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Artificial neural networks (ANNs) are designed and implemented to model the direct synthesis of dimethyl ether (DME)

from syngas over a commercial catalyst system. The predictive power of the ANNs is assessed by comparison with the pre-

dictions of a lumped model parameterized to fit the same data used for ANN training. The ANN training converges much

faster than the parameter estimation of the lumped model, and the predictions show a higher degree of accuracy under all

conditions. Furthermore, the simulations show that the ANN predictions are also accurate even at some conditions be-

yond the validity range.
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1 Introduction

Using artificial neural networks (ANNs) is the most wide-
spread machine learning approach for modeling complex
phenomena due to their simple formulation, flexibility and
robustness [1, 2]. ANNs have proven to be suitable for cre-
ating predictive models for chemical engineering processes
and several applications have been subject of research in the
last decades such as the evaluation and modeling of com-
plex kinetic data [3–6], catalyst design [7, 8], soft sensoring
[1, 9], advanced process control [10], and others [11]. Stud-
ies regarding the application of ANNs for the synthesis of
dimethyl ether (DME) have been reported, e.g., for the
screening of additives [7, 8], the optimization of tempera-
ture profiles in a temperature gradient reactor [12], and the
modeling of the single process steps [13, 14]. Furthermore,
ANNs have been used for predicting the performance of the
liquid phase direct synthesis of DME over CuO/ZnO/Al2O3

and H-ZSM-5 catalysts [9]. In this work, we used ANNs to
model the direct synthesis of DME from CO2-rich synthesis
gas over a mixed catalyst bed of commercial CuO/ZnO/
Al2O3 (CZA) and g-Al2O3 catalysts at high pressure. DME
is of general interest due to its potential for chemical energy
storage, making it a promising key compound in power to
fuel technologies [15–20]. However, the detailed reaction
mechanism of this system is still controversial [21]. One of
the main difficulties for modeling the direct DME synthesis
concerns changes in the catalyst during time on stream. It
has been shown that the catalytic active state of CZA

dynamically adjusts to the process conditions [22, 23], par-
ticularly at high CO2 contents in the synthesis gas feed [24].
In addition, water formation not only influences the active
centers of CZA, but also those on the solid acid dehydration
component (i.e., g-Al2O3) [25, 26]. Morphological and
structural changes induced by certain operating conditions
or interactions with reactants, intermediates or products
make it almost impossible to correlate a vast array of
experiments at different working conditions using a simple
kinetic model [27].

The ANNs used to model the direct synthesis of DME
map the input-output relationships in intrinsic kinetic data
taken over a wide range of operating conditions and inlet
feed compositions. The ANNs applied are fully connected
multi-layer feedforward networks trained by supervised
learning. A brief summary of the theoretical background
regarding the design and training of ANNs, is provided in
the Supporting Information (SI). For the ANN design, sev-
eral back-propagation training algorithms as well as differ-
ent activation functions and network architectures have
been tested. Additionally, a data partitioning scheme is pre-
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sented, which enables the data division for training and
testing in an automated fashion. We conduct simulations
within and beyond the model’s validity range to shed light
on the ANN’s predictive ability in both operational win-
dows, and report on the ability of simple ANNs in modeling
this system in comparison to that of a lumped kinetic model
fitted to the same data.

2 Data and Methodology for the ANN’s
Design

Shallow feedforward ANNs (ANNs with one hidden layer)
were designed and implemented in Matlab� software
R2018a v9.4.0. The experimental kinetic data used for train-
ing and testing were acquired and published in a previous
work [28]. The used data set consists of 180 experiments
carried out in a fixed bed reactor at 50 bar using a 1:1
mechanical mixture of a commercial CZA catalysts and
g-Al2O3. The syngas composition, the temperature (T) and
the total gas flow ( _VN;in) were varied during the experi-
ments as summarized in Tab. 1, while the hydrogen amount
in the feed gas was determined for each experiment accord-
ing to Eq. (1). The remaining fraction of the feed gas con-
sisted of a mixture of the inert gases argon and nitrogen.

