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Abstract Previous studies showed that the dynamic equations for a porous fluid-saturated solid may lose
hyperbolicity and thus render the boundary-value problem ill-posed while the equations for the same but dry
solid remain hyperbolic. This paper presents sufficient conditions for hyperbolicity in both dry and saturated
states. Fluid-saturated solids are described by two different systems of equations depending on whether the
permeability is zero or nonzero (locally undrained and drained conditions, respectively). The paper also intro-
duces a notion of wave speed consistency between the two systems as a necessary condition which must be
satisfied in order for the solution in the locally drained case to tend to the undrained solution as the permeability
tends to zero. It is shown that the symmetry and positive definiteness of the acoustic tensor of the skeleton
guarantee both hyperbolicity and the wave speed consistency of the equations.

Keywords Fluid-saturated solid · Hyperbolicity · Acoustic tensor

1 Motivation

According to the well-known definition, a boundary-value problem is said to be well-posed if a solution exists,
is unique and depends continuously on the initial and boundary data. Well-posedness of a particular problem is
determined by both the governing equations and the boundary conditions. Well-posedness is usually difficult
to prove even for linear problems, not to mention nonlinear multidimensional cases. This is probably the main
reason why issues related to well-posedness are not discussed or even mentioned in the majority of studies
dealing with the numerical solution of boundary-value problems. On the other hand, it may be much easier to
verify a necessary condition for well-posedness and thus to detect ill-posedness if this condition is violated. The
present paper deals with dynamic problems. A necessary condition for well-posedness of dynamic problems
for solids with rate-independent constitutive behaviour is hyperbolicity of the governing equations. This holds
for both one-phase solids and porous fluid-saturated solids with rate-independent behaviour of the skeleton
(except for the special case of incompressible constituents and the so-called u-p-approximation, see Sect. 3
for the details).

The requirement that the system of equations be hyperbolic imposes conditions on the eigenvalues and
eigenvectors of the matrix of the system. In particular, the eigenvalues (the characteristic speeds) must be
real. In most studies dealing with hyperbolicity for plastic solids, the objective is to find out whether and
under what conditions the characteristic speeds may become complex numbers and hyperbolicity may thus
be lost [1–7]. For one-phase solids, the squared characteristic speeds multiplied by the density are known
to be the eigenvalues of the acoustic tensor. Real positive eigenvalues and the existence of a complete set of
eigenvectors of the acoustic tensor are necessary and sufficient conditions for hyperbolicity [8]. For hyperelastic
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materials, a conclusion on hyperbolicity can be drawn from the existence and properties (convexity) of a strain
energy function. Hypoelasticity and plasticity models are more difficult to treat analytically and may require
a numerical technique to calculate the eigenvalues.

Ill-posedness of a dynamic problem caused by the loss of hyperbolicity may be either a consequence
of incorrect constitutive modelling or a manifestation of the real physical behaviour of the solid. The for-
mer is likely to be the case if there are two complex-conjugate eigenvalues of the acoustic tensor (’flutter
instability’ [9]), whereas the latter is believed to be the case if the acoustic tensor is singular (’stationary
discontinuity’ [9,10]) or has a negative eigenvalue, which is associated with the localization of deformation
and shear band formation.

The effective stress principle originally established in soil mechanics provides a link between the consti-
tutive description of a fluid-saturated solid under fully drained conditions with constant pore pressure (called
‘dry solid’ or ‘skeleton’ for brevity) and the description of the same solid under arbitrary drainage conditions
with variable pore pressure. The effective stress principle states that the constitutive relations for the dry solid
are valid for the saturated solid when written for the properly defined effective stresses. A question arising in
this connection is whether the hyperbolicity of the dynamic equations for a dry solid guarantees hyperbolicity
of the equations for the same but fluid-saturated solid. As shown in [7], the dynamic equations for the satu-
rated solid may lose hyperbolicity while the equations for the dry solid remain hyperbolic. These observations
motivate seeking sufficient conditions for hyperbolicity in both dry and saturated states.

