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Abstract
We consider a nonconvex mixed-integer nonlinear programming (MINLP) model 
proposed by Goldberg et  al. (Comput Optim Appl 58:523–541, 2014. https ://doi.
org/10.1007/s1058 9-014-9647-y) for piecewise linear function fitting. We show that 
this MINLP model is incomplete and can result in a piecewise linear curve that is 
not the graph of a function, because it misses a set of necessary constraints. We pro-
vide two counterexamples to illustrate this effect, and propose three alternative mod-
els that correct this behavior. We investigate the theoretical relationship between 
these models and evaluate their computational performance.
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1 Introduction

Piecewise linear function fitting, also known as linear-spline regression, is a clas-
sical problem of determining a piecewise-linear function f ∶ ℝ → ℝ , with a given 
number of pieces m, that best fits the given predictor data x ∈ ℝ

n and response data 
yi = f (xi) + �i for unbiased and independent error terms �i where i = 1,… , n . The 
problem has been mostly addressed in the case that the candidate breakpoints are 
given as a part of the input. A dynamic program (DP) given such a fixed set of can-
didate breakpoints has been proposed in [1]. The regression problem becomes more 
challenging if the breakpoints are themselves variables and are not fixed to a choice 
from a finite set. Historically, in this more general setting, solutions have been com-
puted by heuristics.

Goldberg et al. [5] propose exact computation schemes using mixed-integer non-
linear programming (MINLP) and a sophisticated adaptive-refinement DP-based 
heuristic as a more tractable approach for handling larger problems. We show below 
that their MINLP model can result in a piecewise linear curve that is not a graph of 
a function (i.e., there is an x that is associated with more than one expected response 
value). We start by presenting the model from [5]. In the next section we present two 
counterexamples that illustrate that this model is incomplete, and we develop three 
alternative MINLP models that overcome this defect and study their theoretical rela-
tionship. In Sect. 3 we present numerical results suggesting that one formulation is 
superior.

Given data x, y ∈ ℝ
n , with x1 < x2 < … < xn , the incomplete model in [5] aims 

to determine the piecewise linear function, given by breakpoint horizontal coordi-
nates b0, b1,… , bm ∈ ℝ , by solving the following nonconvex MINLP, where b0 = x1 
is fixed and � = (b1,… , bm) is a tuple of decision variables, 

(1a)minimize
b,c,�,�,�

n∑
i=1

�
p

i

(1b)subject to
|||yi − cj − 𝛽jxi

||| ≤ 𝜉i + M̂i𝜙ij i = 1,… , n, j = 1,… ,m

(1c)
m∑
j=1

�ij = m − 1 i = 1,… , n

(1d)−Mi�ij ≤ bj − xi i = 1,… , n, j = 1,… ,m

(1e)−Mi�ij ≤ xi − bj−1 i = 1,… , n, j = 2,… ,m

(1f)bj(�j − �j+1) = cj+1 − cj j = 1,… ,m − 1
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The constraints (1h) are simple bounds that tighten the original formulation. The 
problem is typically solved with the least squares objective, where (1a) has p = 2 , 
but minimizing the absolute value of the deviations using p = 1 (or “ L1-loss”) is also 
possible. The decision variables of (1) are described in Table 1.

The constraints  (1c) ensure that each data point is assigned (when �ij = 0 ) to 
exactly one line segment, which together with constraints (1b) ensures that the error 
�i for data point i is evaluated with respect to the line segment j to which it is 
assigned. The jth (nonconvex) constraint (1f) is used to ensure that consecutive line 
segments j and j + 1 intersect at the breakpoint bj . There are several constraints that 
can be appended to (1) to make its solution more tractable; see [9]. Here, the big-M 
constants are set to depend on i = 1,… , n , similar to [9] in order to strengthen the 
formulation compared with a global setting of Mi = M and M̂i = M̂ for all 
i = 1,… , n , as proposed in [5]. In particular, these constants satisfy 
Mi ≥ maxi�=1,…,n

||xi� − xi
|| and M̂i ≥ maxj=1,…,m

|||yi − cj − 𝛽jxi
||| for every c, � that may 

be a part of an optimal solution (see the analysis in the following sections as well as 
[9] for details and bounds in terms of the input data for M̂i).