yH2;in ¼ 2:3 yCO;in þ yCO2;in
� �

þ yCO2;in (1)

The ANNs were trained to predict the mole fraction of
the main species (CO, CO2, H2 and DME) in the product
gas based on the composition of the syngas
(yCO;in; yCO2;in; yH2;in) and the varied operating conditions.
Hence, the input vector (x) and target vector (y) are sum-
marized as follows:

xT ¼ yCO;in; yCO2;in; yH2;in; T; _VN;in
� �

(2)

and

yT ¼ yCO;out ; yCO2;out ; yH2;out ; yDME;out
� �

(3)

For the design of ANNs the network architecture, i.e., the
number of neurons in the hidden layer, as well as a suitable
activation function of these neurons and a training algo-
rithm must be determined. Since there is no generally

accepted theoretical basis to address these questions,
answers are obtained empirically. For this purpose, various
network architectures and multiple functions were screened
and analyzed concerning the resulting accuracy and conver-
gence time (refer to SI for further details on the evaluated
algorithms). The assessment was carried out in regard to
the mean squared error (MSE) and the convergence time.
For this initial screening, the experimental input data were
divided randomly into three data subsets: training, valida-
tion and test data containing 70 %, 15 % and 15 % of the
experimental data, respectively. The validation subset was
used for training to improve generalization through early
stopping, except in the case of Bayesian regularization
where generalization is achieved by regularization and no
validation subset is required [29, 30]. The randomized data
classification was constant for all trials conducted in this
initial screening to ensure that the same samples were used
in all cases, thus, excluding any influence of the data divi-
sion from the preliminary results.

After determining the most appropriate functions several
networks were trained using the pseudo-random two-stage
data-partitioning scheme presented in Sect. 3.1. The error
function on the test data was considered the determining
factor for selecting the best network. Since this data set is
completely independent of the training routine, the error
on these data is a sufficient indicator of both the prediction
accuracy and the generalization of the network.

Posterior to the training and network selection, simula-
tions were performed with the selected network. The
responses of the ANN were evaluated in comparison to a
lumped kinetic model parametrized to the same experimen-
tal data used for the ANN training. The parameters of the
lumped model were fitted to kinetic data measured in the
absence of transport limitations. The assumptions of steady
state, isothermal and isobaric operation, negligible gradients
in radial direction and negligible backmixing effects apply.
Therefore, only the effects of chemical reaction and thermo-
dynamic equilibria are included in this model. However,
since the lumped kinetic model is based on balance equa-
tions and partially on knowledge of the reaction mecha-
nism, it is expected to deliver better predictions than the
ANN when extrapolated.

The adjusted coefficient of determination R2
adj: was com-

puted as a measure of the goodness of fit (Eq. (4)). Different
from the coefficient of determination R2 (Eq. (5)), R2

adj: takes
the number of degrees of freedom of each model into con-
sideration, hence, providing an unbiased basis for the com-
parison of two different model structures.

R2
adj: ¼ 1� 1� R2ð Þ N � 1ð Þ

N � p
(4)

R2 ¼ 1�
PN

n¼1 yn;out � ŷn;out

� �2

PN
n¼1 yn;out � �yout

� �2 (5)
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Table 1. Conditions of kinetic data taken from Delgado Otal-
varo et al. [28]

Parameter Value

T [K] 493, 503, 513, 523, 533

_VN;in [slpm]a) 0.2, 0.3, 0.4, 0.5, 0.6, 0.7

yCO2 ;in [%] 1, 3

yCO,in [%] 4, 8, 15

a) Standard liter per minute, T = 0 �C and p = 1.01325 bar
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In Eqs. (4) and (5), N is the total number of experiments,
and p is the number of model parameters. ŷn;out and yn,out

are the predicted and measured mole fraction of an arbi-
trary component in the product gas for experiment n, and
�yout is the mean value of the measured mole fraction over
all experiments.

