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Abstract

Inverse design is an important discipline in any field of engineering and science. Op-
tics and photonics is not an exception. Together with improved fabrication technologies,
design optimization is one of the main drivers of the tremendous advances in photonic
technologies. The appearance of modern computers and software, able to solve electro-
magnetic field propagation problems, semi-automatized the tasks of design optimiza-
tion. The final goal of this field would be to achieve full automation. That means, a de-
sign process completely computer-driven, able to find optimal designs, compatible with
available fabrication processes, and without involving in the process the intuition and
knowledge of the researcher or designer.

The optimizationmethods that get close to this idea are freeform shape optimization and
topology optimization. The efficiency of both methods strongly relies on another com-
putational ability related to solving electromagnetic field propagation: the computation
of shape and material derivatives. Developments to achieve this ability are a fundamen-
tal building block of this thesis and they appear, in one way or another, throughout all
chapters.

In this thesis, we study different numerical tools for computational inverse design of
photonic structures. We focus on global optimization, as opposed to local optimization
methods, and we investigate the use of a technique borrowed from the field of machine
learning, Gaussian processes, to do global optimization using, at the same time, shape
andmaterial derivatives. We contribute to this field proposing two numerical techniques
to improve the performance of Gaussian processes in the optimization of photonic struc-
tures.

Furthermore, we design and study the performance of two photonic structures that are
interesting from theoretical and technological aspects: maximally electromagnetic chiral
scatterers and waveguide edge couplers. Maximally electromagnetic chiral scatterers are
objects that show an extraordinary difference in their interaction with fields of different
helicity. Finding objects with such characteristics at optical and near infrared frequen-
cies would enable a series of interesting applications. We obtain optimal designs of chiral
scatterers at a wide range of illumination frequencies and highlight their extreme proper-
ties when they interact with light. The other structure studied, waveguide edge couplers,
is a fundamental component to improve the power efficiency of integrated photonic cir-
cuits, therefore, a key component for the further development of the global optical com-
munication network. We optimized and studied two types of edge couplers, including
freeform shape designs, whose optimization lead to compact and energy efficient struc-
tures. For the optimization of both photonic structures, we combined the use of Bayesian
optimization with Gaussian processes and the calculation of shape derivatives. Further-
more, the design of these structures required the development of additional numerical
tools, e.g., methods for the analyses of isolated scatterers, that became an important part
of this thesis by themselves.
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1 | Introduction

Optics and nanophotonics technologies provide crucial technological components to our
society. The chips that build our computers, mobile phones, data centers and supercom-
puters aremade thanks to lithographic processes [1–4]. The large internet global network
is implemented on optical fibers [5, 6], complex multi-lens systems allow the implemen-
tation of compact high resolution cellphone cameras, and solar energy is a strategical
technology for the decarbonization of energy production [7, 8], just to name a few.

Despite the incredible advances we have witnessed in the last decades, there is a continu-
ous need of improving optical technologies. The increasing demand of data rates, mainly
driven by the appearance of data centers, requires faster andmore energy efficient optical
networks [9, 10]. Improvements in the efficiency and costs of solar cells [11–15] are also
of huge importance for the health of the planet and the possibility to fabricate smaller
electrical transistors enables more powerful and energy efficient computer chips. Fur-
thermore, new technologies yet to reach a mature status, e.g., quantum computers [16–
20], promises another revolution that could drastically shape our society as we under-
stand it nowadays.

The main aspects behind the improvements in photonic technologies are better fab-
rication techniques, but also the incorporation of new physical concepts and the im-
provement in the designs. Decades ago, the design of the different components of a
photonic device was based on the knowledge and intuition of the researchers and devel-
opers. Nowadays, this knowledge continues to play an important role. However, with the
emergence of modern computers and computer programs able to solve electromagnetic
field propagation problems in an affordable amount of time, the process of designing the
components of a photonic device has become more and more computer-driven.

Computational inverse design for photonic devices has evolved considerably along the
last three decades. The holy grail of this task is to obtain designs for photonic devices that
show extremely good performances, that are as simple to fabricate as possible, and that
are obtained without the intervention of any person during the design process. However,
quite frequently the main characteristics of the final designs obtained for the photonic
structures are fixed by the designer at the early stages of the design process. In these
instances, the designer proposes a geometrical model in which some of their character-
istics are described by a few non-fixed parameters. Then, a computer program tries to
find the optimal values for these parameters based on a function that measures the per-
formance of the structure, called the objective function, obtained from electromagnetic
simulations of the structure.

The two principle techniques that try to reduce the influence of human intervention
in the design process are freeform shape optimization [21, 22] and topology optimiza-
tion [23–26]. In freeform shape optimization, the shape of the structure is very often de-
scribed using a series of b-spline curves or surfaces. The shape of the photonic structure
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Chapter 1. Introduction

is then controlled by the weights and control points of the b-splines. In topology opti-
mization, the photonic structure is discretized in, usually, thousands of different small
pixels whose material properties are to be set during the optimization process. The main
idea behind both approaches is to restrict as less as possible the geometry of the photonic
component aimed to be designed, and to let the optimization algorithm to identify the
most optimal design in this non-restricted design space. In this sense, topology opti-
mization is an even more flexible method than freeform shape optimization.

The performance of both optimization techniques is closely linked to the development of
numerical methods that solve Maxwell’s equations and that also return the derivatives
of the solution with respect to the design variables. The techniques used to compute the
derivatives, the forward and the adjoint method, provide this extra derivative informa-
tion adding a small computational overhead to the calculation of Maxwell’s equations.
Even though both the forward and the adjoint method have been used for more than
fifteen years, a few issues remain yet to be solved, especially in the case of calculating
shape derivatives. The main issue is that shape derivatives are not easy to implement for
complicated structures, which are the result of applying multiple geometrical operations
in a computer aided design software. The integration of shape derivatives within CAD
software in a fully automated manner is a rather complicated task. Another issue is that
most of the commercial software packages available for solving Maxwell’s equations do
not integrate the feature of providing the shape or material derivatives for all the offered
post-processing quantities derived from the solution of Maxwell’s equations. This aspect
also limits the applicability of the methods.

However, the main problem that limits the applicability of both the freeform shape opti-
mization and topology optimization methods is the difficulty to incorporate fabrication
constraints within the optimization process. Although thesemethods can lead to designs
with remarkable performances, in most of the cases these designs are also extremely dif-
ficult to implement with the available fabrication techniques. Effort is being put into this
problem and some methods to obtain more robust designs have been proposed [27–31].
However, it is still not possible, in general, to efficiently integrate into the optimization
process all the constraints emerging from the technological limits of the fabrication tech-
niques. This is one of the reasons why even if nowadays both freeform optimization and
topology optimization can be considered standard methods within the field of photonic
design, many photonic structures are still designed using other approaches, such as the
use of conventional parametric models.

A second limitation of any inverse design process, no matter which parametrization is
used, has to do with the capacity of a computer to find the most optimal design within
a given design space. In multimodal optimization problems, where the objective func-
tion has multiple local minima, the time needed to explore the entire design space grows
exponentially with respect to the number of dimensions of the design space. Once as-
sumed that this exploration is not possible to be done, the use of optimization algorithms
aims to find a design as good as possible constrained to the amount of time available
for this required task. The optimization algorithm is an important aspect of the design
process. There is a wide range of optimization algorithms available and one needs to
choose among them depending on the characteristics of the problem to optimize. Driven
by the advances and the research effort that has been put in the field of machine learn-
ing, different machine learning techniques have been borrowed to solve photonic inverse
design problems [32]. The goal of both fields is similar, machine learning aims to learn
the response of a system of many input variables using the least number of observation
data points. Inverse design aims to obtain the input point with the highest value of the
objective function using the least number of observation data points. Among the differ-
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ent techniques borrowed from the field of machine learning, different works proposes
the use of convolutional neural networks [33–38] to perform inverse design of photonic
structures. However, as this technique usually requires large amounts of data, it is lim-
ited to problems where one can generate large sets of observation data points. Therefore,
the technique is limited to problems where it is possible to obtain fast solutions of the
electromagnetic field. Another optimization method that uses techniques of machine
learning, and that we investigate in this work, is Bayesian optimization with Gaussian
processes. Bayesian optimization does a fully statistical treatment of the objective func-
tion to obtain optimal values with the least number of observations. Moreover, Gaussian
processes can incorporate derivative information fully analytically, allowing to exploit
the use of shape derivatives. The main drawback that limits the applicability of Gaus-
sian processes is their bad scaling with respect to the number of observation data points,
whichmakes the optimization to become slower and slower with each observation added.
Therefore, its use is usually suggested only for the optimization of computationally ex-
pensive problems. In this thesis we discus this topic of the scaling and propose differ-
ent methods to reduce the scalability issues of Gaussian processes in Bayesian optimiza-
tion.

Regarding this thesis, the initial goal of this PhD project was to design different opti-
cal nanostructures in which we were interested from both theoretical and practical per-
spectives. The project started with a few clear ideas, we had available a tool to simulate
electromagnetic field propagation in nanostructures that also provides shape derivatives
and we wanted to see how we could use it to design the different photonic structures
we were interested in. As inevitably in any research project, along this process differ-
ent problems and questions with regards to the optimization process started to appear,
e.g., the calculation of shape derivatives in complicated geometries, the lack of some
tools that we needed for the design of isolated scatterers, questions about how to take
the most out of the information provided by the shape derivatives, the scalability prob-
lem of Gaussian processes, etc. This thesis became a result of this process to solve the
problems and to answer the questions that arose during the process of optimization of
the different photonic structures. It tries tomake amodest contribution to the enormous
field of research of photonic inverse design. Along the thesis, we contribute to different
topics of relevance for the design of photonic structures: optimization algorithms, nu-
merical methods to solve or to measure relevant quantities of electromagnetic fields, or
the calculation of shape derivatives for complicated geometries.

Still, even if the development of all these tools became an important part of the work, the
initial goal of the project was not forgotten during this process. We have applied all this
methods to design different photonic structures. Emphasis was put into the design of
optimal electromagnetic chiral scatterers and the design of compact and energy efficient
freeform waveguide edge couplers. Both of them are discussed in this document.

The optimization of chiral helices is a relevant topic from a theoretical point of view. It
is interesting to know how feasible it is to obtain, at optical and mid-infrared frequen-
cies, scatterers with the extraordinary properties that maximal electromagnetically chi-
ral objects present. Once available, of course, they would also unlock interesting appli-
cations. On the other side, edge couplers are components of crucial importance for the
development of photonic integrated circuits as they can connect different components of
photonic chips. Photonic integrated circuits have numerous applications, but one of spe-
cial relevance for our near future is their use in communication optical networks. There,
photonic integrated circuits are a key element for achieving reductions in energy con-
sumption and increments in data rates. In this context, the design of more efficient and
more compact edge couplers is a task of great interest from a general perspective.
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Chapter 1. Introduction

Structure of the thesis

The thesis is structured into six chapters. After this introductory chapter, a theoretical
background chapter is presented. This second chapter is divided into twomain parts. The
first part introduces the basic electromagnetic theory that is needed along the thesis. It
starts from Maxwell’s equations and describes some of its most fundamental solutions:
the plane waves and the vector spherical wave functions. After that, it continues with the
introduction of the scattering problem, the helicity operator and its link to circularly po-
larized waves, and the basics of waveguide theory. The second part of the second chapter
is devoted to the introduction of the finite elementmethod. It will be themain technique
to solve Maxwell’s equations in this thesis. This part starts with the description of the
main properties of the finite element method. After the working principles of the finite
elementmethod are presented, the chapter continues with the description of the calcula-
tion of the shape and material derivatives. Finally, the chapter ends with the description
of the twomain different techniques used to calculate the shape derivatives for a number
of different design variables: the forward and the adjoint method. As we will see, the
calculation of the shape derivatives is a tool of special relevance in this thesis, and all the
other chapters to come are linked, in one way or another, to this important tool for the
field of inverse photonic design.

The third chapter is about the use of Bayesian optimization with Gaussian processes to
design photonic structures. It starts with a description of Gaussian processes and Gaus-
sian process regression. One section of the chapter is devoted to the description of the
incorporation of derivative information into the Gaussian process model. After that, the
chapter continueswith the description of Bayesian optimization, particularly, it describes
how Gaussian processes can be used to perform global optimization. Once the details
about how to implement Bayesian optimization are introduced, the chapter discusses
the scalability problems of Gaussian processes at the end and it proposes two different
techniques tomitigate the impact of the scalability issues in the design of photonic struc-
tures.

The fourth chapter presents a numerical method to calculate the decomposition of scat-
tered fields into vector spherical wave functions. The chapter starts by introducing the
mathematical description of the method to then show results of its numerical imple-
mentation into a finite element solver. The decomposition allows for an easy procedure
to implement the calculation of the T-matrix for scatterers with generally complicated
shapes and also to implement the calculation of shape and material derivatives of the T-
matrix. The description of these two procedures constitutes the next part of the chapter.
Finally, the chapter proposes the use of the mentioned techniques for not just optimiz-
ing isolated scatterers, but also for optimizing photonic structures that are composed of a
series of isolated scatterers, such as, e.g., metasurfaces. The results of this chapter came
from our need for tools that facilitate the design of isolated scatterers, such as, e.g., the
optimal chiral helices presented in chapter five.

The fifth chapter presents the design and analysis of two photonic structures: optimal
electromagnetically chiral helices and edge couplers for the interconnection of different
photonic integrated circuits. The chapter is divided into twomain sections, each of them
corresponds to one of the applications presented. Each of these main sections starts
with a description of the problem and why it is of interest to find optimal designs. They
continue with a description of the optimization method used to design the structures.
Finally, the results of the optimization are presented and the optimal designs are ana-
lyzed. The chapter, besides showing the design of two interesting photonic structures,
can be seen as the part of the thesis where the different numerical techniques proposed
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and developed in the previous chapters are merged and applied to the final objective for
which they have been developed: the efficient optimization of photonic structures with
complicated geometries.

The thesis finalizes with the chapter dedicated to the conclusions and outlook, where we
take a general look at the results obtained and we give a series of proposals on how the
work could be extended based on what has been done.
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2 | Theoretical background

2.1 Introduction

This thesis deals with the design of photonic structures and their optimization. That
is, this is a work about the design of structures devised to manipulate the propagation
of light and so, accomplish a certain desired functionality. It is then logical to start the
document introducing the equations that govern light propagation at the relevant spatial
and temporal scales for such photonic structures and describing the methods that we
will use to solve these equations. This is the purpose of this chapter. It presents the
fundamentals of light propagation thatwill be required in the discussions of the following
chapters of the thesis and the main method that we use to solve light propagation.

This chapter is divided into twomain sections. The first part of the chapter introduces the
basics of propagation field theory in the different situations that we will encounter along
the document. The second part is devoted to the description of the finite elementmethod
and the calculation of shape and material derivatives within the finite element method.
The finite element method is a numerical method used to solve systems of differential
equations, usually in situations where these equations are defined over complicated ge-
ometrical models. It is the method on which we will mainly rely to solve Maxwell’s equa-
tions over the photonic structures. Given the importance of the method in this work, the
description that we give in the chapter of some of its implementation details comes with
a certain amount of detail. However, we consider this detailed explanation necessary to
fully understand the procedure for the calculation of shape derivatives, quantities that
play a fundamental role in the development of the thesis.

2.2 Electromagnetic field theory

This section introduces the main equations describing the propagation of electromag-
netic fields and some fundamental solutions of these equations that are extensively used
throughout the thesis. This section starts by stating Maxwell’s equations in both time
and frequency domain. It then continues describing the wave equation and some of its
most fundamental solutions: the plane waves and the vector spherical wave functions.
After that, two different particularizations of Maxwell’s equations to two specific scenar-
ios, light scattering and light propagation through waveguides, are discussed. Addition-
ally, the section discusses the concept of helicity and its link to circularly polarized plane
waves. These concepts will be often encountered along the thesis.

Maxwell’s equations

Maxwell’s equations [39] are a set of four coupled equations that describe the propagation
of electromagnetic fields through structured materials. In their partial differential form
they can be written as (see, e.g., [40] chapter 1 or [41] chapter 6)
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∇×E (r, t) = −∂B (r, t)

∂t
, (2.1)

∇×H (r, t) =
∂D (r, t)

∂t
+ J (r, t) , (2.2)

∇ ·D (r, t) = ρ (r, t) , (2.3)
∇ ·B (r, t) = 0, (2.4)

whereE(r, t) (V/m) andH(r, t) (A/m) are the electric andmagnetic fields,D(r, t) (As/m2)
is the electric displacement,B(r, t) (Vs/m2) is themagnetic flux density, ρ(r, t) the charge
density (As/m3), and J(r, t) the current density (A/m2), respectively.

Given the spatial and temporal dynamics of the charge and current distributions that act
as sources, Maxwell’s equations describe the values of the electromagnetic fields at every
point of space r and at each moment of time t.

As an equivalent representation to the fields in time, one can describe within the context
of linear electrodynamics the fields in frequency domain by applying the Fourier trans-
form to their representation in time domain. The Fourier transformed fields read as

Ẽ (r, ω) =

∫
E (r, t) eiωtdt. (2.5)

If one applies the Fourier transform to Maxwell’s equations one gets

∇× Ẽ (r, ω) = iωB̃ (r, ω) , (2.6)

∇× H̃ (r, ω) = −iωD̃ (r, ω) ,+J (r, ω) (2.7)

∇ · D̃ (r, ω) = ρ̃ (r, ω) , (2.8)

∇ · B̃ (r, ω) = 0. (2.9)

Taking a look into Eqns. (2.1)-(2.4) or equivalently to Eqns. (2.6)-(2.9), one can see that
there are more unknowns than equations. To make them complete, it is necessary to add
the constitutive relations that link the electric displacement and magnetic flux density
to the electric and magnetic fields. In time domain they can be written as

D (r, t) = D (r, t,E,H) , (2.10)
B (r, t) = B (r, t,E,H) . (2.11)

The specific form of the above equations is given by the electromagnetic properties of
the materials. In vacuum, these relations are simply D (r, t) = ε0E (r, t) and B (r, t) =
µ0H (r, t). Here, ε0 is the electric permittivity and µ0 the magnetic permeability of free
space.

Inmost situationswherematter is present, the fieldsD andB can be accurately described
in terms of the electric polarization P and the magnetizationM,

D (r, t) = ε0E (r, t) + P (r, t) , (2.12)
B (r, t) = µ0 (H (r, t) + M (r, t)) . (2.13)
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2.2. Electromagnetic field theory

Both quantities P (r, t) andM (r, t) can be seen, in a classical interpretation, as macro-
scopic space averages over the microscopic molecular dipole moments and molecular
magnetic moments in the materials that compose the medium ([41] section 6.6). The
polarization and magnetization, in general, depend on both electric and magnetic fields
for a general bi-anisotropic material. The dependency can be expressed using a convolu-
tionwith somematerial specific response function. The response function here expresses
the induced polarization for a delta-type excitation in time domain. That convolution in
time domain is somehow cumbersome to evaluate. Therefore, constitutive relations are
usually evaluated in frequency domain where the convolution from the time domain sim-
ply gets a product. This renders the constitutuive relations to be rather simple algebraic
expression. For most of the materials that one encounters in optical applications and
provided that the intensity of the involved fields is sufficiently small, the electric polar-
ization P (r, ω) and the magnetizationM (r, ω) in frequency domain relate linearly with
the electric and magnetic fields, respectively, given as a result the following constitutive
relations for linear media,

D̃ (r, ω) = ε′ (r, ω) Ẽ (r, ω) , (2.14)

B̃ (r, ω) = µ (r, ω) H̃ (r, ω) , (2.15)

where ε′(r, ω) and µ(r, ω) are the electric permittivity tensor and magnetic permeability
tensor, respectively.

Similarly, also the currents induced by the electric fields can, as an approximation, be
linearly related to the electric field,

J̃ (r, ω) = σc(r, ω)Ẽ (r, ω) + J̃ext (r, ω) , (2.16)

where J̃ (r, ω) is the total current, J̃ext (r, ω) the non-induced externally applied current,
and σc(r, ω) the conductivity tensor. The above equations implicitly ignore nonlocality
in space, which is a good approximation for most of the natural materials at optical fre-
quencies.

Additionally to the constitutive relations, some boundary conditions need to be imposed
when solving the system of differential Maxwell’s equations. In section 2.2, we will in-
troduce the radiation boundary condition, used to solve electromagnetic fields produced
by localized sources.

From this point, we will always assume fields with a time harmonic dependency, unless
otherwise stated,

E (r, t) = E (r) e−iω0t, (2.17)

Ẽ (ω, t) = E (r) δ (ω − ω0) . (2.18)
(2.19)

Therefore, wewill skip their explicit timeor frequency dependency anddiscuss eventually
only the spatial dependent part. Also, from this point we will omit the bar in the time
independent field E(r) and we will simply denote it by E(r).

Regarding the energy carried by electromagnetic fields, the energy conservation law for
time averagedharmonic fields is given by the belowequation (see, e.g., [41] Eqn. 6.134),
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− 1

2

∫

V
Re {J∗ (r) ·E (r)}dV = (2.20)

− ω0

∫

V

1

2
Im {(E (r) ·D∗ (r)−B (r) ·H∗ (r))} dV +

∫

S

1

2
Re {E (r)×H∗ (r)} · dS.

(2.21)

This equation states that the time averaged rate of work done by the field on the sources
contained within a volume V equals the volume integral of the time averaged rate of the
fields energy density plus the time averaged power flux through the boundary S of the
volume. The termwithin the last integral of the expression is the time averaged Poynting
vector 〈S〉,

〈S〉 =
1

2
Re {(E (r)×H∗ (r))} . (2.22)

It gives the power flux carried by an electromagnetic field.

The wave equation

One particularly interesting situation to solve the time harmonic Maxwell equations is
a homogeneous, isotropic, and linear media. In this case, the spatial dependent electric
permittivity tensor ε′ (r) and the permeability tensor µ (r) become two scalars, ε′ and µ,
that do not depend on space anymore. Under this conditions, Maxwell’s equations can
translate into a system of decoupled equations for the electric and magnetic fields (see,
e.g., [40] section 1.3) called the wave equations,

∇×∇×E(r)− k2E(r) = iωµJext(r), (2.23)

∇×∇×H(r)− k2H(r) = ∇× Jext(r). (2.24)

The quantity k is the wave number. It is defined as k2 = ω2
0µε where ε = ε′ + i σcω0

is the
generalized complex dielectric function. In the case of no external sources, the above
equations translate into two identical equations for the electric and magnetic fields, the
homogeneous wave equations,

∇2E(r) + k2E(r) = 0, (2.25)

∇2H(r) + k2H(r) = 0. (2.26)

The above equations have an enormous importance in optics, as due to the linearity of
Maxwell’s equations, the general solution produced by any current distribution can be
obtained as the linear combination of a particular solution plus the solution of the ho-
mogeneous equations.

We will revise now two fundamental solutions of the homogeneous wave equations that
we will use extensively throughout the thesis.

Plane waves

First, we introduce the plane wave. The electric field of a plane wave reads as
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E (r) = Aeik·r. (2.27)

The vector A is in general a complex vector. It gives the amplitude and the direction of
oscillation of the electric field. The vector k is the wave vector. It can also be complex
valued in the general case,

k = kk̂ = k(k̂r + ik̂i), (2.28)

with k being the wave number and k̂r and k̂i being vectors defined in R3. The real and
imaginary parts of k̂ fulfill the below properties,

|k̂r|2 − |k̂i|2 = 1, (2.29)

k̂r · k̂i = 0. (2.30)

If the wave vector of a plane wave has only a real part, the plane wave is called a ho-
mogeneous plane wave. Otherwise it is called an inhomogeneous plane wave. Even in a
lossless medium, with a real valued wave number k, the wave vector of a plane wave can
be complex valued. In this case, the plane wave is called an evanescent wave.

The vectorsA and k are also orthogonal to each other,

k ·A = 0. (2.31)

Here, the dot product used is the one defined for real valued vectors, even if they are in
general complex valued. That is the result of the requirement that the field needs to be
free of divergence.

AsAmust be contained in a plane perpendicular to k, it can be decomposed using a base
of two orthonormal vectors whose directions are also contained in that plane. Let us
name these vectors by v̂1 and v̂2. Then,

A = A1v̂1 +A2v̂2. (2.32)

If one now looks at the temporal evolution of the real part of the electric field at a fixed
position r0 one obtains,

Re {A} (r0, t) = v̂1|A1| cos(φ(A1) +k · r0−ω0t) + v̂2|A2| cos(φ(A2) +k · r0−ω0t), (2.33)

with the function φ(α) denoting the phase of the complex number α.

From Eqn. (2.33) one can see that when both coefficientsA1 andA2 have the same phase
or a phase difference of 180 degrees, the electric field oscillates along a fixed direction. In
this case the plane wave is linearly polarized. If the two coefficients A1 and A2 have the
same absolute value and the relative phase between them equals ±90 degrees, the plane
wave is circularly polarized. That means that the direction of the electric field at each
point rotates over time. In any other case, the plane wave is elliptically polarized.

In the case of a circularly polarized planewave, the electric field can rotate into two differ-
ent directions. It means that it can be a right handed or a left handed circularly polarized
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plane wave. Two conventions exist to define the sense of rotation. In this work we say
that the wave is right circularly polarized when,

vi × vj =
k

k
, {i, j} ∈ {1, 2}, i 6= j, (2.34)

φ (Ai)− φ (Aj) = π/2. (2.35)

Figure 2.1 shows the convention used in the thesis at the example of a right circularly
polarized plane wave.

ba

Figure 2.1: Spatial and temporal representation of the direction of
the electric field for a right circularly polarized plane wave. The def-
inition of a circularly polarized plane wave to be right or left circu-
larly polarized depends on the convention used. This sketch shows
the convention used in this thesis and described by Eqns. (2.34)
and (2.35). a. Direction of the electric field strength of a right cir-
cularly polarized plane wave along space. b. Evolution of the direc-
tion of the electric field strength of a right circularly polarized plane
wave in time for a fixed position in space.

Plane waves are used to expand the solution of the electromagnetic field in many differ-
ent types of problems. Examples are the scattering of isolated objects, in diffraction by
periodic gratings, or for layered media.

One method for expanding the field in a homogeneous region into plane waves is the use
of the angular spectrum representation. The angular spectrum representation is obtained
by applying a Fourier transform to the electric fieldE(r) over an infinitely extended plane
in space. The plane chosen to perform the Fourier transform is normally a characteristic
plane of the problem, e.g., in layered media structures it is chosen to be a plane parallel
to the material interfaces. The angular spectrum representation Ê(kx, ky) of an electric
field calculated in the plane z = z0 reads as

Ê(kx, ky) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
E(r)e−i(kxx+kyy+kz(z−z0))dydx, (2.36)

E(x, y, z) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
Ê(kx, ky)e

i(kxx+kyy+kz(z−z0))dkydkx. (2.37)

As one can see from the above equations, the angular spectrum representation is a func-
tion of only two of the components of the wave vector. The third component is automat-
ically determined by the wave number,
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k2
x + k2

y + k2
z = k2

ρ + k2
z = k2 = ω2

0µε. (2.38)

The angular spectrum representation is composed of both plane waves, k2
ρ ≤ k2, and

evanescent waves, k2
ρ > k2.

For a plane wave, the time average Poynting vector, Eqn. (2.22), reads as,

< S >=
1

ω0µ
|A|2Re {k} . (2.39)

One can see from Eqn. (2.39) that an evanescent plane wave does not carry power along
the direction in which its amplitude exponentially decays.

Vector spherical wave functions

Another important set of solutions to the homogeneous wave equation are the vector
spherical wave functions (VSWFs) N(J)

m,n(r) and M
(J)
m,n(r). These functions are obtained

when solving the wave equation in spherical coordinates. Different definitions can be
found in literature for the VSWFs [41–44]. In this work, we will use the VSWFs as defined
in [42], which are summarized in appendix A of the thesis.

The VSWFs form a complete set of solutions to the wave equation. The field produced by
a set of localized charges, for example, can be described by

E(r) =
∞∑

n=1

n∑

m=−n
am,nN

(3)
m,n(r) + bm,nM

(3)
m,n(r), (2.40)

with am,n and bm,n being complex valued scalars.

The fields N(J)
m,n(r) andM

(J)
m,n(r) are often called electric and magnetic multipole fields,

respectively. This nomenclature comes from the fact that ideal infinitesimal electric and
magnetic multipole moments of degree n oscillating in time with frequency e−iω0t would
radiate electromagnetic fields whose field components would be given by the electric
fields E(r) = N

(3)
m,n(r) and the magnetic fields H(r) = M

(3)
m,n(r), respectively ([41] sec-

tion 9.10). The VSWFs with different multipole orders m and same multipole degree n
would just be generated by multipole moments with different spatial orientation.

The electric and magnetic multipoles are transverse to each other,

∇×N(J)
m,n(r) = kM(J)

m,n(r), (2.41)

∇×M(J)
m,n(r) = kN(J)

m,n(r), (2.42)

with k being the wave number.

The superscript J of the VSWFs denotes their radial dependency. The multipoles with J
equal to 3 represent fields that fulfill the outwards radiation condition. This condition is
presented in the next section when discussing the scattering problem. These multipoles
diverge in the limit for |r| going to 0 and they decay with |r| for large values of |r|. The su-
perscript J = 1 represents regular fields, with a well defined behavior at the origin. These
regular VSWFs can be used, e.g., to expand the field of a plane waveE(r) = Aeik·r,

E(r) =

∞∑

n=1

n∑

m=−n
cpw,m,nN

(1)
m,n(r) + dpw,m,nM

(1)
m,n(r), (2.43)
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with the coefficients cpw,m,n and dpw,m,n givenby theEqns. (B.2)-(B.3) in the appendixB.