Special Cases of (1). In [5], the authors apply (1) only in the special case of 
concave (or convex) data fitting. In that case, the slopes of the segments are con-
strained to be decreasing (or increasing), which ensures that the resulting curve is 
the graph of a concave (or convex) function. In particular, it can be shown that the 
slope inequalities imply some of the inequalities that are proposed in order to correct 
formulation (1) in the following section. Similar arguments are used to prove the 
correctness of the convex MINLP for convex function fitting that appears in [10], 
which is also studied in [9]. In that paper, the authors also propose another (convex) 

(1g)�ij ∈ {0, 1} i = 1,… , n, j = 1,… ,m

(1h)x1 ≤ bj ≤ xn j = 1,… ,m.

Table 1  Description of problem 
variables

Variable Meaning

bj , j = 1,… ,m The x value of the jth breakpoint.
cj , j = 1,… ,m The y-intercept of the jth line segment.
�j , j = 1,… ,m The slope of the jth line segment.
�ij , i = 1,… , n , 
j = 1,… ,m

Indicating whether the error of the ith 
data point should contribute to the 
error of the jth line segment, i.e.,

�ij =

{
0 if bj−1 ≤ xi ≤ bj
1 otherwise.

�i , i = 1,… , n �i =
|||yi − (cj + �jxi)

||| , the difference 
between the y value of the ith data 
point and the estimated value of the 
corresponding (assigned) jth line 
segment.
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mixed integer linear program (MILP) formulation for the case where p = 1 for fit-
ting general piecewise linear functions. In the general case, however, the MINLP (1) 
is incomplete, and so we present counterexamples and remedies in the next section.

2  Counterexample and correction of (1)

The MINLP (1) is incomplete, and we now present two illustrating examples where 
it fits a polygonal curve that is not a graph of a function. We begin with a small syn-
thetic example.

Example 1 Consider the data x = (1, 1.01, 1.02, 1.03, 1.04) and y = (0, 0, 1, 0, 1) 
and p = 2 . The optimal solution of (1), with m = 3 is illustrated in the Figure 1(a), 
where it is evident that it has a zero optimal objective value by fitting a polygo-
nal curve, which is not a graph of a function, and whose breakpoints are given by 
b0 = 1.00 and � = (1.04, 1.00, 1.03) . This curve’s second segment, from (1.04, 1.0) 
to (1.0, 0.0), is not assigned to any of the data points (i.e., �12 = ⋯ = �52 = 1 ). An 
optimal piecewise linear function that best fits the data, obtained by requiring that 
the breakpoint horizontal coordinate values are in increasing order. It is depicted in 
Figure 1(b), with a nonzero optimal objective value of 0.167.

In many real datasets including all of those experimented with in [5] and [9], the 
relaxed formulation (1) coincidentally computes a correct solution that does corre-
spond to a piecewise linear function. An exception is the next real data example that 
shows that the defect in MINLP (1) can affect a real problem in fitting a curve that 
may not be graph of a continuous piecewise linear function.

Example 2 This example is based on the classic (scaled) Titanium data set from [3] 
and [6] with n = 49 data points. The number of segments m = 3 and applying formu-
lation (1) with p = 2 . The optimal objective value is 1.003 and an optimal solution 

Fig. 1  A small example in which formulation (1) results in fitting a polygonal curve with three segments 
( m = 3 ) that is not a piecewise linear function. Note that the dashed line segment is not assigned any of 
the data points
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found has � = (1075.0, 731.2, 945.0) . The segment from b1 = 1075 to b2 = 731.2 
(the dashed line segment) is not assigned any data points. An optimal piecewise 
linear function found, when the breakpoints are required to maintain an increasing 
order as shown in Figure 2(b), has b = (850.2, 885.0, 1075.0) and the corresponding 
optimal objective value is 2.129.

We next describe three alternative formulations that correct MINLP (1) and 
ensure that the solution curve is a function, by either implicitly or explicitly main-
taining an increasing order of the breakpoints: 

1. We can include the missing assignment-type constraints requiring that each seg-
ment is assigned to at least one data point, 

 These are referred as assignment-type constraints because they require that 
�ij = 0 for some i = 1,… , n , and, if satisfied, then segment j is assigned to at 
least one data point.

2. We can explicitly enforce the order of the breakpoints by adding constraints, 

 These constraints are similar to ones used in the piecewise linear function 
approximation model proposed in [8].

3. We can also use a set of constraints proposed for the convex MILP reformulation 
in [9], which in the current setting amount to requiring that 

(2)
n∑
i=1

�ij ≤ n − 1 j = 1,… ,m.

(3)bj ≤ bj+1 j = 1,… ,m − 1.