3 Results and Discussion

3.1 Network Design and Training

During the initial screening the activation and training
functions available in Matlab� were changed systematically
in order to find the most suitable function for the available
data. The screening showed that the piecewise linear func-
tions (ReLU, satlin, tribas and satlins) perform poorly com-
pared to the nonlinear functions (radbasn, elliotsig, tansig,
softmax and logsig). The best performance was obtained
with the widely used logarithmic sigmoid function logsig
(refer to Fig. S5 in the SI). When evaluating the training
functions no convergence was achieved in any of the run
trials with the algorithms Gradient Descent (gd) and Gra-
dient Descent with Momentum (gdm). On the other hand,
the Jacobian backpropagation methods Levenberg-
Marquardt (lm) and Bayesian regularization (br) provide
more accurate predictions than the gradient descent algo-
rithms (cgp, scg, rp, bfg, cgb and cgf). Between lm and br,
the lowest MSE and fastest convergence was achieved with
br (Fig. S6). This Matlab� training function is based on the
Bayesian interpolation frame proposed by MacKay [31]
which is advantageous for problems where the data set is
limited since no validation subset is required [29]. Further-
more, Bayesian regularization calculates and trains only the
number of parameters necessary to minimize the target
function (effective number of parameters) [32, 33]. As a
result, fewer parameters are used than are available reduc-
ing the model sensitivity to the network architecture, as
long as the minimum number of neurons is provided. Based
on these advantages and the empirically obtained results,
Bayesian regularization was selected for the network design.

The proposed data division and training procedure is
illustrated in Fig. 1. In the first stage of data division, the
samples were randomly assigned to two subsets: ‘‘Design
Data’’ and ‘‘Test Data A’’. In the second stage, the ‘‘Design
Data’’ subset containing 90 % of the samples was divided
into ‘‘Train Data’’, which is used to calculate weights and
biases, and ‘‘Test Data B’’ used to compare different models
within the framework of Bayesian regularization (without a
validation subset). Afterwards, the multi-start strategy was
applied by restarting the training procedure from different
initial parameter values 100 times. This procedure, labeled
as (1) in Fig. 1, screens the parameter space in order to gen-
erate different solutions of the optimization problem, and
thus, to overcome possible local optimality. After comple-
tion, the second stage of data partitioning is repeated to

train the networks based on a different data division (label
(2) in Fig. 1). All trained networks and training records
were stored in a 100 by 100 array for the subsequent net-
work selection. Finally, the ‘‘Test Data A’’ subset, which con-
tains 10 % of the original samples, was used to provide an
unbiased assessment of the network performance on sepa-
rate data, and thus, of its generalization ability. Thereby, the
ANN with the lowest error on these data exhibits the best
generalization to the independent data set and was chosen
as the most suitable network. A random division is advanta-
geous for the problem at hand considering the multidimen-
sionality of the input space. The presented scheme allows
data partitioning in an automated fashion and increases the
adaptability of the proposed modeling routine to new data
sets of different structures. Furthermore, the model require-
ments, i.e., high accuracy, fast convergence and good gener-
alization, are fulfilled.

The training strategy was conducted for networks with
up to 15 neurons in the hidden layer. This screening showed
that five hidden neurons provide enough complexity for the
network to adapt sufficiently to the available data set.
Therefore, the network with a 5-5-4 architecture (5 input,
5 hidden and 4 output neurons, Fig. S8) was selected. This
structure ensures a sufficient number of parameters to avoid
underfitting, while the problem of overfitting is prevented
by training the network with Bayesian regularization. The
resulting ANN is shown schematically in the SI, where also
the parameters of the ANN and further training results are
given.

The proposed approach is applicable when modeling with
ANNs due to their remarkably fast convergence. For the
chosen architecture, the time elapsed after the training of
10 000 networks was 7.9 min (refer to the SI). In contrast,
the parametrization of the lumped kinetic model to the
same data takes approximately 3.5 h using the same CPU
(on windows 10 Pro (64-bit) operating system with i5 pro-
cessor and 8 GB RAM).
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Figure 1. Data division scheme and training strategy.