The VSWFs fulfill the orthogonality relations
∫

S2
R

N(J)∗
m,n (r) ·M(J)

m,n (r) dS = 0, (2.44)
∫

S2
R

N(J)∗
m,n (r) ·N(J)

m′,n′ (r) dS =

∫

S2
R

|N(J)
m,n|2 (r) dS δm,m′ δn,n′ , (2.45)

∫

S2
R

M(J)∗
m,n (r) ·M(J)

m′,n′ (r) dS =

∫

S2
R

|M(J)
m,n|2 (r) dS δm,m′ δn,n′ , (2.46)

which can be used to obtain the coefficients am,n and bm,n that expand a given electric
field into the set of VSWFs.

With the definition of the VSWFs used in this thesis, the total time averaged power radi-
ated by afield canbe expressedusing the coefficients of itsmultipole expansion, Eqn. (2.40),
as

P =
1

2Zk2

∞∑

n=1

n∑

m=−n
(|am,n|2 + |bm,n|2). (2.47)

Scattering by isolated objects

In scattering theory, one is interested in the solution of electromagnetic fields that prop-
agate in an unbounded exterior domain that are produced by objects upon a given illumi-
nation. The situation can be described as follows: a certain object with permittivity and
permeability distributions ε2(r) and µ2(r), respectively, is embedded into a homogeneous
medium with permittivity ε1 and permeability µ1. The object is illuminated with a field
Einc(r) and we are interested in obtaining the total field as a result of the interaction of
Einc(r) with the object.

The total fieldE(r) can be decomposed into the contribution of the illumination and the
scattered field,

E(r) = Einc(r) + Escat(r), (2.48)

where the illumination Einc(r) is a solution to Maxwell’s equations for a homogeneous
medium with permittivity ε1 and permeability µ1.

The field E(r)must be also a solution of the Maxwell equations without sources. There-
fore, we can write

∇×
(

1

µ(r)
∇×E (r)

)
− ω2ε(r)E (r) = 0→

∇×
(

1

µ(r)
∇× (Escat (r) + Einc (r))

)
− ω2ε(r) (Escat (r) + Einc (r)) = 0→

∇×
(

1

µ(r)
∇×Escat (r)

)
− ω2ε(r)Escat (r) = ∇×

(
1

µ(r)
∇×Einc (r)

)
− ω2ε(r)Einc (r) .

(2.49)

Because the fieldEinc(r) fulfills Maxwell’s equations in the embeddingmedium, the term
on the right hand side of the above equation is different from zero only within the object,
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where ε(r) 6= ε1 and µ(r) 6= µ1. This term effectively act as a source and the problem can
be stated as a radiative problem of localized sources for the scattered fieldEscat(r).

Aditionally, the scattered fieldEscat(r)must satisfy the Silver-Müller outwards radiation
condition. In a linear, homogeneous, and isotropic medium, the Silver-Müller radiation
condition for time harmonic fields reads as ([40] Eqn. 1.20)

lim
r→∞

[(
1√
µ1
∇×Escat (r)

)
× r− |r|iω√ε1Escat (r)

]
= 0. (2.50)

Solving Eqn. (2.49) together with Eqn. (2.50) ensures the existence of a unique solution
for scattering problems ([40] section 3.2.3).

Once the scattered field is known, many interesting quantities of practical relevance can
be obtained, e.g., the time averaged power absorbed, Pabs, or scattered, Pscat, by the ob-
ject. The sum of both quantities, i.e., the total power taken from the illumination field
by the object, is called the extinction power, Pext. These quantities are normally given
as cross sections, i.e., as powers normalized by the time averaged power flux of the given
illumination, |〈Sinc〉|,

σabs =
Pabs

|〈Sinc〉|
, σscat =

Pscat

|〈Sinc〉|
, σext =

Pext

|〈Sinc〉|
. (2.51)

If |〈Sinc〉| can not be assumed to be homogeneous over the volume of the scatterer, the av-
erage of |〈Sinc〉| (r)over its volumemust thenbe considered in the above expressions.

Considering the expansions of the illumination and scattered fields into regular and ra-
diative vector spherical wave functions, respectively, the absorption and extinction cross
sections for plane wave illumination can be expressed as (see, e.g., [42] Eqns. 5.18a-
5.18b)

σscat =
1

k2|A|2
∞∑

n=1

n∑

m=−n

(
|am,n|2 + |bm,n|2

)
, (2.52)

σext =
1

k2|A|2
∞∑

n=1

n∑

m=−n
Re
(
cpw,m,na

∗
m,n + dpw,m,nb

∗
m,n

)
, (2.53)

where cpw,m,n and dpw,m,n are the coefficients of themultipole expansion for a planewave,
Eqns. (B.2)-(B.3).

The helicity operator

This section introduces the helicity operator and its link to the polarization state of plane
waves and vector spherical wave functions. These concepts play an important role in the
study of chiral light matter interactions and they will be used along chapters 4 and 5. All
the information presented in this section was obtained from [45].

The helicity operator Λ is defined as the projection of the total angular momentum op-
erator, J, onto the direction of the linear momentum operator, P,

Λ =
J ·P
|P| . (2.54)

For monochromatic fields, Λ can be represented as
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Λ =
∇×
k
. (2.55)

The helicity operator has two different eigenvalues, λ = ±1. The associated eigenvectors,
G±(r), are the Rieman-Silberstein linear combinations [46]

G±(r) =
1√
2

(E(r)± iZH(r)) , (2.56)

where Z =
√
µ/ε is the impedance of the medium.

The eigenvalues of the helicity operator can be used as an index that defines the polar-
ization state of a given field. For plane waves, the fields of pure helicity correspond to cir-
cularly polarized plane waves. Right handed circularly polarized plane waves are eigen-
states of the helicity operator with eigenvalue +1 and left handed circularly polarized
plane waves are eigenvectors with eigenvalue equal to -1. That is, for a right circularly
polarized plane wave, the combinationG−(r) is always zero. Actually, the link between
eigenvectors of the helicity operator and circularly polarized plane waves is broader. The
plane wave decomposition of any field that is an eigenvector of the helicity operator with
eigenvalue +1(-1) contains only right(left) circularly polarized plane waves. This relation
goes also in the other direction. If a field is composed of only right handed or left handed
circularly polarized plane waves, then this field is an eigenvector of the helicity operator
with eigenvalue +1 or -1, respectively.

Similarly, one finds a relation between the VSWFs, presented in section 2.2, and the
eigenvectorsG±(r). Using the representation of Λ given by Eqn. (2.55) and Eqns. (2.41)-
(2.42), it can be seen that the linear combination of the electric and magnetic vector
spherical waves of the same multipolar orderm, multipolar degree n, and radial depen-
dence J

G(J),+
m,n (r) =

N
(J),+
m,n (r) + M

(J),+
m,n (r)√

2
, (2.57)

G(J),−
m,n (r) =

N
(J),+
m,n (r)−M

(J),+
m,n (r)√

2
, (2.58)

are eigenvectors of Λ,

ΛG(J),±
m,n (r) = ±G(J),±

m,n (r). (2.59)

Therefore, it is possible to expand a field, solution to the wave equation, into a basis of
vector spherical waves of well defined helicity. Based on the things said above, it follows
that a circularly polarized plane wave can be expanded only by the fields G(J),+

m,n (r) or
G

(J),−
m,n (r) depending on its handedness. The coefficients of this decomposition can be

derived from Eqn. (B.2)-(B.3). This link between circularly polarized plane waves and the
fieldsG(J),+

m,n (r) andG(J),−
m,n (r) will be used in sections 4.3 and 5.1.

Waveguide theory

This sections presents the basics of waveguide theory. The concepts presented here will
later become useful, when we present the optimization of a waveguide coupler in sec-
tion 5.2.
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x

y

Figure 2.2: Sketch of a dielectric rectangular waveguide. The
waveguide has a rectangular core with permittivity εco. The core
is surrounded by the cladding, which extends till infinity and has a
permittivity εcl. The geometry of the waveguide is invariant along
z-direction.

An optical waveguide is a photonic structure used to propagate light in a confined man-
ner. In its basic architecture, the waveguide consists of two regions with two different
material properties: the waveguide core and the cladding. In all-dielectric waveguides,
the permittivity of the core, εco, is higher than that of the cladding, εcl. This keeps light
beams confined within the core due to total internal reflection [47]. Figure 2.2 shows a
sketch of the cross section of a basic all-dielectric waveguide. The waveguide has a core
with a rectangular cross section and it is invariant along a third direction, in this case we
will use the z-axis as the invariant direction. The cladding, with permittivity equal to εcl,
extends to infinity.

If the material properties of a waveguide are invariant along the z-direction, one can
express the solution ofMaxwell’s equations as a superposition of fieldswith the form ([48]
section 30-1)

E(r) = E(x, y)eikzz, (2.60)

H(r) = H(x, y)eikzz. (2.61)

Such an Ansatz basically respects the invariance of the geomtery in the z-direction by us-
ing a plane wave Ansatz for the dependency along z. It is furthermore useful, for transla-
tional invariantwaveguides, to decompose thefields into transverse and z-components,

E(r) = (Et(x, y) + Ez(x, y)ẑ) eikzz, (2.62)

H(r) = (Ht(x, y) +Hz(x, y)ẑ) eikzz. (2.63)

Such decomposition allows for waveguides invariant in z-direction to write solutions to
Maxwell’s equations as a pair of coupled equations between only the z-components of
the fields ([48] section 30-8),
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(
∇2
t + k2

t

)
Ez (x, y)− k2

z

k2
t (x, y)

∇tEz(x, y) · ∇tln (ε(x, y)) =

− Z0
k0kz
kt(x, y)

ẑ · (∇tHz(x, y)×∇tln (ε(x, y))) , (2.64)

(
∇2
t + k2

t (x, y)
)
Hz (x, y)− ε(x, y)k2

0

k2
t

∇tHz(x, y) · ∇tln (ε(x, y)) =

1

Z0

ε(x, y)k0kz
kt(x, y)

ẑ · (∇tEz(x, y)×∇tln (ε(x, y))) , (2.65)

where Z0 is the impedance of free space and k2
t = k2

0 ε(x, y)− k2
z .

The transverse components can be obtained from the solutions of the z-components ([48]
Eqn. 11-43).

The above equations describe an eigenvalue problem. One needs to determine the values
of the fields and the propagation constant kz that together solve Eqns. (2.64)-(2.65). The
solutions can be separated into a finite set of guided modes, Em(r), and a radiative field
Erad(r) as

E(r) =
∑

m

(
amEm(x, y)eikz,mz + a−mE−m(x, y)e−ikz,mz

)
+ Erad(r) (2.66)

The guidedmodes are solutions forwhich the field ismainly guidedwithin the core region
andwhose power does not decay along the propagation direction z. That is, the imaginary
part of the propagation constant kz,m of a guided mode equals to zero. However, the
existence of guided modes is not assured in any waveguide and for any frequency. Their
existence strongly depends on the dimensions of the waveguide core and on the material
properties. The larger the waveguide core, the more likely that more guided modes are
sustained. The propagation constant of the guided modes is bounded by the relation
k2

0εcl ≤ kz,m ≤ k2
0εco. The mode with the largest real part of the propagation constant

kz is called the fundamental mode. The associated mode subscript given to this mode is
usually the zero, E0(r).

Looking at Eqn. (2.64), one can see that the z-components of the electric and magnetic
fields are coupled by the term ln (ε(x, y)). In some situations, the modes are decoupled
and one can obtain solutions withEz(x, y) = 0, called transverse electric (TE)modes, and
solutionswithHz(x, y) = 0, called transversemagnetic (TM)modes. However, except in a
few very specific cases, e.g., waveguides with a perfect electric conductor cladding or pla-
nar waveguides, both TE and TM fields are present in the same mode. These last modes
are called hybrid modes. Still, in all-dielectric waveguides with homogeneous permittiv-
ities in the core and the cladding it is often the case that the magnitude of one of the TE
or TM components of a hybrid mode is much stronger than the other.

The guidedmodes of awaveguide fulfill orthogonality relations between them ([48] Eqn. 11-
14), ∫

S∞

(Em(r)×Hn(r)) · ẑdS = 2δm,n; m 6= n. (2.67)

and also with the radiative field ([48] Eqn. 11-11),
∫

S∞

(Em(r)×Hrad(r)) · ẑdS = 0. (2.68)
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These orthogonal relations are important, e.g., to compute the coupling strength of a
given field Escat(r) at the end facet of the waveguide into the different guided modes of
the waveguide ([48] Eqn. 20-2),

ai =
1

2

∫

S∞

(Escat(r)×Hm(r)) · ẑdS. (2.69)

Equation (2.67) assumes that the guided modes used to expand the field in Eqn. (2.66)
are set to have unit norm. In this case, the power carried along the waveguide by each
normalized guided mode is given by

Pm,i = |am,i|2. (2.70)

Equations (2.69) and (2.70) will be used to measure the performance of waveguide cou-
plers in section 5.2.

2.3 The finite element method

As we have seen in section 2.2, the values of the electromagnetic field produced by os-
cillating charges are given by Maxwell’s equations. By solving this set of equations, one
gets access to the values of the fields and to other derived quantities, e.g., power losses,
power radiated, etc.

When focusing on the design of a photonic structure, it is fundamental to know the value
of the electromagnetic field when one aims to optimize the structure, as any value that
measures the performance of the design will depend on the values of the electromag-
netic field at or within certain spatial regions. However, except in some selected simple
cases, as for example for an infinitely extended homogeneous medium, the solution to
Maxwell’s equations can not be obtained by analytical means anymore. Instead, one then
needs to solve them numerically.

There exist a wide range of numerical methods used to solve Maxwell’s equations. The
choice between them depends on different characteristics of the problem, such as the
geometry and materials of the structures, if one is interested in obtaining the time evo-
lution of the fields or only in solving it for a specific time harmonic excitation, etc. Some
methods, such as the finite-difference time-domain (see, e.g., [49, 50] and [51] chapter
3), the finite-difference frequency-domain [52–54], the finite elementmethod [55–59], or
the boundary integral method, are very versatile in terms of the types of geometries that
they can solve. Other methods are meant to solve Maxwell’s equations in more specific
situations, such as plane wave propagation in stratified media [60, 61] or light scattering
by spheres [42, 62, 63]. For these specific cases, using the specialized methods generally
leads to shorter calculation times.

This thesis will develop around the use of the finite element method. We aim to develop
an optimization strategy to find optimal shapes for generally complex photonic struc-
tures. In this context, a versatile numerically method is needed. The choice of the finite
element method is based on its ability to accurately model complicated geometries. Fur-
thermore, the finite element method allows to calculate the derivatives of the electro-
magnetic field with respect to parameters used to parametrize the shape of a structure.
Having access to the shape derivatives of the electromagnetic field can speed up consid-
erably the optimization process, as we will discuss in the next chapter.

In the following sections, we present the basics of the finite element method and of the
calculation of the field derivatives with respect to the design parameters of the geometry
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of the model. Although in the thesis we rely on the commercial finite element package
for solving Maxwell’s equations JCMsuite [57, 58], the description of the finite element
method is given with a significant level of detail regarding some of its working principles.
The reason behind this detailed description is that it is necessary to understand suffi-
ciently well how the process of computing the derivatives of the electromagnetic field
works. This applies particularly to the case of shape derivatives. Given the importance
that the calculation and use of the shape derivatives have in this thesis, we consider it
appropiate.

Description of the method

If onewants to describe what the finite elementmethod is in a fewwords, one could prob-
ably list the main characteristics of the method: the discretization of the geometry into
small patches, the use of polynomial vector basis functions to expand the electromag-
netic field onto these patches, and the use of the weak formulation of Maxwell’s equa-
tions to build a linear system of equations that solves for the amplitudes of each of these
basis functions on each individual patch.

We proceed now to describe these main steps that compose the method. To make the
process simpler to understand, we use a simple two-dimensional toy example to which
we will apply some of the steps. The toy example, whose schematic is shown in Fig. 2.3,
consists of a two dimensional model of an infinitely extended cylinder with a circular
cross section made from a dielectric material embedded into a free space squared cavity.
The cavity is bound by perfect electric conductor walls and the system is excited with a
line source placed above the cylinder. The geometry of this model is infinitely extended
in the ±z-directions.

Thefirst step in the process of solvingMaxwell’s equationswith thefinite elementmethod
is the creation of a computer geometrical model of the problem. When defining the prob-
lem to solve, one needs to describe the geometries and materials that composes it. To do
that, a CAD software is generally used [64–68]. Figure 2.3a shows a visual representation
of the example model. After the geomtery of the problem is defined, a mesh genera-
tor [69] discretizes the geometry into connected simpler geometrical shapes. Triangles
and rectangles in two dimensional models and tetrahedrals or hexahedrals in three di-
mensionalmodels are themain geometrical basis elements employed in the FEMmethod.
Figure 2.3b, shows the discretization T of the example geometry. In the example, the dis-
cretization T is composed of a number of triangles Ti, T = ∪Ti.

A good quality mesh is important to obtain accurate solutions. The quality of the mesh
can be established by a series of different properties of the mesh elements (see, e.g., [70]
chapter 15). Among them, the discretization of the geometry should havemesh elements
with a low aspect ratio, i.e., with a small difference between the length of its edges. The
faces of the mesh elements should be as close to ideal as possible, and the transition in
the size of the mesh elements should be smooth. After producing a discretization, the
mesh generators performs a series of quality measures to identify mesh elements with
poor quality [71, 72] and to replace them with elements of higher quality.

To solve the electromagnetic field, the finite element method uses the weak formulation
of Maxwell’s equations (see, e.g., [56] chapter 4). For time harmonic fields, this can be
obtained by multiplying the wave equation, Eqn. (2.23), with a test functionU(r) ∈ S =
H(curl,Ω) and then integrating the expression across the computational domainΩ,
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Figure 2.3: a. Two dimensional model used to describe how to
solve the electromagnetic field in a geometry using the finite el-
ement method. The model consist of a square, free space, cavity
bounded by perfect electric conductor walls. Centered inside the
cavity, there is a cylinder of radius R = 200 nm made from a mate-
rial with permittivity ε2 = 2.5. The cavity is excited by a line source
with an excitationwavelength of λ0 = 450 nm. b. Finite element dis-
cretization of the computational domain Ω shown in figure a. The
domain Ω is discretized into a series of connected triangles Ti that
compose the discretization T .

∫

Ω

{
U∗ (r) ·

(
1

µ (r)
(∇×E (r))− ω2ε (r)E (r)

)}
dV =

∫

Ω
iωU∗ (r) · J (r) dS. (2.71)

The Sobolev space S = H(curl,Ω) is the vector space composed by the functions that
have a finite L2 norm and whose curl has also a finite L2 norm.

Applying a partial integration to the left hand side of Eqn. 2.71, the solution toMaxwell’s
equations can be stated as [58]: Find the field E (r) ∈ S such that,

∫

Ω

1

µ (r)
(∇×E (r)) · (∇×U∗ (r))− ω2ε (r)E (r) ·U∗ (r) dV =

∫

Ω
iωJ (r) ·U∗ (r) dV

−
∫

∂Ω
U∗ (r) · F (r) dS ∀U ∈ S, (2.72)

where F(r) expresses a given Neuman boundary condition,

F(r) = n (r)×
(

1

µ (r)
∇×E (r)

)
, (2.73)

with n (r) being the unitary vector normal to the boundary ∂Ω of the computational do-
main Ω.

Depending on the type of problem that one wants to solve, different boundary conditions
must be applied. Examples are the perfect electric conductor boundary condition, n (r)×
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(
1

µ(r)∇×E (r)
)

= 0, periodic boundary conditions for gratings or photonic crystals ([73]
chapter 5), or implementations of the radiation condition using perfectly matched lay-
ers [74–76] used to solve scattering problems.

The definition of E (r) and U (r) as elements of the Sobolev space S = H (curl,Ω) of
complex valued vectors allows for solutions that present discontinuities at some points
of space. Note that such discontinuities in the electric and magnetic fields are often en-
countered on the boundaries between domains with different material properties.

Defining the bilinear and linear functionals a(u,v) and f(u),

a(u,v) =

∫

Ω
(∇× u∗ (r)) · 1

µ (r)
(∇× v (r))− ω2ε (r)u∗ (r) · v (r) dV , (2.74)

f(u, j) =

∫

Ω
iωu∗ (r) · j (r) dV −

∫

∂Ω
u∗ (r) · F (r) dS, (2.75)

the solution of Maxwell’s equations requires to find the field E (r) ∈ S such that,

a(U,E) = f(U), ∀U ∈ S. (2.76)

To numerically solve Eqn. (2.72), a finite set of basis functions ei(r) ∈ S are used to
construct an approximate solution, Eh(r), of E(r),

Eh(r) =

Nh∑

i=1

eh,ibi(r). (2.77)

The basis functions bi(r) generate a subspace Sh ⊂ S. The discretized system that ap-
proximates Maxwell’s equations can be solved by finding a solution Eh(r) ∈ Sh such
that

a(Uh,Eh) = f(Uh), ∀Uh ∈ Sh. (2.78)

The basis functionsbi(r) are generally polynomials of a certain degree nwhose support is
contained in just one or a few patches of the discretization. Generally, the basis elements
used to solveMaxwell’s equations are combinations of the so called Nédelec or edge basis
elements [77]. These elements ensure the continuity of the tangential components of the
fields E(r) andH(r) across the boundaries between neighboring patches.

One example of two dimensional vector elements are the Nédelec elements of order 1.
They are shown in Fig. 2.4 for the case of a isosceles right triangle with shorter sides of
length 1, T0. Their values are given by the below equations [58]

n1(x, y) = (1− y) x̂ + x ŷ, (2.79)
n2(x, y) = −y x̂ + x ŷ, (2.80)
n3(x, y) = −y x̂ + (x− 1) ŷ. (2.81)

(2.82)

The support of these basis elements lays on the reference triangle T0. This triangle is just
a reference triangle, not part of the triangularization of the geometry, T . The expression
of the Nédelec functions on each triangle Ti, ni,m(r) with m ∈ {1, 2, 3}, depends on the
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Figure 2.4: Vector basis functions n1(x, y), n2(x, y), and n3(x, y) of
degree n = 1 used to expand the solution of the electric field in a ref-
erence isosceles right triangle T0. The vector functions are defined
by Eqns. (2.79)-(2.81).

values of the vertices of Ti, (xv,i1, yv,i1), (xv,i2, yv,i2), and (xv,i3, yv,i3). Instead of calcu-
lating the values of these functions explicitly, one could use the fact that every triangle
can be mapped into the reference isosceles right triangle T0 shown in Fig. 2.4 using the
transformation

[
x
y

]
=

[
xv,i1

yv,i1

]
+ T i

[
x
y

]
=

[
xv,i1

yv,i1

]
+

[
xv,i2 − xv,i1 xv,i3 − xv,i1

yv,i2 − yv,i1 yv,i3 − yv,i1

] [
x
y

]
. (2.83)

When using the Nédelec elements of order 1, each one of the global basis functions bi(r)
of Eqn. (2.77) is defined over two triangles that share one edge. In each one of the trian-
gles, the values of bi(r) are given by one of the three Nédelec functions defined on it. For
first order elements, there is only one global basis function bi(r) associated to each edge
of the discretization.

Once a discretization of the geometry and a set of basis functions over it is established,
the problem given by Eqn. (2.78) can be solved. To fulfill Eqn. (2.78) for every Uh in
Sh is equivalent to fulfill it for each element bi(r) of the basis. Applying Eqn. (2.78) to
each vector function of the basis that expands Sh leads to a system of linear equations
described by a matrix A and a right hand side vector f ,

Aeh = f , (2.84)

where eh is the vector composed by the amplitudes eh,i of the expansion givenbyEqn. (2.77).
The elements A[i,j] of the system matrix A are given by

A[i,j] = a(bi,bj). (2.85)

The entries of the vector f can be similarly obtained from the evaluation of the linear
functional

f[i] = f(bi). (2.86)

Let us use the toy example described in Fig. 2.3 to showparts of the steps used to calculate
matrixA. As the geometry and the source of the example are z invariant, two independent
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solutions, both depending only on the x and y coordinates can be obtained. The electric
field of one of the solutions has only x and y-components, the other solution has only
a z-component [78]. Here we will describe the process for the vectorial solution, with x
and y-components, using the two-dimensional Nédelec elements of degree one. Let us
note that these first order elements are rarely used, as the trade-off between the accuracy
of the result and the computational costs is generally not favourable to the use of these
basis elements. We use them here because of their simplicity with respect to other basis
elements of a higher polynomial degree. The idea here is to present the main techniques
used in the implementation of the finite element method for a rather simple example.
However, the main concepts can be easily extrapolated to problems that use higher order
polynomial basis functions and that are defined in three dimensional geometries.

As said before, for the case of the Nédelec elements of degree one, the basis elements
bi(r) have support on only two neighboured triangles. Thatmeans that only a few entries
A[i,j] for each fixed row i are non-zero. Those correspond to the basis elements bj(r)
whose support overlaps with the support of bi(r). For all the other basis functions, the
bilinear functional a(bi(r),bj(r)) of Eqn. (2.85) will be zero. The overlap region between
two different overlapping basis elements bi(r) and bj(r) is only one of the triangles of
the discretization T . Let us denote this triangle by Tt. That is, Tt is the triangle contained
in the support of the two global basis functions bi(r) and bj(r). The values of bi(r) and
bj(r) on Tt are given by two of the threeNédelec elements defined on this triangle. We can
denote them, e.g., by nt,l(i)(r) and nt,l(j)(r) respectively. That is, the function l(i) gives
the index in the set of local Nédelec vector functions on the triangle Tt corresponding to
the global basis function bi(r).

Let us compute the entryA[i,j]. As in this example the permittivy and the permeability are
scalar homogeneous values within each triangle Ti, they can be taken out of the integrals
and one obtains,

A[i,j] =
1

µ

∫

Tt
(∇× b∗i (r)) · (∇× bj (r)) dxdy − ω2εTt

∫

Tt
b∗i (r) · bj (r) dxdy, (2.87)

A[i,j] =
1

µ

∫

Tt

(
∇× n∗t,l(i) (r)

)
·
(
∇× nt,l(j) (r)

)
dxdy

− ω2εTt

∫

Tt
n∗t,l(i) (r) · nt,l(j) (r) dxdy. (2.88)

Using the the mapping given by Eqn. (2.83), Eqn. (2.87) can be described as a function
of the Nédelec basis functions defined in the reference triangle T0 given by Eqns. (2.79)-
(2.81) ([79] section 1.7.4),

A[i,j] = +
1

µ

1

det(T t)

∫

T0

(
∇× n∗l(i) (x, y)

)
·
(
Gt
(
∇× nl(j) (x, y)

))
dxdy

− ω2εTtdet(T t)

∫

T0
n∗l(i) (x, y) ·

(
N tnl(j) (x, y)

)
dxdy, (2.89)

withGi andN i being the covariant and contravariantmetric tensors, result of the change
of vector fields under the linear mapping for the triangle Ti. Their expressions are given
by

Gi[l,m] =

ndim∑

ν=1

T i,[ν,l] T i,[ν,m], (2.90)

N i
[l,m] =

ndim∑

ν=1

(
T−Ti

)
[ν,l]

(
T−Ti

)
[ν,m]

. (2.91)
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Using some linear algebra, one can obtain an equivalent expression to Eqn. (2.89) which
involves integrals whose values are not dependent on the specific triangle. In this way,
it is possible to obtain the complete matrix A without having to calculate the integrals
for each entry of the matrix. As example, the second integral term of Eqn. (2.89) can be
expressed as

ω2εTidet(T t)
2∑

ν=1

2∑

η=1

N t
[ν,η]

∫

T0
n∗l(i) (x, y) · êν

(
êη · nl(j) (x, y)

)
dxdy = (2.92)

ω2εTidet(T t)
2∑

ν=1

2∑

η=1

N t
[ν,η]I

l(i),l(j),2
ν,η . (2.93)

Similar integrals can be obtained for the first integral of the right hand side of Eqn. (2.89),
I
l(i),l(j),1
ν,η . One obtains

A[i,j] = +
1

µ

1

det(T t)

ndim∑

ν=1

ndim∑

η=1

Gt[ν,η]I
l(i),l(j),1
ν,η − ω2εTtdet(T t)

ndim∑

ν=1

ndim∑

η=1

N t
[ν,η]I

l(i),l(j),2
ν,η . (2.94)

As one can see, once the integral values I l(i),l(j),2ν,η are obtained, the entry of each matrix
is just given by the values of the material properties and the linear mapping between the
triangles Ti and the reference triangle T0.

Once computed the systemmatrix, one needs to obtain the right hand side of Eqn. (2.84)
and solve the linear system. In the example of the circle, as the walls are assumed to be
perfect electric conductor, the only entries in f would come from the integral evaluation
of the line source over the triangle where the source is placed.

Shape and material derivatives

In many cases along this thesis we are optimizing different nanostructures for which we
will exploit the use of derivative information. What this means is that, during the opti-
mization process, we will compute how a merit function fob(x), that measures the per-
formance of the nanostructure, changes with respect to an infinitesimal change of the
design variables xi that parametrize the shape of the structure or its material properties.
To obtain those quantities, a required intermediate step is the calculation of the deriva-
tives of the solution of the electromagnetic field with respect to those design variables
xi. That holds because fob(x) will be in all the considered cases a function dependent on
the solution of the field E(r). This section describes how to calculate the shape and ma-
terial derivatives of the fieldE(r) obtained with the finite element method. As we did for
describing the finite element method itself, we will use the example of Fig. 2.3 to show
the process.

A fieldEh(r) obtained with the finite element method is the solution of the linear system
of equations given by Eqn. (2.84). If one differentiates Eqn. (2.84) with respect to a design
parameter xi one obtains

dA

dxi
eh +A

deh
dxi

=
df

dxi
→

deh
dxi

= A−1

(
− dA

dxi
eh +

df

dxi

)
. (2.95)
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Therefore, to obtain the desired quantity dEh
dxi

, oneneeds to calculate the derivatives of the
systemmatrixA and the right hand side term f . Let us note that the inverse of the matrix
Ahas previously already been calculatedwhile solving Eqn. (2.84). A further computation
is not necessary, which clearly highlight the use of the finite element method for our
problems at this level already.

