝑚p
𝐷𝐮p

𝐷𝑡
= 𝑭 St + 𝑭m, (8)

with the particle mass 𝑚𝑝 and the forces mentioned above.
The nanoparticles are simplified considered as equally sized spheres.

Therefore, we can utilize the Stokes drag force, which is given by

𝑭 St = 6𝜋𝜂
(

𝐮f − 𝐮p
)

. (9)

To describe the magnetic force acting on a particle of the volume
𝑉p caused by a sphere with radius 𝑎, which is uniformly magnetized
by an external magnetic field with constant intensity 𝐻0, we use the
following equation:

𝑭m = 𝑉p𝜇0𝛥𝜒

×
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,

(10)

as reported by Ebner et al. [28]. For the equation, a spherical coordi
nate system with the origin at the center of the sphere and coordinates
𝑟, 𝜙, and 𝜃 is utilized. According to Franzreb [29] the difference
between the magnetic susceptibilities of the particle and the fluid is
𝛥𝜒 ≈ 3 for low magnetic field strengths. The vacuum permeability is
called 𝜇0 and is also included in the equation used to calculate the
magnetic field strength from the magnetic flux density 𝐵0, which reads

𝑯0 = 𝜇0𝜇𝑟𝑩0. (11)

There is also a dependence on the magnetic permeability 𝜇𝑟. Here,
𝜇𝑟 ≈ 1 applies because we solely consider water. Through the utilization
of this, the magnetization of spheres can be approximated by [29]

𝑴 s =
{

𝑴𝑠,𝑆 , 𝑯0 ≥ 𝑴𝑠,𝑆∕3
3𝑯0, 𝑯0 < 𝑴𝑠,𝑆∕3

. (12)

The saturation magnetization 𝑴 s,S ≈ (0, 0, 6.2)T ⋅ 105 A/m is utilized,
which is a result of measurements. For the sake of simplicity, we
assume that particles do not accumulate on the magnetized spheres
and, therefore, do not affect the shape or magnetic properties of the
ball matrix. This assumption leads to negligible errors since only a low
particle concentration, and a small magnetic field are considered.

2.2.3. Numerical consideration
With the LBM, advection diffusion problems can also be solved.

Since we only use it for a scalar quantity, the particle concentration, it
is sufficient to utilize a reduced lattice [30,31]. Therefore, in this work,
the D3Q7 velocity set is chosen for the particle component, which saves
further computational effort. The LBE, which reads

𝑔𝑖(𝒙 + 𝝃𝑖𝛥𝑡, 𝑡 + 𝛥𝑡) = 𝑔𝑖(𝒙, 𝑡) +𝛺𝑖(𝑔)𝛥𝑡, (13)

with the density distribution functions 𝑔𝑖, can be used for the particle
phase. Merely the collision operator 𝛺𝑖(𝑔) changes, since the equilib
rium distribution function 𝑔eq

𝑖 and the relaxation time differ. The latter
depends in this case on the lattice diffusivity 𝐷:

𝜏p = 3𝐷 + 1
2
. (14)

However, the obtained solutions depend on 𝜏p, and using a small
lattice diffusivity yields errors [32] and instability [33]. This problem,

we too experience in this work, as the diffusion coefficient 𝐷 is always
small compared to the viscosity 𝜈, since there is a difference of several
orders of magnitude. For this reason, we choose the two relaxation
times (TRT) collision operator [34] instead. The TRT model is similar
to the BGK collision operator, but it uses two different relaxation times,
one for the symmetric 𝜏+p and one for the antisymmetric parts 𝜏−p . Both
times are linked by

𝛬 =

(

𝜏+p
𝛥𝑡

− 1
2

)

( 𝜏−p
𝛥𝑡

− 1
2

)

, (15)

which is now decisive for the stability and accuracy of the simula
tion [32] and through which 𝜏+p can be freely chosen, since 𝜏−p = 𝜏p, see
(14). We choose 𝛬 = 1∕4, as it leads to the most stable simulations [35].