The present paper addresses hyperbolicity of two systems of equationswhich describe fluid-saturated solids
with zero and nonzero permeability (locally undrained and drained conditions, respectively). The paper also
introduces a notion of wave speed consistency between the undrained and drained cases based on the argument
that the drained solution should tend to the undrained solution as the permeability tends to zero. A proposition
proved in Sect. 5 gives sufficient conditions for both hyperbolicity and the wave speed consistency for the
drained and undrained cases. The proposition is valid for plastic as well as elastic solids.

2 Dynamic equations for fluid-saturated solids

2.1 Effective stress

Consider first a dry porous solid whose constitutive response is rate independent and incrementally linear. The
constitutive relations in Cartesian coordinates x1, x2, x3 can be written in rate form as

∂σ j i

∂t
= C jikl

∂vk

∂xl
, (1)

where vi , σ j i ,C jikl are, respectively, the components of the velocity vector, the stress tensor and the stiffness
tensor, and t is time. The summation convention for repeated indices will be used throughout this paper.
The partial time derivatives will be written in all equations in place of the material derivatives neglecting the
convective terms. The stiffness coefficientsC jikl in the constitutive relations will be treated as constants, which
corresponds to a linearly elastic solid. The applicability of the results to plastic solids will be discussed in
Sect. 7.

If the solid is saturated with a fluid, then σ j i in (1) are the components of the effective stress, and vk are
the velocity components of the skeleton. The effective stress is defined here as a stress which depends on the
macroscopic deformation of the skeleton and is not influenced by changes in the pore pressure. In the case of
an isotropic elastic material of the skeleton (the solid phase), the effective stress components are [11]

σ j i = σ total
j i +

(
δ j i − C jikk

3Ks

)
p f , (2)

where σ total
j i are the total stress components, p f is the pore pressure (positive for compression), Ks is the bulk

modulus of the solid phase, and δ j i is the Kronecker delta. If the stiffness tensor of the skeleton, C jikl , is such
that

C jikk = 3K δ j i (3)

with a scalar K , then the effective stresses (2) can be written as

σ j i = σ total
j i + αp f δ j i , (4)
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where

α = 1 − K

Ks
. (5)

Condition (3) is satisfied, in particular, for an isotropic skeleton with the bulk modulus K . The parameter α is
sometimes called Biot’s effective stress coefficient. If Ks � |C jikk |, then the solid phase may be considered
incompressible, and the effective stresses (4) with α = 1 are obtained in both isotropic and anisotropic cases,
i.e. independently of whether (3) is satisfied or not.

The effective stress definition (2) in the general anisotropic case complicates the theory as compared to
(4) as it gives rise to additional tensorial quantities in the equations of motion of the solid phase and in the
constitutive equation for the pore pressure. In applications, however, it may be acceptable to use the effective
stress definition (4) with a properly chosen α �= 1 even if the constitutive response of the skeleton is anisotropic
and does not exactly obey (3). In such a case, the equations may be regarded as an approximation of the exact
theory. We do not impose the condition (3) on the stiffness tensor but nevertheless define the effective stress
by (4) with a given α in order to make the analysis applicable to the approximate theory. Further, we assume
that α satisfies the inequality

α > n, (6)

where n is the porosity, which is justified for a porous solid with an elastic skeleton (for details, see [12–14]
and references therein).

2.2 Zero permeability

If the skeleton permeability is zero (locally undrained conditions), then the velocity field is common to both
the skeleton and the fluid. The equations of motion without mass forces are written for the total stress as

∂σ total
j i

∂x j
= �

∂vi

∂t
, (7)

where

� = (1 − n)�s + n� f (8)

is the density of the medium, and �s, � f are the densities of the solid and fluid phases, respectively. The
evolution equation for the pore pressure is [15]

∂p f

∂t
= −αQ

∂vk

∂xk
, (9)

where

Q =
(

n

K f
+ α − n

Ks

)−1

, (10)

and K f is the pore fluid bulk modulus. Inequality (6) guarantees that Q > 0. Equations (1), (4), (9) give the
constitutive equation for the total stress

∂σ total
j i

∂t
= (

C jikl + α2Qδ j iδkl
) ∂vk

∂xl
. (11)

The dynamic deformation of the saturated solid under locally undrained conditions is described by 9 scalar
equations (7), (11) for 9 unknown functions vi , σ

total
j i , where σ total

j i = σ total
i j .
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2.3 Nonzero permeability

