
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

The Feasibility of Limiting Access to
Fingerprintable Surfaces in Web Browsers

Bachelorarbeit

KIT – Karlsruher Institut für Technologie
ITI – Institut für Theoretische Informatik

Forschungsruppe Kryptographie und Sicherheit

Jakob Gretenkort

March 19, 2021

Verantwortlicher Betreuer: Prof. Dr. Müller-Quade
Betreuender Mitarbeiter: F. Dörre





lil

Erklärung der Selbstständigkeit

Iliermil versichere ich. dass ich die Arbeit selbständig verfasst halre und keine anderen als die

angt'uebenen Quelien und Hillimittel benutzt habe, die u,örtlich oder inl-raltlich übernomtle-

nen Siellen als solche kenntlir:h qernacht habe und die Satzung de.s Karlsmher Instiluts fiir
Technologie zur Sichelung guter rvissenschal'tlichcr Praxis in dcr giiltigcn Fassung betrchtet

habe.

Karlsrulre, den r9. N4ärz zozt

i.lakoLr Grctcnkort)





v

Abstract

In this work, we examine the feasibility of limiting access to fingerprintable surfaces for the
purpose of making browser fingerprinting ineffective for tracking users. Specifically, we aim
to determine whether the Privacy Budget, as proposed by google as part of their Privacy
Sandbox project, is fit for this purpose. The Privacy Budget monitors how much fingerprinting
information is extracted from a browser installation by a website and stops further extraction
of information once a threshold is reached.
We come to the conclusion, that the privacy budget, while feasible and fit for purpose, is

faced with many problems that remain yet unsolved. As it is currently proposed, the Budget
does not make use of the fact that fingerprints may be unstable. We try to push in this direction
by introducing a new metric for fingerprint stability based on entropy. The budget also fails to
take into account the possibilities of fingerprinting across multiple websites, which we detail
in this work.

We survey a list of 10000 popular websites to examine which fingerprinting surfaces they use
in order to establish whether the privacy budget would break them, leading to a failure in user
acceptance. For this, we develop an application called FPLog, a modified browser which logs
website’s accesses to fingerprinting surfaces as they occur. Evaluating our results from visiting
the 10000 websites with this application, we come to the conclusion, that current websites
make use of many fingerprinting surfaces, but not so many as to make an entropy-based limit
infeasible.





vii

Zusammenfassung

In dieser Arbeit untersuchen wir die Möglichkeit, Browser Fingerprinting zum Verfolgen
von Nutzern ineffektiv zu machen, indem der Zugang von Webseiten zu fingerprintbaren
Browseroberflächen beschränkt wird. Insbesondere möchten wir bestimmen, ob das von Google
als teil der von ihnen entwickelten Privacy Sandbox vorgeschlagene Privacy Budget sich hierzu
eignet. Dieses Privacy Budget beobachtet wie viel Information zum Fingerprinten eineWebseite
aus einer Browserinstallation gewinnt und schneidet der Webseite den Zugang zu weiteren
Informationen ab, wenn sie einen gewissen Grenzwert erreicht.

Wir kommen zu dem Schluss, dass das Privacy Budget zwar umsetzbar und zweckmäßig ist,
aber einige wichtige Fragen dazu aktuell noch geklärt werden müssen. Der aktuelle Vorschlag
zum Budget sieht keine Nutzung der Tatsache vor, dass Fingerprints unter Umständen instabil
sind. Wir versuchen, diese Richtung der Forschung voran zu treiben, indem wir eine neue
Metrik für die Stabilität von Fingerprints einführen, die auf Entropie basiert. Das Budget
beachtet außerdem aktuell nicht die Möglichkeit, Fingerprinting über mehrere Webseiten zu
verteilen. Wir beleuchten diese Möglichkeit näher.

Wir untersuchen eine Gruppe von 10000 pupolären webseiten darauf, welche fingerprint-
baren Browseroberflächen sie nutzen um zu bestimmen, ob die Einführung des Budgets sie
in ihrer Funktion einschränken würde. Hierfür entwickeln wir FPLog, einen modifizierten
Browser der Zugriffe auf seine Oberflächen live protokolliert. Die Ergebnisse des Besuchs der
10000 Websieten mit diesem Browser führen uns zu dem Ergebnis, dass aktuelle Webseiten
zwar auf viele Fingerprintbare Oberflächen zugreifen, aber nicht so viele, dass entropiebasierte
Einschränkungen wie die vom Privacy Budget nicht sinnvoll umzusetzen wären.
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1 Introduction