By applying a forward Euler scheme for the temporal discretization
of (8), we can determine the particle velocity after a time step with

𝐮p(𝐱, 𝑡 + 𝛥𝑡∗) =
(

𝐮p + 𝛥𝑡∗
(𝑭 St + 𝑭m

𝑚p
− 𝐮p ⋅ ∇𝐮p

))

(𝐱, 𝑡). (16)

For calculating the velocity gradient ∇𝐮p, we utilize a classical upwind
scheme as outlined by Courant et al.[36].

At this point, it is crucial to note that the time step 𝛥𝑡∗ used here
can be the same as the one utilized in the LBM, but does not have to
be. This is because the drag force causes a relaxation of the particle
velocity 𝐮p to the fluid velocity 𝐮f and if the associated factor of this
relaxation 6𝜋𝜂𝛥𝑡∗∕𝑚p > 1, then an over relaxation takes place. Since we
are looking at nanoparticles, this is the case in this study, so we choose
𝛥𝑡 = 𝑛𝛥𝑡∗, for 𝑛 ∈ N>0, and perform the calculation of the velocity
𝑛 times in each lattice time step 𝛥𝑡. However, this causes enormous
calculation costs. Thus, we refrain from the calculation as soon as we
obtain the stationary solution. We assume that the stationary solution
is reached when the particle velocity field’s relative error is less than
0.001%.

Analogous to Trunk et al. [16] we use a Dirichlet boundary condi
tion with a fixed particle concentration for the inlet and a Neumann
boundary condition for the outlet. Besides, on the ball surfaces, we use
the bounce back rule to describe the no slip condition.

2.2.4. Algorithm
For clarification, we present the basic utilized algorithm, which

uses the methods mentioned previously, in Algorithm 1. Particularly
noteworthy is the separate calculation of the fluid and particle solution,
as well as the change of the temporal discretization possible through it.
Additionally, it must be emphasized that the algorithm uses sub time
steps to calculate particle velocities, see Section 2.2.3.

Algorithm 1: Basic, simplified algorithm used to solve the proposed
problem.
initialization;
// Calculation of stationary fluid solution
for all time steps do

collision & streaming;
end
change of time discretization;
// Calculation of particle solution
magnetic force calculation; ⊳ See Eq. (10)
for all time steps do

if not stationary then
drag force calculation; ⊳ See Eq. (9)
for all n sub steps do

particle velocity field calculation; ⊳ See Eq. (16)
end

end
collision & streaming;

end



Table 1
Comparison of the calculated magnetic force with the implemented method F𝑚 and the
result of an external calculation F∗𝑚, specifying the position 𝒙 in Cartesian coordinates,
which has its origin in the center of the uniformly magnetized sphere.
𝒙 in m F𝑚 in N F∗𝑚 in N
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⎜

⎜

⎝

0.01
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0.01
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⎜
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Table 2
Comparison of the analytical 𝒖∗p, calculated using (17), and numerical solution 𝒖p.
In addition, the applied constant magnetic force 𝑭m,c used is shown. The calculation
parameters and results are the same for each spatial direction.
𝐹 c

m in N up in m/s u∗
p in m/s

5.65486678 ⋅ 10−9 0.0333333333 0.0333333333
5.65486678 ⋅ 10−7 3.33333333 3.33333333
5.65486678 ⋅ 10−5 333.333333 333.333333

2.2.5. Verification
The previously mentioned methods are validated in advance em

ploying a few small tests. These tests show that the forces are precisely
calculated and that they are correctly applied.

In the first test, the evaluation of the magnetic force, see (10), in the
software used, is compared with externally calculated results. Results
consistent with the comparative data are obtained. Varying parameters
like the positions, magnetic field intensity, and sphere diameter always
lead to relative errors smaller than 10−7 %. As an example, we present
one of the fictitious test setups and some of the retrieved results. In
this setup, the uniformly magnetized sphere has a radius of 1 cm and
the magnetic particles have a radius of 10μm. Additionally, we utilize a
magnetic field strength 𝐻0 of 30 000 A/m and the sphere magnetization
𝑀𝑠 = 3𝐻0. A small extract of the results is shown in Table 1.