In a fluid-saturated solid with nonzero permeability (locally drained conditions), the solid skeleton and the
pore fluid have in general different velocities. The velocity components for the solid and fluid phases will be
denoted, respectively, by vsi and v f i , where the first subscript stands for the phase and the second one indicates
the Cartesian component. The equations of motion are written separately for the solid and fluid phases [15]:

∂σ j i

∂x j
− (α − n)

∂p f

∂xi
+ � f gn2

k
(v f i − vsi ) = (1 − n)�s

∂vsi

∂t
, (12)

−n
∂p f

∂xi
− � f gn2

k
(v f i − vsi ) = n� f

∂v f i

∂t
, (13)

where k is the skeleton permeability (m/s) and g is the acceleration due to gravity. The constitutive relations
(1) for the effective stresses are written with the skeleton velocity:

∂σ j i

∂t
= C jikl

∂vsk

∂xl
. (14)

The evolution equation for the pore pressure involves both the skeleton and the fluid velocities [15]:

∂p f

∂t
= −Q(α − n)

∂vsk

∂xk
− Qn

∂v f k

∂xk
. (15)

The dynamic deformation of the saturated solid under locally drained conditions is described by 13 scalar
equations (12)–(15) for 13 unknown functions vsi , v f i , σ j i , p f .

3 Definition of hyperbolicity

The dynamic equations of the previous section with the velocities and stresses as dependent variables are
systems of first-order partial differential equations of the form

∂ui
∂t

+
3∑

k=1

M (k)
i j

∂u j

∂xk
= Fi (u1, ..., uN ), i = 1, ..., N , (16)

where u1, ..., uN are functions of Cartesian coordinates x1, x2, x3 and time t , M (k)
i j are the components of real

N × N matrices M (k), k = 1, 2, 3, and Fi are sufficiently smooth functions of their arguments.
Here we note that the two models of fluid-saturated solids mentioned in Sect. 1, namely the case of

incompressible constituents and the u-p-approximation, are not covered by the analysis presented in this
paper, as the governing equations of those models are not in the form (16). If both the solid and fluid phases
are incompressible, then Q → ∞ and the evolution equation for the pore pressure (15) reduces to the
incompressibility condition imposed on the velocity fields. This condition does not contain any time derivatives
and thus does not conform with (16). In the u-p-approximation widely used in the numerical modelling of
fluid-saturated solids [15], the pore fluid is assumed to have the same acceleration as the solid skeleton, that
is, ∂v f i/∂t in (13) is replaced with ∂vsi/∂t . This assumption yields two equations with the time derivative of
the skeleton velocity and no equation with the time derivative of the fluid velocity, with the consequence that
the system is again not in the form (16). The definition of hyperbolicity given below for systems (16) does not
apply to these two cases.

Definition 1 (hyperbolicity). System (16) is called hyperbolic if for any real n1, n2, n3 the matrix M =∑3
k=1 nkM

(k) is diagonalizable by a real matrix ([16], Sect. 7.3.1).

Equivalently, the system is called hyperbolic if for any real n1, n2, n3 the matrix M has N linearly indepen-
dent real eigenvectors. Note that the notion of strict hyperbolicity (real and distinct eigenvalues of M) is a priori
too strong for the equations studied here. Even in the simplest case of an isotropic solid in three-dimensional
problems, the matrix M has a double eigenvalue that corresponds to transverse waves. Moreover, as will be
seen below, there always exists a multiple eigenvalue equal to zero.
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The definition of hyperbolicity leads to the eigenvalue problem

Mi ju
0
j = cu0i , i = 1, ..., N , (17)

where Mi j are the components of the matrix M = ∑3
k=1 nkM

(k), and u0i are the components of an eigenvector
associated with an eigenvalue c. Without loss of generality, the factors n1, n2, n3 in the definition of the matrix
M will be taken to be the components of a unit vector n. In this case, the eigenvalues c are referred to as the
characteristic speeds since they coincide with the speeds of plane waves that propagate in the direction n and
are solutions to a homogeneous system (16). This can be shown by considering a solution in the form of a
plane wave propagating in the direction n:

ui (x1, x2, x3, t) = u0i f (y), y = n j x j − ct, i = 1, . . . , N , (18)

where f (y) is a differentiable function, u0i are amplitudes, and c is the wave speed. Substituting (18) into (16)
with Fi ≡ 0 leads to the eigenvalue problem (17) for the amplitudes u0i and the wave speed c. The verification
of hyperbolicity amounts to the analysis of the wave speeds and the amplitude vectors (u01, ..., u

0
N )T for all

wave propagation directions n.