Let us now use the toy example of the perfect electric conductor cavity to describe the
details of this calculation. We aim to compute the derivatives of Eh with respect to the
permittivity ε2 and the radius R of the cylinder. Let us first describe how to compute the
derivatives with respect to ε2.

Equation 2.89 shows how to obtain the entries of the systemmatrixA linked to the trian-
gle Tt of the discretization when the solution of Maxwell’s equations are approximated
by the edge basis elements bi(r). For the triangles that discretize the cylinder, the per-
mittivity entries εTt are equal to ε2. Therefore, the derivatives of the entries of the matrix
with respect to ε2 will equal

dA[i,j]

dε2
= −ω2det(T t)

2∑

ν=1

2∑

η=1

Gt[ν,η]I
l(i),l(j)
ν,η , (2.96)

This calculation needs to be done for all the pairs of basis functions with support on the
the circle and it will be equal to 0 for the rest of the entries of A.

As one can see, once the matrix A has been computed and if the values of the second
integral terms givenbyEqn. (2.92)were stored, obtaining the derivatives ofAwith respect
to the permittivities does not involve any extra computational effort.

Figure 2.5: Calculation of the shape derivative of the finite element
discretizationwith respect to the radius of the circle,R. The change
in the radius imply a change of the position of the vertices that com-
pose the boundary of the circle. The calculation of the shape deriva-
tives of the mesh discretization is one of the main steps necessary
to compute the shape derivatives of the electromagnetic field with
the finite element method.

Computing the shape derivatives, i.e., the derivatives of the solution Eh with respect to
some parameter that describes some feature of the structure, is a similar process. How-
ever, it is a slightly more complicated task. The first step is to determine how the dis-
cretization of the structure changes with an infinitesimal change of the design parameter
xi. In the example of the cylinder, we chose the radius R. If one changes the radius, the
vertices of the triangles that compose the boundary of the circle will move in radial di-
rection with respect to the center of the cylinder, as shown in Fig. 2.5. Depending of the
complexity of the geometry, obtaining the derivatives of the vertices can be a non-trivial
task.
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Once the derivatives of the mesh vertices, d(xvt, yvt)/dR, are obtained, one can obtain
the derivatives of the matrices T t by applying the chain rule. These matrices describe
the mapping between the triangles Tt and the reference triangle T0. From there, one can
obtain the derivative of the determinant of T t, applying Jacobi’s formula ([80] chapter 8),
and of the matrices N t and Gt.

Once all these derivatives are obtained, the shape derivative of the entries of the matrix
linked to the triangle Tt can be calculated,

dA[i,j]

dR
= +

1

µ

1

det(T t)
2

2∑

ν=1

2∑

η=1

(
dGt[ν,η]

dR
det(T t)−

d det(T t)

dR
Gt[ν,η]

)
I l(i),l(j),1ν,η

− ω2εTtdet(T t)
2∑

ν=1

2∑

η=1

(
dN t

[ν,η]

dR
det(T t) +

d det(T t)

dR
N t

[ν,η]

)
I l(i),l(j),2ν,η . (2.97)

With this last step, the process of computing dA
dR is concluded.

As already commented at the beginning of section 2.3, we use the software JCMsuite [57,
58] for the finite element calculations done in this thesis. The same also applies for the
calculation of the shape and material derivatives. Once described all the processes re-
quired to obtain the solution of the electromagnetic field for the toy example of the cavity,
one can get an idea of how the complexity of the problem scales when one considers prob-
lems in three dimensions, with more complicated structures, different types of boundary
conditions and using basis elements of a higher polynomial degree.

Although JCMsuite already integratesmost of the features to compute the shape andma-
terial derivatives, the task of calculating the shape derivatives of themesh elementsmust
be done by the user. This task is different depending on the type of structure. For two
dimensional structures or three dimensional structures that can be defined as extrusions
of two dimensional models along a third dimension, we can directly provide the deriva-
tives of the geometry during the step of defining the computational model. This type
of geometries are frequently encountered in structures fabricated by photolithographic
processes. This method is used, e.g., in section 5.2 to optimize a freeform waveguide
coupler.

For more complex three dimensional models, the procedure is a little bit more elabo-
rated. First, the computational domain needs to be discretized. Once themesh is created,
JCMsuite will return the vertices of the boundary of the structure aimed to differentiate.
Then, in a Python script, we need to retrieve the values of the design parameters xi corre-
sponding to each vertex and compute the corresponding shape derivatives of the vertices.
The derivatives of the vertices are then returned to JCMsuite. The rest of the process de-
scribed in this section is then automatically performed by JCMsuite. We use this second
methodology to compute the shape derivatives of helices in, e.g., section 5.1.

Regarding the reuse of the discretization mesh between different simulations in an op-
timization process, we choose to recalculate it for each new simulation. The other op-
tion would be to simply change the vertices of the mesh when one needs to simulate
geometries which are very similar to each other. First, as we will mainly perform global
optimization, it is usually not the case that the geometries of consecutive iterations are
similar. Secondly, even in case of doing some local optimization, the step size can be
large enough such that remeshing is needed to avoid bad quality mesh elements. In
any case, the time needed to perform the meshing is a small fraction with respect to the
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time needed to solve the linear system. Therefore, the benefit gained with this process
does not generally compensate the increase in complexity required for its implementa-
tion.

The direct and the adjoint methods

The previous section explained how to obtain the shape andmaterial derivatives of the fi-
nite elementmethod solution for the electric field. In the process of designing a photonic
structure, these derivatives are an intermediate step necessary to obtain the aimed shape
and material derivatives of a given merit function fob(x). To obtain these last quantities,
there are twomainmethods that one can use: the direct method and the adjoint method.
We proceed now to describe both methods and their main differences. Based on their
characteristics, we finally discuss why we choose the direct method as the method used
in this thesis.

Let us first shortly review themain results of the finite elementmethod that we described
above. The solution of the electromagnetic field in a problem solved with the finite ele-
ment method is given by a vector eh that contains the coefficients of the expansion of the
field into a set of vector basis functions. This vector eh is the solution of a linear system
of equations given by Eqn. (2.84). Once the solution of the field is obtained, one can use
it, together with the decomposition of the system matrix A, to compute shape and ma-
terial derivatives of eh with respect to different design variables. The procedure is given
by Eqn. (2.95).

Now we want to go one step further and calculate the derivatives of the merit function,
fob(x), that measures the performance of the structure aimed to design. The merit func-
tion is a function of n different design parameters x = [x1, ..., xn]T that parametrize the
structure. However, this is usually an indirect dependence. Because of themerit function
measures the performance of a photonic structure, its values will directly depend on the
values of the electric fieldEh(r) at certain regions of space. Equivalently, theywill depend
on the values of the vector eh given by Eqn. (2.84). The dependence of the merit function
with the design variables [x1, ..., xn] comes from the fact that the variables parametrize
the structure, therefore the solution of eh is a function of these variables,

fob(x1, ..., xn) = fob (Eh (x1, ..., xn)) . (2.98)

If one wants to obtain the derivatives of the objective function with respect to the design
variables, one simply needs to propagate the derivatives using the chain rule,

dfob(x)

dxi
=

dfob(x)

deTh

deh
dx1

. (2.99)

Using Eqn. (2.95) one gets

dfob(x)

dxi
= −dfob(x)

deTh
A−1 dA

dxi
eh, (2.100)

where we have assumed that the term accounting for the illumination does not depend
on the design variables.

The above equation describes the procedure that onewould follow to compute the deriva-
tives using the direct method [81–83] within the finite element method. It is important
to note that the actual inverse of the system matrix A is not computed when using the
finite element method. The use of the actual inverse of a matrix is rarely used in compu-
tational methods, as it is an unstable technique. Instead, one usually calculates the LU
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factorization (see, e.g., [84] lecture 20) of matrix A and uses this factorization to solve a
linear system through forward and back substitutions. The reason why this is important
has to do with the use of the adjoint method.

To not have to solve a linear system for every design parameter xi, one can exploit the
below property of the adjoint of an operator,

dfob(x)

deTh
A−1 dA

dxi
eh =

((
A†
)−1 dfob(x)

deh

)T dA

dxi
eh, (2.101)

with the superscript † denoting the transpose complex conjugated of a matrix.
Solving the below system

A†λ =
dfob(x)

deh
, (2.102)

one can obtain the derivatives of themerit functionwith respect to the design parameters
as

dfob(x)

dxi
= −λT dA

dxi
eh. (2.103)

This procedure is called the adjoint method [82, 85, 86]. As one can see, the adjoint
method requires to solve another system of equations, Eqn. (2.102). However, once this
is done, obtaining the design derivatives with respect to each parameter does not require
any extra Gaussian elimination.

Regarding the computational overhead, computing the design derivatives with the direct
method requires a matrix-vector multiplication, then a posterior Gaussian elimination,
and a final vector-vector multiplication. All this operations need to be repeated for each
design parameter. The adjoint method requires to initially calculate a LU factorization
for the adjoint system, Eqn. (2.102), and then it requires to perform a matrix-vector mul-
tiplication and a vector-vector multiplication per design parameter. If the system ma-
trix A of the finite element method were dense and one would need to solve the adjoint
system, then the advantages of using the adjoint method would be negligible in almost
any situation due to the computational overhead of computing the LU factorization for
the adjoint system. However, because the matrix A is a sparse matrix, there are some
problems in which using the adjoint method results to be more efficient than the direct
method. These problems are the problems where the number of design parameters xi are
in the order of the number of unknowns of the finite element system.

Topology optimization of photonic devices [25, 26, 87, 88] is one of the cases where the
use of the adjointmethod results usuallymore efficient than the use of the directmethod.
In these problems, one aims to obtain the derivatives with respect to the permittivity val-
ues of a big number of discretization elements εTi . We saw in the previous section that
computing the derivative of A with respect to the permittivity value εTi requires a negli-
gible computational overhead. Furthermore, dA/dxi will have only a very small number
of entries different than zero, and the time required by the matrix-vector multiplication
could be also neglected. Therefore, the computational overhead per design parameter
would be mainly given by the vector-vector multiplication. Moreover, if the simulated
structure does not present absorption, the physical problem is hermitian and the LU fac-
torization of the adjoint system is not required to solve it.

Because in this thesis we focus in problems of shape optimization, with structures pa-
rametrized with a maximum number of a few tens of parameters, the direct method re-
sults more efficient to compute the shape andmaterial derivatives. This is, therefore, the
method that we use in this thesis.
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3.1 Introduction

The process of designing an optimal nanophotonic device consists in finding the combi-
nation of materials and geometry that results in a device with the best performance. The
materials and geometries available for the design are often constrained by limitations of
fabrication technology, costs, and time requirements. To find the optimal design, one
needs to describe the set of feasible geometries and materials with a parametrization
that uses a vector of d design variables x = [x1, x2, ..., xd]

T . The set of all possible points
x composes the design space D of the device. Then, a numerical method is needed to
measure the performance of each possible device characterized by x with the use of an
objective function, fob(x).The aim of the game is to find the point xopt in the design space
that fulfills

fob(xopt) ≤ fob(x) ∀x ∈ D. (3.1)

That corresponds to finding the global optimum. The maximum theoretically perfor-
mance achievable by the optimization is directly limited by the chosen parametrization,
i.e., by the range of possible devices considered. Generally, the higher the number of pa-
rameters used in the design space, the larger the range of devices that one can address.
However, due to the curse of dimensionality [89], also known as theHughes effect [90, 91],
the computational demand of finding a global optimum increases exponentially with the
number d of parameters, unless fob(x) is a convex function. In nanophotonic devices, the
objective function depends on the values of the electromagnetic field in a given structure
and one generally needs to solve Maxwell’s equations to evaluate fob(x). The evalua-
tion of Maxwell’s equations for a given structure is in general resource demanding and,
strongly depending on the complexity, the geometrical dimensionality, and the presence
or absence of possible geometrical symmetries, this is a task that requires computational
times between a few minutes and several hours.

The combination of computationally highly demanding objective functions and exponen-
tially scaling design spaces makes the problem of finding the optimal nanophotonic de-
vice an intractable problem even for medium size dimensional problems, where d ranges
in the order of 10 till 20. Only for highly symmetric devices, where one can exploit the
symmetries to drastically reduce the computation times of the evaluation of fob(x) or in
problems where a high parallelization of the evaluation of fob(x) is possible, finding a
global optimum can still be a feasible task in a reasonable amount of time.

However, even if a priori finding a global optimummust be assumed as unlikely, it is still
important to find a device that performs as good as possible within the available time for
the given task. This is the purpose of optimization algorithms. To do that, the optimiza-
tion algorithms choose the next evaluation points for the objective function based on a
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certain optimization strategy and on information obtained from the previously evaluated
points of fob(x) to possibly identify xopt.

The optimization strategy can consist of a few simple steps based on some heuristic cri-
teria or it can rely on more complex surrogate models. Generally, heuristic algorithms
are simpler to implement and they require relatively low computational time overheads.
When the time required to evaluate the objective function is short, on time scales shorter
than a second, it is normally preferable to use simple but fast optimization algorithms.
Examples are particle swarm optimization [92–96], evolutionary algorithms [97–102] or
simulated annealing [103–106]. Many different open source implementations of these
methods can be found [107–110].

On the contrary,model-based [111–117] algorithmsusually require longer computational
times than heuristic global optimization algorithms. The underlying models of these al-
gorithms are permanently updated based on the information obtained from the evaluated
points thus far to better describe the most likely behavior of fob(x). To decide where to
perform the next evaluation of the objective function, the surrogate model is used to ei-
ther infer the values of fob(x) in points where its behavior is unknown or to compute
other different expectation quantities [118]. Because all previous evaluations are taken
into account for determining the next sampling point, these algorithms can show a better
iteration convergence, i.e., they often require a smaller number of evaluations of the ob-
jective function to reach a similar performance [119, 120, A1]. Therefore, they are usually
beneficial when optimizing objective functions with long evaluation times [121]. This is
frequently the case when optimizing optical nano-structures. In these problems, the ex-
tra computational overhead required by the use of a more complex surrogate model can
compensate the smaller number of required evaluations.

Among the different surrogate models, one can find models based on polynomial re-
sponse surfaces [118, 122], radial basis functions [123, 124] or Gaussian processes [125–
129]. Neural networks have also been used, for example for the design of photonic struc-
tures [36–38].

A well known surrogate based optimization algorithm is Bayesian optimization [130–
133]. Bayesian optimization obtains a probabilistic distribution for fob(x) conditioning a
prior stochastic model over the set of observation points using Bayes’ theorem [134]. Al-
though different surrogate models have been proposed for the algorithm [133, 135–137],
most implementations use Gaussian processes as the surrogate stochastic model [138–
144].

The Gaussian process (GP) model is a nonparametric stochastic model [145–147] of an
objective function fob(x). That means that the model does not have a fixed number of
degrees of freedom, such as, e.g., a polynomial fit. Instead, the model complexity is au-
tomatically adapting to the amount of available data. The GP assigns prior distributions
directly over the values of fob(x) (see, e.g., [126] section 3.1). They can be actually seen
as stochastic parametric models with an infinite number of parameters. In fact, a GP can
be interpreted as a neural network with a single hidden layer and an infinite amount of
nodes, inwhich theweight nodes are treated as probabilistic variables followingGaussian
distributions (see, e.g., [126] section 3.4.2 or [148]).

One of the key advantages of GPs is the fully probabilistic treatment of available data. In
other words, it returns the most probable function value given the data. This posterior
distribution over functions, conditioned on the evaluations of fob(x), can be described
by a simple analytical expression. Furthermore, a GP can incorporate derivative infor-
mation of the objective function in a simple and natural way. These properties make GPs
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a powerful tool to obtain relatively accurate posterior distributions of themodelled func-
tion with respect to the number of evaluations used. This is a very desired characteristic
when performing global optimization.

For the above reasons, this work proposes the use of Bayesian optimization with Gaus-
sian processes for the optimization of photonic devices. Its good iteration convergence
makes it one of the best options to optimize photonic devices for low and medium di-
mensional design spaces [A1]. Furthermore, having access to the shape derivatives of
the solutions of Maxwell’s equations is a powerful tool in the optimization of photonic
devices, and Bayesian optimization is one of the few global optimization algorithms that
can efficiently exploit this information.

However, Gaussian processes also posses some problems. Mainly its scalability with re-
spect to the number of observation pointsNobs used to obtain the posterior distribution.
Its time requirements scale asO(N3

obs) and thememory usage asO(N2
obs). This translates

in that a GP starts to perform badly when one has access to a large number of evalua-
tions of the objective function [149]. For many optimization problems this can severely
limit the applicability of Bayesian optimization. There are multiple situations where the
evaluation of the objective function does not require long computational times andmany
evaluation values are available, therefore. Examples are highly symmetric devices, where
one can exploit the symmetries to reduce the dimensionality of the computationalmodel,
or any case in which one has access to a high parallelization. In these cases, the scala-
bility problems of Bayesian optimization play an important role in the final efficiency of
the method, as we will show in this chapter.

Different methods have been recently proposed to solve or mitigate the scalability prob-
lems of Bayesian optimization. One of the approaches consists in the use of a surrogate
model with a fixed number of parameters instead of a Gaussian process. To be precise,
two different works [135, 150] propose the use of a deep neural network formed by several
layers and a Bayesian linear regressor as output layer of the network. To obtain a Baye-
sian optimization algorithm with a better scalability but without sacrificing the qualities
of Gaussian processes, other methods propose the use of a set of different local Gaussian
process that model the objective function based on different subsets of the observations
[151, 152].

In this work, we propose two additional techniques tomitigate the scalability problems of
Bayesian optimization. Both of them are based on the use of Gaussian processes. One of
the two methods reduces the scalability of Bayesian optimization without requiring any
sort of approximation with respect to the standard Bayesian optimization algorithm. The
other method shares some of the fundamental working principles with [151, 152]. This
method does not scale with the number of observations. However, it only uses a fraction
of all the available information to decide on the next evaluation point. It is, therefore, an
approximation to the standard algorithm.

The chapter first describes the Gaussian process model and Bayesian optimization us-
ing Gaussian processes. Emphasis is put on the methodology to incorporate shape and
material derivatives, as presented in section 2.3, into the optimization algorithm. After
that, the chapter focuses on the scalability problems of Bayesian optimization. After the
scalability problem is first described, the twomethods to improve the scalability of Baye-
sian optimization are presented. Except the work presented in section 3.4, the contents
in this chapter have been published in [A1–A4].
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3.2 Gaussian Processes

Definition

A Gaussian process GP (m, k) is a stochastic model that offers a probability distribution
over the values of a function f(x). It belongs to the class of nonparametric distribu-
tions [145, 147]. It is formally defined as a collection of random variables, any finite
number of which follow a joint multivariate Gaussian distribution ([125], Def. 2.1). The
properties of the distribution are controlled by the mean m(x) and covariance function
k(x,x). Those functions fully characterize a GP. Given any set of points in Rn, Xset =
[x1,x2, ...,xN ], the probability distribution of the function f(x) over these points fset =
[f(x1), f(x2), ..., f(xN )]T is given by a multivariate Gaussian distribution,

fset ∼ N (mset,Kset) , (3.2)

wheremset is the vector of mean values [m(x1),m(x2), ...,m(xN )]T andKset is the covari-
ance matrix for the set of points. The i-j element of the covariance matrix is obtained by
evaluating the covariance function for the pair of points k(xi,xj). For themean function,
it is common to use a constant valuem(x) = µ.

From Eqn. (3.2), one gets that the probability density function for a set of pointsXset of
a function f(x)modeled by a Gaussian process is given by,

P (fset) =
1√

(2π)N

1

det (Kset)
e−

1
2

(fset−mset)K−1(fset−mset)
T

. (3.3)

The covariance function has to be positive definite and it is frequently a stationary func-
tion. The covariance matrix obtained from a positive definite covariance function is al-
ways positive semi-definite. For any point z ∈ RN

zTKz ≥ 0. (3.4)

A covariance function is stationary if

k(x,x′) = k(x + t,x′ + t) ∀x,x′, t ∈ Rn. (3.5)

The covariance function establishes a relation of similarity between function values at
different points depending of the values of the points. Many different types of covariance
functions can be used (see, e.g., [125] section 4.2 or [153] section 4). Two of the most
used covariance functions in the field of machine learning are the squared exponential
covariance function and the family of Mattérn functions. Both of them are stationary
functions. The exponential covariance function reads as

kexp (xi,xj) = σ2e−d(xi,xj)2 , (3.6)

with the parameter σ being the standard deviation and the function d (xi,xj) a scaled
distance, i.e.,

d (xi,xj) =

√√√√
d∑

k=1

(
xi,[k] − xj,[k]

)2

l2k
. (3.7)
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The parameters li are called length scales. The parameters µ, σ, and li are together called
the hyper-parameters of the model.

The family of Matérn covariance functions can be written as,

kMatérn,ν (xi,xj) =
σ2

Γ (ν) 2ν−1

(√
2νd (xi,xj)

)ν
Kν

(√
2νd (xi,xj)

)
, (3.8)

where Kν (x) is the modified Bessel function of the second kind. Within the family of
Matérn covariance functions, themost frequently used are the kMatérn,3/2 and kMatérn,5/2,

kMatérn,3/2 = σ2
(

1 +
√

3d
)
e−
√

3d, (3.9)

kMatérn,5/2 = σ2

(
1 +
√

5d+
5

3
d2

)
e−
√

5d. (3.10)

Some authors [154] recommends to use the Matérn covariance functions rather than the
exponential covariance function for modeling physical processes, due to the smoothness
properties of kexp. In this thesis we use the Matérn kMatérn,5/2, based on the results of the
analysis done in [A4].

The covariance function describes a correlation between the values of the function at
different input points. The a priori behavior of a function f(x) is not only controlled by
the chosen covariance function, it is also strongly influenced by the values of the hyper-
parameters. Figure 3.1 shows function samples generated using a Mattérn covariance
function kMatérn,5/2 with two different sets of hyper-parameters. As seen in the figure,
longer length scales establish a stronger relation between the function values of close
points, generating smoother samples.
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Figure 3.1: Random function samples generated from a GP mod-
elled with a Mattérn kMatérn,5/2 covariance function. The two plots
correspond to samples generated using covariance functions with
different hyperparameters. The corresponding hyperparameters
are indicated in the plots.
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Gaussian process regression

The goal of using a stochastic model for the optimization is to be able to obtain a prob-
abilistic distribution for the values of f(x) at points where those values are unknown.
If one can calculate the true values of the modelled function f(x) at some set of points
Xobs = [xobs,1,xobs,2, ...,xobs,Nobs

], one can then obtain a posterior distribution over f(x).
Given another set of pointsX∗ = [x∗,1,x∗,2, ...,x∗,N∗ ] one can calculate the joint Gaussian
multivariate prior distribution of the two setsXobs andX∗,

[
fobs

f∗

]
∼ N

([
mobs

m∗

]
,

[
KT

obs,∗ Kobs,∗
KT

obs,∗ K∗,∗

])
, (3.11)

whereKobs andK∗ are the Nobs xNobs and N∗ xN∗ covariance matrices for the setsXobs

andX∗ respectively, andKobs,∗ is theNobs xN∗ cross-covariance matrix between the two
sets.

Conditioning the distribution of the set of points X∗ on the values of (Xobs, fobs) using
Bayes’ theorem [134] one gets

f∗|X∗, Xobs, fobs ∼ N
(
mp,Kp

)
, (3.12)

wheremp andKp are the posterior mean vector and posterior covariance matrix respec-
tively ([125] Eqn. 2.19),

mp = m∗ +KT
obs,∗K

−1
obs (fobs −mobs) , (3.13)

Kp = K∗ +KT
obs,∗K

−1
obsKobs,∗. (3.14)

The standard deviation at a point x∗,i, σp(x∗,i), is given by the square root of the i-th
diagonal element ofKp.

Taking a look to Eqns. (3.13) and (3.14), one can see that the main operations required to
calculate the mean value and the standard deviation are the inversion of the covariance
matrixKobs and its posterior multiplication by a column vector. For the mean value, the
vector is independent of the point x∗ where one wants to evaluate it. In practice, the
inverse of Kobs is never computed because Kobs is generally ill-conditioned [155, 156].
Different numerical techniques are used instead, where the Cholesky decomposition is
one of the most used. An analyses of different regularization techniques frequently used
is presented in section 3.4.

Using the Cholesky decomposition ofKobs one obtains a matrix LKobs
such that,

Kobs = LKobs
LTKobs

, (3.15)

with LKobs
being a lower triangular matrix. Using the decomposition one gets that the

last term of the right hand side of Eqn. (3.14) can be written as,

K∗,obsK
−1
obsK

T
∗,obs = K∗,obsL

−T
Kobs

L−1
Kobs

KT
∗,obs = bT · b. (3.16)

with b being,

b = L−1
Kobs
·KT
∗,obs. (3.17)
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The vector b is normally calculated solving the triangular system LKobs
·b = KT

∗,obs using
forward and backward substitution.
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Figure 3.2: Posterior mean, mp, and standard deviation, σp, for a
function f(x) obtained from a prior GP and a set of six observations
of f(x). The dash line shows the real values of f(x). The prior Gaus-
sian process is governed by the kMatérn,5/2 kernel function. The plot
shows the probability distribution of a function fromwhich only six
points are known. This distribution is represented by its mean and
standard deviation values, which are obtained using Eqns. (3.13)
and (3.14). As one can see, the Gaussian process generates a prob-
ability distribution that perfectly matches the behavior of the real
function f(x) at the six observation points and that predicts with a
good accuracy the behavior of f(x) in the regions between the ob-
servations.

Figure 3.2 shows the posteriormean and standard deviation calculated for a function f(x)
conditioned on a set of six observations. The figure shows the values of the function f(x)
and the values of the statistical function distribution obtained using Gaussian process
regression. Given a set of points Xobs where the values of the function are known, to
obtain the statistical model of the function f(x) one first computes the covariancematrix
for this set of points. The mean values of the statistical function distribution are then
given by Eqn. (3.13), and the standard deviation by Eqn. (3.14). In those two equations,
the set of points X∗ represents the points where one wants to obtain the values of the
mean and the standard deviation. The known values of the function are represented by
red dots in Fig. 3.2. The mean function corresponds to the blue line and the shadowed
area represents the region within the ±σ interval. As it can be seen in the figure, the
standard deviation at the observation points xobs,i is zero. What that means is that the
posterior Gaussian process generates a function probability distribution that only takes
into account functions that perfectly agree with the given observation values. This can be
seen also in Fig. 3.3. This figure shows some function samples obtained from the posterior
distribution. As one can see, all the possible realizations of f(x) go through the exact
values of the observation points. To generate the plots of these function realizations, one
uses amultivariate normal randomgenerator providing the posterior covariance function
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Kobs given by Eqn.(3.14) for the set of points aimed to represent.
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Figure 3.3: Random function samples generated from the posterior
Gaussian process distribution conditioned on a series of evaluations
of f(x). The two plots show samples obtained from two different
posterior Gaussian process distributions. Their difference rely on
the value of the length scale l.

Gaussian process regression with derivative information

Derivative information can be included into the Gaussian process model in a simple and
natural form [157–159]. If a function f(x) is modeled as a Gaussian process GP(m, k),
then the joint process of the function f(x) and its derivatives∇f(x) also follows a Gaus-
sian process. Given a set of observations of f(x) and of its derivatives df(x)/dxi, the
covariance matrix of the joint process

[
fset(x)
∇f set(x)

]
∼ N

(
mset,K

∇
set

)
, (3.18)

can be obtained as ([125] section 9.4 or [160] chapter 10)

K∇set =

[
Kset,f,f Kset,f,∇f
Kset,∇f,f Kset,∇f,∇f

]
, (3.19)

where the submatrices are obtainedusing the respective subcovariance functions [161],

kf,f (x,x′) = cov(f(x), f(x′)) = k(x,x′), (3.20)
kf,∇f (x,x′) = cov(f(x),∇f(x′)) = ∇x′k(x,x′), (3.21)
k∇f,f (x,x′) = cov(∇f(x), f(x′)) = ∇xk(x,x′), (3.22)
k∇f,∇f (x,x′) = cov(∇f(x),∇f(x′)) = ∇x∇x′k(x,x′). (3.23)

Similarly as discussed earlier, one can obtain the joint process between two setsXobs and
X∗, whereXobs includes observations of the first derivative of f(x). Then, it is possible to
obtain the posterior distribution for the set of pointsX∗ applying Bayes’ theorem,
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mp = K∇∗,obsK
∇
obs
−1 [

fTobs,∇fTobs

]T
, (3.24)

Kp = K∗ −K∇∗,obsK
∇
obs
−1
K∇∗,obs

T
. (3.25)

Note that Eqns. (3.24) and (3.25) are equivalent to Eqns. (3.13)-(3.14) but applied to a set
of observations that contains derivative information.
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Figure 3.4: a. Posterior distribution for a function f(x) obtained
with a Gaussian process and generated using observations of f(x)
but without derivative information. b. Posterior distribution for a
function f(x) obtained with a Gaussian process and generated us-
ing observations of f(x) and of its derivative. The use of derivative
information produces a more accurate estimation of the real func-
tion.

Figure 3.4b shows the posterior mean and standard deviation for a function f(x) condi-
tioned on both observations of f(x) and of its first derivative. The function f(x) used for
the example is the same as the used for Fig. 3.2 and Fig. 3.3. As it can be seen, comparing
it with Fig. 3.4a, the accuracy of the prediction for f(x) increases considerably with the
use of the derivative information.

Model selection

As mentioned earlier and shown in Fig. 3.1, the hyper-parameters of a GP strongly in-
fluence the distribution over functions. Their effect is also important in the posterior
distribution, as shown in Fig. 3.3. The two posterior distributions shown there are condi-
tioned on the same set of evaluations and their difference only comes from the different
values of the hyper-parameters used for the prior GP.