In the second test, we regard the particle velocity, to check the
realization of (16) and its application to confirm that the forces are
rightly applied. Using a force equilibrium of the Stokes drag and a
constant magnetic force 𝑭 c

m we obtain

𝐮p =
𝑭m,c
6𝜋𝜂𝑟p

, (17)

as the analytical solution of the problem. We look at different setups
and scenarios to compare this analytical solution with the simulation.
For these test cases, parameters vary independently from each other,
e.g., magnetic force 𝑭 c

m and particle size 𝑟p. In Table 2, we show a small
extract of the tests obtained for a kinematic viscosity of 9 ⋅ 10−7 m2/s,
a fluid density of 1000 kg/m3, a particle radius of 10 μm and density
of 2000 kg/m3. As it turns out, the results are in excellent agreement.

Therefore, the tests show that the methods described above give
correct results, taking the simplifications into account.

3. Experiments

3.1. Practical experiment

3.1.1. Experimental setup
A self developed process is used for the chromatographic concept

in this work. For this purpose, a glass chromatography column was
equipped with a stationary phase consisting of steel spheres [4]. Spher
ical matrix materials are widely used in liquid chromatography due
to their advantageous surface ratio and uniform packability [37,38].

For this matrix material, a stainless steel powder, TruForm 174 of the
company Praxair Surface Technologies, Ratingen, Germany fabricated
for 3D selective laser melting (SLM) was used. The particles consist of
a chromium rich (12.5%) alloy with a small amount of carbon, silicon,
and manganese. Their particle size distribution ranges from 5 to 50 μm
with a D50 value of 31 μm. In secondary electrode microscopy images,
good sphericity could be determined. The particles show a high satu
ration magnetization of 150 A m2/kg, a remanence of 95 mA m2/kg,
and a coercivity of 160 A/m. Due to its low remanence, this column
material shows no relevant residual magnetization, even after several
magnetizations.

The magnetic field source is a Helmholtz coil arrangement including
four larger coils with an inside diameter of 3 cm and an outside diame
ter of 4.6 cm placed in an adjusted distance to each other to generate a
nearly homogeneous field in the center of the arrangement. The outer
coils had 300 windings, while the inner coils had 172 windings. By
using this set up, a magnetic field can be generated, increasing linearly
with the current intensity. With a current of 125 mA a magnetic field
of 0.85 mT was generated. The necessary current was supplied by a
laboratory power supply unit (Distrelec Group AG, Uster, Switzerland),
which could supply voltages of up to 30 V and currents of up to 5 A.
The chromatography set up used for this work, consists of a borosilicate
glass column (Diba Industries Inc., Danbury, Connecticut) with a bed
length of 110 mm and an inner diameter of 6.6 mm. One PTFE frit at
the beginning and end of the column with a pore size of 5 μm served
as a filter to retain the matrix material and exclude larger impurities.

For all liquid handling, an FPLC (Fast Protein Liquid Chromatogra
phy) system (Äkta purifier, GE Healthcare, Buckinghamshire, England)
is used, which is equipped with PEEK capillaries with an inner diameter
of 0.25 m. The laboratory setup is shown in Fig. 1. A sample is injected
into the system using a six port diaphragm valve, defining the volume
via a connected loop. Here a loop of 500μL is selected. A constant flow
rate of 2.44 mL/min is used. The liquid leaving the column is analyzed
online with a UV cell at 280 nm and a conductivity cell, which are both
included in the FPLC system. If the effluent has to be collected for size
analysis, a fraction collector could be used. In this experimental series,
breaking points of 250 mL are chosen. A 1 mM Tris (Carl Roth GmbH,
Karlsruhe, Germany) buffer with a pH value of 9.5 guarantees a stable,
disperse system. Therefore, it is used as the mobile phase. After each
experimental run, the column is flushed with buffer without applying
a magnetic field to remove any residual material.