(4a)�i,j + �i,j+1 − 1 ≤ �i+1,j+1 i = 1,… , n − 1, j = 2,… ,m − 1

Fig. 2  The Titanium dataset example where formulation (1) with m = 3 results in fitting a curve with 
three segments ( m = 3 ) that is not a piecewise linear function. Note that the dashed line segment is not 
assigned any of the data points
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 These inequalities, in particular (4a), require that for each data point i, if it is not 
assigned to one of two consecutive line segments j and j + 1 , then the next data 
point i + 1 cannot be assigned to segment j + 1 . It follows that segment j is not 
assigned any data points only if segment j + 1 is not assigned any data points.

The following theorem establishes the correctness of the formulation (1) together 
with inequality (3) in estimating a continuous piecewise linear function with m 
line segments and minimum sum of (pth power) errors.

Theorem  1 (Correctness) Formulation (1) together with (3) is correct for suffi-
ciently large finite constants Mi and M̂i  for i = 1,… , n.

Proof First we establish that every feasible solution of (1) with (3) corresponds to 
a continuous piecewise linear function with m segments and that the sum of (pth 
power) errors is given by (1a).

Let b∗, c∗, �∗, �∗,�∗ be an optimal solution to (1) with (3). Constraints (1c) ensure 
that each data point i is assigned to exactly one line segment j. Together with con-
straints (1d) and (1e) it is ensured that for each j = 1,… ,m , all i = 1,… , n satisfy-
ing b∗

j−1
≤ xi < b∗

j
 , or for j = m , all i with xi ≥ b∗

m−1
 , are assigned if and only if 

�∗
ij
= 0 . The constraints (3) ensure that the breakpoints are nondecreasing and that 

accordingly the estimated f is a function (and none of the intervals [bj−1, bj) overlap 
for j = 0,… ,m . Finally, the constraints (1f) ensure that for each j = 1,… ,m − 1 , 
pair of line segments j and j + 1 must intersect at (b∗

j
, c∗

j
+ �∗

j
b∗
j
) so the estimated 

function is continuous. To see that the sum of (pth power) errors is given by (1a) 
first note that constraints (1b) must hold as equalities by optimality of 
b∗, c∗, �∗, �∗,�∗ . Then, for each pair (i, j) ∈ {1,… , n} × {1,… ,m} , �∗

i
 equals i’s 

deviation absolute value if and only if segment j is assigned to point i, that is if 
�∗
ij
= 0.
Now we establish that every continuous piecewise linear function on D ⊆ ℝ , 

where L = infD and U = supD , , with m′ line segments, corresponds to a solution 
that is feasible for (1) with (3) for some m ≤ m′ . Suppose that f ∶ D → ℝ is a con-
tinuous piecewise linear function with m′ line segments and m� − 1 corresponding 
breakpoints b̃j , for j = 1,… ,m − 1 , each of which joining two segments, satisfying

and that minimizes the sum of squared (pth power) errors for input data x, y ∈ ℝ
n . 

Let q = min
{
j = 1,… ,m� ||| b̃j > x1

}
 assign 

(4b)�i,1 ≤ �i+1,1 i = 1,… , n − 1

(4c)�i+1,m ≤ �i,m i = 1,… , n − 1.

(5)L < b̃1 < … < b̃m�−1 < U,

(6a)b0 = x1, bm = xn, bj = b̃j+q j = 1,… ,m − 1
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The construction (7) together with the fact that f is a function on D ⊇ [x1, xn] and 
setting b0 = x1 and bm = xn , assures that each data point i ∈ {1,… , n} is assigned to 
exactly one segment, implying that constraints (1c) are satisfied and that letting

is well defined. For i = 1,… , n and j = 1,… ,m , if �ij = 0 then (1b) follows from 
(8) and (1d) and (1e) follow from (7). Otherwise if �ij = 1 , then by construction the 
constraints (1d) and (1e) hold for Mi = maxi�

||xi� − xi
|| ≥ |||bj − xi

||| . Then, for each 
i = 1,… , n , constraints (1b) are satisfied also for j such that �ij = 1 , as long as

The last inequality followed from the optimality of f; the converse would imply that 
there is no line connecting any pair k, l that crosses line segment j implying the sub-
optimality of f. (8) implies that the solution b, c, �, �,� has an objective value that 
equals the sum of (pth power) errors. Further, by the definitions (6a) together with 
(5), constraints (1h) and (3) are satisfied. Constraints (1f) follow from the continuity 
of f; for each j = 1,… ,m − 1 , the pair of consecutive line segments j and j + 1 must 
intersect at (bj, cj + �jbj) . So b, c, �, �,� corresponds to f, in particular it is a function 
whose graph coincides with that of f restricted to [x1, xn] ⊆ D , and it is feasible for 
(1) with (3).   ◻