4 Wave speed consistency

Suppose that the system (12)–(15) for nonzero permeability is hyperbolic, and we have solved a boundary-
value problem with the impermeability condition on the boundary. Consider the system (7), (11) for zero
permeability with the same values of the physical parameters (C jikl , K f , Ks, α, n, �s, � f ). Suppose that this
system is also hyperbolic, and we have solved the same boundary-value problem. It is reasonable to expect
that the first solution will be close to the second one if the permeability is low enough and, furthermore, to
expect that the difference between the two solutions will vanish as the permeability will tend to zero. This
asymptotic property of the solutions may be regarded as a kind of consistency between the two systems of
equations. However, this property does not follow directly from the equations for the drained case since they
cannot be solved with k = 0: the equations degenerate and lead to the equality vs = v f .

A necessary condition for the asymptotic property to hold can be deduced from the fact that the domain
of influence of initial and boundary data for hyperbolic equations is determined by the characteristic speeds.
To be specific, consider the propagation of a plane wave induced by a prescribed disturbance on the boundary
of a half-space. The asymptotic property can hold for an arbitrary boundary disturbance only if the largest
characteristic speed in the drained case is not smaller than the largest characteristic speed in the undrained
case. (Notice that the characteristic speeds in the drained case do not depend on the permeability). In other
words, the drained solution cannot approach the undrained solution if the drained wave is unable to propagate
as fast as the undrained wave. This argument suggests the following definition.

Definition 2 (wave speed consistency). Suppose that the two systems (7), (11) and (12)–(15) for the undrained
and drained cases have the same values of the physical parameters and are both hyperbolic. The two systems
are said to be wave speed consistent if for each direction n the largest characteristic speed in the drained case
is not smaller than the largest characteristic speed in the undrained case for the same direction n.

5 Hyperbolicity of the two systems

It is known that for a one-phase solid (in the present context—for a dry porous solid), the squared characteristic
speeds multiplied by the density are the eigenvalues of the acoustic tensor

Aik = C jikln j nl . (19)

For the dynamic equations to be hyperbolic in the sense of the definition given in Sect. 3, it is necessary and
sufficient that for each n the acoustic tensor has a complete set of real eigenvectors associated with positive
eigenvalues [8]. As mentioned in Sect. 1, these necessary and sufficient conditions for hyperbolicity for a
dry solid do not guarantee hyperbolicity for a fluid-saturated solid. It will be shown below that an additional
condition which guarantees both hyperbolicity and the wave speed consistency is the symmetry of the acoustic
tensor.
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The condition of symmetry of the acoustic tensor for all directions n can be written in terms of the
components of the stiffness tensor. The symmetry Aik = Aki , or C jikln j nl = C jkiln j nl , for all n means that

the matrix L(ik) with the components L(ik)
jl = C jikl − C jkil is skew-symmetric for all i, k, that is,

C jikl − C jkil = Clki j − Clik j (20)

for all i, k, j, l, or, equivalently, using the minor symmetry C jikl = Ci jkl ,

Ci jkl − Ckli j = Ckjil − Cilk j . (21)

Equation (20) or (21) is the necessary and sufficient condition for the acoustic tensor to be symmetric for all
directions n. Notice that the major symmetry C jikl = Ckl ji is sufficient but not necessary for the symmetry of
the acoustic tensor.

The following proposition gives sufficient conditions for both hyperbolicity and thewave speed consistency
for fluid-saturated solids.

Proposition If for each unit vector n the acoustic tensor (19) of the skeleton is symmetric and positive definite,
then the systems (7), (11) and (12)–(15) for zero and nonzero permeability are hyperbolic and wave speed
consistent.