3.1.2. Experimental procedure
All columns used are packed under a uniform method. Since the ma

terial shows fast settling rates due to its high density, discrete amounts
of slurry are pipetted into the column with a fast pump pulse to avoid
sedimentation related layering. The separation matrix is finalized under
a flow of 10 mL/min for 15 min. The quality of the separation column
packing is controlled by injecting a tracer peak of 1% (v/v) aqueous
acetone solution and measuring its asymmetry through the resulting
UV signal. The quality of the column packing is defined as acceptable
within an asymmetry range of 1 1.4. If the asymmetry is outside of this
range, the column is repacked. In the process of a particle retention
experiment, first, the separation column is equilibrated at a flow rate
of 4 mL/min with 10 mL (according to 3 full column volumes) of
Tris buffer at a magnetic field of 0 mT in order to remove residual
nanoparticles from the previous experiment. Afterward, the required
magnetic field is adjusted by the current of the power source. A pulse of
500μL of the nanoparticle suspension is injected at the same flow rate,
and the pumping of the solvent is continued until the UV Signal in the
effluent reaches its baseline level again. The sample solution contains
40 mg/mL maghemite nanoparticles. This concentration difference is
chosen because the maghemite particles show an intensive absorption
and therefore, peaks of comparable size are produced. Before use,
the resulting nanoparticle sample is diluted in the running buffer and
retitrated to a pH of 9.5 immediately before use to eliminate the



Fig. 1. Experimental setup for the magnetic chromatography fractionation process (left) and respective process scheme (right). 1: Process solution reservoirs; 2: Fast Protein Liquid
Chromatography (FPLC) handling station; 3: Chromatography column embedded in a Helmholtz coil setup; 4: Laboratory power supply unit; 5: Fraction collector; 6: UV cell; 7:
Conductivity cell; 8: Sample injection loop.

influences of the particles’ storage buffer. In the case of experiments
with magnetic field application, the magnetic field is switched off after
4.5 mL to remove any magnetically bound particles, which corresponds
to a time of 1.84 min.

3.1.3. Analytical procedures
The particle size distribution of the magnetic nanoparticles is de

termined using the dynamic light scattering measured with a Zetasizer
(Zetasizer Nano ZSP, Malvern Instruments, Malvern, England) with a
detection range between 0.1 nm and 10 μm. The measurement value
is the intensity size distribution. The fractionation samples are used for
this purpose. Particle size determination is carried out in triplicates.
For process technical reasons, each fraction from the chromatographic
separation consists of a size distribution. In order to define a fixed
elution time for a particle size, the respective proportions of a particle
size are calculated and weighted according to the peak area fraction of
the fraction. The elution time is determined when 50% of the respective
particle size left the column.

As model particles, Synomag D (Micromod Partikeltechnologie
GmbH, Rostock, Germany) particles are used. These are core shell
particles with a maghemite core surrounded by a dextran shell and have
superparamagnetic properties. According to the manufacturer, the par
ticles have a nominal hydrodynamic diameter of 50 nm. With Dynamic
Light scattering measurements, this particle sample is analyzed. A size
range of 20 to 70 nm is determined. The core shell particles have a
saturation magnetization of 48 A m2/kg. The stock solution consists
of 25 mg/mL and is diluted for the respective experiments with Tris
buffer.

3.2. Numerical experiment

In order to reduce the computational effort, the ball matrix is
modeled from two unit cells, namely primitive cubic (cP) and body
centered cubic (cI). This choice was made because the porosities of
these two cells (𝜀cP = 0.476, 𝜀cI = 0.32) are the closest to the real
one (𝜀B = 0.42). The entire length of the column can be described by
approximately 2350.84 cP and 1316.47 cI cells. As a result, the porosity
of the real ball matrix is also achieved on average. Both cubic unit cells
are shown in Fig. 2.

Since the particle component does not influence the fluid, it can
be considered independently. Accordingly, it is evident that the fluid
velocity field has only constant influences and is, therefore, stationary.
For this reason, to save computational effort and, more importantly,
to further stabilize the calculations, the simulations are divided for the
solution of the fluid and the particles. This segmenting allows us to
use different time steps 𝛥𝑡f and 𝛥𝑡p to adjust the relaxation times, so
that more stable and accurate results can be provided. Table 3 shows
the setup used for the respective components and unit cells. Due to the
lower porosity of the cI cell, higher velocity is achieved and, therefore,

Table 3
Used setup for different cubic unit cells and phases.