We now derive relationships between the resulting optimization problems 
when the different constraints (2), (3) and (4) are added to (1). The obtained 
results enables us to prove the correctness of formulation (1), extended by either 
of these constraints. To this end, let

• zR denote an optimal objective function value of (1),
• zS denote an optimal objective function value of (1) with (2),
• z3 denote an optimal objective function value of (1) with (3),
• z4 denote an optimal objective function value of (1) with (4).

Finally, let XR,X3,X4,XS ⊆ ℝ
3m ×ℝ

n × {0, 1}nm denote the feasible regions cor-
responding to these formulations with optimal objective values zR, z3, z4 and zS , 

(6b)cj = c̃j+q, 𝛽j = 𝛽j+q j = 1,… ,m

(7)𝜙ij =

⎧
⎪⎨⎪⎩

0 i = 1,… , n, j = 1,… ,m − 1 ∶ bj−1 ≤ xi < bj
0 i = 1,… , n, j = m ∶ bm−1 ≤ xi
1 otherwise.

(8)�i =

{|||yi − cj − �jxi
||| i = 1,… , n, j = 1,… ,m ∶ �ij = 0

0 otherwise.

M̂i ≡ max
k, l ∈ {1,… , n} ∶

l > k

||||yi − yk −
yl − yk

xl − xk
(xi − xk)

|||| ≥
|||yi − cj − 𝛽jxi

|||.
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respectively. The following proposition establishes the relations between the feasible 
regions and objective function values of these formulations.

Theorem  2 Suppose that Mi, M̂i , for i = 1,… , n, are sufficiently large constants 
satisfying the hypothesis of Theorem 1. Then, feasible regions XR,X3,X4,XS satisfy 
XR ⊃ X3,X4 ⊃ XS. Further, suppose that m ≤ n. Then, these formulations’ optimal 
objective values satisfy zR ≤ z3 = z4 = zS.

Proof XR ⊃ X3,X4 is straightforward given that (1) is a relaxation of the formula-
tions with either constraints (3) or (4), which require the breakpoints to be ordered. 
Further, X3 , which admits only solutions whose breakpoints are ordered as feasible, 
is a relaxation of the formulation (1) with (2), which requires each segment to be 
assigned at least one data point, and whose constraints (1d) and (1e) together with 
(2), imply (3). To see that XS ⊂ X4 , observe that the constraints (4) enforce that for 
each i = 1,… , n − 1 and j = 2,… ,m a data point i + 1 can be assigned to segment 
j only if i is assigned to either j or to j − 1 . Evidently, constraints (4) are satisfied if 
there exists some integer 1 ≤ j′ ≤ m for which all segments in {1,… , j�} are each 
assigned at least one data point and segments {j� + 1,… ,m} are not assigned any 
data points. In particular, constraints (2) being satisfied imply that j� = m . Other-
wise, a solution in X4 with m > j′ is also a solution in XS where m = j� . It follows that 
z4 ≥ zS since the optimal solutions using m ≥ j′ line segments cannot have an objec-
tive value that is worse than optimal solutions using only j′ line segments. Equality 
follows from the fact that X4 is a relaxation, that is X4 ⊃ XS implies z4 ≤ zS.

To see that z3 = z4 = zS consider an optimal solution of (1) with (3) having opti-
mal objective z3 and a minimal number of line segments that is not assigned any 
data points. Then, consider a line segment along [bj−1, bj] that is not assigned any 
data points for some j = 1,… ,m , where b0 = mini=1,…,n xi , and a closest data point 
(for convenience suppose from the right) with horizontal coordinate x∗ (note that if 
no such line segment exists then clearly z3 = zS ). Then, consider a solution with bj 
replaced by x∗ (so that segments j and j + 1 now intersect at horizontal coordinate x∗ 
and only the slope of line segment j that is previously not assigned any data points is 
adjusted accordingly). Evidently, this solution is feasible for (1) with (2) and has the 
same objective value. This shows that z3 = zS and the proof of the equality with z4 is 
similar.   ◻

Now, Theorems 1 and 2 immediately imply the following

Corollary 1 Suppose that Mi and M̂i, for i = 1,… , n, are sufficiently large finite 
constants, and that m ≤ n. Then, formulation (1) together with either constraints (2), 
(3) or (4), is correct.