In general, one can not know a priori the values of the hyper-parameters that allow the
GP to predict better the behavior of f(x). Oneway to overcome this difficulty is to also set
prior probability distributions over the values of the hyper-parameters and to obtain the
posterior distribution also for the hyper-parameters. Then, the predictions over points
x∗ would be obtained by integrating the posterior distribution over all the values of the
hyper-parameters ([126] section 3.2.1). However, as explained in [126], this problem is
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intractable by analytical means. There, the author proposes the use of some approxi-
mation techniques to compute the posterior using, e.g., the Markov-Chain-Monte-Carlo
method. However, the solutionmost frequently used, and the one followed in thiswork, is
to not consider the posterior distribution conditioned also in the hyper-parameters but
to rather set them to certain fixed values that were chosen using some point estimate.
The estimate most frequently used is the marginal likelihood ([125] section 5.8 or [126]
section 3.2.1),

(µopt, σopt, l1,opt, ..., ld,opt)
∗ = arg maxµ,σ,l1,...,ld log p (fobs|Xobs, µ, σ, l1, ..., ld) . (3.26)

For the Gaussian process model, the logarithm of the marginal likelihood takes the form
of the expression ([125] Eqn. 5.8)

log p (fobs|Xobs, σ, l1, ..., ld) = −1

2
(fobs − µ)T Kobs

−1 (fobs − µ)− 1

2
log|Kobs| −

Nobs

2
log2π.

(3.27)

Taken a look at Eqn. (3.27), it can be seen that the first term of the right hand side de-
pends on the values of the observations, the second term only depends on the values of
the covariance function, and the third term is a normalization constant. The first term is
relatedwith the data fit of themodel and the second term is a complexity penalty depend-
ing on the covariance function used. Smaller length scale values will make the likelihood
to be smaller. Therefore, the marginal likelihood automatically penalizes complex mod-
els when compared to simpler ones.

The values of µ and σ thatmaximize the likelihood can be obtained analytically, as shown
in [A3],

µopt =
∑

i,j

(
Kobs

−1
)

[i,j]
fobs[j]

(Kobs
−1)[i,j]

, (3.28)

σ2
opt =

1

Nobs
(fobs − µ)T Kobs

−1 (fobs − µ) . (3.29)

For obtaining the optimal length scales, one needs to use some optimization algorithm.
As one can see in Eqn. (3.27), the calculation of the likelihood requires the inversion of
the covariance matrix Kobs. This makes the optimization a computationally expensive
task that is prohibitive to run every time a new observation is added to the Gaussian
process model. Instead, we proposed to use an estimator of the possible improvement of
the likelihood [A3],

I = max

(
li
∂log p (fobs|Xobs, µ, σ, l1, ..., ld)

∂li

)
. (3.30)

The length scales are only optimized when

I > 0.1 log p (fobs|Xobs, µ, σ, l1, ..., ld) . (3.31)

Once the data set contains more than 300 observations, the length scales are no longer
optimized, independently of the value of the estimator I.
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3.3 Bayesian Optimization Using Gaussian Processes

In the previous sections, the basics of the GP model were presented, but how to use it for
an actual optimization has not yet been described. The basic strategy of Bayesian opti-
mization consists in combining the data obtained from the evaluations of the objective
function fob(x) and the GP model to obtain a posterior probabilistic distribution of the
objective function with respect to the design parameters. The probability distribution is
then used to determine the points in the design space, which are the best candidates for
being a global optimum. As next, the objective function is evaluated at these data points
and added to data set underlying the GP that in turn refines the probabilistic distribution
of the objective function. Advancing with this scheme promises to identify the global
optimum in an ongoing process of the objective function.

AlthoughBayesian optimization is frequently applied using aGaussianprocess as a stochas-
tic model, it is not limited to it. It could be implemented with any stochastic model,
which gives a probabilistic distributionover functions. Oneof thefirst proposals for Baye-
sian optimization [133] was indeed described in terms of general Bayesian networks [162]
and even implementations with neural networks have been recently proposed [135, 150].
However, this thesis will focus on Bayesian optimization using Gaussian processes [163].
As we have seen in the previous sections, Gaussian processes are very powerful models
in order to learn arbitrarily complex objective functions and their main drawback, their
poor scalability, is not generally a problem for most of the applications in photonic de-
sign. However, the topic will be discussed again in section 3.4, where some proposals
to improve the scalability will be presented. With these improvements, one can extend
the efficient applicability of Bayesian optimization to cover most of the applications in
photonic design.

General description

This section describes the general steps of the Bayesian optimization algorithm using
Gaussian processes.

The Bayesian optimization algorithm starts with the initialization of the posterior Gaus-
sian process model for the objective function fob(x). To create the Gaussian process
model, a set of evaluations of fob(x) is calculated. The number of initial evaluations is
generally rather small and the evaluation points are normally picked using some random
distribution over the design space.

Once obtained, the statistical surrogate model for fob(x) is used to calculate some sta-
tistical quantity α(x) used to predict the best possible candidates in the design space for
being the optimum. This statistical quantity α(x) is called the acquisition function. The
candidate point xα where to evaluate the objective function next, is given by the global
optimum of the acquisition function,

xα = arg max
x∈D

α (x) . (3.32)

There are different expressions used as acquisition functions [118, A4, 164]. Among the
most frequently used ones, one finds the probability of improvement, αPI (x) and the
expected improvement αEI (x). The probability of improvement is defined as,

αPI (x) = p(fob(x) < T ) = Φ

(
T −mp(x)

σp (x)

)
, (3.33)
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where T is a number smaller than the current minimum in the data set of observations,
fobs,min, and Φ is the cumulative density function of the standard normal distribution.
The functionsmp(x) and σp(x) are the posterior mean and standard deviation of the GP
modeling fob(x), obtained from Eqns. (3.13) and (3.14), respectively. The expected im-
provement, αEI (x) reads as

αEI (x) = E [min (0, fobs,min − fob(x))]

= (fobs,min −mp(x)) Φ

(
fobs,min −mp(x)

σp(x)

)
+ σp(x)φ

(
fobs,min −mp(x)

σp(x)

)
,

(3.34)

being φ(x) the probability density function of the standard normal distribution.

It has been proven that, under certain conditions, both the probability of improvement
and the expected improvement find the global minimum of the objective function [165,
166].

Another acquisition function that combines both exploitation and exploration strategies
is the lower confidence bound [144, 167, 168] αLCB (x),

αLCB (x) = −mp(x)− βLCBσp, (3.35)

where βLCB is a hyper-parameter of the model [144].

Figure 3.5 illustrates the optimization process using GP and αEI(x) for a simple one di-
mensional test function. The different subplots correspond to different iterations. After
every iteration, the posterior distribution is updated and the optimal point of the acqui-
sition function is then computed.

The performance and behavior of Bayesian optimization depending on the considered
acquisition function have been analyzed in [118]. Also, [A4] analyzes the performance of
Bayesian optimization for the case of optimizing different photonic devices depending
on the acquisition function used. In [118], despite showing a remarkable iteration con-
vergence of Bayesian optimization using any of the mentioned acquisition functions, it
is also shown that αLCB (x) can lead to the omission of regions of the search space and
that αPI (x) and αEI (x) can be deceptive. In other words, they are prone to get stuck into
a local minimum for a considerably large number of iterations and to not explore other
regions of the design space. In the case of αPI (x), this behavior happens for values of the
parameter T close to the current minimum in the data set. In general, the convergence
rate of αPI (x) depends considerably on the value of T chosen. To mitigate this sensitiv-
ity with respect to the optimal value of T , the author proposes different solutions, e.g.,
to evaluate different candidate points xα obtained using αPI (x) with a range of different
values of T . As [118] shows, this strategy would be completely equivalent to use instead
αLCB (x) with a range of different βLCB.

Here in this work, we mainly use the expected improvement as acquisition function for
the optimization tasks. To mitigate the problems with deceptive points, we simply added
a condition statement to not search around the current optimum after a few iterations
if the new observations around this point do not improve the current optimum in more
than a one percent. In order to reduce the stability problems, the algorithm implemented
in this work also avoids evaluation points which are closer than one hundred of the length
scale to any evaluation point in the data set. If one is interested in a fine tuning of the
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Figure 3.5: Optimization process using a GP and the expected im-
provement. After every evaluation of fob(x), the GP model is up-
dated. The expected improvement is computed using the updated
GP posterior distribution and a new evaluation is calculated in the
point with the highest expected improvement. The dashed line
shows the function fob(x) aimed to optimize.

global optimum, one can always run a gradient descent search using the global minimum
found by Bayesian optimization as starting point.

As described, the Bayesian optimization algorithm implies to solve another global opti-
mizationproblemwithin each iteration, Eqn. (3.32). In principle, thismethodologymight
seem to produce a large penalty in the efficiency of the algorithm with respect to many
other global optimization algorithms where the computation overhead can be negligible.
Indeed, this is correct for a wide range of objective functions for which evaluations times
are shorter than a second. However, let us note that this work focuses on the optimization
of expensive objective functions that depend on the solution of Maxwell’s equations. In
these problems, where one can not run the optimization for more than a few thousands
of iterations at maximum, the prediction power of Gaussian processes compensates the
computation time overhead required in each iteration. This behavior has been analyzed
in [A1], where Bayesian optimization was benchmarked with respect to a series of differ-
ent global and local optimization algorithms in the optimization of a variety of different
photonic devices. The results shown there confirm Bayesian optimization with Gaussian
processes to be an efficient tool for design of photonic devices.

Bayesian Optimization using derivative information

Section 2.3 presented the calculation of shape andmaterial derivatives of photonic struc-
tures using the finite element method. Having access to the gradient of the objective
function with respect to the design parameters offers a better knowledge of fob(x)which,
if used efficiently, should lead to a better convergence rate in its optimization.
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Themost usedmethods to exploit the gradients of fob(x) for its optimization are the gra-
dient descendentmethods or quasi-Newtonmethods such as L-BFGS-B [169–171]. Those
methods are used to find a local optimum of fob(x). The direction given by the gradient
or the gradient and Hessian, in the case of quasi-Newton methods, ensures that the lo-
cal optimum can be found. The mentioned methods are commonly used for the design of
multiple types of photonic devices, especially in the field of topology optimization, where
locally optimized devices show good performances [25, 27, 87, 88, 172–174].

In the context of global optimization, the use of derivative information is not as common
as for local optimization. There are not many algorithms that can exploit the deriva-
tives efficiently. The most frequently used strategy consists in applying a gradient de-
scendent method at different initial points within the design space to find multiple local
minima [175].

Because Gaussian processes can easily incorporate derivative information, Bayesian op-
timization provides an alternative to multi-start gradient descendent. Once the poste-
rior distribution conditioned on values of fob(x) and its derivatives is obtained, see sec-
tion 3.2, the same procedure as for the case without derivative observations applies to
perform Bayesian optimization. Figure 3.6 shows the optimization process of the same
one dimensional test function as already presented in Fig. 3.5 when the Gaussian process
includes also derivative information. As it can be seen, the optimization finds the global
minimum faster than for the case without derivative observations.
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Figure 3.6: Example of Bayesian optimization using Gaussian pro-
cesses with observations of the derivative and the use of the ex-
pected improvement as acquisition function. The objective func-
tion used as example is the same as used in Fig. 3.5. Note how the
algorithm converges faster to the global minimum at x = 0 when
compared to the case where derivative observations were not in-
cluded, i.e. Fig. 3.5.

Gaussian processeswith derivative information have been used in the context of Bayesian
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optimization in [A1, A2, 161, 176]. The improvement in the convergence rate of the op-
timization with respect to the algorithm without derivative observations depends on the
behavior of the objective function, as it can be seen in [A1]. There, Bayesian optimization
with derivative information has been used to optimize different photonic devices and its
performance was compared against Bayesian optimization without derivative informa-
tion. The algorithm using derivative information shows a better performance for all the
test cases, although it can be seen how the difference in the convergence rate between
both algorithms is strongly influenced by the specific test case.

3.4 Scalable Bayesian Optimization

The scalability problem

Bayesian optimization shows excellent performance in terms of convergence. However,
its use is generally limited to the optimization of problems with objective functions that
are expensive to evaluate. The reason for that is the poor scalability of Gaussian pro-
cesses with the number of observations. Every time a new observation is added to the
model, the size of the covariancematrixKobs increases with an extra row and column. To
infer the behavior of fob(x), one needs to calculate the Cholesky decomposition ofKobs,
Eqn. (3.16), and then one needs to perform a forwards and a backward substitution for the
different pointsx. The number of operations to calculate the Cholesky decomposition re-
quiresO(N3

obs) operations and every forward and backward substitution requiresO(N2
obs)

operations. The scaling in time is directly proportional to the scaling in the number of
operations.

The poor scaling of Bayesian optimization is not a major problem for the optimization
of many photonic devices, as the computational costs of computing the objective func-
tion are generally high, already limiting the number of evaluations that one can per-
form. However, there are other applications of interest where one can solve the objective
function in a few seconds. This is the case, for example, for highly symmetric photonic
devices, where one can use the symmetries to reduce the computational costs, or in sit-
uations where one can perform many evaluations of the objective function in parallel.
Therefore, reducing the effective time per simulation. In these cases, it is possible to
perform thousands of simulations within a few days and there, the scalability of Gaus-
sian processes become a major limiting factor of the optimization process.

Figure 3.7 shows the time needed to perform the Cholesky decomposition and the sin-
gular value decomposition ofKobs as a function of the number of evaluations Nev of the
objective function, i.e., the number of times that one calculates the objective function
at different points of the design space. As one can see, the time follows a third-order
power law with respect to the number of evaluations for both methods. The poor scaling
becomes a major limiting factor especially when one can obtain derivative information
via the direct or the adjoint method. In this case, one gets 1+d observations with each
evaluation. That is to say, with the addition of d derivative observations per simulation,
the number of observations, which lead to new extra rows and columns in the covariance
matrix, equals (1 + d)Nev. This is visible in Fig. 3.7, which also shows the time required
to perform the Cholesky decomposition after every evaluation of the objective function
when the derivative observations of 10 parameters are included. As one can see, after
three thousand simulations, decomposing Kobs already takes a few tens of seconds. To
give an idea, computing ten thousand simulations of many two dimensional models with
the finite element method is a task that can be done in a few hours exploiting paralleliza-
tion. We have already discussed how the use of derivative information in Bayesian opti-
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mization is, in principle, beneficial, as it allows to obtain even better convergence rates.
However, because of the scalability problems, the use of derivative information may not
be beneficial in some of the cases when one has access to tens of thousans of evaluta-
tions and the derivatives do not improve the convergence rate significantly. Knowing in
advance to which of the problems this applies is a non-trivial task.
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Figure 3.7: Time needed to perform the Cholesky decomposition
of the covariance matrixKobs for a problem with d = 10 parameters.
The results are shown for the the case where only observations of
fob(x) are included (orange dots) and for the case when one gets ob-
servations of the derivatives of fob(x) respect to 10 parameters with
each evaluation (green dots). The plot shows also the time needed
for computing the singular value decomposition (SVD) ofKobs (blue
dots).

In addition to the decomposition of Kobs, it is also necessary to perform a forward and
a backward substitution to infer the standard deviation at a point in the design space,
Eqn. (3.16). Although the time required to perform this operation is much shorter than
the time required to compute LKobs

, this operation is required multiple times during the
optimization of the acquisition function, Eqn. (3.32). One technique that we use to mit-
igate this issue is to use optimization methods for the acquisition that evaluate the ac-
quisition function at many points in parallel. With this approach, one can reduce the
times for accessing the memory to read the entries of LKobs

. Another method proposed,
and that it is also used in this work, consists in obtaining the next evaluation point at the
same time the objective function is solved [A1, 135, 177].

Below we present two different methods to mitigate the scalability problems of Bayesian
optimization and we discuss about their performance. Both methods are still based on
Gaussian processes as the surrogate model. The first method exploits a specific numer-
ical scheme on the matrix update of the Cholesky decomposition of Kobs. This method
reduces the scalability problem from O(N3

obs) to O(N2
obs) without the need to use any

approximation with respect to the standard Bayesian optimization method. The sec-
ond method is similar to the method proposed in [152]. It is based on the use of a lo-
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cal Bayesian optimization model and a data structure to efficiently generate the local
model. However, unlike [152], in the method proposed here the local model is not fixed
and it evolves with the candidate point x∗. In the following subsections each of these
approaches are described.

Matrix update of the Cholesky decomposition

Let us start describing the first proposed method. It is based on the work that we pre-
sented in [A2]. In the suggested approach with use of derivative information, we update
the Gaussian process model with a new set of d + 1 observations. These observations
lead to d+ 1 extra rows and columns that are added to the covariance matrix. Then, the
Cholesky decomposition of the covariance matrix needs to be re-calculated. However,
the Cholesky decomposition of a major block of the covariance matrix was already com-
puted in the previous iteration of the Bayesian optimization algorithm. If we split the
covariance matrix into four blocks,

Kobs =

[
A BT

B C

]
, (3.36)

the Cholesky decomposition of Kobs can be described in terms of the four blocks. Here,
A represents the covariance matrix computed in the previous iteration of the Bayesian
optimization algorithm.

The covariance matrix ofKobs, LKobs
, can be obtained in terms of the blocks A, B and C

as ([178] section 6.5.4)

LKobs
=

[
LA 0

B · L−TA LS

]
, (3.37)

with S being the Schur complement ofKobs,

S = C −B ·A−1 ·BT . (3.38)

The second term of the above expression can be written as a vector-vector multiplica-
tion,

S = C −X ·XT . (3.39)

For that, we used the equality between the Cholesky decomposition of the inverse of a
matrix and the inverse transpose of the Cholesky decomposition of the matrix,

M = LM · LTM , (3.40)

M−1 = L−TM · L−1
M , (3.41)

M−1 = LM−1 · LTM−1 , (3.42)

LM−1 · LTM−1 = L−TM · L−1
M . (3.43)

XT can be obtained solving the triangular system LA ·XT = BT .
Finally, one gets the aimed expression,
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LKobs
=

[
LA 0
X LS

]
. (3.44)
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Figure 3.8: Time needed to perform the Cholesky decomposition
of the covariance matrixKobs for a problem with d = 10 parameters
computing the full Cholesky decomposition (green dots) and using
the matrix update scheme (red dots). The results are shown for the
case where observations of the derivatives of fob respect to the 10
parameters are included into the GP model.

The numerical implementation of the matrix update scheme that we made is based on
a C implementation of the BLAS [179] and LAPACK [180] libraries. Figure 3.8 shows the
calculation times required to compute the Cholesky decomposition of Kobs as a func-
tion of the number of evaluations, using the matrix update scheme. As in Fig. 3.7, the
results are shown for the case of adding the observation of fob(x) and for the case of
adding also the derivatives dfob(x)/dxi for 10 different parameters. As it can be seen, the
new scheme scales with O(N2

obs) instead of with O(N3
obs). For example, calculating the

Cholesky decomposition after 10 thousand evaluationswith derivative observations of 10
parameters requires 5 seconds using thematrix update scheme. The standard scheme re-
quires one and a half minutes, as shown in Fig. 3.7. Note that the use of thematrix update
scheme does not imply any approximation of the standard Bayesian optimization tech-
nique. Therefore, it keeps the same convergence properties as the standard algorithm,
provided that the matrix update does not introduce numerical errors. The stability of the
method will be discussed below.
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Stability of Gaussian processes

We have just described a technique to reduce the scaling of Bayesian optimization from
O(N3

obs) toO(N2
obs). Themethod does not rely on any approximation but on the exploita-

tion of the information that one already has about the Cholesky decomposition of the
covariance matrix from previous iterations. This fact implies that the convergence opti-
mization rate of the method is the same as of the standard Bayesian optimization, if one
can show that the numerical procedure does not add extra numerical errors when per-
forming the inference. This is a fair question especially in Bayesian optimization, as it is
known that the covariance matrix becomes increasingly ill-conditioned with the number
of iterations, especially upon incorporation derivative observations [176].

To mitigate the numerical errors produced by the ill-conditioned covariance matrix, dif-
ferent regularization techniques have been proposed [155]. The most frequently used
methods are the use of the Cholesky decomposition ([125] section 2.2), the truncated
singular value decomposition [181] (TSVD) or the use of the LU decomposition ([182]
section 3.1.1). The TSVD is the most flexible method, in the sense that one has more
control over the error that the algorithm introduces. However, the Cholesky decomposi-
tion is usually preferred in many implementations, as it is the fastest method among the
three mentioned above and shows simultaneously a good stability. The Cholesky decom-
position and the LU decomposition require in the order of 1/3 N3

obs and 2/3 N
3
obs floating

point operations respectively ([84] section 23) and the first phase of the SVD, generally
the most expensive part of the algorithm, requires 8/3 N3

obs floating point operations if
one uses the Golub-Kahan bidiagonalization ([84] section 31).

To see if thematrix update scheme introduces significant errors in the posterior Gaussian
processmodel, themethod is comparedwith other differentmethods used to perform the
inference of the Gaussian process model: the Cholesky decomposition of the covariance
matrix, the truncated singular value decomposition, and the direct inversion of the co-
variance matrix. The comparison measures the error produced by the different methods
in the value of σp at all the observation points of a data set obtained during the Bayesian
optimization of an objective function. The error assigned to eachmethod is themaximum
error in σp obtained from all the observation points. Note that in an error free method,
σp should be zero at all the observation points. The results are shown in Fig. 3.9.

The results for the direct inversion show how the error of the model explodes when no
regularization method is used. This clearly indicates that the use of some regularization
technique is in fact needed. The error of the truncated singular value decomposition
follows the same behavior of the direct inversion until it reaches an error of around 10−9.
The reason for that is the cutoff limit imposed for the singular values. The inverse of the
singular values was set to zero to all singular values obtained lower than 10−9. However,
the most important result of the comparison is the confirmation that the matrix update
scheme remains stable and that the error produced by it is as low as the error produced by
the full Cholesky decomposition. The reason behind this result could be explained by the
fact that the algorithm for the Cholesky decomposition also builds thematrix row-by-row
or column-by-column without pivoting [178].

In addition to thematrix update of the Cholesky decomposition, in [A2] we also proposed
and analyze the use of a matrix update scheme for the inverse of the Cholesky decom-
position. This scheme would allow to make the inference twice faster than with the use
of the Cholesky decomposition. However, the results that we present there show that, in
contrast to the Cholesky decomposition, the method is unstable.
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Figure 3.9: Error produced for the inference ofKobs using different
techniques to solve the linear system of Eqn. (3.14): the Cholesky
decompoisition, the matrix update of the Cholesky decomposition,
and the singular value decomposition.

Bayesian optimization with a local Gaussian process model

The secondproposedmethod to improve the scalability of the Bayesian optimization con-
sists in the use of anupdated local Gaussian processmodel that contains amaximumfixed
number of observations. For a given point x∗ where the value of the acquisition function
is needed, the algorithm generates a posterior distribution based on a Gaussian process
model that uses only a subset with the nearest Nnearest observations of the data set. The
reason to explain why a local GPmodel can work is related to the exponential behavior of
the covariance functions generally used, see Eqns. (3.6)-(3.10). The further away a point
of the data set is from the pointx∗, the less correlated are their values, and the correlation
factor contains an exponential decaying factor with the distance between the two points.
Therefore, the estimation values for x∗ will not be strongly influenced by the points fur-
ther away in the data set. A different strategy to the use of a fixed numberNnearest can be
to use only the points for which the correlation value with x∗ is lower than 1/(100∆fob),
being ∆fob the maximum difference between the different values of the objective value
in the data set of observations.

Given the point x∗, the first step of the algorithm consists in determining which of the
Nobs observations are the nearest neighbours to this point x∗. There aremany algorithms
to efficiently determine the nearest neighbors, as the k-d tree algorithm [183–185], the
cover tree algorithm [186, 187], the R-tree [188–190] or uniform grid cell structures [191,
192]. Here, we use a grid-R-tree [193] algorithm. The design space is divided into hyper-
cubes whose side lengths equal to half the length scales of the hyper-parameters, li. A list
stores the indices of the cells that are populated with at least one observation point. The
list also contains their population number and it is updated with each new observation
obtained. With this structure, the search for the nearest neighbours can be done in a
sub-linear time with respect to Nobs.

Once the subset of observations is chosen, the posterior Gaussian process is calculated.
Note that this requires the calculation of the covariance matrix and its Cholesky decom-
position to perform the inference, needed for the calculation of the acquisition func-
tion.
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To not recompute the covariance function and the Cholesky decomposition too often, as
the optimization for the acquisition function continues sampling at different points x∗,
the subset for the local Gaussian process is not continuously updated. It only updates
when more than a γupdate percentage of the closest neighbours for the current x∗ is not
contained in the subset used the last time that the covariance matrix was computed. In
practice, if one uses a gradient descendent algorithm to optimize the acquisition func-
tion, the update is required a few times atmaximum for each starting point of the gradient
descendent. The tests of the implementation show that the posterior Gaussian process,
when used in combination with a gradient descendent strategy for the optimization of
the acquisition function, needs to be updated in average once every 10 evaluations of the
acquisition function. This number has been obtained for a Nnearest value of 300 and a
γupdate of 15%.

With this implementation, the scaling of the method is sublinear once the number of to-
tal observationsNobs exceedsNnearest and if the algorithm does not increase the number
of starting points for the optimization of the acquisition function with the number of
total observations Nobs. However, there are two main fundamental questions that need
to be answered. The first one is how much time the algorithm requires per observation,
and if this time is actually lower than the average time required by the standard imple-
mentation of Bayesian optimization in practical applications. Although the algorithm
does not scale with the number of observations, at least in a certain range after Nobs ex-
ceedsNnearest, the proposedmethodmust be slower than the standard implementation of
Bayesian optimization, as different covariancematrices and their respective Cholesky de-
compositionsmust be computed. The second important aspect that needs to be answered
is how the convergence rate of the algorithm performs with respect to the standard ap-
proach. The use of a local surrogate model implies that not all the available information
is accessible for each candidate x∗ and how this affects the convergence of the method
must be measured.

To obtain an approximate idea for these two aspects, the performance of the method is
comparedwith respect to the standard implementation of Bayesian optimization for a se-
ries of optimization runs of a test function. The comparison consists in the optimization
of the Rastrigin function [194, 195] in a parameter space of five dimensions,

fRastrigin = 50 +
5∑

i=1

x2
i − 10 cos (2πxi), (3.45)

and for a design space bounded by |xi| ≤ 10. The Rastrigin function has a global optimum
of fRastrigin(xopt) = 0 at the point xopt = [0,0,0,0,0]. Within the design space considered,
the function contains around 4 million local minima.

The optimization is performed four different times for both algorithms. The optimiza-
tions run until they reach three thousand iterations. All the different aspects of the op-
timization algorithm, as the number of starting points used for the acquisition function,
the criteria for choosing the starting points for the local optimizations, etc. are identical
for the two algorithms. Also the length scales are kept fixed in bothmethods, with a value
of li = 0.7 for all the dimensions. To optimize the acquisition function both algorithms
run twenty local optimizations using the L-BFGS-B algorithm [169, 171]. For this test, the
local optimizations are run sequentially. Both algorithms include also the observations
of the derivatives of the test function.

The results for the optimization convergencewith respect to the number of evaluations of
fRastrigin(x) are shown in Fig. 3.10 for both methods, the standard Bayesian optimization

55



Chapter 3. Bayesian optimization

and the local approximation proposed here. The results shown correspond to the average
results of the four different runs for each of the two methods. As one can see, for this
particular test and implementation of both algorithms, the standard algorithm shows
a slightly better convergence, although the differences are within the σ bands of both
algorithms.
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Figure 3.10: Comparison of the convergence of the two different
Bayesian optimization algorithms with respect to the number of
evaluations of the objective function. The results are shown for
a standard Bayesian optimization algorithm and for the local ap-
proximation proposed in this work. The objective function to be
optimized is the Rastrigin function in five dimensions, shown in
Eqn. (3.45). Every iteration corresponds to the addition of one ob-
servation of the objective function and of its derivatives with re-
spect to each input parameter. The results shown for each of the
algorithms are the average of four different optimization runs. The
shadowed area indicates the region within one standard deviation
of the multiple runs performed.

Figure 3.11 shows the averaged computation time required by the last 50 iterations as
a function of the iteration number. There, one can see how the time required by the
local approach does not scale. Note that the times required by the standard Bayesian
optimization algorithm are generally smaller than the ones shown in Fig. 3.11, as one
would normally run the optimizations for the expected improvement in parallel and not
sequentially. However, the scaling would still be similar and the difference with respect
to the results of Fig. 3.11 would be a constant scaling factor.

Although with the method proposed in the previous section one can already efficiently
cover most of the applications of interest in the design of photonic nanostructures with-
out theneed to use any approximation, altogether, the results obtained seem topoint that
the proposed use of local Gaussian processes can be a promising substitute of the stan-
dard Bayesian optimization for problems with moderately fast objective functions. Also,
the use of local Gaussian processes results in a highly parallelizable method, since the
memory usage per local Gaussian process is low. Further research on this method could
also analyze the impact of optimizing the hyperparameters for each of the local Gaussian
process in the optimization convergence and in the computational overhead.
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Figure 3.11: Time per evaluation required by a standard Bayesian
optimization algorithm and the scalable proposed algorithm to ob-
tain the next point where to evaluate the objective function. The
objective function to be optimized is the Rastrigin function in five
dimensions, shown in Eqn. (3.45). Both algorithms include deriva-
tive observations with respect to the five input parameters.

3.5 Conclusions

This chapter proposes and describes an implementation of Bayesian optimization for the
global optimization of nanophotonic devices. The use of Gaussian processes as stochas-
tic model provides a method able to incorporate both the objective value and its deriva-
tives obtained from the finite element solver, which offers high predictive capabilities.
These factors translate in an optimization method with a good iteration convergence, as
it has been shown in several benchmarks. Furthermore, the chapter proposes two differ-
ent techniques to improve the scalability issues of Bayesian optimization. These meth-
ods extend the efficient usage of Gaussian processes into a wider range of optimization
problems for photonic applications.