Component Lattice spacing 𝛥𝑥 Time step 𝛥𝑡 Relaxation time
in m in s 𝜏

Fluid 2.5 ⋅ 10−7 1.0 ⋅ 10−8 0.928442
Particle (25 nm) 2.5 ⋅ 10−7 3.125 ⋅ 10−6 0.50193
Particle (50 nm) 2.5 ⋅ 10−7 3.125 ⋅ 10−6 0.500965

Table 4
Simulation parameters used.

Symbol Description Value Unit

𝜌f Density of water 997.1 kg m 3

𝜂 Dynamic viscosity of water 8.9 ⋅ 10−4 Pa s
𝑇 Temperature 293.15 K
𝛽0 Injected mass concentration of particles 0.25 g L 1

𝛷min Minimal volume fraction of particles 10−8 –
𝑎 Radius of the spheres of the matrix 15.5 μm
𝑡max Maximal simulated time period 20 s
𝑡𝑖 Time between measurements 0.1 ms
𝛥𝑡in Time period of injection 5 ms

a stable simulation is more difficult to achieve. The problem was solved
by further refinement of the mesh.

Since only one particle size can be considered per simulation,
representative particle sizes for the practical experiment, particularly
nanoparticles with radii of 25 and 50 nm, are numerically investigated.
These examined particles have a density of 2500 kg/m3 and are con
sidered as perfect spheres. In addition, the saturation magnetization
𝑀p,S ≈ 9.1 ⋅ 103 A/m according to the manufacturer’s specifications is
taken into account.

The parameters of the simulation are listed in Table 4. However,
some parameters could not be reproduced exactly as in practical exper
iments. For instance, the injection time had to be decreased, because
we are only looking at a fraction of the total length. Otherwise, with a
longer injection time, some particles would already leave the domain,
which would falsify the result. In reality, the inlet’s concentration
profiles vary. To counteract this, we have now chosen a uniform profile
with a concentration 𝛽0. Additionally, the fluid is only considered as
pure water, as the small proportion of foreign substances is negligible.
A maximum period of 20 s is regarded. If the relative change of the
particle concentration every 5 ms is less than 10−8 %, the simulation
is stopped earlier.

Comparability is ensured by using the mean transit time 𝑡t to
describe the retention’s strength. According to Levenspiel [39], it can
be calculated, assuming zero background concentration, for pulse ex
periments by

𝑡t =
∫ ∞
0 𝑡𝐶𝑑𝑡

∫ ∞
0 𝐶𝑑𝑡

≈
∑

𝑖 𝑡𝑖𝐶𝑖𝛥𝑡𝑖
∑

𝑖 𝐶𝑖𝛥𝑡𝑖
, (18)



Fig. 2. Illustration of cubic unit cells, namely primitive cubic (left) and body-centered cubic (right), which are used to (roughly) describe a chromatographic column, with additional
representation of the calculation grid. Length specifications are in meters.

where 𝑡 is the time passed since the instantaneous introduction of
nanoparticles and 𝐶 the concentration at the outlet. The index 𝑖 stands
for the discrete measurements performed in our numerical experiments
at the time 𝑡𝑖 every 𝛥𝑡𝑖 = 0.1 ms. All values until the end of the
simulation are summed up, which is the case at 𝑡max at the latest.

4. Results and discussion

4.1. Experimental results

The chromatography column is analyzed using tracer experiments.
A void volume of 1.65 mL is determined, which equals a retention time
of 33 s at a flow rate of 2.44 mL/min. The total porosity of the column
is, therefore, 0.42. By using the UV signal of the chromatographic
procedure, the flow retention of the nanoparticles without an external
magnetic field and at 0.85 mT can be observed in Fig. 3 (left). It can
be observed that after switching off the magnetic field, a UV increase
occurs. This indicates that some of the nanoparticles are temporarily
bound by the magnetic field and are released when the magnetic field
is switched off. Furthermore, a later rise in the peak can be observed
as well as an increased tailing. Peak broadening effects can explain
this due to the magnetic field, which has already been observed in
previous work [4]. The peak is divided into individual fractions with
the aid of a fractionator. The respective segments can also be seen in
the chromatogram.