When the internet was first conceived, it was built on a protocol known as HTTP, which is
fundamentally stateless. This means that if a user made two requests to the same host in
succession, the second request did not carry any information that would deliberately make
the user recognizable to the host as the originator of the first request. This of course had the
practical advantage that neither the user nor the host had to keep track of any session state.
However, this also limited the types of applications hosts could create on the internet to simple
static information retrieval.
This changed when the Netscape web browser introduced the notion of cookies. These

allow hosts to send small text files to visitors which the visitor’s browser will send along with
every subsequent request to the same host as identified by the host’s domain name.1 If the
content of such a file is a unique ID, the host can attach a meaningful session state to that ID
on his end, effectively making website visits stateful.
Cookies also allow for user’s activities to be tracked across visits to multiple sites if all of

those sites contain resources retrieved from one common host. If during the visit to a website
a cookie is sent to any host that is not the host of the site itself, we refer to this as a third-party
cookie.

Today, the ability of third-party cookies to track users across multiple sites is often seen as
problematic for reasons of privacy, because it allows hosts which have their content embedded
on many popular websites, such as advertisers or content delivery networks, to build detailed
profiles about users’ interests and habits. To combat this use of cookies, many popular browsers
have introduced options for users to limit or entirely forbid the use of third-party cookies in
recent years.
All parties interested in tracking users across sites have since had to adopt new ways of

achieving this, one of which is browser fingerprinting. With this technology, identifying infor-
mation about a specific browser installation is gathered and compiled into a fingerprint. This
occurs at a browser’s surfaces, which are all points of interaction, at any level of decomposition,

1 It should be noted that cookies set for a domain are also sent along with requests to hosts for subdomains of
that domain and even override any cookie of the same name that is set on that subdomain. Furthermore,
subdomains are generally permitted to set cookies for their parent domains too. A notable exception are
"public suffixes" such as "com" or "uk.co", for which many browsers refuse cookies for security reasons.[Bar11]
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between a browser installation and a visited website and its hosts. If the information is stable
across visits to multiple sites and unique among the set of all browser installations that visit
those sites, the corresponding fingerprint can be used as a means of tracking the installation.
Fingerprinting is problematic for the same reasons as third-party cookies are. Therefore,

browser vendors have started to develop mitigation strategies against fingerprinting, one of
which is to limit the access that sites have to a browser’s surfaces to a level at which a host can
not gather enough information about a browser installation to generate a unique fingerprint.
Many of these surfaces are however exposed to the host with good reason, and limiting access
to them can limit the functionality of websites. This calls into question the feasibility of this
strategy, which we will discuss in this thesis.

1.1 Structure of this Work

We begin by introducing the theory behind browser fingerprinting and how it works in
chapter 2. The mitigation strategy against fingerprinting examined in this thesis is defined in
chapter 3. Our approach to evaluating the feasibility of this strategy is explained in theory
in chapter 4, our implementation of this approach is described in chapter 5 and our results
are evaluated in chapter 6. Some websites that caught our attention during the evaluation are
further examined in chapter 7, before we draw our conclusions in chapter 8.

1.2 Related Work

The perhaps most important surveys on the feasibility of fingerprinting in general are [Eck10]
and [GLB18], which we cite throughout this work. Though we focus on limiting access to
fingerprintable surfaces, which is a relatively new idea, there are of course other ways to
combat fingerprinting which have been studied extensively. One of the easier ways to combat
fingerprinting, which unfortunately also negatively impacts the browser’s usability, is to
randomize surfaces, which is studied in [LBM17].
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2 Browser Fingerprinting

Anyweb browser installed on any devicemay possess "subtle but measurable variations"[Eck10]
when compared to any other browser installation. These differences may arise from the
browser’s implementation or the libraries and hardware it relies upon. Some of these differ-
entiating properties may be measured and used to generate an identifier or ’fingerprint’ of
the installation which may be unique among the set of all globally installed browsers [Eck10].
Even if it is not globally unique, the fingerprint may still be unique within a certain context,
for example the set of all browsers to visit a site within the previous month [Eck10].
Such a unique fingerprint, if it is unchanging between visits to the website, can be used to

identify the browser installation and track its user’s activities without the need for the browser
to provide any explicitly identifying information, such as cookies, to the site [Eck10]. If the
fingerprint is generated exclusively with information from the browser that is independent of
the visited website, the fingerprint may even be unchanging across visits to different domains,
making it suitable for cross-site tracking [Eck10].