The optimization methods presented here are the fundamental tool used in the next
chapters of the thesis for the design of photonic structures. Specially in chapter 5, where
we present the design of photonic structures used for different applications.

Once explained the optimization method developed for the optimization of photonic
structures, in the next chapter we present some numerical tools to analyze and optimize
isolated scatterers and the structures obtained from these elements, e.g., metasurfaces.
Finally, chapter 5 combines the use of Bayesian optimization and the tools presented in
chapter 4 to show, with some examples of design of photonic structures, the relevance of
the developed tools.
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4 | Design of isolated scatterers

4.1 Introduction

Among the multiple types of photonic devices used to manipulate and control light,
there is a wide range of them that are either entirely or in part composed of isolated
scatterers embedded in a homogeneous medium. Examples of these kind of devices are
nano-antennas [196–200], devices used to promote the interaction of light [201–203],
and metamaterials in general [204–207]. Here, arrangements made from a larger num-
ber of small scatterers are used to create artificial photonic materials capable of con-
trolling light propagation in manners inaccessible with homogeneous natural materials.
Further devices that are made from ensembles of scatterers are metalenses that can be
used for different applications [208–210] or photonic crystals with spatially dependent
properties [211]. Ensembles of many scattering particles also find use in layers that offer
longer effective photon path lengths to improve absorption in thin-film solar cells [212]
or as chiral metamaterials that can act as a direction independent circular polarization
filters [213]. In all these examples for possible devices, the position, shape, andmaterials
of the scatterers are design parameters, which one can optimize for the desired applica-
tion. The purpose of this chapter is to describe a strategy to design isolated scatterers
according to a predefined purpose. That requires to describe the interaction of light with
such a scatterer at first.

One very well established tool to study the interaction of a given scatterer with a given
illumination bases on themultipole expansion. There, the scattered field from the object
is expanded in frequency domain into a basis of radiative vector spherical wave functions,
VSWFs,

Escat(r) =

∞∑

n=1

n∑

m=−n

[
am,nN

(3)
m,n (r) + bm,nM

(3)
m,n (r)

]
. (4.1)

The fieldsN (3)
m,n (r) andM (3)

m,n (r) are the electric andmagnetic VSWFs, respectively. Their
definition and properties are presented in section 2.2. The complex coefficients am,n and
bm,n capture the contribution of the respective multipoles to the scattered field. The de-
composition shown in Eqn. (4.1) is valid everywhere outside the smallest sphere circum-
scribing the scatterer. There is not yet a proof about the validity of the decomposition
in the region inside the sphere. The assumption that the expression is valid inside the
sphere is known as the Rayleight hypothesis [214–216].

In addition to the valuable information that themultipole expansion directly provides for
studying and designing scatterers, the multipole expansion is also an important ingredi-
ent to construct the T-matrix of a given object [42, 217, 218]. The T-matrix of an object
provides the field scattered by any field illuminating the object. The T-marix expresses
how an incident field, expanded into a series of incident VSWFs, is scattered into a set of
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outgoing VSWFs. With that it contains all the information about how an object interact
with light; it is the most comprehensive representation of the object concerning its opti-
cal properties. The T-matrix can be used to obtain different quantities, such as the total
interaction cross section of a scatterer with light, the absorption of the object under a
certain illumination ([42] section 5.1) or the duality of the object or its electromagnetic
chirality [213]. However, the T-matrix is also important to calculate the optical response
from clusters that consist of a large numbers of scatterers [219, 220]. When solving this
multiple scattering problem, the scatterers themselves are represented only on the base
of their T-matrix. Current computational resources allow for clusters with half a million
scatterers to be solved numerically [A5].

There are different numerical methods for calculating the T-matrix of an object. The
validity and efficiency of each method depends on the symmetries of the object and its
material and geometrical complexity. For example, the T-matrix of a sphere can be ob-
tained analytically using Mie theory [62, 63]. For homogeneous scatterers, composed of
only one material, but with geometries different than a sphere, the extended boundary
conditionmethod (see, e.g., [217, 221] or [42] section 5.8) is an efficientmethod for calcu-
lating the T-matrix. However, thismethod is only valid for objects homotopic to a sphere.
To compute the T-matrix of objects composed of multiple materials and with more com-
plex geometries, a more general method for solving Maxwell’s equations is needed. The
finite element method is especially suitable for dealing with complex geometries. Here,
the procedure to compute the T-matrix of an object consists of two main steps. In a first
step, the finite element method is used to solve the scattered fields, Escat, for a set of
different illuminations. In a second step, the scattered fields are expanded into the basis
of VSWF. For that, one uses the orthogonal properties of the VSWF, Eqns. (2.44)-(2.44),
and the complex expansion coefficients of the scatttered field are calculated as

am,n =

∫
S2
R
N

(3)∗
m,n (r) ·Escat (r) dS

∫
S2
R
|N(3)

m,n (r) |2 dS
, (4.2)

bm,n =

∫
S2
R
M

(3)∗
m,n (r) ·Escat (r) dS

∫
S2
R
|M(3)

m,n (r) |2 dS
. (4.3)

The elements am,n and bm,n of the multipole decomposition either directly correspond to
entries of the T-matrix, if one uses regular VSWFs as illuminations, or an intermediate
linear system has to be solved to link the values am,n and bm,n with the entries of the
T-matrix. This last procedure is needed in the case that another type of illuminations is
used, as for example plane waves [222].

In Eqns. (4.2) and (4.3), the decomposition is obtained as a series of surface integrals
across the boundary of a sphere circumscribing the scatterer, SR. The fact that this sur-
face has to be a sphere presents some drawbacks. To perform the integral, the scattered
field has to be interpolated across the surface of the sphere. The interpolation suffers
from accuracy losses and it also makes the calculation computationally more expensive
and, therefore, slower. One possible solution to this drawback consists of performing the
decomposition based on volume integrals of the induced currents in the object [205, 223,
224]. In this chapter, another method is presented, extending the orthogonality prop-
erty of the VSWFs to surfaces with general shapes. This contribution has been discussed
in [A6]. With such a generalization, one can use the boundaries of the computational do-
main or the boundary of the scatterer to perform the decomposition. Computing surface
integrals over these natural surfaces is not only easier, but also frequently more efficient.

60



4.2. Decomposition of scattered fields into VSWFs using surfaces with general shapes

Most numerical solvers for Maxwell’s equations already provide efficient methods to ac-
curately compute surface integrals over these boundaries for quantities dependent on
the scattered field. For similar reasons, if the numerical solver provides shape and mate-
rial derivatives for similar surface integrals, such as the integral of the Poyinging vector,
they can be easily modified to obtain the shape and material derivatives of the multipole
decomposition. This allows for the computation of the derivatives of T-matrices of gen-
eral complex scatterers, enabling the efficient optimization of such scatterers. The shape
derivatives can be used for the optimization of a single scatterer or for the optimization
of multiple scatterers in amore complex system, combining themulti-scatteringmethod
with the adjoint method [225]. The next chapter presents one relevant example of design
of an isolated chiral scatterer where one can benefit from these developments.

This chapter is devoted to the description of different methods related to the multipole
decomposition, used to analyze and design single scatterers or clusters of them. The first
section presents the derivation of the mutlipole decomposition using surfaces of general
shapes. After that, its numerical implementation is outlined using the finite element
method. An extra section is used to present the implementation for the specific case
of cylindrically symmetric objects. Cylindrically symmetric scatteres are widely used in
many different applications and this implementation drastically reduces the computa-
tional time and resources with respect to the more general implementation. A fourth
section describes a proposed method to compute the T-matrix of complex objects. Af-
ter that, the implementation of the calculation for shape and material derivatives of the
T-matrix is presented. Finally, the last section describes an implementation of the ad-
joint method for multi-scattering problems based on the T-matrix method and the shape
derivatives of the T-matrix.

Most of the numerical tools presented in this chapter will be used in the following chap-
ter for designing maximal em-chiral scatterers. These scatterers show considerable dif-
ferences in their interaction strength with plane waves of different circular polarization
handedness and for multiple illumination angles, which makes them interesting for dif-
ferent applications.

4.2 Decomposition of scattered fields into VSWFs using sur-
faces with general shapes

Mathematical derivation

This section derives the general orthogonality relation for VSWFs. This expression con-
sists of an integral evaluation over a general closed surface that encloses the scattering
object.

The derivation assumes that the scattering object is surroundedby ahomogeneous, isotropic,
and lossless medium. To obtain the expression, we start by taking two vector fields that
are solutions of the same wave equation, Eqn. (2.23), Escat(r) and F(r). Escat(r) is the
scattered field produced by the object under a certain illumination and F(r) is another
field that equally fulfills the Silver-Mueller radiation condition, Eqn. (2.50). The generic
field F(r) is used for simplicity, and only in the last step of the derivation it will be re-
placed by the radiative VSWFs to obtain the final desired expression.

To obtain a scalar product between the two fields Escat (r) and Fscat (r), we start by mul-
tiplying the wave equation for the field Escat (r) by the complex conjugate of F (r),

F∗ (r) · {∇ × (∇×Escat (r))} − k2F∗ (r) ·Escat (r) = 0. (4.4)
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The above expression is then integrated over a volume V that surrounds the object but
it shall not contain any source of the scattered field. To be specific, V denotes a closed re-
gion that surrounds the object, butwhich does not contain it, as illustrated in Fig. 4.1,

∫

V

(
F∗ (r) · {∇ × (∇×Escat (r))} − k2F∗ (r) ·Escat (r)

)
dV = 0. (4.5)

V

Figure 4.1: Sketch of geometry considered in the derivation of the
multipole expansion of scattered fields using surfaces with general
shapes. An object within a homogeneous background medium pro-
duces a scattered field. Equation (4.5), which involves the radi-
ated field, is integrated across a volume V that surrounds the object
without containing it. The volume is delimited by an inner bound-
ary Γ1 and an outer boundary Γ2. At the end of the derivation, only
the field across the boundary Γ1 is necessary to obtain the expan-
sion.

We apply the generalized Stokes’ theorem [226] to Eqn. (4.5) twice to convert part of the
volume integral into a surface integral across the boundaries of V ,

0 =

∫

Γ
{(∇×Escat (r))× F∗ (r)} · dS

+

∫

V

{
(∇×Escat (r)) · (∇× F∗ (r))− k2F∗ (r) ·Escat (r)

}
dV

=

∫

Γ
{(∇×Escat (r))× F∗ (r) + Escat (r)× (∇× F∗ (r))} · dS

+

∫

V

(
Escat (r) · {∇ × (∇× F∗ (r))} − k2F∗ (r) ·Escat (r)

)
dV

(4.6)

Using now the assumption that F (r) also fulfills the homogeneous wave equation, and
therefore also F∗ (r), the volume integral in Eqn. (4.6) vanishes and we obtain an expres-
sion involving only a surface integral,
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∫

Γ
{(∇×Escat (r))× F∗ (r)− (∇× F∗ (r))×Escat (r)} · dS = 0. (4.7)

In the next step, we split the surface integral into the contributions of the inner surface
Γ1 and the outer surface Γ2, see Fig. 4.1,

−
∫

Γ1

{(∇×Escat (r))× F∗ (r)− (∇× F∗ (r))×Escat (r)} · dS

+

∫

Γ2

{(∇×Escat (r))× F∗ (r)− (∇× F∗ (r))×Escat (r)} · dS

= I1 + I2 = 0. (4.8)

The minus sign in the above expression comes from the definition used for the differ-
ential surface elements, with dS pointing inwards the volume V on Γ1 and outwards on
Γ2.

Up to this point, no restriction was imposed on the shape of the boundaries Γ1 or Γ2. For
the remainder of this derivation, the outer surface Γ2 is assumed to be a sphere of radius
R, SR. Applying the circular shift theorem over I2 one gets,

I2 =

∫

S2
R

{(∇×Escat (r))×F∗ (r)}·dS−{(∇×F∗ (r))×Escat (r)}·dS

=

∫

S2
R

{dS×(∇×Escat (r))}·F∗ (r)−{dS×(∇×F∗ (r))}·Escat (r). (4.9)

We now assume that the radius R is large enough such that the far-field radiation condi-
tion (2.50) is fulfilled,

lim
R→∞

(∇× {Escat (r) ,F (r)})×Rr̂ = + lim
R→∞

ikR {Escat (r) ,F (r)}. (4.10)

Expressing the differential surface element of the sphere in spherical coordinates,

dS = R2 sin θ dθ dφ r̂, (4.11)

we can integrate it into the far-field condition,

lim
R→∞

(∇× {Escat (r) ,F (r)})× dS = + lim
R→∞

ikdS {Escat (r) ,F (r)}. (4.12)

Substituting this last expression into Eqn. (4.9) we obtain,

lim
R→∞

I2 = − lim
R→∞

ik

∫

S2
R

(Escat (r) · F∗ (r) + F∗ (r) ·Escat (r)) dS. (4.13)

Finally, the generic field F is replaced by the radiative VSWFN(3)
m,n (r) orM(3)

m,n (r),
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∫

Γ1

{
(∇×Escat (r))× {M,N}(3)∗

m,n (r)

−
(
∇× {M,N}(3)∗

m,n (r)
)
×Escat (r)

}
· dS

= lim
R→∞

2ik

∫

S2
R

Escat (r) · {M,N}(3)∗
m,n (r) dS.

(4.14)

If we compare the term on the right hand side of the above expression with Eqns. (4.2)-
(4.3), we see that it equals the complex coefficients of the multipole expansion times the
norm of the VSWF at infinity, which is equal to 1

k ([42] Eqn. (C.152)),

∫

Γ1

{
(∇×Escat (r))× {M,N}(3)∗

m,n (r)

−
(
∇× {M,N}(3)∗

m,n (r)
)
×Escat (r)

}
· dS

= {a, b}m,n 2ik lim
R→∞

∫

S2
R

| {M,N}(3)
m,n (r) |2 dS

= {a, b}m,n
2i

k
.

(4.15)

Therefore, we obtained an expression to calculate the expansion of the scattered fields
into VSWFs using integrals across a surface with a general shape,

am,n =
k

2i

∫

Γ1

{
(∇×Escat (r))×M(3)∗

m,n (r)− kN(3)∗
m,n (r)×Escat (r)

}
· dS. (4.16)

bm,n =
k

2i

∫

Γ1

{
(∇×Escat (r))×N(3)∗

m,n (r)− kM(3)∗
m,n (r)×Escat (r)

}
· dS. (4.17)

Equations (4.16)-(4.17) can be also obtained using Lemma 6.38 of [227], applying it to
Escat (r) and the VSWF. They are the central result of this section.

Once the scattered field is known, these two equations allow us to calculate the coeffi-
cients of itsmultipole decomposition over any surface enclosing the scatterer. This result
is particularly interesting for practical reasons, as one can directly apply the equations
on the boundaries of the computational domain used to solve the scattered field.

Note that the surface Γ1 can contain points or can be completely embedded into the re-
gion where the Rayleigh hypothesis may not hold true and still the expressions would
be valid. This can be seen in Eqn. (4.14), where Eqns. (4.16) and (4.17) are linked to the
values of the decomposition of the scattered field in the far-field region.

To test the above expressions, we considered a test field, Etest (r), composed of different
VSWF terms with well defined amplitudes,

Etest (r) = (0.5 + 0.5i) M
(3)
0,1 (r) + 0.03N

(3)
3,3 (r) , (4.18)

and calculate the decomposition of Etest(r) into a set of different VSWF. The decompo-
sition is done using a cube of side length lcube centered at the origin as the surface of
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integration. For the test, a non-adaptive trapezoidal integration method was used. The
number of grid points used for the numerical integration was 40,000 for each face of the
cube. The results obtained for the expansion are shown in Fig. 4.2a as a function of the
cube side length.
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Figure 4.2: Error in different terms of the multipole expansion of a
scattered field. The scattered field is given by Eqn. (4.18). a. Decom-
position using the radiative VSWF, Eqn. (4.16). b. Decomposition
using the regular VSWF, Eqns. (4.21)-(4.22).

As we can see, for a fixed number of integration grid points, the error of the expansion
worsens the closer the boundaries of the integration surface are to the origin of the co-
ordinates. The reason for that comes from the singular behavior of the radiative VSWFs
at the origin. It causes numerical instabilities due to the finite precision of the digital
representation of the numbers and due to the finite discretization used for the surface
integral.

One possible solution to reduce this problem and improve the stability of the method
could be to check if the radiative VSWF can be replaced by the regular VSWF in Eqn (4.16).
The regular VSWFs differ from the radiative ones only in their radial dependence and they
do not suffer from the singular behavior, so it is in principle reasonable to think that they
might fulfill a similar orthogonality expression.

To check this, we substitute F (r) withN
(1)
m,n (r) into Eqn. (4.8). An equivalent procedure

to the one done here for the fieldsN(1)
m,n (r) can be done for the fieldsM(1)

m,n (r).

Using the fact that the regular VSWFs can be expressed as a combination of the radiative
VSWFs and the VSWFs of type 4,

N(1)
m,n (r) =

N
(3)
m,n (r) + N

(4)
m,n (r)

2
, (4.19)

and that thefieldsN(4)
m,n (r) fulfill an inwards Silver–Müller radiation condition, Eqn. (4.13)

now reads as,
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lim
R→∞

I2 = lim
R→∞

−ik
∫

S2
R

(
Escat (r) · N

(3)∗
m,n (r) + N

(4)∗
m,n (r)

2

+
N

(3)∗
m,n (r)−N

(4)∗
m,n (r)

2
·Escat (r)

)
dS

= lim
R→∞

−ik
∫

S2
R

Escat (r) ·N(3)∗
m,n (r) dS. (4.20)

Therefore, we obtain an expansion for the scattered field into the radiative VSWFs using
an expression that only involves the regular VSWFs,

am,n = −ik
∫

Γ1

{
(∇×Escat (r))×N(1)∗

m,n (r)

− kM(1)∗
m,n (r)×Escat (r)

}
· dS,

(4.21)

bm,n = −ik
∫

Γ1

{
(∇×Escat (r))×M(1)∗

m,n (r)

− kN(1)∗
m,n (r)×Escat (r)

}
· dS.

(4.22)

Equations (4.21) and (4.22) are equivalent to Eqn. 5.175 of [42], derived there on the
boundary of the scatterer, and used in the context of the extended boundary condition
method.

To see if the change improves the numerical stability of the expansion, the same test
as shown in Fig. 4.2a is now repeated using Eqns. (4.21)-(4.22). The results are shown
in Fig. 4.2b. As we can see, the error in the expansion using the regular VSWFs does
not exponentially increase with the reduction of the cube length and it remains stable.
Therefore, Eqns. (4.21) and (4.22) are more suitable for a numerical implementation of
themultipole decomposition. These are the expressionswewill finally use in our FEM im-
plementation of themultipole decomposition, whichwe proceed to describe below.

FEM implementation of the decomposition

Having now checked the numerical suitability of the expressions, the next step is to im-
plement them into the finite element solver.

Equations (4.21)-(4.22) have two terms, one that depends on the electric field and an-
other that depends on its curl. As the electric field is expanded into a basis of polynomial
functions of a certain degree, its curl will be given by an expansion of a lower polynomial
degree. That implies that the numerical accuracy of the term depending on the curl is
worse than the one of the directly computed field.

To improve the accuracy of the solution, one technique frequently used is to convert the
part of the surface integral that contains the curl of the field into a volume integral,
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∫

Γ1

{F∗ (r)× (∇×Escat (r))} · dS =

∫

V1

(
(∇×Escat (r)) · (∇× F∗ (r))− k2F∗ (r) ·Escat (r)

)
dV , (4.23)

where V1 is the volume contained by the surface Γ1. Note that this is not the same volume
as the volume V used in the derivation of Eqns. (4.2)-(4.3).

Actually, the numerical technique does not evaluate the volume integral over the entire
volume V1. It uses only the field of the FEMmesh elements that are part of the surface Γ1.
This is done to not increase the computational cost of having to solve an integral over the
whole volume V1. In order to do that, a zero extension operator [228] is applied, to create
a decaying continuation of the scattered field over Γ1 towards the interior of the volume.
This technique is not specifically used for the decomposition given by Eqns. (4.21) and
(4.22). It is a common technique used in the FEM for computing different surface inte-
grals, as for example the surface integral of the Poynting vector. The numerical trick is
automatically applied by the solver JCMsuite [229].

To test the FEM implementation1, first we compute the expansion of the field scattered by
a sphere when it is illuminated by a linearly polarized plane wave. The VSWF expansion
of the scattered fields produced by a sphere is a well known solution [62, 63], which has an
analytical expression. Figure 4.3 shows the scattering cross section split into the contri-
butions of the different multipoles for different frequencies of the illumination, obtained
using both the FEM implementation and Mie theory. The link between the coefficients
of the multipole decomposition and the scattering cross section has been described in
section 2.2. The details of the simulation are described in the caption of the figure. As it
can be seen, the results of the FEM solution match the analytical solution up to a certain
numerical precision.

To further ascertain the accuracy of the method, we perform a convergence test of the
error of the decomposition with respect to the side length of the mesh elements used in
the FEM discretization, hFEM. The results are shown in Fig. 4.4. As it can be seen, the
errors in the decomposition decrease with the decrease of the mesh side length. An ad-
ditional line was included showing the values of 0.8 · 10−4·h2

FEM. This behavior coincides
with the behavior of the relative error of the decomposition for the magnetic hexapole.
The relative errors of the different multipoles show similar power law behaviors. These
results are in agreement with the theoretical asymptotic FEM convergence behavior of hp

for the electromagnetic fields ([231] section 5.7).

As a second test, the total scattering cross section of a silver nanorod is computed for a
wavelength range between 250 nmand 2 µm. The nanorod ismodeled as an ellipsoid with
a semi-major axis of 225 nm and a semi-minor axis of 37.5 nm. The major axis is parallel
to the x-axis. The nanorod is illuminated with a linearly polarized plane wave with wave
vector pointing in the -z-direction. The electric field is parallel to the x-axis.

To check the validity of the decomposition, the total scattering cross section as com-
puted from the multipole coefficients, Eqn. (2.52), is compared with the value obtained
from the calculation of the total scattered power using the time averaged Poynting vector,
〈S〉 (r),

1After implementing and testing the decomposition with JCMsuite using an external Pythonmodule, the
decomposition was then fully integrated into JCMsuite as an extra feature of the software package. This final
integration was mainly done by Martin Hammerschmidt. My work in this integration process was to test it
and to help in the identification of the sources of errors.
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Figure 4.3: Multipole decomposition of the field scattered by a sil-
ver sphere illuminated by a plane wave. The wave vector of the
plane wave is oriented in the -z-direction. Its electric field is lin-
early polarized in the x-direction with an amplitude of 1 V/m. The
sphere has a radius of 112.5 nm and its permittivity at each wave-
length is interpolated from a database [230].

σscat =

∫
S 〈S〉 (r) · dS

2Z2
0 |Ei|2

, (4.24)

with S being a surface surrounding a volume that contains the nanorod, Z0 the charac-
teristic impedance of free space, and Ei the amplitude of the plane wave.

For this example, the expressions (4.21) and (4.22) for themultipole expansionwere eval-
uated directly on the boundary of the nanorod. The decomposition is shown in Fig. 4.5.
The results obtained from both methods are in good agreement with each other.

As it can be seen in the decomposition, the nanorod sustains a principle resonance at a
wavelength of 1225 nm. At this wavelength, most notably the electric dipole moment is
resonantly excited. To be precise, the dipolemoment oriented along themajor axis of the
nanorod is resonantly excited, corresponding to the vectorial orientation of the electric
field used to illuminate the nanorod. Symmetry reasons prevent any electrical dipole
moment oriented in a direction other than the x-axis from being excited. This can be
seen in Fig. 4.6, which shows the contribution of the different components of the electric
dipole moments in the Cartesian basis to the scattering cross section. The electric dipole
moments oriented along the Cartesian axis and the electric dipolemoments that produce
the VSWF fieldsN3

m,1 (r) are related as



px
py
pz


 =

1√
2




1 0 −1
−i 0 −i
0
√

2 0





p−1

p0

p+1


 . (4.25)

This dipolar behavior is visible in Fig. 4.7a, which shows the intensity of the electric field
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Figure 4.4: Convergence study for the errors in the multipole de-
composition of the fields scattered by a silver sphere as a function
of the FEM mesh side length in the surrounding medium, hFEM.
The sphere is illuminated by a plane wave with a wavelength of λ0

= 450 nm. The wave vector of the plane wave is oriented in the -
z-direction. Its electric field is linearly polarized in the x-direction.
The sphere has a radius of 112.5. Themesh side length of the sphere
discretization equals hFEM/|

√
εsilver|, being εsilver the relative per-

mittivity of the sphere, εsphere = -6.81+0.28i.

on the surface of the nanorod and in the plane x-z-plane at y = 0, which contains the
major axis of the nanorod. As it can be seen in the figure, the field is strongly local-
ized around the corners of the particle and it resembles the field profile produced by an
ideal electric dipole. Such strong field intensities are characteristic of rod-like metallic
particles due to plasmonic excitations [232–234]. When one of the two dimensions of
the nanorod is much longer than the other two, a low-energy local surface polariton, is
sustain [235].

Antenna theory describes how an ideal half-wave dipole antenna, a thin wire made out
of a perfect electric conductor, would present a resonance peak in the scattering cross
section for an illumination wavelength equals to two times the length of the wire [236].
However, at optical and near infrared frequencies, particles made out of silver can not
be assumed to be perfect electric conductors. The incident radiation is not perfectly re-
flected on the surface of the particle but it penetrates a certain thickness into the particle.
The electromagnetic response becomes then governed by collective electron oscillations,
called surface plasmons. This different behavior with respect to the predictions from an-
tenna theory leads to a shift of the resonance towards longer wavelengths [237], as it
can be seen in the results of Fig. 4.6. However, one could still approximately predict the
position of the resonance for a thin wire using a scaling correction of the wavelength
predicted by antenna theory [238, 239],

λeff = λ0
k0

γ
− 4R. (4.26)
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Figure 4.5: Cross section of a nanorod calculated using two differ-
entmethods: themultipole expansion and the integral of the power
flux of the scattered field. The nanorod is a silver ellipsoid with a
semi-major axis of 225 nm and semi-minor axis of 37.5 nm. The
major axis is oriented along the x-direction. The nanorod is illumi-
nated with a plane wave with the wave vector parallel to the -z-axis
and the electric field linearly polarized in the x-direction.
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Figure 4.6: Electric dipole contributions to the scattering cross sec-
tion of the nanorod described in Fig. 4.5 as a function of the wave-
length. The contributions are shown in terms of the three Cartesian
dipole moments. The peak in the scattering cross section is associ-
ated to resonant the excitation of the dipolemoment oriented in the
x-direction. Symmetry reasons prevent the excitation of any other
electrical dipole moment.

In the above equation, λeff would be thewavelength of the resonance for a half-wavelength
antenna. In the case of the nanorod simulated here, that would be λeff = 900 nm, four
times the semi-major axes. λ0 is the wavelength at the resonance peak, k0 is the wave
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number in free space, R is the radius of the wire and γ is the propagation constant of the
surface charge wave for the TM0 mode of a cylindrical wire. We compute the value of γ
following [240]. Assuming a wire with a constant radius of 37.5 nm, one obtains that an
effective wavelength of 900 nm would correspond to an illumination wavelength of 1229
nm. This value of the position of the resonance peak is in very good agreement with the
results shown in Fig. 4.6.

Metallic nanorods similar to the one analyzed here have been proposed as an important
component of different sensor devices [241–244]. One of the reasons for that is the high
sensitivity that they present in the spectral position of the plasmon resonance. A small
change in the refractive index of the surrounding medium shifts the resonance of the
scattering cross section considerably, allowing to measure minute changes in the refrac-
tive index.
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Figure 4.7: a. Amplitude of the electric field in close vicinity to the
nanorod upon its illumination with a plane wave at a wavelength
of 1225 nm. Other properties of the illumination and the nanorod
correspond to those described in the caption of Fig. 4.5. The figure
shows the amplitude in the x-y-plane at y = 0. The amplitude of the
field in the surface of the nanorod with y ≤0 is superimposed onto
the values of the plane. b. Direction of the electric field in the x-
z-plane at y = 0 along with the real part of the x-component of the
electric field.

Decomposition of fields scattered from cylindrically symmetric objects

The decomposition and the FEM implementation proposed in the previous section is a
generalmethod that can be usedwith any structure, entirely independent on its complex-
ity. On the other hand, there are different techniques to obtain the multipole expansion
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for simple objects in a more efficient manner. A typical example would be the case of Mie
theory for spheres and the extended boundary condition method applicable for homoge-
neous scatterers that are homotopic to a sphere.

In a similar manner, the decomposition using the FEM can also be simplified if the scat-
tering object has specific symmetries. One particularly interesting case is that of cylindri-
cally symmetric objects. The FEM calculation of three dimensional cylindrically symmet-
ric objects can be simplified and solved using a two dimensional FEM layout. To do that,
one needs to apply cylindrically symmetric boundary conditions. Doing this, one obtains
the FEM solution of the electric field as a combination of cylindrical Fourier modes ([245]
section 4.1.2) ,

Escat (r) =

∞∑

m=−∞
Escat,m (r, z) eimφ. (4.27)

with r, z, and φ being the spatial coordinates in a cylindrical coordinate system. The
m-th order in the expansion can be solved for by a two-dimensional instead of a three
dimensional wave equation. In practice, the summation in Eqn. (4.27) is truncated and
only a finite set of orders,m = [−n, ..., n] is considered. Therefore, 2n+ 1 different two-
dimensional simulations need to computed. As the VSWFs are also cylindrical Fourier
modes, with the mode number given by their multipole order m, the VSWF decomposi-
tion of the Fourier modes of the scattered field, Escat,m, vanishes for all the VSWF that
do not share the same Fourier orderm with the mode of the scattered field. This means
that, for a given VSWF with a multipole order m, only the contribution of the scattered
mode Escat,m is needed to perform the expansion. That obviously constitutes a tremen-
dous simplification. Furthermore, Eqns. (4.21) and (4.22) can be reduced to a line instead
of a surface integral applied across a one dimensional boundary Γ1 that surrounds the
scatterer in the two dimensional FEM model. The individual amplitude coefficients for
cylindrically symmetric objects can then be calculated according to

am,n = −i2πk
∫

Γ1

{
(∇×Escat,m (r))×N(1)∗

m,n − kM(1)∗
m,n (r)×Escat,m (r)

}
r · dl. (4.28)

bm,n = −i2πk
∫

Γ1

{
(∇×Escat,m (r))×M(1)∗

m,n (r)− kN(1)∗
m,n (r)×Escat,m (r)

}
r · dl. (4.29)

In the above equations, dl is a differential line element over Γ1 pointing in a direction
normal to Γ1.