The DLS analyses of the individual fractions each showed particle
size distributions of the nanoparticles with a percent error from 1.3
to 3.6%. Fig. 3 (right) shows an example of the result of such a
measurement. Here it can be seen that even later elution times contain
discrete amounts of smaller particle sizes. Several factors make a real
separation difficult. Especially in this experimental setup, this is not an
ideal ball packing of the separation matrix. Due to the size distribution
of the matrix from 5 to 50μm, irregularities may occur, which reduces
the separation performance. Besides, further process relevant factors
like a longitudinal diffusion of the nanoparticles are in the periphery
of the FPLC system. However, if examining the average size distribution
of the fractions, it can be seen that the D50 values increase throughout
the process. This, in turn, suggests the expected increased retention
of larger nanoparticles within the separation matrix. Subsequently, the
respective UV surfaces of the peak fractions are integrated. Based on the
DLS data, the respective proportion of the particle size was determined.
Thus, the elution behavior of different particle sizes was tracked. For
comparability with the numerical results, an elution time is required.
To obtain this in the experimental results, the time was determined
when 50% of the respective particle size was eluted again. The elution

Fig. 3. Top: Chromatograms of particle separation with 0.85 mT and without magnetic
field. The UV signal is plotted over the experimental time. The division of the graph
shows the fractionation of the leaving solution. Bottom: Exemplary Dynamic Light
Scattering measurement of an experimental fraction by intensity. The percentage is
plotted over the size.

times determined in this way for the particle sizes under consideration
can be seen in Table 5.

Based on the results, it can be seen that an elution difference is
already present in an experimental procedure without applying a mag
netic field. This difference could indicate the maghemite nanoparticles’
spontaneous magnetization, which already creates a magnetic interac
tion with the matrix material. This effect could already be observed in



Table 5
Listing of the experimental and numerical results for different setups.

Magnetic field Particle size Mean transit time Relative error

Experiment Simulation

0 mT 25 nm 52.32 s 54.94 s 5.01%
50 nm 55.80 s 54.80 s −1.80%

0.85 mT 25 nm 54.12 s 55.04 s 1.70%
50 nm 57.12 s 55.43 s −2.94%

Table 6
Utilized lattice setup for the study of the grid independence for a particle radius of
5 nm and a magnetic flux density of 5 mT.

Resolution Phase Lattice spacing 𝛥𝑥 in m Time step 𝛥𝑡 in s

16 Fluid
1.9375 ⋅ 10−6

6.0 ⋅ 10−7

Particle 5.0 ⋅ 10−5

32 Fluid
9.6875 ⋅ 10−7

1.5 ⋅ 10−7

Particle 1.25 ⋅ 10−5

64 Fluid
4.84375 ⋅ 10−7

3.75 ⋅ 10−8

Particle 3.125 ⋅ 10−6

128 Fluid
2.421875 ⋅ 10−7

9.375 ⋅ 10−9

Particle 7.8125 ⋅ 10−7

a previous work [4]. Here, however, it can be seen that larger particles
are more strongly affected by this effect than smaller ones. Therefore,
separation, according to particle size, is possible. The application of a
weak magnetic field of 0.85 mT to the experiment increases the elution
times of both particle sizes. These investigations show the magnetic
influence on the separation process. The retention time varies according
to particle size, whereby the retention of the larger nanoparticle variant
is greater again. This observation also confirms the hypothesis that the
magnetic interaction of the nanoparticles with the separation matrix is
beneficial to obtain the purification of very fine particles.

4.2. Numerical results

In the following, we first consider grid independence before we go
on to discuss the results of the numerical analysis of a chromatography
column.