We will define any set of websites and hosts which gather fingerprints with the same finger-
printing method and exchange collected fingerprints among one another as a fingerprinting
network. The usual implementation of such a network is as a single host having their fin-
gerprinting method embedded on multiple sites, usually as a small javascript combined with
some server-side measures. Note that websites and hosts can belong to multiple fingerprinting
networks, though in practice this is much more likely for websites than hosts.
In order to be suitable for the purpose of reliably recognizing browser installations across

interactions with a fingerprinting network, a method of fingerprinting must have the following
properties:

• Distinctiveness: The method needs to gather enough identifying information to have a
high chance of making a suitably large subset of visiting browser installations uniquely
identifiable by their fingerprints.

• Stability: Two fingerprints taken from the same browser in succession must have a high
chance of not having so many changes between them as to have become unrecognizable.
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2.1 Entropy and Recognizability

Currently, distinctiveness and stability are defined rather vaguely, so we will try to introduce
some metrics for both properties in order to then make their definitions firmer.
Let 𝐵 be the global set of all browser installations.
A property of a browser installation 𝑏 ∈ 𝐵 is fingerprintable, if and only if it can at all be

measured as a value different from ’immeasurable’ by at least one fingerprinting network
visited by the browser.

Let 𝑆𝑏 be the set of all fingerprintable properties of 𝑏 ∈ 𝐵, and let 𝑆 :=
⋃
𝑏∈𝐵𝑆𝑏 be the set of

all properties that are fingerprintable in at least one browser installation.

2.1.1 Distinctiveness

For any fingerprintable property 𝑠 ∈ 𝑆 , let 𝐹𝑠 (𝑏), 𝑏 ∈ 𝐵 be a method of fingerprinting s on
browser installations. Let the outputs of this fingerprinting method be distributed according to
the discrete probability density function 𝑃 (𝑓𝑠𝑛), 𝑛 ∈ [1, . . . , 𝑁 ]. Then, the information obtained
from a fingerprint of a property is given by [Eck10]:

𝐼 (𝐹𝑠 (𝑏) = 𝑓𝑠𝑛) = − log2(𝑃 (𝑓𝑠𝑛)) (2.1)

Because of our choice of a base two logarithm, 𝐼 is measured in bits. We can then calculate the
average information across all 𝑓𝑠𝑛 , giving us the entropy 𝐻𝑠 of a property’s fingerprint [Eck10]:

𝐻𝑠 = 𝐻 (𝐹𝑠) =
𝑁∑
𝑛=1

𝑃 (𝑓𝑠𝑛)𝐼 (𝐹𝑠 (𝑏) = 𝑓𝑠𝑛) = −
𝑁∑
𝑛=1

𝑃 (𝑓𝑠𝑛) log2(𝑃 (𝑓𝑠𝑛)) (2.2)

From multiple property fingerprints 𝐹𝑠 , we can construct a fingerprint 𝐹 for the browser
installation simply by concatenation. If the property fingerprints are statistically independent
of one another, which is rarely the case [Eck10], the combined fingerprint’s entropy can be
calculated by simple addition:

𝐻 (𝐹 ) =
∑
𝑠∈𝑆

𝐻𝑠 (2.3)

However, if the property fingerprints 𝐹𝑠1, .., 𝐹𝑠𝑘 are not statistically independent, joint entropy
has to be calculated like this:

𝐻 (𝐹 ) = −
∑
𝑓1∈𝐹𝑠1

· · ·
∑

𝑓𝐾 ∈𝐹𝑠𝐾

𝑃 (𝑓1, . . . , 𝑓𝐾 ) log2(𝑃 (𝑓1, . . . , 𝑓𝐾 )) (2.4)



2.1 Entropy and Recognizability 5

Where 𝑃 (𝑓1, . . . , 𝑓𝑘 ) is the joint probability distribution of the property fingerprints. It is
important to note, that the combined fingerprint 𝐹 will always contain at least as much
information as its most informative contributing property fingerprint:

∀𝑠 ∈ 𝑆 : 𝐻 (𝐹 ) ≥ 𝐻𝑠 (2.5)

This also means, that when adding a new property fingerprint to an existing combined finger-
print, the entropy of the combined fingerprint cannot decrease.
𝐻 is a good measure for a fingerprint’s distinctiveness and can be interpreted intuitively: If

fingerprints were perfectly stable, any one browser installation would on average share its
fingerprint with only one in 2𝐻 browser installations [Eck10].