Therefore, cylindrically symmetric objects need less computational costs for the FEM cal-
culation of the scattered field but also for the posterior evaluation of Eqns. (4.21) and
(4.22). The implementation of the multipole decomposition of the field scattered from a
cylindrically symmetric objects is performed using the cylindrically symmetric setup of
the FEM solver [229]. To test the implementation, we compute the decomposition for a
core-multi-shell sphere illuminated by a plane wave. As for the case of the homogeneous
sphere, analytical expressions exist for the amplitudes of the multipole decomposition
of such structures [246]. The convergence test for the error of the decomposition with
respect to the mesh side length is shown in Fig. 4.8. The details of the simulation are
described in the caption of the figure. As it can be seen, the error follows a similar power
law as in the case of the three dimensional test.
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Figure 4.8: Convergence test of the multipole decomposition for
a core-multi-shell sphere illuminated by a plane wave. The core-
multi-shell sphere is composed of three concentric spheres with
radii 100 nm, 200 nm, and 205 nm. Their permittivities are 6.25,
12.25, and -24.84+4i respectively. The wave vector of the plane
wave is oriented in the z-direction. The plane wave has a wave-
length of 532 nm and its electric field is polarized in the x-direction
with an amplitude of 1 V/m. The mesh size of each sphere corre-
sponds to λ · hFEM, being λ the corresponding wavelength of the
field in each material.

In a second example, the scattering cross section of a core-multi-shell disk composed of
three different materials is calculated. The scatterer is illuminated with a circularly po-
larized plane wave. In this example, the computedmultipoles were transformed from the
base of electric and magnetic multipoles to the helicity base [222]. As it can be seen, at
a wavelength of 1200 nm the disk only scatters light of pure helicity. The details of the
geometry of the core-multi-shell disk are given in the caption of Fig. 4.9. Thanks to the
reduction in memory and computation effort obtained by the cylindrical setup, the re-
sults for 100 different spectral points could be obtained in less than 30 seconds, running
20 simulations in parallel. Note that, because the disk is composed of more than one
material, the extended boundary condition method could not be applied to this struc-
ture.

We have successfully applied the cylindrical setup of the FEM multipole decomposition
in different research fields [A7–A9].

4.3 Calculation of the T-matrix

Description

As already commented in the introduction of the chapter, the T-matrix is a fundamen-
tal tool to analyze the interaction of light with isolated scatterers. It provides the field
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Figure 4.9: Scattering cross section of a core-multi-shell disk de-
composed into the fields scattered with both helicities. The disk is
illuminatedwith a right circularly polarized planewavewith an am-
plitude of 1 V/m. The wave vector of the plane wave is oriented in
the +z-direction. The object is composed of three concentric disks
with the sameheight, 361nm, and radii 157.9 nm, 284.8 nm, and 375
nm. Their corresponding permittivities are 3.61, 11.16, and 4.84,
respectively.

radiated by an object for any given illumination field,

Escat = TEinc. (4.30)

In the most common case used in the T-matrix formalism, both fields, the scattered and
the illumination field, Einc, are expanded into VSWFs. This implies that the vectors in
Eqn. (4.30) contain the coefficients of the multipole expansions of the scattered and il-
lumination fields. In principle, the multipole expansion contains an infinite number of
multipoles, but in a practical implementation only a finite number of multipoles up to a
certain multipole degree nmax is considered,

Escat (r) =

nmax∑

n=1

n∑

m=−n
am,nN

(3)
m,n (r) + bm,nM

(3)
m,n (r), (4.31)

Einc (r) =

nmax∑

n=1

n∑

m=−n
cm,nN

(1)
m,n (r) + dm,nM

(1)
m,n (r). (4.32)

The cutoff value nmax is determined by the value of the admissible error in the expansion.
The most general ordering convention of the expansion coefficients in the vectors Escat

and Einc sets the position of the coefficients following an ascending order based on the
values of themultipole orderm andmultipole degreenwithm as the leading index,
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Escat = [a−1,1, a0,1, a1,1, a−2,2, ..., anmax,nmax , b−1,1, ..., bnmax,nmax ]T . (4.33)

Amethod to compute the T-matrix of scatterers with complex geometries using the finite
elementmethod was proposed in [222]. Themethod uses a series of plane wave illumina-
tions to establish a link between the radiated and illumination VSWFs. This work follows
a similar procedure to compute the T-matrix. However, instead of illuminating the ob-
ject with different plane waves, the object is illuminated directly with the regular VSWFs
contained in the expansion of Einc, as it was proposed in [218]. Then, the scattered field
is decomposed into the VSWFs using the implementation described in this chapter. This
allows to directly obtain one column of T for each illumination used.

Example: Design of dual cylinders

There are many different quantities that can be directly obtained from the entries of the
T-matrix. Examples are the scattering and extinction cross sections of the particle av-
eraged with respect to all the orientations of an illuminating plane wave (see, e.g., [42]
sections 5.2-5.3) or the duality breaking of the particle [213],��D. Such quantities are im-
portant when computing experimentally observables quantities in strongly diluted sam-
ples of a larger number of identical scatterers.

Concerning the latter property, it remains to be mentioned that a scatterer is dual, i.e.
��D = 0, when the field that it scatters preserves the helicity in the scattering process in-
dependent of the exact details of the illumination field [247, 248]. A direct implication
is that, when illuminated with a plane wave of well defined handedness, the scattered
field can be decomposed into plane waves of the same handedness. In the previous sec-
tion we saw how a core-multi-shell disk produces a scattered field of pure helicity when
illuminated with a circular polarized plane wave coming from a specific direction. If the
disk were dual, it would present the same behavior for any direction of the incident plane
wave.

One very interesting property of dual scatterers with a 2π/n discrete rotational symme-
try with n ≥ 3 is that they do not produce backscattering when they are illuminated with
a plane wave when the k vector is parallel to the symmetry axis of rotation [249]. That
means that if one creates a periodic grating with a squared lattice and such a dual scat-
terer as the periodic unit cell, the gratingwill have zero back reflections, independently of
the periodicity length of the grating. These gratings can be used, for example, to reduce
the reflectance of solar cells, as discussed in [250].

To compute the duality breaking of a scatterer, one first needs to convert the T-matrix
from the parity basis of electric andmagnetic VSWF to the basis of VSWF of pure helicity,
T±. The VSWF of pure helicity have been described in section 2.2. The basis of the T-
matrix can be easily changed applying the following transformation [222],

T± =

[
T++ T+−

T−+ T−−

]
=

1

2

[
I I
I −I

]
T em

[
I I
I −I

]
(4.34)

being I the identity matrix and T±± the submatrices that link the scattering VSWFs with
helicity given by the first superscript with the illumination VSWFs with helicity given
by the second superscript. In the helicity basis, the duality breaking can be obtained
as,
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��D =

∑
∀i,j |T+−

[i,j] |2 +
∑
∀i,j |T−+

[i,j] |2∑
∀i,j |T±[i,j]|2

. (4.35)

��D is bounded between 0 and 1. When��D equals 0, the scatterer is perfectly dual, as no
cross-coupling can occur between illumination and scattered fields of opposite helicity.
This comes clear looking at Eqn. (4.35).��D is 0 if and only if all the cross-coupling terms
T+−

[i,j] and T
−+
[i,j] are 0. On the opposite extreme, a scatterer that would present a duality

breaking of 1 would scatter light with opposite helicity to the one of the illumination for
any given illumination which is a pure state of the helicity operator.

Regarding the existence of scatterers that present the extreme behaviors of��D = 0 or��D
= 1, it has not been shown that an object with a duality breaking of 1 can exist. Scatter-
ers that can scatter light of pure helicity and opposite to that of the illumination have
been shown [251]. However, there this behavior occurs only for specific illuminations.
On the other hand, it is possible to obtain scatterers that are dual at certain frequen-
cies [252]. Figure 4.10 shows one of such scatterers. The frequency dependence of the
duality breaking for a core-shell disk, sketched in Fig. 4.10a, is shown in Fig. 4.10b. The
core-shell disk has been designed to minimize the duality breaking for a wavelength of
1550 nm. The material and geometrical parameters of the disk are shown in the caption
of the figure. As one can see, the duality breaking presents a minimum close to 0 at a
wavelength of 1550 nm. To be precise, it amounts only to��D = 0.001.

To obtain the dual core-shell disk, we combined the cylindrical symmetric setup for the
multipole decomposition to compute the T-matrix together with the optimization tech-
nique presented in chapter 3.
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Figure 4.10: a. Sketch of the considered core-shell disk. Its geo-
metrical parameters are Rin = 111 nm, Rout = 237 nm, and H = 431
nm. The core and the shell are made of materials with nondisper-
sive permittivities of εin = 10.63 and εout = 5.3. b. Wavelength de-
pendency of the duality breaking,��D, of the optimal core-shell disk
around the central wavelength of 1.55 µm.

The implementation to compute the T matrices was also used in other different applica-
tions, as to enhance the sensing of chiral molecules using nano disks [A8], or for the cal-
culation of the T-matrices of helices [A10] to analyze the link between proposedmeasures
of geometrical chirality and different electromagnetic quantities as the circular dichro-
ism [253, 254] or the electromagnetic chirality [247].
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4.4 Calculation of shape andmaterial derivatives for T-matrices

The T-matrix is used to compute different electromagnetic quantities of single scatterers
and it is a point of departure to study the optical response from clusters of scatterers.
For this reason, if one aims to design a scatterer for a specific application, the T-matrix
of the scatterer would often be involved in the calculation of the objective function. In
this context, having access to the derivatives of the T-matrix with respect to the design
parameters is of great value in the optimization process.

The procedure to calculate the shape derivatives of the VSWF expansion is not different
to the general procedure described in Section 2.3. Once the derivatives of the scattered
field with respect to a design parameter xi are obtained, it is only necessary to propagate
them to obtain the derivatives of the expansion coefficients am,n and bm,n. Taking as
an example the expression for the decomposition of the electric VSWF, Eqn. (4.21), one
gets,

dam,n
dxi

= −ik
∫

Γ1

{(
∇× dEscat (r)

dxi

)
×N(1)∗

m,n (r)

− kM(1)∗
m,n (r)× dEscat (r)

dxi

}
· dS.

. (4.36)

The derivatives for the magnetic VSWFs follow a similar expression.

Therefore, to obtain the derivatives of the multipole decomposition, one just needs to
calculate the multipole decomposition of the dertivatives of the scattered field.

The FEM solver JCMsuite [58] has already been able to compute the field derivatives
dEscat/dxi and it performs similar calculations to Eqn. (4.36) to compute other surface
integral quantities, such as the total power radiated by a scatterer. Because of those rea-
sons, once the multipole expansion was implemented into the solver, it was only nec-
essary to apply a small change to the existing code to calculate the shape and material
derivatives of the expansion.

To test the implementation, the material derivative of the T-matrix of a core-multi-shell
sphere is computed. The schematic of the sphere is shown in Fig. 4.11a. Figure 4.11b
shows the derivatives of one of the T-matrix entries with respect to the permittivity of
the intermediate shell, ε2. The entry corresponds to the scattered coefficient a2,2 when
it is illuminated with the VSWF N

(1)
2,2 (r). The results are compared with the analytical

values obtained from Mie theory [246].

To compute the scattered field, a three dimensional FEMmodel was used. The maximum
side length of the FEM discretization was λ/10 and the FEM polynomial order was three.
The details of the core-multi-shell sphere are described in the caption of Fig. 4.11. As
it can be seen in the figure, the results agree up to the numerical precision of the FEM
simulations.

The core-multi-shell sphere is a good test example as there is a well known analytical
solution to compare with. However, the FEM based implementation is capable of much
more general structures. To test the derivatives with a more interesting case, a second
test is done for a silicon helix. The helix is made from a wire with a thickness of 40 nm,
a pitch of 80 nm, and it has two turns. Figure 4.12a shows a schematic of the structure.
For the test, the helix is illuminated with the VSWF N1

−1,1 (r) at a vacuum wavelength
of 550 nm. The shape derivative of the T-matrix entry T1,1 with respect to the major ra-
dius of the helix, Rh, is calculated for different values of Rh. The results are shown in

77



Chapter 4. Design of isolated scatterers

R1
R2

R3

a

1.5 2.0 2.5 3.0
n2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

R
e
[ T

[8
,8
]]

b

T[8,8]

dT[8,8]

dn2
analytic

dT[8,8]

dn2

−2

−1

0

1

2

3

R
e

[ d
T
[8
,8
]

d
n
2

]

Figure 4.11: a. Schematic of the considered core-multi-shell
sphere used to test the implementation of the material derivatives
of the T-matrix. The core-multi-shell sphere is composed of three
concentric spheres with radii 100 nm, 200 nm, and 300 nm respec-
tively. Thepermittivities ε1 and ε2 are 12.25 and 6.25 respectively. b.
Material derivative of one of the entries of the T-matrix with respect
to the permittivity of the intermediate layer of a core-multi-shell
sphere. The entry of the T matrix corresponds to the scattering co-
efficient a2,2 when the sphere is illuminated with the fieldN

(1)
2,2 (r).

Fig. 4.12. As there are no analytical results for the multipole decomposition of complex
structures such as helices available, the derivatives using the direct method were com-
pared with the results obtained from finite difference calculations. As for the case of the
core-multi-shell sphere, the results of both methods agree up to a certain precision of
the FEM simulation. Note that the results obtained using finite differences do not just
require an extra simulation per parameter but they are also less accurate than the ones
obtained using the direct method.

4.5 The adjoint method for multi-scattering problems

Description

One of the most relevant applications of the T-matrix is the calculation of the scattered
field from clusters composed of many scatterers. Among other applications, the method
allows to rigorously solve the response of metalenses or the propagation of light through
aperiodic photonic crystals.

Finding the optimal shape or material properties of each of the scatterers to increase the
performance of the entire multi particle system, is generally a high dimensional opti-
mization task. In this task, having access to the derivatives of the objective funtion with
respect to the shape or material parameters of the scatterers can drastically improve the
convergence of the optimization.

In the previous section, an implementation for computing shape andmaterial derivatives
of T-matrices of complex scatterers was described and tested. This numerical method
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Figure 4.12: a. Schematic of the helix used for computing the
shape derivatives of the multipole decomposition. The helix is
made from a wire with a thickness, Tw, of 40 nm and a pitch of 80
nm. Its refractive index is 3.5. b. Derivatives of one of the entries of
the T-matrix with respect to the major radius of the helix, Rh. The
entry of the T-matrix links the scattering and illumination coeffi-
cients a−1,1 and c−1,1 respectively. The illumination wavelength is
550 nm.

can be used, in combination with a multi-scattering solver, to obtain the derivatives of
an objective function that depends on the field scattered by the entire system. The proce-
dure to achieve this consists in combining the multi-scattering formalism with the direct
or adjoint methods. Both methods were presented in section 2.3. In multi-scattering
problems with clusters composed of a large number of particles, the adjoint method is
frequently used due to the large number of design parameters [255].

To describe the implementation of the adjoint method in multi-scattering problems, the
multi-scattering formalism must be presented obviously at first.

Let us consider a system composed of a number of N scatterers, specified by their T-
matrices T i. The multipole expansion of the field scattered by the scatterer i can be
represented by a vector Escat,i. As described in section 4.3, the T-matrix establishes a
relation between the field that illuminates the scatterer i, Einc,i, and the corresponding
scattered field,

Escat,i = T iEinc,i. (4.37)

In a system with many objects, the field scattered by each object partially illuminates all
the other objects. Therefore, the scattered field produced by each object is not only pro-
duced by the external illumination as considered up to that point, but also as a response
to the fields scattered by the other scatterers. Denoting by Einc,i,0 the external illumina-
tion on the scatterer i, one can write the total field illuminating a scatterer as

Einc,i = Einc,i,0 +
∑

j 6=i
Einc,i,j , (4.38)
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whereEinc,i,j denotes the illumination field on the i-th particle due to the field scattered
from the j-th particle.

The link between the scattering and the illumination fields of the different scatterers can
be calculated using the translation theorems of the VSWF [42, 256, 257]. The translation
coefficients allow to construct the transformationmatrices between the scattered and the
illumination fields,M i,j ,

Einc,i,j = M i,jEscat,j . (4.39)

OncematricesM i,j are obtained using the translation theorems, the equations describing
the whole system can be easily obtained. Denoting by Escat the vector expanding the
scattered fields from all the particles

Escat =
[
ETscat,1,E

T
scat,2, ...,E

T
scat,N

]T
, (4.40)

the system reads as

SMEscat = Escat,inc, (4.41)

where Escat,inc denotes the scattered field due to the external illumination, i.e., without
considering the multiple interactions between the different scatterers,

Escat,inc =




T 1Einc,1,0

T 2Einc,2,0

T 3Einc,3,0
...

TNEinc,N,0



, (4.42)

and SM is the system matrix

SM =




I −T 1M1,2 −T 1M1,3 . . . −T 1M1,N

−T 2M2,1 I −T 2M2,3 . . . −T 2M2,N
...

...
−TNMN,1 −TNMN,2 −TNMN,3 . . . I


 . (4.43)

The solution of the above system gives the total scattered field. Once this system is ob-
tained, the implementation of the adjoint system requires mainly onemore fundamental
step: the calculation of the partial derivatives of the objective functionwith respect to the
values of the solutionEscat. For this process, it is recommended to use software for auto-
matic differentiation [258, 259], especially for complicated objective functions of Escat.
After this step, one can solve the adjoint system,

SM †λ =
dfob

dEscat
. (4.44)

Note that here λ is used to denote the adjoint solution and not the wavelength. In the
context it is used here, no confusion should appear.

Finally, the calculation of the derivatives of the objective function with respect to some
parameter xi describing the geometry or material of one or more scatterers can be per-
formed. This calculation is equivalent to the onedescribed inEqn. (2.103) for the FEM,
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dfob

dxi
= λT

(
−dSM

dxi
+

dEscat,inc

dxi

)
(4.45)

The term dSM
dxi

is obtained using the shape or material derivatives of the individual T-
matrices for the single scatterers and applying the chain rule.

Example: metasurface hologram

cell[1,4]cell[1,3]cell[1,2]cell[1,1]

cell[2,1]

cell[3,1]

cell[4,1] cell[4,4]

R1[4,4]

R2[4,4]

Figure 4.13: Schematic of the hologram used to test the adjoint
method. The hologram is composed of a grid of 4 x 4 pixels
placed along the plane z = 0. Each pixel is composed of a grid
of 4 x 4 identical scatterers. The scatterers are disks with a
hole in the center. The height of the disks is 300 nm for all the
pixels. The disks are made from silicon and they are embedded
in a homogeneous medium with a refractive index of 1.44. The
refractive index of the disks is 3.6. The inner radii of the disks are
R1 = [580, 242, 323, 8; 96, 71, 498, 14; 39, 30, 15, 70; 73, 96, 477, 183]
nm, where the semicolon denotes the begin-
ning of a new row. The outer radii are R2 =
[601, 265, 426, 174; 175, 502, 533, 443; 397, 601, 412, 411; 80, 99, 497, 467]
nm.

The adjoint method for the design of multi particle systems was implemented in Matlab.
However, the implementation has not yet been integrated together with a package for
performing automatic differentiation. To test the implementation, the shape derivatives
of the far-field produced by a small metasurface hologram are computed. The metasur-
face is composed of a 4 x 4 pixel board. Each pixel is composed of a 4 x 4 periodic arrange-
ment of identical scatterers. The scatterering elements of each pixel are silicon disks of
height 300 nm that have a hole in the center, as shown in Fig. 4.13. The disks of each pixel
are described by an inner and an outer radius. The refractive index of the silicon was con-
sidered to be 3.6 for an illumination wavelength of 1550 nm. The embedding medium is
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considered to have a refractive index of 1.44.
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Figure 4.14: Amplitude of the scattered field produced by the holo-
gram described in Fig. 4.13 when it is illuminated by a plane wave.
The derivatives of the scattered field are computed with respect to
the outer radius of the disks of the pixel [3,2]. The illuminating
plane wave has a wave vector oriented along the -z-direction. Its
electric field is linearly polarized in the x-direction. The vacuum
wavelength of the plane wave is 1550 nm. The amplitude of the
scattered field is measured at the point (0,0,-100λ0).

For this test example, the objective function consists of the value of the electric field in a
pointxprobe placed 100wavelengths away from themetasurface, at the point (0,0,-100λ0).
The adjoint method was used to compute the derivative of the electric field with respect
to the outer radius of the disks of the pixel [3,2]. The results obtained are shown in
Fig. 4.14 for different values of the radius. The shape derivatives computed with the
adjoint method are compared with results obtained using finite differences. As shown
in the figure, the results of both methods are in agreement. The T-matrices of the indi-
vidual scatterers contain the multipole contributions up to the second, i.e. quadrupolar,
order. This results in a system matrix SM with a size of 4096 x 4096.

The combination of a multi-scattering solver, the calculation of shape derivatives of in-
dividual T-matrices and the adjoint method can be used to design complex multiparticle
structures. In the case of metasurface holograms, themethod could be used to rigorously
calculate the field obtained in the image plane and to design the shape of the scatterers
within each pixel. With this method one could design a hologram that creates the de-
sired image, taking into account all the interactions between the scatterers. Of special
interest are the interactions between the scatterers of different pixels [260], which when
not taken into account, produce undesired effects. However, to solve practical systems,
containing a large number of elements, it is necessary to implement an iterative solver
for the systems given by Eqns. (4.41) and (4.44) [220]. The reason for that is the quadratic
scaling of the system matrix with the number of scatterers, that makes even the storage
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of the system matrix in the computer memory impossible.

4.6 Conclusions

This chapter described different numerical implementations of relevance for the analysis
and design of isolated scatterers. The main result, the expressions to decompose scat-
tered fields into a VSWF basis using surfaces with general shapes, gave rise to a series of
tools that have been implemented into a FEM solver. These tools include a method to
obtain the multipole decomposition of complex geometries and the calculation of their
T-matrices. Of special interest in the context of the design of photonic devices is the im-
plementation of shape and material derivatives for the T-matrices of complex scatterers.
These shape derivatives are not only useful for the design of isolated scatterers, but they
can also be combinedwithmulti-scattering solvers andwith theuse of the adjointmethod
to help in the design of systems composed of a large number of scatterers. Examples are
metasurface holograms,metalenses or aperiodic photonic crystals. Thismethodhas been
described and its implementation was tested. However, to obtain a more powerful tool,
further improvements must be done, as the use of an iterative solver for linear systems
and the use of automatic differentiation to calculate complex objective functions.
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The previous chapters introduced different numerical methods to optimize the design of
photonic structures. This chapter is devoted to such design task. We present here the
design of two optimal photonic structures: electromagnetic chiral scatterers and waveg-
uide edge couplers. Both structures are of interest from different perspectives. Maximal
electromagnetic chiral scatterers present an extraordinary behavior with respect to their
interactionwith circularly polarized planewaves of different handedness. In this context,
wewant to study inmore detail what can be the frequency range that can support such ex-
treme structures. The second type of structures studied, waveguide edge couplers, are an
important component for the interconnection of different photonic elements in photonic
integrated circuits. The design of efficient and compact edge couplers is required to the
implementation of photonic circuits that will enable the next generation of optical data
networks.

The chapter is structured in two main sections, each of them corresponds to the design
of each of the two mentioned photonic structures. In each section, we first introduce
the structure, explain the main physical concepts related to it, and the relevance of its
optimized design. After that, we present the optimization methodology used to design
it, and we analyze the performance of the designs obtained.

5.1 Maximal electromagnetic chiral helices

Introduction

One of the applications for the previously established methods is the optimization of
electromagnetically chiral objects. Here, the term chirality was first introduced in 1892
by Lord Kelvin [261]. He suggested that an object is said to be chiral if it can not be
superimposed onto any mirror image of itself by applying any combination of rotations
and translations. If the object can be superimposed onto its mirror image, it is said to be
achiral.

Chiral objects are present in many different fields of science. Many molecules are chiral,
and they often exist as a pair of mirror images, called enantiomers. The enantiomers
have exactly the same physical properties except in their interaction with other chiral
objects, such as other chiral molecules or, in the context of photonics, when interacting
with chiral states of light. In biology, most of the fundamental building blocks of life are
chiral, including many carbohydrates and amino-acids [262]. As chiral molecules react
differently with other chiral objects, a pair of enantiomers can cause completely different
actions on living organisms. For example, the molecule that lens lemons and oranges
their odor is a specific enantiomer of limonene while the opposite enantiomer smells like
pines [263]. Similarly, the interaction of a chiral molecule, or a chiral object in general,
with light depends as well on the handedness of the illumination. This effect hasmultiple
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applications, e.g., as a mechanism for chiral sensing of molecules [242, A7, A8, 253, 264–
268], to trigger the production of different enantioselective reactions [269–271], or to
implement polarization filters [272].

If one aims to engineer an object that maximizes the difference in its interaction with
light of different handedness, one might think that designing a maximally chiral object
would be a good design strategy. However, the first problem with this approach is that
chirality is a binary property, and it has been shown that no rigorous method to quantify
chirality exists [273]. Different measures of chirality have been proposed, see for exam-
ple [274]. However, all of them lead to some inconsistency. For example, it could be shown
that any tetrahedron can be defined as the most chiral one, even though it is only incre-
mentally different from an achiral tetrahedron [275]. Based on the fact that a chiral ob-
ject interacts differently with light of different handedness, ameasure of electromagnetic
chirality, χ, that mitigates some of these limitations has been recently proposed [213].
Here, the emphasis should be put on electromagnetic chirality instead of chirality only, as
it measures how different the object responses to electromagnetic radiation of different
chirality, or more precise helicity. The measure assigns a certain frequency dependent
value, χ, to the object based on the interaction of the object with all possible illumina-
tion fields of different helicity. This definition of the electromagnetic chirality, which we
will denote as em-chirality from now on, is compatible with the geometrical definition
of chirality. An achiral object will always present a vanishing χ value for all illumination
frequencies. The link between the em-chirality and other electromagnetic quantities,
such as circular dichroism [276] and one of the porposed measures for the geometrical
chirality has been numerically studied in [A10].

One interesting property of the em-chirality is that it is upper bounded by the total in-
teraction cross section of the particle. This characteristic allows for the definition of a
normalized measure of the em-chirality, χ. If an object is maximally em-chiral, i.e. if its
χ is equal to 1, the object is invisible to any illumination that is a pure state of one of the
two eigenstates of the helicity operator ([277] chapter 8). Such extreme objects could be
used in very interesting applications. For example, in an angle independent polarization
filter, as was proposed in [213], or for sensing schemes of chiral molecules.

The concept of maximally chiral objects with a χ value close to 1 has been studied in the
literature. A silver helix with a χ higher than 0.9 has been reported at a wavelength of
200 µm [213]. Also, there are different design rules for obtaining such objects using ideal
perfect electric conductors of an extremely thin thickness [278]. However, it is not clear
if similar results can be achieved at optical frequencies or in the near infrared.

This section presents the design of optimal silver helices with respect to their χ value.
The aim of the work is to find out if it is possible to obtain objects that present high values
of χ in different regions of the infrared and optical spectrum. To do that, the work com-
bines different optimization and numerical methods presented within this thesis, such
as Bayesian optimization, the method to calculate the T-matrices of complex structures,
and the calculation of the shape derivatives of the multipole decomposition.

The reason for using helices as the geometry to be optimized is based on existing re-
sults that show that helices present strong differences in their interaction with plane
waves of different handedness [272, 278–281, A11]. Also, the optimization of a helix is
a simpler task than the optimization of more complex freeform wires, where one needs
to impose complicated constraints to avoid self-intersections. Regarding the use of sil-
ver as material, we chose it for a few reasons: One reason is that the simulations for the
high em-chiral helix at the infrared reported in [213] used silver as material. Also, silver
has been reported to be a better material to sustain magnetic resonances at optical fre-
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quencies [282]. This effect was also supported by some preliminary simulations that we
made at optical frequencies using gold helices, that showed lower em-chiral responses
than similar silver helices.

In the following subsections, first the definition of χ is formally introduced. After that,
the numerical procedure to perform the optimization is described. Finally, the last sub-
section presents the optimization results and analyzes the optimal helices. The work and
results presented in this section correspondmainly to the results contained in [A12].

Electromagnetic chirality

The definition of the electromagnetic chirality [213] of an object, χ, is based on the mea-
sure of the interaction of the scatterer with fields of different helicity. To obtain χ, one
needs to first obtain the S-matrix characterizing the scatterer in a basis of VSWFs of pure
helicity




G3,+
−1,1
...

G3,+
nmax,nmax

G3,−
−1,1
...

G3,−
nmax,nmax




= S±




G1,+
−1,1
...

G1,+
nmax,nmax

G1,−
−1,1
...

G1,−
nmax,nmax




=

[
S++ S+−

S−+ S−−

]




G1,+
−1,1
...

G1,+
nmax,nmax

G1,−
−1,1
...