756 Research Article
Chemie
Ingenieur
Technik



3.2 Evaluation of the Selected ANN

Simulations were performed to evaluate the predictive abil-
ity of the selected network. Fig. 2 shows parity plots item-
ized for the main components in the system displaying the
agreement between the measured and predicted concentra-
tions in the product gas for all experiments. Clearly, the
model is capable of simulating the observed trends accu-
rately. For all components, the simulated points are evenly
distributed around the y = x line, indicating that there are
no pronounced systematic deviations between model pre-
dictions and experimental data.

We attribute the observed goodness of fit to the fact that
appropriate activation and training functions were chosen
as well as a network architecture that provides sufficient
model complexity and flexibility for modeling. Additionally,
the proposed data partitioning scheme proved to be effec-
tive in enabling the model to gain insight into the underly-
ing phenomena with the available data.

The mean relative error (RE) over all inlet compositions
is shown in Fig. 3 against the temperature and the inlet vol-
ume flow. Clearly, the ANN shows a higher predictive accu-
racy than the lumped kinetic model for all species in the en-
tire experimentally covered operating window. This is
caused by the flexibility and higher dimensionality of the
ANN and its superior capacity to adapt to the data. The RE
of CO, CO2 and H2 over all data lies below 3 % (2 %, 2.9 %
and 0.4 %, respectively), while the RE of DME amounts to
11 %. Both response surfaces for DME follow the same
trend, with the prediction error decreasing with increasing
temperature. At low temperatures, the low reaction rates
lead to overall low conversion and yield. Hence, resulting in
small DME amounts in the product gas and thus in a re-
duced measuring accuracy [28]. Therefore, the deviations of
both models can be mainly attributed to experimental mea-
surement uncertainties. Additionally, the fact that the ANN

did not adapt to the measured values, although the network
has sufficient flexibility, is an indication that overfitting was
successfully avoided and the data were not simply stored by
the network, but the input-output relationships were effec-
tively identified. The adjusted coefficients of determination
reported in Tab. 2 highlight the suitability of both models
and confirm the better adjustment of the ANN to the exper-
imental data especially for the fractions of DME and CO2.

In order to determine if the trained ANN is suitable as a
non-linear regression tool, the ANN’s generalization ability
and its suitability to make predictions on unseen data have
to be tested. For this purpose, additional simulations were
performed for unobserved data within and beyond the
model’s validity range. The lumped model published in our
previous work [28] is employed for a comparative analysis
of the ANN’s predictions. Since both models were fitted to
the same experimental data, these are valid in the same
range of conditions, thus, providing a sufficient basis for
comparison. In the following, representative results are pre-
sented that illustrate and compare the responses of both
models. Additional simulation results are given in the SI.

In Fig. 4, the experimental values are sorted arbitrarily in
ascending order and depicted along with the superimposed
confidence intervals of both fits at a significance level of
95 %. It can be observed that the confidence intervals of the
ANN predictions are narrower than the confidence interval
of the lumped model. It is obvious, in particular for the
fractions of DME and CO2, that the respective confidence
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Figure 2. Parity plots for concentrations in the product gas.

Figure 3. Mean relative error (RE) of prediction for the lumped
model and ANN over all data.

Table 2. Adjusted coefficients of determination.

R2
adj: ŷH2;out ŷCO;out ŷCO2 ;out ŷDME;out

ANN model 0.999 0.998 0.994 0.984

Lumped model 0.998 0.992 0.984 0.943
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intervals of both models are wider in the low concentration
range. This is in accordance with the presumption made
before in this section that low concentrations of DME are
subject to an increased measurement uncertainty, which
also explains why this effect is not observable for the frac-
tions of CO or H2 where the confidence intervals appear to
be of the same order of magnitude in the entire operating
window.