2.1.2 Stability

An important metric for measuring the stability of a fingerprinting method is the chance of a
fingerprint to change between two successive visits to a fingerprinting network. This metric is
quite important for practical reasons, as any algorithm trying to track browser installations
despite partial changes to their fingerprints will deal with exactly these incremental changes
from one visit to the next.
In literature, for example [Eck10] and [Vas+18], a modified version of this metric is used,

where instead of the chance of change between visits, the chance of change between points
in time is examined. This metric is a little less useful for practical application, but has the
advantage of being independent from the rate at which browsers visit a fingerprinting network.

These two metrics both have the problem of being quite hard to relate to distinctiveness, so
we will define a new metric which measures the expected entropy of a property fingerprint
within a browser installation based on its chance to change between visits.

For any fingerprintable browser property 𝑠 ∈ 𝑆 , let 𝑉𝑠 = {𝑣𝑠1, . . . , 𝑣𝑠𝑛 } be the set of all
values across all browsers this property can have when fingerprinted by the arbitrary but fixed
fingerprinting network 𝐹𝑃 .

We will assume 𝑉𝑠 to be finite due to the limited number of browser installations that exists
during the lifetime of 𝐹𝑃 .
When a browser installation visits a fingerprinting network, there is a chance for every

fingerprintable property 𝑠 ∈ 𝑆 of the installation to either have changed to a new value or to
have remained the same. We will express this chance with the discrete probability density
function 𝑃𝑠 (𝑣,𝑤) : 𝑉 2

𝑠 → ℝ.
We will consider only those properties of browser installations that can always change from

any value to any other:
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∀𝑣,𝑤 ∈ 𝑉 2
𝑠 : 𝑃𝑠 (𝑣,𝑤) > 0 (2.6)

As we will see later, this is usually the case for any ’useful’ fingerprintable property, because
they tend to be in control of the browser installation, which can of course always have its
configuration changed arbitrarily. For example, even when fingerprinting a browser’s version
number, which usually always stays the same or increases, it is theoretically possible for a user
to downgrade to any previous version.
If we interpret 𝑉𝑠 as the states of a markov chain 𝑌𝑠 who’s outputs are always equal to the

state reached after a state transition, and have the state transition probabilities be defined by
𝑃𝑠 , then this chain’s outputs model the values of 𝑠 we would expect to see when fingerprinting
browser installations.
The entropy of the output of this markov chain, and therefore the entropy of changes to 𝑠

within one browser installation can be calculated with

𝐺𝑠 = 𝐺 (𝑌𝑠) = −
|𝑉𝑠 |∑
𝑖, 𝑗=0

𝜋𝑖𝑃𝑠 (𝑣𝑖 ,𝑣 𝑗 ) log2(𝑃𝑠 (𝑣𝑖 ,𝑣 𝑗 )) (2.7)

where 𝜋 is the stationary distribution of 𝑌𝑠 . Because 𝑉𝑠 is finite and (2.6), 𝑌𝑠 is trivially
irreducible, aperiodic and recurrent. Therefore, 𝜋 exists, is unique and is defined by:

𝜋 = 𝜋 ∗𝑀 (2.8)

where𝑀 = (𝑚𝑖 𝑗 ) = (𝑃𝑠 (𝑣𝑠𝑖 , 𝑣𝑠 𝑗 )) is the state transition matrix, and
∑ |𝑉𝑠 |
𝑖=0 𝜋𝑖 = 1.

𝐺𝑠 measures changeability, the inverse of stability.

2.1.3 Examples

Take for example a random number generator. If we tried fingerprinting a browser installation
by requesting one random bit from it, this property fingerprint would have a distinctiveness of
𝐻 = 1𝑏 but also a stability of 𝐺 = 1𝑏. This points to the fact that if 𝐺 ≥ 𝐻 , the fingerprinting
method is too unstable to be useful. If we were to try fingerprinting by checking for the
existence of javascript’s document object, a distinctiveness of 𝐻 = 0𝑏 immediately tells us,
that we are not getting useful information for fingerprinting. A more practical example is the
browser vendor, accessible with javascript in navigator.vendor. If 20% of the fingerprinting
network’s visitors use Firefox (vendor = Mozilla), and 80% use Chrome (vendor = Google),
the distinctiveness of this property will be 𝐻 = 0.722𝑏, which is not much, but the property
fingerprint is proven to be worthwhile by a changeability of𝐺 ≈ 0, because changes in browser
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are quite rare.