4.2.1. Grid independence
The cP case is utilized for confirmation of the grid independence.

A coarse resolution is necessary since otherwise, calculation inaccu
racies due to machine epsilons and calculation effort increase too
significantly. Therefore, we consider 5 nm particles to achieve a stable
simulation. For this reason, the magnetic induction is also increased
to 5 mT. Also, the simulated period is increased to 10 s. We consider
the lattices as they are given in Table 6 with a diffusive scaling. For
comparison, we regard the relative error 𝜖 of the mean transit time 𝑡t,
which is calculated as follows:

𝜖(𝑁) =
𝑡t(𝑁) − 𝑡t(𝑁max)

𝑡t(𝑁max)
, (19)

with 𝑁 being the resolution, which is chosen to be 16, 32 or 64. An
analytical solution is not available. Therefore, a simulation with a
resolution of 𝑁max = 128 is used to calculate the error instead.

In Fig. 4 the relative error is shown over the simulation resolution.
A sublinear convergence is apparent, as a result of a large number of
curved boundaries. The spheres are sometimes over or underestimated
and, in the former case, may even cut off the areas with high magnetic
forces.

4.2.2. Chromatography column
Figs. 5 and 6 show the calculated fluid velocity fields and magnetic

forces for nanoparticles with a diameter of 50 nm for the cP and cI

Fig. 4. Relative error 𝜖 versus the system resolution 𝑁 .

Table 7
Listing of the numerical results for the individual cubic unit cells.

Cell Magnetic induction 𝐵0 Particle radius 𝑟p Mean transit time 𝑡t

cP
0.00 mT 25 nm 16.16 ms

50 nm 16.12 ms

0.85 mT 25 nm 16.19 ms
50 nm 16.35 ms

cI
0.00 mT 25 nm 12.88 ms

50 nm 12.84 ms

0.85 mT 25 nm 12.89 ms
50 nm 12.92 ms

cases. In areas of high fluid velocity, there is a low magnetic force
and vice versa. Furthermore, one can see that the body centered cubic
unit cell has deflections, whereas, in the primitive cubic cell, the fluid
mainly flows through its center. However, there is a larger channel for
the fluid in the cP case. For this reason, we observe a significantly lower
fluid velocity.

For the quantification of the results, the mean transit time of the
individual unit cells is first considered. These results are shown in Ta
ble 7. It is visible that the particles already remain longer in the domain
when a small magnetic force is applied. Also, we see that the magnetic
force’s influence grows stronger, with bigger particles. Furthermore,
we find out that the retention in the body centered cubic is minor
compared to the primitive cubic, although its edges are longer. The
notably different fluid velocity causes this difference. We additionally
see that the smaller 25 nm particles experience longer retention than the
50 nm particles without applying a magnetic field. The cause for this is
that the smaller particles experience stronger diffusion and less drag
force. Therefore, the diffusion becomes more competitive, leading to a
higher particle concentration in areas with a lower fluid velocity. We
also see that the application of an already weak magnetic field negates
this effect since the magnetic force’s influence is more significant.

By describing the length and porosity of the chromatography col
umn through these two cubic unit cells, see Section 3.2, the mean
transit times, as shown in Table 5 are obtained. A minor influence
of the magnetic force is once again visible. Additionally, we notice
that larger nanoparticles experience a greater magnetic force and are
retained longer than smaller ones.

4.3. Comparison and discussion

Table 5 compares the numerical as well as experimental results and
shows a relative error, which is calculated analogously to (19). The
numerical and experimental investigations both provide results in the
same order of magnitude and only a minor effect of a weak magnetic
field. The absolute value of the relative error is always less than 3%,
with one exception. For the observation of the 25 nm particles without



Fig. 5. Representation of the velocity (left) and magnetic force (right) within the primitive cubic unit cell.

Fig. 6. Visualization of the body-centered cubic unit cell showing the velocity (left) and the magnetic force (right).

the magnetic field, a relative error of about 5.01% is observed. This
increment can be explained above all by the spontaneous magnetization
of the nanoparticles. Particles of around 20 to 70 nm are too large to
be superparamagnetic but instead form single domain bodies in which
the atomic magnetic moments are aligned, resulting in a spontaneous
magnetization of the nanoparticles [40]. At a macroscopic scale, the
spatial orientation of the particles and the corresponding magnetization
are randomly distributed, which leads to mutual extinction. However,
when individual nanoparticles interact with magnetizable macroscopic
bodies, the spontaneous magnetization leads to an attractive force and
corresponding retention in the experimental structure, which is not
considered in the simulations. Additionally, errors in all deviations are
caused by the simplifications used for the numerical consideration,
e.g., the representation of the ball matrix as unit cells consisting of
perfect spheres, which only describe reality up to a certain degree. The
applied uniform concentration profile leads to minor deviations as well.
Also, errors are expected due to a rather coarse temporal resolution in
the measurements and inaccuracies and errors of the instruments.