G1,−
nmax,nmax




. (5.1)

The S-matrix of an object can be obtained from its T-matrix by S± = I + 2T±. The
T-matrix was introduced in section 4.3 and both the scattering,G3,±

m,n, and illumination,
G1,±
m,n, vector sphericalwave functions of pure helicitywere introduced in section 2.2.

Once the S-matrix is obtained, one has to calculate two vectors, v+ and v−, obtained
from the singular values of the block elements of the S-matrix, S±,±

v+ =

[
svd

(
S+,+

)

svd
(
S−,+

)
]
v− =

[
svd

(
S−,−

)

svd
(
S+,−)

]
. (5.2)

The summation of the squared entries of the two vectors gives the total interaction cross
section of the scatterer [213]

σint =
∑

i

v+
[i]

2
+ v−[i]

2
, (5.3)

which is linked to the rotationally averaged total scattering cross section of the object ([42]
Eqn. 5.140).

The definition of χ is given by the distance between the vectors v+ and v−,

χ =

√∑

i

(
v+

[i] − v
−
[i]

)2
. (5.4)

The em-chirality χ is bounded between 0 and
√
σint, therefore one can define the normal-

ized em-chirality χ by dividing χ with
√
σint,

χ =
χ√
σint

. (5.5)

87



Chapter 5. Application examples

In [213] it was shown that an achiral object will always have a χ value of zero. One can see
from the definition that if a scatterer has a χ equal to 1, the scatterer will only interact
with light of one of the pure states of the helicity operator. It implies that the scatterer
will be transparent to light of one of the two helicity eigenstates. Also, for an object to
be maximally electromagnetic chiral it has to be dual. Note that the implication is not
unidirectional: an achiral object can be dual, as it is the case for the cylinder optimized
in section 4.3.

Simulation setup

In this section we will describe the methodology that we use to design em-chiral silver
helices. Our intention is to find different optimal helices, each one of them presenting
high em-chirality values at a different region of the optical and infrared frequency spec-
trum.

To find these helices, we use the Bayesian optimization algorithm presented in chapter 3.
We provide to the algorithm observations of χ and also of its shape derivatives with re-
spect to the parameters that model the helices. To compute these quantities, we use the
finite element method solver JCMsuite [58, 229]. The calculation of the T-matrix using
the FEM has been described in section 4.3. Section 4.4 has been describing how to obtain
the shape derivatives of the T-matrix.

For the case of the helix, the procedure that we use to obtain the shape derivatives of
the actual mesh describing the helix with respect to the parameters of the helix involves
a series of steps, as shown in Fig. 5.1. First, the helix is discretized using the internal
mesher of JCMsuite. Once the mesh of the helix has been obtained, we need to calcu-
late the derivatives of the vertices of the boundary mesh elements with respect to the
parameters that describe the boundary of the helix. Given a helix specified by the radius
of the spine, Rh, its thickness, Tw, the pitch, Pitch, and the number of turns, Nturns, the
boundary of the helix can be parametrized with only two parameters θh and φh as

xhelix (θh, φh) = xspine (θh) +
Tw

2
(v1(θh) cosφh + v2(θh) sinφh) , (5.6)

where xspine are the points of the central spine of the helix

xspine (θh) =

(
Rh cos θh, Rh sin θh,

P itch

2π
θh

)
(5.7)

and v1(θh) and v2(θh) are two unitary vectors that are perpendicular to the tangent of the
spine of the helix, v3(θh). All these vectors are given by

v1(θh) = − (cos θh, sin θh, 0) , (5.8)

v2(θh) =


− Sh√

R2
h + S2

h

sin θh,−
Sh√

R2
h + S2

h

cos θh,−
Rh√

R2
h + S2

h


 , (5.9)

v3(θh) =


− Rh√

R2
h + S2

h

sin θh,−
Rh√

R2
h + S2

h

cos θh,
Sh√

R2
h + S2

h


 . (5.10)

In the above equation, the slope Sh is equal to Pitch/2π. The parameter θh ranges from 0
to Nturns · 2π and φh ranges from 0 to 2π. Note the difference between the parameters of
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2.1. 3.

Figure 5.1: Steps needed to compute the shape derivatives of the
FEM discretization of a helix. The helix is determined by its de-
sign parameters: the radius of the helix spine, Rh, the thickness of
the helix wire, Tw, the Pitch of the helix, Pitch, and the number of
turns of the helix, Nturns. Given the parameters, the helix can be
discretized using tetahedra. After obtaining the discretization (1),
a Python module is used to determine the parameters θh, and φh,
Eqn. (5.6), for each vertex of the helix boundary (2). These param-
eters are used to evaluate the expressions for the shape deriatives
in the vertex (3). The shape derivatives of the vertices are finally
passed to JCMsuite.

the helix parametrization, θh and φh that specify the different points of the boundary of
the helix and the parameters of the actual optimization, Rh, Tw, Pitch and Nturns, used
to specify the different helices within the design space.

To model helices with smooth surfaces, we place two hemispheres on the edges of the
helix. The parametrization used for the upper hemisphere is

xhelix (t, φh) =xspine (Nturns · 2π) + sin t
Tw

2
v3 (Nturns · 2π)

+ cos t
Tw

2
(v1(Nturns · 2π) cosφh + v2(Nturns · 2π) sinφh) , (5.11)

where t ranges from 0 to 2π. An ananlogous expression is used to parametrize the lower
hemisphere.

Given a vertex of the FEM discretization of the helix boundary, to calculate the parameter
θh or t that corresponds to this vertex, we use a local optimizer that searches for the
values that minimize the distance between the vertex and the spine of the helix given
by Eqn. (5.7). The initial parameter used in this local optimization is an approximation
of the final retrieved value based on the z-component of the vertex. Once the value of
θh or t has been obtained, retrieving the value of φh is rather simple. One only needs to
calculate the angle between the vector xhelix − xspine and the vector v2.
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Once the parameters corresponding to the vertex are retrieved, the final step is to com-
pute the derivatives of the vertex with respect to the design parameters. For that, one
only needs to evaluate the expressions for dxhelix

dRh
, dxhelix

dTw
, dxhelix

dPitch , and
dxhelix
dNturns

. These ex-
pressions are analytically derived from Eqns. (5.6)-(5.11).

The described procedure is implemented into a Python module that is then passed to
JCMsuite. JCMsuite evaluates the Python module for every vertex of the helix boundary
to obtain the shape derivatives of the vertices1. Then, based on these values, it computes
the derivatives of the FEM system matrix as described in section 2.3 to obtain the shape
derivatives of the T-matrix, as explained in section 4.4. Figure 4.12 in the previous chap-
ter shows the results for the test of the shape derivatives of the T-matrix of a helix.

To finally obtain the shape derivatives of the em-chirality, χ, one needs to propagate the
shape derivatives of the S-matrix along equation (5.4). The part of this operation that
requires the most attention is the calculation of the shape derivatives of the singular
values, needed to obtain the vectors v+ and v−, Eqn. (5.2).

Let us denote by U , Σ, V the matrices that contain the singular value decomposition of,
for example, S+,+,

S+,+ = U †ΣV , (5.12)

U †U = I, (5.13)

V †V = I, (5.14)

where † denotes the transpose conjugate.
Now, let us assume that we know the shape derivative ofS+,+ with respect to some design
parameter xi. Then, one can obtain the shape derivative of the singular values of S+,+

as [283]

dΣ

dxi
= I ◦

(
Re

[
U †

dS+,+

dxi
V

])
, (5.15)

where ◦ denotes the element-wise multiplication and I is the identity matrix.
The calculation of the shape derivatives of the singular values is simple once the shape
derivatives of the S-matrix have been obtained, if the singular values are not degenerate.
However, things becomemore complicated for the casewhere one ormore singular values
are degenerate. The singular value decomposition is discontinuous within the subset of
matrices with degenerate singular values [284]. A similar behavior occurs for the eigen-
value decomposition [285]. One simple example of a parametric object for which this can
happen is a spheroid, where the value of the major axis is given as a design parameter.
If one considers the simpler case of an S-matrix with only the dipole contributions, the
submatrices S±,± will have a singular value with a triple degeneracy when the spheroid
becomes a sphere. A change in the value of themajor axis with respect to this point would
lead to submatrices that have a singular value with a double degeneracy, therefore still
being degenerate. If instead the infinitesimal change in the parameter leads to a ma-
trix without degenerate singular values, the differentiability of the singular values with
respect to the parameter depends on the properties of the parametric matrix [284]. To
make the process simpler, we do not consider the derivatives of χ when we detect that

1The team from JCMwave GmbH created the bridge into JCMsuite for us to be able to pass the shape
derivatives of complicated structures to the software using our own Python modules.
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5.1. Maximal electromagnetic chiral helices

any of the singular values are degenerate. As we use Bayesian optimization, the correct
functioning of the algorithm does not depend on providing derivative observations or
not. The shape derivatives are extra information that the Gaussian processes can use to
obtain a better model of the objective function. However, the Gaussian process can in-
corporate derivative observations for just some of the evaluated points, or even include
derivative observations with respect to some parameters and not to the others.

Once the derivatives of the vectors v+ and v− are obtained, the shape derivatives of χ
read as

dχ

dxi
=

∑
i

(
v+

[i] − v
−
[i]

)(
dv+

[i]

dxi
− dv−

[i]

dxi

)

χ
. (5.16)

A similar expression can be obtained for the derivatives of the total interaction cross
section,

dσint

dxi
=
∑

i

2v+
[i]

dv+
[i]

dxi
+ 2v−[i]

dv−[i]
dxi

. (5.17)

Finally, one can obtain the derivatives of χ as

dχ

dxi
=

dχ
dxi

√
σint − χ

2
√
σint

dσint
dxi

σint
, (5.18)

As we can see in Eqn. (5.16), the derivative of χ is also not defined when χ equals zero.
As for the case in which the discontinuity of the derivatives comes from the singular
value decomposition, we simply check if χ is zero and in this case we do not include the
derivatives of χ into the optimization process.

Results of the optimization

After having described the simulation and optimization setups, we proceed to optimize
the em-chiraliry of silver helices at a decreasing set of design wavelengths. It is our in-
tention to study how the geometry of an optimal helix changes when operating at lower
wavelengths and which upper value for the em-chirality can be obtained when working
at optical wavelengths and not in the far-infrared. We would like to see a lower bound for
a wavelength where a high em-chirality is obtained. Based on the material properties of
silver, it can be expected that this happens somewhere at the wavelengths corresponding
to visible light.

The optimizations depart from a desig wavelength of λ0 = 150 µm down to a wavelength
of λ0 = 500 nm. The reason for starting at such a long wavelength value is based on
existing results for a silver helix [213] that presents a large χ in this frequency region.
These results give us an estimation about the bounds to use for the design parameter
space.

At the wavelength of λ0 = 150 µm the lower and upper limits of the radius of the helix,Rh,
are set to 1 µmand 10 µm respectively. Both limits are linearly scaledwith thewavelength
for the optimizations performed at the other different wavelengths. The thickness of the
wire can vary between a 5% and a 95% of the value of 2Rh. A further bound is imposed on
the thickness of the wire, it can not be thinner than 20 nm for any of the optimizations.
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This extra limit is included to restrict the results to helices that are in the limits of what it
is possible to realize experimentally using current fabrication technologies. Moreover, a
wire with a thickness of 20 nm is close to the limit for which the electromagnetic response
of the object can be described using the macroscopic constitutive relations (see, e.g., [41]
section 6.6). The pitch of the helix is bounded between 1.1 and 10 times the thickness
of the wire and the optimization limits for the number of turns are 0.1 and 4. The per-
mittivity of silver is interpolated at each wavelength from two different databases [286,
287] depending on the frequency region. One database accounts for the optical and near-
infrared regions and the other for wavelengths longer than 1.5 µm.

Regarding the calculation of χ, we use finite elements with a polynomial degree of 2. The
maximum side length of the helix mesh elements is λ/0.3 for illumination wavelengths
longer than 2 µmand λ/10 for the optical and near-infraredwavelengths, i.e. shorter than
2 µm. Here, λ refers to the wavelength within the helix. The maximum side length of the
elements in the air domain is set to λ0/15. Before starting each optimization, a conver-
gence test with respect to themesh size is done to check the accuracy of the results. When
the error with the default mesh size is larger than 1%, the mesh size is further decreased.
In many situations it is favorable to use a higher polynomial degree when compared to
using smaller mesh elements. However, in this specific application it is important for
the accuracy of the results to have an accurate representation of the surface of the helix.
Therefore, it is preferable to have smallermesh elements rather than a higher polynomial
degree.
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Figure 5.2: Values of the normalized em-chirality, χ, of the optimal
helices obtained in the optimization runs as a function of the design
wavelength. Each point corresponds to the value of a different helix
optimized for the corresponding wavelength shown in the x-axis.
The design parameters of the optimal helices are shown in Fig. 5.3.

Figure 5.2 shows the optimal values of χ obtained at each optimization wavelength. The
corresponding parameters of the optimal helices are shown in Fig. 5.3. As it can be seen
in Fig. 5.2, the optimal χ values are all above 0.9 for wavelengths down to 3 µm. However,
the optimal χ values already start to decrease with the wavelength from a wavelength of
λ0 = 10 µm. Below λ0 = 1 µm, the decrease is very abrupt and at λ0 = 500 nm χ does not
reach a value of 0.6.

The two different behaviours for the wavelength regions above and below λ0 = 3 µm be-
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5.1. Maximal electromagnetic chiral helices

comes clear after simultaneously inspecting both Fig. 5.2 and 5.3. Except for the optimal
helix found at λ0 = 150 µm, all the designs that show a χ above 0.9 have a similar shape.
The number of turns keeps more or less constant along this region and it seems to ex-
ist a common ratio between the radius of the helix spine Rh and the pitch of the helix.
Moreover, the absolute values for both parameters seem to follow a linear scale with the
wavelength. These relations seem to indicate that the different optimizations found an
optimal design that simply downscales with the wavelength. This behaviour can be ex-
pected as at thesewavelengths the helices can bewell approximated as helicesmade from
a perfect electric conductor. Scaling of the geometrical parameters then indeed scales the
operation wavelength. In fact, if one takes the optimal design found at λ0 = 100 µm and
scales down the radius and pitch of the helix following the scaling rule for plasmonic
materials described in [238] , as already done in section 4.2 for the nanorod, one obtains
the dashed black line shown in Fig. 5.3. Only for the design wavelengths in the range
between 3 µm and 10 µm this scaling factor with respect to the wavelength slightly differ
from unity. The optimal designs clearly follow the scaling design rules for perfect elec-
tric conductors under the thin wire approximation. There are still some small differences
that can come from the fact that the FEM simulations take the effects produced by the
thickness of the wire rigorously into account. Even if the thickness of the wire is much
smaller than the illumination wavelength, it can play a significant role in the scattering
response of the helix [288].
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Figure 5.3: Design parameters of the optimal helices obtained in
the optimization runs made for different design wavelengths. The
design parameters are the radius of the helix spin,Rh, the thickness
of the helix wire, Tw, the pitch of the helix, Pitch, and the number
of turns of the helix, Nturns. The schematic of Fig. 5.1 shows the
meaning of the different parameters in more detail.

Regarding the results for the shorterwavelengths, one of the reasons explaining the lower
χ values at wavelengths below 1.5 µm compared to the values obtained at longer wave-
lengths could be the lower bound of 20 nm imposed for the thickness of the wire. As it can
be seen in Fig. 5.3, the thickness of the wire of the helix is lower than 30 nm for all the op-
timal helices found at wavelengths below 3 µm. This could indicate that for wavelengths
below 3 µm the ability to achieve optimal em-chiral values is constrained by the helix
thickness. However, the reason behind the drop of the optimal χ values is more likely
to be due the plasmonic behaviour of silver at these frequencies. Due to the increase
of Ohmic losses and the internal reactance of the silver wire, it becomes more difficult
to obtain strong magnetic resonances when one approaches the plasma frequency, as it
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was reported in [282, 289, 290]. Obtaining electric and magnetic resonances of a similar
strength is crucial to obtain a strong chiral response [247, 291].

To analyze the interactions of a high em-chiral helix with light of different helicities, we
consider from now on the helix optimized for a design wavelength of λ0 = 3 µm. Fig-
ure 5.4 shows the spectral dependent total interaction cross section, σint, and the nor-
malized em-chirality, χ, for wavelengths around the optimization wavelength. The total
interaction cross section is obtained as the squared Frobenius norm of the scattering sub-
matrices S+,+ and S−,− respectively as

σint,+ =
∑

i,j

|S+,+
[i,j] |

2, (5.19)

σint,− =
∑

i,j

|S−,−[i,j] |
2. (5.20)

As one can see in Fig. 5.4, the maximum in the chirality also corresponds to a resonance
peak in the total interaction cross section. It implies that the chirality is not just large
at some trivial point where not much light is scattered. Figure 5.5 shows the absorption
cross section of the helix when it is illuminated with two circularly polarized plane waves
of opposite handedness. The absorption cross sections are shown as a function of the
direction of the wave vector of the plane wave used for the illumination. Similar to the
results shown in Fig. 5.4 for the total interaction cross section, the absorption is almost
two orders of magnitude higher for right circularly polarized plane waves. The strongest
difference occurs for plane waves whose wave vectors are parallel to the xy-plane, i.e.,
perpendicular to the helix axis.
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Figure 5.4: Wavelength dependency of the total interaction cross
sections, σint,±, and normalized em-chirality, χ, of the optimal he-
lix obtained from the optimization at the design wavelength of λ0

= 3 µm. The total interaction cross section is given as a function
of the helicity eigenstate of the illumination. The plus and minus
signs in the subscript of σint indicate the eigenvalues ±1 of the two
eigenstates of the helicity operator.
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Figure 5.5: Absorption cross section, σabs, of the optimal helix ob-
tained from the optimization at λ0 = 3 µm depending on the di-
rection of the illuminating plane wave. The helix is illuminated
with a circularly polarized plane wave at a wavelength of λ0 = 3
µm. The two different plots correspond to the results for the two
different circular polarization states, denoted with the plus sign,
σabs,+, for right circular polarized plane waves and with the minus
sign, σabs,−, for left circular polarized plane waves. The direction
of the wave vector of the plane wave is given as a function of the
x and y-components of its unitary vector. k = (kx, ky, kz) with
|k|2 = k2

x + k2
y + k2

z = k2
0.

Figure 5.6 shows the intensity of the scattered near-field produced by the helix when illu-
minated by two circularly polarized planewaves of different handedness andwave vectors
parallel to the x-axis. The optimized helix also shows strong differences of around two
orders of magnitude in the scattered field intensity. As one can see, for the right circu-
larly polarized plane wave, the scattered field intensity is strongly localized inside the
helix. This intense near field is linked to the high absorption of light in the helix.

All these results indicate that the designed helix could serve as the basic constitutive el-
ement for an angle independent circular polarization filter. The filter would consist of a
slab made from a homogeneous material with a high number of randomly oriented and
randomly placed helices embedded into it. To analyze the potential of the design, we
will estimate the slab thickness required to absorb 99% of the incoming power flux of
a circular polarized beam and compare it to the power absorbed by a beam with oppo-
site handedness. As we optimized the helices assuming that they are embedded into free
space, we will assume now for simplicity that the embedded material has a relative per-
mittivity of 1. For this calculation, we will make a series of additional approximations.
Mainly, we will neglect scattering and consider that absorption is the only mechanism of
interaction of the helices with the incident light. We will also assume that the incoming
beam can be approximated by a plane wave. That is, let us assume that the incoming
beam has an isotropic power flux with direction +z. Lastly, we treat the combination of
the slab plus helices as a single homogeneous material, neglecting the discrete nature of
the helices. The volume of the optimal helix obtained at λ0 = 3 µm is 0.00106 µm3. If we
now assume a volume filling fraction of 1%, that implies a density of ρh = 9.65 helices per
cubic µm.

Let us now focus on a volume element of the slab with a square section of side length
l equals to 1 µm and thickness t, as shown in the sketch of Fig. 5.7. We want to study
how the power flux of the incident beam changes along the z-direction within the slab.
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Figure 5.6: Intensity of the field scattered by a helix as a function of
the handedness of the illuminating circularly polarized plane wave.
The results are shown for the optimal helix obtained from the opti-
mization run at λ0 = 3µm. The illumination direction relative to the
helix is indicated in the top of the figure.

The absorption cross sections under plane wave illumination of the rotationally averaged
optimal helix are for the right and left circularly polarized plane wave σabs,+ = 0.36 µm2

andσabs,− = 0.0075 µm2 respectively. We computed these values as the difference between
the orientation averaged extinction and scattering cross sections.

The power absorbed by each of the helices equals the product of the illumination power
flux times the absorption cross section of the helix

Pabs(z) = Sz(z)σabs,±. (5.21)

In a volume of thickness∆z and area l2 the power absorbed per unit area equals

Pabs(z + ∆z)− Pabs(z)

l2
= ∆z ρh Sz(z)σabs,±, (5.22)

where∆z is considered to be thin enough to assume that the power flux remains constant
throughout the thickness. Note that the homogenization of thematerial properties of the
slab with the embedded helices is also included through the use of ρh.

Therefore, the change in the power flux of the beam per unit of thickness equals,

Sz(z + ∆z)− Sz(z)
∆z

= −ρh Sz(z)σabs,±. (5.23)

The differential equation for the power flux of the beamalong the slab can then bewritten
as

dSz(z)

dz
= −Sz(z) ρh σabs,±. (5.24)

Solving the above differential equation one obtains

96



5.1. Maximal electromagnetic chiral helices

Figure 5.7: Sketch of the proposed angular independent polariza-
tion filter. The filter consists of a slab with randomly oriented and
randomly placed optimally designed helices. Because the averaged
absorption cross section of the helices is different for illumination
fields of different helicities, the decay of the field along the slab will
be more pronounced for one of the illumination fields.

Sz(z) = Sz,0e
−ρhσabs,±z, (5.25)

being Sz,0 the power flux of the incident beam before entering the slab.

Using the values obtained for the absorption cross sections and assuming a filling fraction
of 1%, Eqn. (5.25) gives a slab thickness of 1332 nm to absorb 99% of the incident power
flux of a right circularly polarized beam. The same slab absorbs only 9% of the incident
power flux for the beam with opposite handedness. These results show an extremely
compact device that presents a high performance, indicating the potential for photonic
applications of structures with high em-chirality values.

Conclusions

In the just presented application, we combined most of the tools developed within the
thesis to find helices that offer high em-chirality values at optical and near infrared fre-
quencies. The combination of Bayesian optimization, the tools to compute the T-matrix
of isolated scatterers, and the calculation of its shape derivatives allowed us to find op-
timal helices along a wide range of frequencies going from the deep infrared down to
optical frequencies. The results show that it is possible to design scatterers that present
large values of χ at frequencies down to 3 µm, but also the difficulties that exist in ob-
taining similar results at optical frequencies. However, although we could not find silver
helices that present extremely large χ values at optical frequencies, it is still not clear if
other designs different than a helix could improve the results obtained here.

Once the optimizations were finished, we analyzed the behaviour of the optimal helix
obtained for an illumination wavelength of 3 µm. The designed helix shows a strong dif-
ference in the interaction with circularly polarized plane waves of different handedness.
The interaction is close to two orders of magnitude stronger for one of the handedness,
both in scattering and absorption.

To investigate the potential of these highly em-chiral objects, we calculated, based on
a series of assumptions, the performance of a possible implementation of an angle in-
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dependent circular polarization filter. The results indicate that it is possible to achieve
extremely compact devices that at the same time present a high performance. Although
a more rigorous analysis is needed to confirm these results and possibly also to reduce
the amount of simplifications used, they already give an idea of the potential that such
high em-chiral scatterers may have for different applications.

Further developments along the lines of this work can be the optimization of more com-
plex structures, such as wires following a freeform path, to improve the em-chirality val-
ues obtained at optical frequencies, or the optimization of designs that are inherently
easier to fabricate.
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5.2 Waveguide coupler for photonic inter-chip communica-
tion

Introduction

Photonic integrated circuits [292–294] emerge as a technological solution to the increas-
ing demand for higher bit rates and lower energy consumption in communication net-
works [295] and supercomputer clusters [296]. Due to the high data transfer rates that
can only be achieved using light as an information carrier, the use of photonic circuits
has been also proposed in computing chips [297–302]. First proposals date back to the
1980s [303–305]. Awell known problem that this technology could solve is the processor-
memory bottleneck [306, 307].

A photonic integrated circuit contains a series of different interconnected optical com-
ponents, such as lasers [308–310], modulators [311–315], optical switches [316–320],
waveguides [321–326] or detectors. These circuits are generally used in the interfaces
of the communication ports between the different nodes of an optical communication
network.

One of the key techonological advances that made it possible to increase the perfor-
mance of photonic integration circuits is the fabrication of photonic components us-
ing the CMOS fabrication process, a technology known as silicon photonics [327–330].
This results in high volume production, high densities, low costs and a better integra-
tion with CMOS electronic circuits. The monolithic integration of the different photonic
components with CMOS electronic circuits would be a major step in the performance
and capabilities of the technology. However, photonic integrated circuits with better
performances can currently only be obtained by combining in a single package photonic
components fabricated on different material platforms [331, 332]. One of the main chal-
lenges to obtainmonolithic integration is the fabrication of laser sources on silicon [333–
335]. Therefore, frequently light sources are made from III-V semiconductors while all
the other passive elements used to steer the light are made from silicon materials. Then,
the components from these different material platforms need to be combined.

In a hybrid architecture that combines the beneficial aspects of different material plat-
tforms, one promising technique to interconnect the different photonic platforms within
the chip package is via three dimensional freeform waveguides, also called photonic wire
bonds (PWB) [336–340]. Photonic wire bonds are polymer waveguides with three di-
mensional freeform geometries. They are fabricated by two-photon polymerization of a
negative-tone resist using a technology such as direct laser writing. Photonic wire bonds
can be fabricated in situ and their geometry can be precissely controlled. This allows
for the adaptation of their position to the position of the integrated waveguide facets,
avoiding the high-precision alignment problems between optical components.

The basic architecture of this optical communication scheme is depicted in Fig. 5.8. The
waveguide facets of two different chips are interconnected using a PWB. At each edge
of the PWB, a waveguide edge coupler is placed to efficiently couple the light between
the PWB and the waveguide. Aditionally, grating couplers may be needed if out-of-plane
coupling between the waveguide connected to the PWB and some of the chips is required.
All these components play a fundamental role in the overall efficiency of the system and
they need to be properly designed to reduce energy losses. The PWB path needs to be
optimized to reduce energy losses [341] as well as the shape and dimensions of the edge
couplers. It is also desirable that all the components have a footprint as small as possible.
In this work, we focus on the optimized design of the edge coupler.
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Figure 5.8: Schematic of the architecture for an optical inter-chip
communication system.

As shown in Fig. 5.8, in the region of the edge coupler both the silicon waveguide and the
PWB are placed on top of a layered substrate, therefore, the bottom part of both waveg-
uides are vertically aligned. The cross sections of both waveguides are shown in Fig. 5.9.
The silicon waveguide has a width of 0.5 µm and a height of 0.22 µm. The width and
height of the PWB are 2 µm and 1.8 µm respectively. The substrate is composed of two
layersmade of silicon (Si) and silica (SiO2). The silica layer has a thickness of 2 µm andwe
consider the silicon layer to be semi-infinite. Thewaveguides are immersed in a cladding,
characterized by its relative permittivity, εcladding.

An edge coupler is a passive photonic component used to efficiently connect optical
waveguides that have different geometrical cross-sections and that are made from dif-
ferent materials. We aim to design a structure that efficiently couples the fundamental
mode of the silicon waveguide into the fundamental mode of the PWB. See section 2.2 for
the description of the propagating modes in a waveguide. Figure 5.10 shows the electric
field intensity cross section of the fundamental modes of both the silicon waveguide and
the PWB. The modes are computed with JCMsuite [58], using two-dimensional layouts
consisting of the cross sections of the waveguides. The fundamental mode of the sili-
con waveguide has an effective refractive index of neff,PWB = 2.458 and its electric field is
predominantly polarized in the y-direction. The fundamental mode of the photonic wire
bond is also predominantly polarized in the y-direction and it has an effective refractive
index of neff,PWB = 1.473. If there were not substrate and the cross section of the PWB
were a perfect square, then the PWB would have a fundamental mode degenerated into
two modes: one y-polarized and another z-polarized. However, the broken symmetry of
the structure with respect to the z-direction avoids this degeneracy and produces two
modes with different propagation constants. The effective refractive index of the pre-
dominantly z-polarized mode has a value 0.0003 lower than the one of the fundamental
mode.
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Figure 5.9: Cross sections of the silicon waveguide, left, and the
photonic wire bond waveguide, right. Both elements are placed on
top of a layered substrate composed of silica (SiO2) ad silicon (Si)
and are embedded into a material with a permittivity of εcladding at
the operating wavelength of 1.55 µm.

The coupling loses between the two guiding components are due to the mistmatch in the
field profiles of the fundamental modes. The basic working principle of the edge cou-
pler consists in modifying the field profile along the propagation through the coupler
to achieve a better overlap at its edge. Because edge couplers are an important compo-
nent for the in-plane interconnection between optical fibers andwaveguides, their design
and performance have been widely studied andmultiple reasonable structures have been
proposed. The most frequent solution is to use adiabatic linear tapers [342–346]. An
adiabatic taper is a waveguide whose lateral dimensions decrease gradually along the di-
rection of propagation of light. Along the taper, the fundamental mode of the waveguide
can no longer be confined in the core of the waveguide due to the reduction of the dimen-
sions and the field profile of the mode gradually expands towards the clading. To reduce
losses due to mode conversion into higher modes, the profile of the taper has to change
slowly. As a result, adiabatic tapers present high coupling efficiencies but they also re-
quire large footprints. In addition to linear tapers, other profiles have been proposed
for adiabatic tapers, such as tapers with parabolic [347] or exponential [348] profiles or
multi-section tapers [344, 349]. Other types of flat designs, such as meta-material based
couplers [350–353], trident tapers [354–357], or combinations of both types [358] have
been also designed.