Proof The eigenvalue problem (17) obtained from system (7), (11) for zero permeability is

− 1

�
n jσ

0
j i = cv0i , (22)

− (
C jikl + α2Qδ j iδkl

)
nlv

0
k = cσ 0

j i , (23)

where v0i , σ
0
j i are the velocity and total stress components. For c �= 0, substituting σ 0

j i from (23) into (22) leads

to an eigenvalue problem for the velocity components v0i :

1

�

(
Aik + α2Qnink

)
v0k = c2v0i , (24)

where Aik are the components of the acoustic tensor (19) of the skeleton.
Equations (12)–(15) for nonzero permeability yield the eigenvalue problem

1

(1 − n)�s

[
−n jσ

0
j i + (α − n)ni p

0
f

]
= cv0si , (25)

1

� f
ni p

0
f = cv0f i , (26)

−C jiklnlv
0
sk = cσ 0

j i , (27)

Q(α − n)nkv
0
sk + Qnnkv

0
f k = cp0f , (28)

where v0si , v
0
f i , σ

0
j i , p

0
f are the amplitudes of the skeleton velocities, fluid velocities, effective stresses and pore

pressure, respectively. For c �= 0, substituting σ 0
j i and p0f from (27), (28) into (25), (26) leads to an eigenvalue

problem for the velocity components v0si , v
0
f i :

1

(1 − n)�s

[
Aikv

0
sk + Q(α − n)2ninkv

0
sk + Q(α − n)nninkv

0
f k

]
= c2v0si , (29)

1

� f
Qnink

[
(α − n)v0sk + nv0f k

]
= c2v0f i . (30)

In the following, in order tomake the proof easier, the equationswill bewritten in a rotated coordinate system
whose x1-axis is parallel to the vector n. The transition from the original to the rotated system is equivalent
to the transformation of the coordinates and the dependent variables as vector and tensor components using
the standard formulae with the matrix of the direction cosines. The matrix of the system after the rotation is



Sufficient conditions for hyperbolicity and consistency

connected with the original matrix through a similarity transformation which preserves the eigenvalues and
diagonalizability.

Hyperbolicity for zero permeability. Equations (22), (23) written in the rotated system (n1 = 1, n2 = n3 =
0) are

− 1

�
σ 0
1i = cv0i , (31)

− (
C jik1 + α2Qδ j iδk1

)
v0k = cσ 0

j i . (32)

We need to show that the eigenvalue problem (31), (32) yields 9 linearly independent real eigenvectors. The
eigenvalue problem (24) for the velocity components can be written as

Bikv
0
k = c2v0i (33)

with the matrix

B = 1

�

⎛
⎝ A11 + α2Q A12 A13

A21 A22 A23
A31 A32 A33

⎞
⎠ . (34)

Since the acoustic tensor is symmetric and positive definite, this holds true for the matrix B as well. Hence, the
matrix B has three linearly independent eigenvectors associated with positive eigenvalues. An eigenvector of
B associated with an eigenvalue ξ > 0, when substituted into (32) with c = ±√

ξ , gives the components σ 0
j i of

two linearly independent eigenvectors of (31), (32). Three linearly independent eigenvectors of B produce six
linearly independent eigenvectors of (31), (32). Another three eigenvectors which complete the required set of
9 linearly independent eigenvectors are associated with c = 0. Each of them has only one nonzero component:
either σ 0

22, σ
0
33 or σ 0

23.
Hyperbolicity for nonzero permeability. Equations (25)–(28) in the rotated system become

1

(1 − n)�s

[
−σ 0

1i + (α − n)δ1i p
0
f

]
= cv0si , (35)

1

� f
δ1i p

0
f = cv0f i , (36)

−C jik1v
0
sk = cσ 0

j i , (37)

Q(α − n)v0s1 + Qnv0f 1 = cp0f . (38)

We need to show that the eigenvalue problem (35)–(38) yields 13 linearly independent real eigenvectors.
Equations (29), (30) in the rotated system give the eigenvalue problem

Dw = c2w (39)

with the column vector w = (v0s1, v
0
s2, v

0
s3, v

0
f 1)

T and the matrix

D = 1

(1 − n)�s

⎛
⎜⎝

A11 A12 A13 0
A21 A22 A23 0
A31 A32 A33 0
0 0 0 0

⎞
⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(α − n)2Q

(1 − n)�s
0 0

(α − n)nQ

(1 − n)�s

0 0 0 0

0 0 0 0

(α − n)Q

� f
0 0

nQ

� f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (40)