Finally, we observe for both cases that the magnetic field influences
larger particles more strongly, although the difference is only small.
Thus, the influence of the applied magnetic field is only minor with
this setup. This minor effect becomes clear by regarding the difference
in the retention times with and without a magnetic attraction force. In
both cases, the absolute difference is approximately the same. However,
the numerical experiments provide detailed knowledge on a different

size scale. These findings are otherwise hardly tangible, like under
standing the dynamics in the vicinity of the magnetized spheres in the
matrix.

A more significant retention difference is obtainable through an
increment of the magnetic flux density since the magnetic attraction
depends on the particle volume, see (10). This increment is a straight
forward improvement. However, the magnetic particles are not to be
retained indefinitely inside the column. Therefore, it comes down to a
balancing act to find an optimized magnetic flux density. The developed
numerical method has the potential to perform optimizations like this
significantly more economically than practical experiments.

Furthermore, the numerically conducted studies show a new area
for improvement, namely matrix optimization. On the one hand, sig
nificant areas show small field gradients, limiting the efficiency of
the process. In order to improve this efficiency, selecting a matrix
material with enhanced properties and reducing the low gradient ar
eas are beneficial. The latter is possible by optimizing the matrix
components’ shape and lowering the matrix’s porosity. On the other
hand, the observations show that only an increase in porosity at a
constant volume flow rate leads to an improvement in separation due
to the drag force’s influence. Thus, it comes again down to a balancing
act searching for optimal matrix parameters to increase fractionation
efficiency. The studies conducted suggest that further optimization of
the stationary phase is relevant under the current conditions. Support
through simulations is now amenable for future developments.

Since the results obtained and the potential for improvement dis
covered already suggest that magnetic chromatography is a potent way



to improve selectivity in specific particle size ranges of 10 nm to 1μm
compared to conventional methods, the optimizations mentioned above
are future research efforts.

5. Summary and conclusions

In this work, we propose a scheme to regard a novel multidimen
sional fractionation method, magnetic chromatography, numerically.
For this type of chromatography, three mechanisms are essential for the
size separation effect: the diffusion, the drag, and the magnetic force.

The model stated here is based on LBM and uses a simplified
representation of the chromatographic column. We have shown that
the ball matrix’s actual porosity can be represented by a combination
of the two nearest cubic unit cells, the primitive and body centered
cubic. Additionally, the simulation is divided into a separate calculation
for the fluid and the particle component. While we utilize the Navier
Stokes and Ergun equation to solve the former, we utilize the ADE and
the Stokes Einstein equation to describe the latter.

Primarily, the results of the developed method are compared with
practical experiments. In this experimental series, we choose the par
ticle radii 25 and 50 nm. Furthermore, we regard the case with and
without a magnetic field of 0.85 mT. In order to enable comparison,
an average transit time of the respective particle sizes is determined
in practical and numerical experiments. Good agreement between the
simulation results and the laboratory experiments is achieved. The ab
solute relative error is repeatedly smaller than 3%. The only exception
is the case without a magnetic field and with a particle size of 25 nm.
In this case, an error of about 5% is obtained.

This simulation successfully describes this multidimensional pro
cess. In particular, the simultaneous integration of the diffusion, mag
netic, and drag force in a complex three dimensional space presents a
novel challenge, which is solved using LBM. Overall, the simulation is
a promising modeling process to investigate and develop further pro
cess optimizations of magnetic chromatography without high emerging
costs. For example, a practically feasible separation matrix with op
timized field gradients and magnetic properties is now numerically
determinable. The proposed methods are also capable of modeling a
scale up or investigate possible improvements of the separation by
geometry changes.
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