Fig. 5 displays simulation and experimental results in the
temperature range between 453 K and 573 K. The range
where both models are formally valid (between 493 K and
533 K) is marked in gray for better visualization.

The predictions of the ANN within the model’s validity
range are slightly closer to the experimental values than the
predictions obtained with the lumped kinetic model, consis-
tent with the previous discussion. Since the phenomena in
this range are dominated by reaction kinetics, the effects
observed under these conditions can be explained by the
temperature dependence of the reaction rate, described by
the Arrhenius equation. With increasing temperature, the
fraction of DME and CO2 in the effluent increases, while
the fraction of CO and H2 decreases. The fact that CO2 be-
haves as a product can be attributed to the water-gas shift
reaction, which is promoted by the CZA catalyst and, in the
evaluated range, is faster than the CO2 hydrogenation. With
regards to the total gas flow, it is observed that at decreasing
values, the fraction of CO and H2 at the reactor outlet
decreases as well, while the fraction of DME and CO2

increases. These results can be explained by the inverse rela-
tionship between the total gas flow with residence time and
gas load, that lead to higher conversion and product yield.
Furthermore, the consistency of this effect throughout the
entire investigated gas flow range can be attributed to a con-
stant selectivity towards DME. A detailed description of the

observed phenomena can be found elsewhere [28]. Model
predictions in this operational range demonstrate the high
level of agreement between the simulated and measured val-
ues, also showing a smooth mapping and the ANN’s ability
to generalize and make predictions for unseen data within
the model’s validity range.

Unexpectedly, the predictions of the lumped model and
the ANN at temperatures below 493 K are similar although
the ANN was not trained in this temperature range. Both
models indicate that at low temperatures the reaction rates
are too low to achieve high conversion. Hence, the concen-
trations of all components are close to the respective values
in the feed gas. There are no additional constraints in the
ANN’s structure that prevent negative concentrations to be
computed (in the lumped kinetic model, this effect is pre-
vented inherently by the balance equations). Thus, at low
temperatures some negative values are predicted. However,
for DME and CO2, progressions do not decrease steeply
into the negative quadrant with decreasing temperatures.
Instead, all values in this temperature range are close to
zero. Similar good prediction accuracy despite extrapolation
was observed for most but not all feed compositions and
components (refer to SI, Fig. S9 to S13). Therefore,
although the underlying model is able to extrapolate accu-
rately for most conditions in this range, the quality of the
predictions cannot be guaranteed in all cases. The predic-
tions for temperatures above 533 K provide valuable
insights into the phenomena comprised by the models. As
the main chemical reactions involved in the DME synthesis
are exothermic, high temperatures are kinetically favorable,
but thermodynamically unfavorable. This trade-off of
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Figure 4. Measured concentrations in the product gas and 95 %
confidence intervals (CI) of the ANN and lumped model. For
clarity, only every third experimental data point is shown.

Figure 5. Components mole fraction in the product gas. Gray
area marks the range covered experimentally. Feed: 16.1 % CO,
0.8 % CO2, 42.3 % H2, 40.8 % inert gas (Ar and N2). p = 50 bar.
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exothermic reactions is reflected by a change in the slope of
the concentration profile and is taken into account in the
lumped kinetic model by the equilibrium constants in the
rate expressions. However, since the kinetic data were mea-
sured at conditions at which the influence of the equilibri-
um is minor (kinetic regime), the ANN has no information
about the characteristics of this phenomenon, causing the
predictions of both models to diverge at high temperatures.
With increasing temperature, the concentration profiles
predicted with ANN follow the observed trend in the exper-
imentally covered range, i.e., increasing for DME and CO2,
and decreasing for H2 and CO, while the concentration pro-
files computed with the lumped kinetic model exhibit the
expected points of inflection. Similarly, predictions for low
flow rates at which mass transport limitation occurs can be
expected to be inaccurate because the model was parameter-
ized to fit intrinsic kinetic data, i.e., in an operating range
with negligible influence of mass and heat transport.