Note that all of the proposed formulations require the breakpoints to be ordered, 
so they satisfy the requirement that the fitted curve is a graph of a function (includ-
ing the formulations that require each line segment to be assigned at least one data 



1 3

MINLP formulations for continuous piecewise linear function…

point). We next compare the performance of a MINLP solver in solving the different 
alternative formulations.

3  Computational experiments

In our computational experiments we solve the formulation (1) with p = 2 and 
appending one of the constraints (2), (3) and (4), all or none of them—a relaxation 
of the intended problem. All formulations have been implemented using the Julia 
optimization package JuMP [4] and the state-of-the-art MINLP solver Couenne [2] 
version 0.5.6 run on a machine with a 2.5 GHz 4 MB cache CPU. The results of 
the experiments are shown in Table 2. In these experiments the time limit is set to 
2 h. We experimented with the Titanium ( n = 49 ) dataset [3], a dataset based on the 
Concrete data [11] and the NHTemp dataset [7]. For the Concrete data we selected 
fly ash as the predictor variable and averaged the response variable value for entries 
with the same predictor variable value (so following that it had n = 58 ). NHTemp 
[7] is a dataset containing New Haven’s average annual temperatures between the 
years 1912–1971 ( n = 60).

The results of Table 2 indicate that the formulation (1) with constraints (3) is usu-
ally solved faster and with the fewest number of branch-and-bound nodes compared 
with the other formulations. This is despite the fact that this formulation admits 

Table 2  Computational experiments with the alternative/different formulations using one or more of the 
constraints (2)–(4) and the given number of line segments m.

For each experiment we show the number of branch-and-bound nodes and CPU seconds. LIMIT indi-
cates runs that exceeded the 2-h time limit. For each dataset and value of m, the best results in terms of 
running time and branch-and-bound nodes appear in bold

Constraints m Titanium Concrete NHTemp

Nodes Time Nodes Time Nodes Time

None 2 602 9.6 362 20.7 493 18.9
3 6203 103.0 268566 5109.1 LIMIT LIMIT
4 49390 491.0 LIMIT LIMIT LIMIT LIMIT

With (2) 2 263 7.8 593 27.3 442 21.1
3 4973 72.6 38622 717.0 29548 313.2
4 LIMIT LIMIT LIMIT LIMIT LIMIT LIMIT

With (3) 2 367 9.0 346 22.1 351 14.9
3 3335 52.3 6029 332.1 5280 99.6
4 1060 37.6 12150 380.3 40521 606.5

With (4) 2 151 9.4 381 21.4 326 19.0
3 2925 55.9 6342 305.5 6323 136.7
4 3191 65.8 36947 1245.9 57015 1030.0

With All 2 184 9.2 496 38.3 412 16.0
3 3924 93.1 10218 326.2 13553 217.7
4 5675 87.3 LIMIT LIMIT 387206 5656.4
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many feasible solutions that would otherwise be infeasible (but with a similar objec-
tive value) for the formulations that append the constraints (2) or (4). A close sec-
ond in the computational performance is the formulation (1) with (4). On the other 
hand, the formulation (1) with (2) failed to determine an optimal solution in many 
cases within the given 2-h time limit. Interestingly, formulation (1) by itself, which 
amounts to a relaxation of the other formulations, usually takes even longer to solve 
than (1) with (2), other than in the case of the Concrete instance with m = 2.

4  Conclusions

We have pointed out an error in the nonconvex MINLP for fitting piecewise linear 
functions proposed in [5]. This error may result in some cases in fitting a polygonal 
curve that is not the graph of a function. We present three different formulations that 
add inequalities in order to correct the MINLP. Formulations with constraints that 
explicitly enforce the ordering of breakpoints appear to perform better than assign-
ment-type constraints that require that each line segment is assigned a data point. 
These assignment constraints implicitly imply the ordering of breakpoints when 
combined with other inequalities of the model, and they are shown to preserve at 
least one solution that is optimal for the function-fitting problem (which requires the 
breakpoints to be ordered but does not require each line segment to be assigned a 
data point).

Finally, the study of these inequalities and alternative formulations may also sug-
gest and support the use of particular ordering-based constraints rather than assign-
ment-type constraints for other formulations have been recently modeled to effec-
tively solve larger problems such as the one proposed in [9].
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