Consider a symmetric matrix D̂ with the same components as in D except for D̂14 and D̂41, which are

D̂14 = D̂41 = (α − n)Q
√

n

(1 − n)�s� f
. (41)
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Taking into account that the acoustic tensor is positive definite, we have for any nonzero vectorwith components
wi , i = 1, ..., 4,

D̂ikwiwk = 1

(1 − n)�s

3∑
i,k=1

Aikwiwk

+ Q

[
(α − n)2

(1 − n)�s
w2
1 + 2(α − n)

√
n

(1 − n)�s� f
w1w4 + n

� f
w2
4

]

= 1

(1 − n)�s

3∑
i,k=1

Aikwiwk + Q

(
α − n√

(1 − n)�s
w1 +

√
n

� f
w4

)2

> 0. (42)

This shows that D̂ is positive definite and, because this matrix is symmetric, it has a complete set of linearly
independent eigenvectors associated with real positive eigenvalues.

The matrices D and D̂ are similar: D̂ = T−1DT , where

T =
⎛
⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 a

⎞
⎟⎠ , T−1 =

⎛
⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 a−1

⎞
⎟⎠ , a =

√
(1 − n)�s

n� f
. (43)

Since the matrix D is similar to D̂, it has 4 linearly independent eigenvectors associated with the same
real positive eigenvalues, say ξ . These 4 eigenvectors substituted into (37), (38) with c = ±√

ξ give 8
linearly independent eigenvectors for (35)–(38). Another 5 eigenvectors which complete the set of 13 linearly
independent eigenvectors are associated with c = 0 and have only one nonzero component v0f 2, v

0
f 3, σ

0
22, σ

0
33

or σ 0
23.
Wave speed consistency. Now that we have proved that the two systems are hyperbolic, we will show that

they are wave speed consistent. Let λmax (B), λmax (D̂) be the largest eigenvalues of the matrices B and D̂
defined by (34), (40), (41). The condition for the wave speed consistency is λmax (D̂) ≥ λmax (B). Since D̂
and B are real and symmetric, we have ([17], Chap. 7)

λmax (D̂) = max‖w‖=1
D̂i jwiw j , λmax (B) = max‖u‖=1

Bi j ui u j , (44)

where wi , i = 1, ..., 4, and ui , i = 1, 2, 3, are the components of vectors w ∈ R
4 and u ∈ R

3, and ‖w‖ =√
wiwi , ‖u‖ = √

uiui are the Euclidean norms of the vectors. Let A be a three-dimensional subspace of R4

comprised of vectors w such that

w4 =
√

n� f

(1 − n)�s
w1. (45)

Then
max‖w‖=1

D̂i jwiw j ≥ max
w∈A, ‖w‖=1

D̂i jwiw j , (46)

because the variation of w on the right-hand side is more restrictive. Taking (42) into account, we see that for
w ∈ A

D̂i jwiw j = �

(1 − n)�s
Bi j ui u j , (47)

where u ∈ R
3 is such that

u1 = w1, u2 = w2, u3 = w3. (48)

Let E denote the set of vectors u ∈ R
3 satisfying (48), where w ∈ A, ‖w‖ = 1. The coordinates of the vectors

u ∈ E lie on the ellipsoid

u21

(
1 + n� f

(1 − n)�s

)
+ u22 + u23 = 1. (49)
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The largest sphere enclosed in this ellipsoid has the radius

r =
√

(1 − n)�s

�
. (50)

Since the Euclidean norm of each vector u ∈ E is greater than or equal to r , we have

max
w∈A, ‖w‖=1

D̂i jwiw j = �

(1 − n)�s
max
u∈E

Bi j ui u j ≥ �

(1 − n)�s
max‖u‖=1

r2Bi j ui u j = max‖u‖=1
Bi j ui u j . (51)

From (44), (46), (51), it follows that
λmax (D̂) ≥ λmax (B). (52)

��

6 Isotropic elastic solids

In the particular case of an isotropic elastic skeleton, the components of the acoustic tensor are