4 Summary and Conclusions

In this paper ANNs were used to model the direct synthesis
of DME from syngas over a commercial dual catalyst sys-
tem at high pressure. The exact mechanism of this process
is not yet fully understood, and modeling has so far only
been possible in limited operating windows. The networks
used in this study are shallow, feedforward and fully con-
nected. It was demonstrated that the logarithmic sigmoid
function is most applicable for the problem at hand, and
that a higher accuracy is obtained when applying training
algorithms that use Jacobian backpropagation, particularly
Bayesian regularization. A pseudo-random data division
scheme allowing data partitioning in an automated fashion
was presented. The training was conducted for ANNs of
different structures and five hidden neurons proved to pro-
vide sufficient model complexity to map the available data.
The network with the best performance on unseen data was
selected and its predictive ability was assessed by compari-
son with experimental data and with predictions of a
lumped kinetic model parametrized to fit the same data-
base. In summary, it was observed that the ANNs are
remarkably fast, very flexible and exhibit a superior adapt-
ability to the experimental data than the lumped kinetic
model while still providing a comparable interpolation
ability.

Moreover, accuracy of the model predictions outside the
experimentally covered parameter range was also evaluated.
When the model was extrapolated towards lower reaction
rates, i.e., lower temperatures and higher flow rates, the
ANN was able to deliver accurate predictions and to de-
scribe the single-stage DME synthesis systemically for most
components and inlet feeds. This indicates that extrapola-
tions of the model may be admissible for operating condi-
tions at which the phenomena covered by the underlying
model takes place. However, it is not possible to predict

deviations prior to training. Extrapolations of the ANN
towards higher reaction rates, on the other hand, lead as
expected to divergent predictions, as overlapping effects
occur (e.g., thermodynamic limitation of exothermic reac-
tions at high temperatures) which, at the current stage of
development, cannot be reflected by the ANN that was
trained to fit data taken in the operational window domi-
nated only by reaction kinetics.

Our findings underline the suitability of the ANN to act
as a predictive tool for Brownfield applications such as soft
sensoring, real-time optimization, online control, predictive
maintenance and others, where models with high flexibility
and adaptability, the capacity to map complex nonlinear
relationships as well as fast convergence and low computa-
tional cost are required. Furthermore, we conclude that
ANNs have the potential to be used for modeling the direct
DME synthesis in an even wider range of operation where
the relationship between input and output variables is
ambiguous and modeling under mechanistic assumptions
was not yet possible. The presented data partitioning and
training methodology can be applied for this purpose with
simple requirements: the input-output relationships to be
modeled must be measurable and enough data must be
available for parameter discrimination, i.e., for the training
of the network. One possible application is the modeling of
catalyst deactivation as a function of the time on stream
and/or the conditions to which the catalyst system is
exposed to. Regardless of the catalyst system, most kinetic
studies of the direct DME synthesis are carried out under
steady state conditions, due to the highly dynamic behavior
of the catalysts which makes the mechanistic modeling in a
wide range of conditions very challenging. However, if the
required data are available, the modeling with the proposed
methodology can be easily adapted to new state variables
that need to be considered.
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Symbols used

N [–] total number of experiments
p [bar] pressure
R2

adj: [–] adjusted coefficient of determination
R2 [–] coefficient of determination
T [K] temperature
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_VN;in [slpm] total gas flow at standard conditions,
standard liter per minute, T = 0 �C
and p = 1.01325 bar

y [–] measured mole fraction
ŷ [–] predicted mole fraction

Sub- and Superscripts

in quantity at reactor inlet
n experiment index
out quantity at reactor outlet
T transpose of a matrix or vector

Abbreviations

ANN artificial neural network
br Bayesian regularization
CI confidence interval
CZA CuO/ZnO/Al2O3

DME dimethyl ether
lm Levenberg-Marquardt
MSE mean squared error
RE relative error
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