To improve the mode matching in the vertical direction as well, different structures have
been proposed. The adiabatic linear taper with a linear vertical profile is a natural ex-
tension of the linear taper [359, 360]. Another strategy to improve the vertical overlap,
which involves a less complex fabrication process, consists in encapsulating the waveg-
uide inside an additionalmaterial layer, generally a polymer, which has a permivitty value
close to the one of the waveguide with the lower refractive index [361, 362]. Other design
strategies can be found in dedicated review articles [363, 364].

In the following sections, we optimize and analyze the performance of two different de-
sign proposals for the silicon waveguide-PWB edge coupler. The first design is a linear
planar adiabatic taper covered with an additional layer made of the same polymer as the
PWB. A difference with the previously mentioned structures [361, 362], is that in this
case the vertical profile of the covering layer also varies along the propagation direction
of light. An interesting aspect is to not only see the maximum efficiency achievable with
this type of edge coupler but also to see how this efficiency depends on the length of the
taper and what is the minimum footprint achievable without considerable penalizing the
coupling efficiency. The second design proposed is based on a taper with a flat vertical
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Figure 5.10: Electric field intensity of the fundamental modes of
the silicon waveguide, left, and the photonic wire bond, right. The
geometrical cross sections of the waveguides are shown in Fig. 5.9.
The simulations were done with JCMsuite [58], using a finite ele-
ment polynomial degree of 3 and a mesh side length of λ/5. λ is
the wavelength of the electromagnetic field in each material. The
vacuum wavelength is λ0 = 1.55 µm. Both intensity field profiles
obtained are normalized to powers of 1 W.

profile and a freeform horizontal profile. We decided to investigate this structure based
on the results obtained for a two dimensional simplification of the same coupler [A2]. Fi-
nally, we compare the performance of both design proposals and analyze the differences
in their working principles.

Parametric waveguide coupler

The schematic of the proposed adiabatic taper is shown in Fig. 5.11. The coupler is pa-
rametrized with four parameters: its length, ltaper, the height, hPWB,taper, and width,
wPWB,taper, of the photonic wire at its edge, and the width of the silicon waveguide at
its edge, wSi,taper.
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hPWB,taper

2 μm

y
xSiO2
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Figure 5.11: Schematic of the parametric waveguide coupler. The
coupler is parametrized by its length, ltaper, the height, hPWB,taper,
andwidth,wPWB,taper, of the photonicwire bond at its opening facet
and by the width of the silicon core of the taper at its edge, wSi,taper.

The coupler is optimized to find the design with the maximum coupling efficiency be-
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tween the fundamental modes of both the silicon waveguide and the photonic wire bond.
To calculate the coupling efficiency, ηcoupler, we use a three-dimensional finite element
model of the coupler. The coupler is illuminated with the incoming fundamental mode
of the silicon waveguide and the total field, E(r), is computed. After the finite element
problem is solved, we obtain the coupling efficiency through the calculation of the mode
overlap between the solutionE(r) and themagnetic field profile of the fundamentalmode
of the photonic wire bond,H0,PWB(r),

ηcoupler =

∣∣∣∣
1

2

∫

S
(E(r)×H0,PWB(r)) · x̂dS

∣∣∣∣
2

, (5.26)

with S being a y-z-plane that cuts the photonic wire bond. This position of S corresponds
to the right side in the sketches of Fig. 5.11. The above expression gives us directly the
coupling efficiency because the values used for the field intensity of the fundamental
mode of the PWB, shown in Fig. 5.10, are normalized to give a power carried by the guided
mode of 1 W.

Figure 5.12: FEM discretization of the waveguide coupler. Due to
the symmetry of the structure, only half of the device needs to be
discretized for the finite element method simulation.

As the coupler is symmetric with respect to the plane y = 0, we use a mirror boundary
condition to halve the size of the computational domain of the finite element method.
Figure 5.12 shows an example of the finite element discretization of the parametric cou-
pler for certain values of the design parameters. We use a finite elementmesh side length
of λ/1.5, where λ is the wavelength of the illuminating inside the respective material.
The finite element polynomial degree is set to three. The large size used for the mesh
elements is because of computational constraints. Our intention is to analyze couplers
with lengths up to 60 µm. That means couplers 100 times longer than the wavelength
within the core region of the silicon waveguide and the photonic wire bond. Even using
this coarse discretization, the simulation of the longer couplers requires memory capac-
ities exceeding 300 GB. Despite the coarse mesh used, a convergence test showed that
the error produced in the coupling efficiency with this mesh is lower than three percent.
The adiabatic character of these long tapers, which results in smooth field profiles in the
transition between the silicon waveguide and the photonic wire bond, is the main reason
for this low error.

To obtain the optimal parameters of the coupler, we use the Bayesian optimization as
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Figure 5.13: Coupling efficiencies of the different designs evalu-
ated during the optimization process of the linear taper edge cou-
pler. Each figure show the projection of the coupling efficiency val-
ues over the different parameters of the design space. The parame-
ters are defined in the schematic of Fig. 5.11.

described in chapter 3. In this case, we do not use shape derivatives in the optimization
process. The design parameter space is composed of only four parameters and for this
problem we expect the objective function to have a smooth behaviour with respect to the
design parameters. Under these conditions, and based on the fact that creating an algo-
rithm that provides the shape derivatives to JCMsuite would be a rather time consuming
task for this geometry, the benefit of using the shape derivatives is not clear.

We left the optimization to run for a couple of weeks. Let us note that each three di-
mensional simulation of a candidate design needs a few hours to run on the available
computational infrastructure. The values of the coupling efficiency obtained during the
optimization process are shown in Fig. 5.13. The figure shows the projection of the evalu-
ation points into each one of the parameters of the design space. The optimization limits
used for the design parameters can be seen in the axis of the different plots. The opti-
mal design couples 99% of the input power into the fundamental mode of the photonic
wire bond. For values of ltaper between 20 and 30 µm, the optimizer did not find designs
with efficiencies higher than 90%. A strong correlation between the coupling efficiency
and wSi,taper is also visible. Contrastingly, there is no visible correlation of the coupling
efficiency with the parameters wPWB,taper and hPWB,taper. This lack of correlation can be
explained by the fact that at the leftmost side of the taper the field is still strongly con-
fined within the core of the silicon waveguide. Therefore, the field is insensitive to the
effect of the dimensions of the photonic wire bond cladding in this region. The optimal
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Figure 5.14: Intensity field profile of the optimal linear edge cou-
pler over the planes defined by the equations y = 0 µm and z = 0.11
µm. The shape of the optimal coupler is represented in the figures
by the dashed lines. The blue dash line represents the boundary
profile of the silicon core waveguide. The orange dash line repre-
sents the shape of the photonic wire bond boundary. The design
parameters of the optimal coupler are: ltaper = 50.8 µm, wSi,taper =
0.06 µm, wPWB,taper = 1.03 µm, and hPWB,taper = 1.65 µm.

value obtained forwSi,taper is also an expected result. The decrease of the width along the
taper causes the energy to be less and less confined within the silicon core of the waveg-
uide. As a result, the energy is smoothly radiated into the photonic wire bond without
producing reflections, which leads to high coupling efficiencies.

The working principle of the coupler can be analyzed in Figs. 5.14 and 5.15. These figures
show the intensity of the field profile of the optimal coupler, i.e. the coupler that offers
the highest coupling efficiency among all considered devices. Its design parameters are
specified in the caption of both figures. Looking at Fig. 5.14, one can see how in the first
30 µm the field is almost entirely confined within the core of the silicon waveguide. As
the width is reduced, the energy starts to progressively leak into the photonic wire bond
region. The rate of the field profile expansion is also visible in the plots with linear scale
colormaps of Fig. 5.15. After 20 µmof propagation along the taper, the field is still mainly
confined within the silicon core region. After 40 µm, the field intensity within the silicon
core is almost zero and the field concentrates near the boundary of the core. After the tip
of the taper, the field profile matches the field of the fundamental mode of the photonic
wire bond shown in Fig. 5.10.

The wavelength dependence of the coupling efficiency for this optimal design is shown
in Fig. 5.16. As one can see, the coupler presents a coupling efficiency higher than 97% in
the wavelength window from 1.4 µm to 1.7 µm. One can also appreciate some very small
ripple in the curve, most likely due to numerical noise.

To further investigate the effect of the taper length on the coupling efficiency a second
optimization run is done. This time the lower and upper optimization bounds for the pa-
rameter ltaper are 10 µm and 20 µm respectively. The results are shown in Fig. 5.17. The
new results confirm the tendency observed in the results of Fig. 5.13. For tapers shorter
than 20 µm themaximumefficiency achievable is lower than 85%. Moreover, the coupling
efficiency drops below 60% for tapers with a length of 10 µm. The explanation to this be-
havior is rather simple. The decrease in length of the coupler leads to a higher reduction
of the width per unit length. A less smooth change in the dimensions of the waveguide
core causes higher reflections, which results into a lower coupling efficiency.
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Figure 5.15: Intensity field profile of the optimal linear edge cou-
pler over the planes defined by the equation x = const. The actual
values of the x value are indicated in each of the plots. The cross
sections of the silicon waveguide and the photonic wire bond are
represented in the figures by dashed lines. The blue dashed line
represents the boundary of the silicon core waveguide. The orange
dashed line represents the boundary of the photonic wire bond.
The design parameters of the optimal coupler are: ltaper = 50.8 µm,
wSi,taper = 0.06 µm, wPWB,taper = 1.03 µm, and hPWB,taper = 1.65 µm.

Overall, the results show that linear adiabatic tapers can achieve excellent coupling effi-
ciencies and for wide wavelength bandwidths. However, these efficiencies are linked to
structures with considerably large footprints. There is a strong correlation between the
length of the taper and themaximum efficiency achievable. For lengths below 30 µm, the
coupling efficiency decreases rapidly with the reduction of the length. Therefore, if one
aims to obtain highly efficient and more compact couplers, further designs must be in-
vestigated. To achieve that, the next section proposes the use of freeform edge couplers
as possible candidates.

Freeform waveguide coupler

In the previous section 5.2, we optimized and analyzed the designs for a linear taper.
The taper achieves coupling efficiencies greater than 99% at the desired central vacuum
wavelength of 1.55 µm. However, the performance of the linear taper drops below 90%
for devices shorter than 30 µm. The results show how the maximum efficiencies of the
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Figure 5.16: Coupling efficiency of the optimal adiabatic taper as
a function of the wavelength of the illuminating waveguide mode.
The parameters of the optimal coupler are shown in the caption of
Fig. 5.14.
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Figure 5.17: Optimization results for the waveguide coupler. Pro-
jections of the coupling efficiency over the different parameters of
the design space. The parameters are defined in the schematic of
Fig. 5.11. Note that the differencewith the reuslts shown in Fig. 5.13
is the different search range for the parameter ltaper.

optimal linear tapers decrease with the length of the taper. In this section, we study the
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performance of a freeformedge coupler. With this designwe try to go beyond the coupling
efficiencies of the linear taper for compact devices.

The freeform taper can be seen as a natural step forward in the complexity of the shape
with respect to the linear taper. As shown in the schematic of Fig. 5.18, its structure also
consists of a symmetric device with a silicon core of constant height. Themain difference
with respect to the linear taper resides on its width profile. The shape of the freeform ta-
per is describedusing anon-uniform rational basis spline (NURBS) curve [365–367],

c(t) =

∑d
i=1Ni,n(t)wipi∑d
i=1Ni,n(t)wi

, (5.27)

where c(t) gives the x-y points of the coupler’s boundary,Ni,n(t) are of order n,wi are the
weights of each b-spline, and pi are two dimensional vectors called control points.

For the parametrization of the coupler we set all the weightswi to 1 and we use b-splines
of degree 3, as they ensure the continuity of the boundary and of its tangent. Fixing all the
other parameters, the shape of the coupler is only governed by the position of its control
points. Furthermore, in the design of the coupler, the control points of the curve are
spaced at an equidistance in the x-direction and they are only allowed to move in the y-
direction. Based on the results obtained for the linear taper, we also decided to maintain
the height of the photonic wire bond constant along the coupler region, as this parameter
does not play a crucial role in the coupling efficiency of the device and this simplification
results in structures easier to fabricate. Therefore, the only design parameters are the
y-coordinates of the control points that describe the shape of the taper.
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Figure 5.18: Schematic of the freeform waveguide edge coupler.
The shape of the coupler is described by aNURBS curve, defined by a
series of control points. The control points, shown in the schematic
as red dots, are equispaced in the x-direction and they are allowed
to move only in the y-direction.

As we did along this thesis for the different optimizations performed, we also use Baye-
sian optimization to design the freeform taper. To compute the coupling efficiency of
the coupler, we follow the same procedure as described in the previous section for the
linear taper. We use a three-dimensional finite element model with a mirror symmetry
boundary condition. However, as the design space now contains more complex geome-
tries than in the case of the linear taper, some of them producing large reflections and
complex interference patterns, the mesh elements size needs to be smaller than the one
used for the linear taper. Specifically, we use a mesh size of λ/5 instead of λ/1.5.

Because the effective design space is larger when compared to the case of the linear ta-
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per, as it contains a much larger number of possible geometries, we first tried to perform
the optimization using a two-dimensional simplification of the structure to reduce the
calculation times. The results of the optimization using the two-dimensional model are
presented in [A2]. There, highly efficient ultra compact designs were achieved. However,
we observed that the coupling efficiencies obtained with the two-dimensional model dif-
fer considerably from the ones obtained with the three-dimensional model for the same
design. The reason for this difference comes from the different height profiles of both
the silicon waveguide and the photonic wire bond. The two-dimensional models nor-
mally give good approximations when the different structures have similar heights [27,
368–370]. In those cases the vertical distribution of the field profile is similar along the
different elements of the device and the mode overlap is mainly determined by the hor-
izontal distribution of the fields. Despite these differences, the results obtained there
have been very useful for the three-dimensional model. Among other conclusions, we
observed that the use of shape derivatives can significantly reduce the optimization times
in this type of structure. Therefore, we decided to provide the shape derivatives of the
coupling efficiencies with respect to the coordinates of the control points [371] to the
Bayesian optimization. As the height of the coupler remains invariant and the structure
can be defined as an extrussion of a two-dimensional profile, the procedure to provide
the shape derivatives of the coupler with respect to the design parameters to JCMsuite is
simpler than for the case of the helices, described in section 5.1. In this case, the shape
derivatives can be directly provided at the same time as one provides the shape of the
coupler. Their values are given by

dc(t)

dpi
=

Ni,n(t)wi∑d
i=1Ni,n(t)wi

. (5.28)
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Figure 5.19: Optimization process for the freeformwaveguide cou-
pler parametrized with four control points. Cumulative optimum
coupling efficiency as a function of the number of iterations ran
by the optimizer. The results are shown for couplers with differ-
ent lengths, ltaper. The schematic of the freeform coupler is shown
in Fig. 5.18.

The optimization is performed for three different lengths of the coupler, 20 µm, 10 µm,
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and 5 µm using four control points to describe the shape with the NURBS. The cumula-
tive maximums of the coupling efficiency obtained during the optimization process for
each of the coupler lengths are are shown in Fig. 5.19. As one would expect, the cou-
pling efficiency decreases with the length of the taper. However, the maximum coupling
efficiencies obtained with the freeform coupler are significantly higher than the ones ob-
tained with the linear taper. The improvement is especially significant for the case of
the taper with a length of 10 µm, the maximum efficiency obtained, ηcoupler=91%, is 30
absolute percent higher than for the best linear coupler of the same length.
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Figure 5.20: Intensity field distribution along the optimal freeform
coupler obtained for a coupler length of 10 µm. The coupler achieves
a performance of ηcoupler = 91%.

Figure 5.20 shows the shape and the field distribution of the 10 µm long optimal coupler.
As one can see in the figure, the shape of the coupler resembles the one of a parabolic
adiabatic taper. The use of four control points to parametrize the boundary restricts the
shapes to have a rather smooth profile. This restriction probably favours designs that
present more canonical shapes [A2]. The field profile shown in Fig. 5.20 shows also simi-
lar features to the 50 µm long adiabatic linear taper shown in Fig. 5.14. The width of the
taper is smaller than the width of the input silicon waveguide all along the coupler. This
reduction prevents the fundamentalmode of the siliconwaveguide being confinedwithin
the silicon core region and it starts to extend towards the photonic wire bond region. An
important difference with the adiabatic linear taper is the rate at which this happens. In
the case of the linear taper, we saw how the field stays mainly confined within the silicon
core for at least half of the coupler length. In the linear taper the transition between a
situation where the field is almost completely confined into the silicon core and a field
being mainly expanded into the photonic wire bond happens progressively along the ta-
per. Here, for the freeform coupler, one can observe how after a couple of micrometers
the intensity distribution is already extended over the whole photonic wire bond region.
Despite this faster transition, the design still presents a high coupling efficiency.

Regarding the dependence of ηcoupler with respect to the excitation wavelength, the re-
sults for the wavelength dependency are shown in Fig. 5.21. The coupler present a peak
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Figure 5.21: Dependency of the coupling efficiency, ηcoupler, for the
optimal freeform edge coupler shown in Fig. 5.20 with respect to
the excitation wavelength. The wavelength values are those cor-
responding to the wavelength in free space. The coupler has been
optimized for a wavelength of 1.55 µm, which corresponds with the
position of the peak for the coupling efficiency.

of 91% in the coupling efficiency at the design frequency of 1.55 µm. As one moves away
from the design wavelength, this efficiency declines and it is around 10% lower at wave-
lengths separated 150 nm from the central wavelength of 1.55. We can see that the de-
cay in the efficiency is faster than for the linear taper. Due to the fact that more com-
pact photonic devices are shorter, they can not present smooth adiabatic transitions of
the field profile along the coupler. Instead, they require shape profiles that adapt better
to the behavior of the specific design wavelength. In some cases, designs for compact
photonic devices even use interference effects between forward and back propagating
fields to avoid back reflections [85, 358, 368]. These effects are highly sensitive to the
wavelength, which leads to shorter bandwidths for the coupling efficiency.

Conclusions

In this section we analyzed the performance of linear tapers as edge couplers for inter-
chip photonic communication architectures. Despite the considerable size of the tapers,
we managed to perform fully three dimensional rigorous simulations of the device. We
achieved this by exploiting the y mirror symmetry of the taper. As a result of the opti-
mization of the coupler, we obtained devices with coupling efficiencies higher than 99%
at the design wavelength. Moreover, the efficiency of the optimal linear taper keeps fairly
constant along a wide range of wavelengths.

We also analyzed the dependency of the optimal coupling efficiency with respect to the
length of the coupler. In an ideal situation, one would like to achieve ultra-compact de-
vices that offer large efficiencies and for a wide wavelength bandwidth. However, we
observed how the efficiency of the proposed linear taper considerably drops down when
the tapers shorter than 30 µm are considered. For a taper with a length of 10 µm, the
maximum efficiency obtained was lower than 60%.

With the aim of findingmore compact devices that offer coupling efficiencies in the order
of 90%, we proposed to optimize freeform edge couplers with a flat vertical profile. For
the optimization, we combined the use of the Bayesian optimization method presented
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in this thesis, with the use of shape derivative information, and a NURBS representation
of the shape profile of the coupler. One of the results obtained was the design of an
edge coupler, 10 µm in length, that presents a coupling efficiency of 91% at the design
wavelength. This result represents an improvement of 30% in the coupling efficiency
with respect to the best linear taper of the same length. As we saw, the penalty that one
has to pay for this compact and efficient edge coupler is a narrower bandwith.

Regarding possible future work along these lines, one could analyze the impact of using
a larger number of control points to represent the shape of the freeform coupler. This
increase would lead to the possibility of more complicated shapes, which could lead to
more efficient designs. Another option which might be interesting to consider is the use
of a quasi periodic grating with a y profile paramerized with a NURBS curve. This model
would combine the advantages of having a freeform shape design with the benefits with
respect to the vertical coupling provided by the grating edge coupler.
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6 | Conclusions

This work proposes a series of techniques for the design of photonic nanostructures and
presents methods to achieve their optimal designs. Photonic inverse design became a
field of research by itself a few decades ago. Despite all the progress done along this time
in, e.g., numerical methods, parametrizations of the geometry, or optimization algo-
rithms, all these sub-fields of research are still relevant nowadays and progress achieved
along these lines still has a major impact in the development of the field. This thesis cov-
ers some of these topics: optimization algorithms, numerical methods for the design of
structures, and the use of these methods to optimize photonic structures modeled with,
e.g., freeform shape parametrizations.

One of the main difficulties in the design of photonic structures is that the electromag-
netic simulation of the structure often requires long computational times. We speak here
about tens of minutes or even hours. This fact limits the number of simulations that can
be done in a reasonable amount of time, which makes it quite a challenge to find de-
signs with good performances. In the first chapter after the theoretical background, that
is in chapter 2, we investigate the use of Bayesian optimization with Gaussian processes
and the use of derivative information for the design of these computationally expensive
structures. As we discuss in the chapter, this optimization technique shows good conver-
gence rateswith respect to the number of simulations. However, one problemofGaussian
processes is that they suffer from scalability problems, which limits their efficient use to
only computationally more expensive problems. However, the good convergence rates
that the method presents would be interesting also for the optimization of structures
able to be simulated within a few minutes or even tens of seconds. In this work, we pro-
pose and demonstrate two different methods to mitigate the scalability problems: the
use of a matrix update scheme for the decomposition of the covariance matrix and the
use of a continuously updated local Gaussian process model.

While this chapter has been focusing on the computational aspects independent of the
specific scientific problem, we discuss the aspects important to the scientific domain of
their application in a following chapter. That is chapter 3. As we are interested in light-
matter-interactions, we present a set of tools to design isolated structures. The tools are
based on a dedicated method to expand the scattered field from the structure into a basis
of VSWFs. This method does not depend on the shape of the surface across which the
integrals for the decomposition are calculated. The method was implemented into the
finite element solver JCMsuite, which also allows to compute shape and material deriva-
tives of the expansion. However, the expansion can be easily integrated in most of the
numerical methods available to solve Maxwell’s equations and is quite general in its for-
mulation. We also show a specific implementation for the fast calculation of the decom-
position for cylindrically symmetric objects and an implementation for the calculation
of the T-matrix of isolated scatterers. Based on these results, we propose a methodol-
ogy for the adjoint optimization of the design of metasurfaces composed of individual
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Chapter 6. Conclusions

scatterers. The scatterers can have complicated shapes and each of these shapes can be
different than the others.

Finally, we apply the methods described in chapters 2 and 3 to the design of two differ-
ent photonic structures: optimal electromagnetically chiral helices and waveguide edge
couplers.

Maximal electromagnetically chiral objects are interesting structures because of the ex-
treme difference in their response to illuminations with light of different well defined
helicity, such as, e.g., circularly polarized plane waves of different handedness. Helices
with high values of electromagnetic chirality had already been shown for illumination
wavelengths around 200 µm. In this work, we found helices with high em-chirality for
wavelengths down to 3 µm and with values above 0.8 for wavelengths down to 800 nm.
We also show how the electromagnetic chirality of the helices systematically decreases
as one enters the range of optical and near infrared frequencies. We also analyze the
properties of one of the optimal helices, showing remarkable differences in its scatter-
ing and absorption cross sections for illuminations with circularly polarized plane waves
of different handedness. To finalize the study of the optimal electromagnetically chiral
helices, we also analyze the performance of angle independent circularly polarized light
filters that consists of such extremal scatterers. The results, even if not fully conclusive
due tomultiple simplifications in the estimation, indicate the potential of such structures
for different applications.

The waveguide edge coupler studied in this work is part of an interchip communication
architecture for photonic integrated circuits. Its functionality within the architecture is
the reduction of energy losses in the interconnection between silicon optical waveguides
and photonic wire bonds. Themain figure of merit of edge couplers is the power coupling
efficiency, although it is also important to obtain designs with small spatial footprints.
In this thesis, we optimize linear adiabatic tapers and we also propose and optimize edge
couplers with a freeform parametrization. We show designs of linear tapers with efficien-
cies above 95% for spectral bandwiths longer than 500 nm for a central operational wave-
length of 1550 nm. We also obtain compact freeform couplers with efficiencies above 90%
for structures with lengths down to 10 µm. The design at 10 µm represents an efficiency
30 absolute percent higher than the optimal linear tapers of the same length.

With regard to future developments along the lines of research presented in this thesis,
one could investigate the use of hybrid techniques for optimizations that allow to exploit
the statistical tractability provided by Gaussian processes with other methods for pattern
recognition such as, e.g., dimensionality reduction procedures. For the topic of design of
isolated structures, one interesting continuation of the work would be the implementa-
tion of an iterative solver for the calculation of the scattered field in multi particle sys-
tems, presented in section 4.5. This code could also serve, among other things, to do a
rigorous analysis of the angle independent circularly polarized filter presented in chapter
5. Another improvement for the design of multi particle systems would be the fully au-
tomation of the adjoint procedure including a package for the automatic differentiation
of the objective functions.

Regarding the design of chiral objects, a natural extension of the work would be the op-
timization of freeform chiral wires and the use of topology optimization for the design
of different types of chiral objects. Here, it would be interesting to also use constraints
that lead to designs easier to implement with current manufacturing technologies. The
design of freeformwires could be done using the same procedure as we used in this thesis
for the design of the helices.

114



For the last topic presented in the thesis, the design of edge couplers, the most natural
way to continue with the work would be to extend the design optimization of the same
proposed freeform structure using a larger number of control points and the experimental
demonstration of the different optimal designs obtained.

Overall, the developments presented in this thesis provided us with a number of useful
tools to optimize different interesting photonic structures and, at the same time, offer
interesting topics for future research.
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A | Definition of the vector spher-
ical wave functions

This appendix shows the definition of the vector sphericalwave functions (VSWFs)NJ
m,n(r)

andMJ
m,n(r), presented in section 2.2. This definition is obtained from [42], appendix C.

Using spherical coordinates to represent a vector E

E = Err̂ + Eθθ̂ + Eφφ̂ = (Er, Eθ, Eφ) , (A.1)

the VSWFs can be written as,

MJ
m,n(r) = Emn (0, iπmn (θ) ,−τmn (θ))ZJn (kr) eimφ, (A.2)

NJ
m,n(r) = Emn

(
NJ
m,nr, N

J
m,nθ, N

J
m,nφ,

)
eimφ, (A.3)

with the spherical vector components being

NJ
m,nr(r) = n (n+ 1)Pmn (cos θ)

ZJn (kr)

kr
, (A.4)

NJ
m,nθ(r) = τmn (θ)

−nZJn (kr) + krZJn−1 (kr)

kr
, (A.5)

NJ
m,nφ(r) = iπmn (θ)

−nZJn (kr) + krZJn−1 (kr)

kr
. (A.6)

The functions πmn and τmn are defined as,

πmn(θ) =
m

sin θ
Pmn (cos θ), (A.7)

τmn(θ) =
n

tan θ
Pmn (cos θ)− (n+m)

sin θ
Pmn−1(cos θ), (A.8)

and Pmn (x) are the associated legendre polynomials,

Pmn (x) = (−1)m
(
1− x2

)m/2

2ll!

dl+m

dxl+m
(
x2 − 1

)l
, (A.9)

The superscript J denotes solutions with different radial dependence. The radial depen-
dence is given in terms of the different Bessel functions

Z(1)
n (x) = jn(x) =

√
π

2x
Jn+0.5(x), (A.10)

Z(2)
n (x) = yn(x) =

√
π

2x
Yn+0.5(x), (A.11)

Z(3)
n (x) = jn(x) + iyn(x), (A.12)

Z(4)
n (x) = jn(x)− iyn(x). (A.13)
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Finally, the values Emn are normalization constants given by

Emn =

√
(2n+ 1) (n−m)!

4π (n+ 1) (n+m)!
. (A.14)
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B | Multipole decomposition of a plane
wave

The expansion of a plane wave, E(r) = Aeik·r, into regular VSWFs is given by,

E(r) =
∞∑

n=1

n∑

m=−n
cpw,m,nN

1
m,n(r) + dpw,m,nM

1
m,n(r), (B.1)

with the complex coefficients apw,m,n and bpw,m,n

cpw,m,n = (−1)m4π

√
2n+ 1

4πn(n+ 1)
A ·

(
−iπ∗m,n(θ)θ̂ − τ∗m,n(θ)φ̂

)
e−imφ, (B.2)

dpw,m,n = (−1)m4π

√
2n+ 1

4πn(n+ 1)
A ·

(
τ∗m,n(θ)θ̂ − iπ∗m,n(θ)π̂

)
e−imφ, (B.3)

where πm,n(θ) and τ∗m,n(θ) are defined in Eqns. (A.7)-(A.8) and the angles θ and φ define
the direction, k̂, of the wave vector,

k̂(θ, φ) = r̂(θ, φ) = (sin (θ) cos (φ) , sin (θ) sin (φ) , cos (θ)) . (B.4)

The above vector is given in the Cartesian base.

If one defines the transversal electric, v̂TE(θ, φ), and transversal magnetic, v̂TM(θ, φ),
unitary polarization vectors of a plane wave as

v̂TE(θ, φ) = φ̂(θ, φ), v̂TM(θ, φ) = θ̂(θ, φ), (B.5)

one obtains that the multipole expansion of the plane wave

E(r) = (ATEv̂TE(θ, φ) +ATMv̂TM(θ, φ)) eik(θ,φ)·r (B.6)

is given by

cpw,m,n = 4π(−1)m

√
2n+ 1

4πn(n+ 1)

(
−iATE π

∗
m,n(θ) +ATM τ∗m,n(θ)

)
e−imφ, (B.7)

dpw,m,n = 4π(−1)m

√
2n+ 1

4πn(n+ 1)

(
ATE τ

∗
m,n(θ)− iATM π∗m,n(θ)

)
e−imφ. (B.8)
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