Aik = (λ + μ)nink + μδik, (53)

where λ and μ are the Lamé constants. The matrices B and D in the rotated coordinate system (n1 = 1, n2 =
n3 = 0) become

B = 1

�

⎛
⎝λ + 2μ + α2Q 0 0

0 μ 0
0 0 μ

⎞
⎠ , (54)

D = 1

(1 − n)�s

⎛
⎜⎝

λ + 2μ 0 0 0
0 μ 0 0
0 0 μ 0
0 0 0 0

⎞
⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(α − n)2Q

(1 − n)�s
0 0

(α − n)nQ

(1 − n)�s

0 0 0 0

0 0 0 0

(α − n)Q

� f
0 0

nQ

� f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (55)

As in a one-phase solid, there exist purely transverse and longitudinal waves. The squared transverse wave
speeds in the undrained and drained cases are, respectively, μ/� and μ/[(1 − n)�s]. The latter is the same as
in the dry solid and is larger than in the undrained case. The squared longitudinal wave speed in the undrained
case, denoted here by c2u , is

c2u = 1

�
(λ + 2μ + α2Q). (56)

The longitudinal wave speeds and amplitudes in the drained case are determined by the equations

D11v
0
s1 + D14v

0
f 1 = c2v0s1, (57)

D41v
0
s1 + D44v

0
f 1 = c2v0f 1. (58)

The eigenvalue problem (57), (58) leads to a quadratic equation for c2:

(D11 − c2)(D44 − c2) − D14D41 = 0. (59)

It can be checked that the discriminant of (59) is always positive, so the two roots are different.
If the material parameters satisfy the so-called dynamic compatibility condition [18–20], the governing

equations for longitudinal waves in the drained case admit travelling-wave solutions with the solid and fluid
phases moving with the same velocity, as if the permeability were zero. The dynamic compatibility condition
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can easily be obtained by putting v0s1 = v0f 1 in (57), (58), which gives D11 + D14 = D41 + D44 and, taking
the components from (55), leads to the condition

(λ + 2μ)� f = αQ
[
(1 − n)�s − (α − n)� f

]
. (60)

If the dynamic compatibility condition (60) is satisfied, one of the two roots of (59) must be equal to c2u , since
one of the two waves determined by (57), (58), namely the one with v0s1 = v0f 1, becomes the same as in the

undrained case. It can be shown that the wave with v0s1 = v0f 1 is the faster of the two waves, and we therefore
obtain equality in (52).

7 Plastic solids

So far it has been assumed that the skeleton of a fluid-saturated solid is elastic with a constant stiffness tensor
C jikl . A question of particular importance for applications is whether the proposition proved in Sect. 5 is
also valid for plastic solids. Here we outline the results obtained in [8] for plastic fluid-saturated solids with
an incompressible solid phase. The assumption of incompressibility of the solid phase leads to α = 1 in the
equation for the effective stress (4) and is justified, for instance, for soils. This assumption is crucial for the
equations with a plastic skeleton whose stiffness tensor is not constant but depends on the current state (in
particular, the stress state) and the direction of deformation (e.g. loading or unloading in elasto-plasticity). A
variable stiffness tensor C jikl makes the definition (2) of the effective stress inapplicable unless Ks → ∞.

The plastic skeleton entails two changes to the equations as compared to the elastic skeleton. First, the
constitutive relations and the equations of motion are supplemented with evolution equations for additional
scalar or tensorial quantities involved in a particular plasticity model as dependent variables. We assume that
the evolution of the new functions is determined by the deformation of the skeleton. This assumption covers
a wide class of rate-independent plasticity models and can also be extended to certain rate-dependent visco-
plasticity models. The second change caused by the plastic skeleton is that the coefficients of the equations
are allowed to be functions of the dependent variables including the new ones. This especially concerns the
stiffness tensor C jikl which becomes a function of the current effective stress.

As shown in [8], the two systems of equations—the reduced system with constant coefficients consisting
of the equations of motion and the constitutive relations, and the full system with variable coefficients and
additional evolution equations—agree with each other from the viewpoint of hyperbolicity: they are either both
hyperbolic or both non-hyperbolic. This result extends the validity of the proposition of Sect. 5 to fluid-saturated
solids with a plastic skeleton.
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