2.2 Fingerprintable Surfaces

Recall that a browser surface is any point of interaction, at any level of decomposition, between
a browser installation and a visited website and its hosts. A browser surface is fingerprintable,
if it allows a fingerprinting network the measurement of a fingerprintable property that has a
distinctiveness that is strictly greater than its changeability: 𝐻 > 𝐺 .

In general, there are two locations at which fingerprinting networks will extract information
from fingerprintable surfaces. Host side surfaces typically include any part of the communica-
tion stack, especially IP, TCP and HTTP/S headers, while client side surfaces are mostly focused
on javascript APIs. There used to be heavy use of Flash and Java in client side fingerprinting,
but these methods are becoming increasingly irrelevant after Flash has been discontinued and
most browsers disable Java by default [Ado21][Ora21].

2.3 HTTP Headers

When a browser requests web content from a host, it will usually do so via HTTP or HTTPS.
In order to ensure that the received content will fit both the implementation of the browser
and the preferences of its user, HTTP allows the browser to attach compatibility information
and preferences to its requests in the form of HTTP headers. Much of the information in
these headers is independent of the requested website and stable and distinctive enough for
fingerprinting.
The most important examples for headers with good properties for fingerprinting are the

accept headers (Accept (𝐻 = 0.729), Accept-Encoding (𝐻 = 0.382), Accept-Language (𝐻 = 2.716)),
the Do-Not-Track header (𝐻 = 1.919) and the User-Agent header (𝐻 = 7.150) [GLB18].

The accept headers are fairly self explanatory, they give notice of content types and encodings
the requesting browser installation can process, as well as the languages the browser’s user
can understand. The Do-Not-Track header signals a request from the user not to have their
activities tracked, and is commonly ignored.
The User-Agent header is interesting for fingerprinting because it contains the user agent

string, which is basically a name that browser installations give themselves in order to give
hosts a rough idea of their capabilities and configuration. Take for example the following
user agent string: "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36". It identifies an installation
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of Google Chrome in version "88.0.4324.150", which is using a fork of the AppleWebKit
engine in version 537.36 and is compiled for Windows 10 x64 .1

user agent strings do not have a clearly defined format and may contain less or more
information than this. On Linux for example, the Chrome user agent string may contain an
identifier of the used window system (e.g. "x11"). Also, some browsers such as Opera may
allow users to choose a user agent string from a different installation for the browser to present
itself with either for privacy reasons or to allow users to see content otherwise restricted to
certain browser types.

The Accept-Charset header used to be a good source of entropy as well, but in a move against
fingerprinting, many browser vendors discontinued support for it [Moz21]. It is important to
understand why vendors were able to do this. The Accept-Charset header contains a list of
text encodings understood by the browser installation that makes the request [FR14], and is
meant to be used for browsers to communicate their capability to understand some uncommon
encodings. Hosts may want to know of these capabilities, because they may be able to serve
better content when they are able to make use of some encoding-specific special characters
[FR14]. With the introduction of unicode however, most characters previously considered
uncommonwere unified in one encoding supported by all browsers, making the Accept-Charset
header obsolete [Moz21].

Obviously the introduction of a common standard that makes customization on the server’s
side unnecessary is not a procedure that is limited to charsets. One could imagine hosts sending
content to browsers in every available language instead of listening to the Accept-Language
header. But there are also obvious drawbacks to this concerning file size, and with some
javascript, the user’s choice of language could still be easily extracted from the browser, for
example by measuring the displayed length of text sections.

2.4 Javascript

Any website can declare javascript scripts as part of its content so that a visiting browser
installation will download and execute them. Among other things, these scripts can make
arbitrary computations, manipulate the website they are part of and exchange data with hosts.
To enable scripts to do all of these things effectively and efficiently, browsers expose many APIs
for purposes such as website manipulation and media rendering, and also provide information
about the browser installation’s properties, capabilities and the script’s execution environment.
All of these APIs and many more can be used as fingerprintable surfaces. Usually, this

1 The rest of the user agent string exists mostly for historic reasons and to signal compatibility with other
browsers and rendering engines by impersonating them.
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is achieved by interacting with them in a predefined manner while logging their behavior
and/or outputs. The logs generated in this way are fingerprints, and the specification of
this interaction and logging sequence is a fingerprinting method. Fingerprints generated in a
browser installation in this manner are usually sent either plainly or as a hash to a host in
their fingerprinting network as an HTTP request.
We will begin with our examination of some of the javascript fingerprinting surfaces by

examining some attributes of the navigator object that either mirror properties contained in
the HTTP headers discussed above or are closely related to them.

Attribute 𝐻 Example Value
appCodeName "Mozilla"
appName "Netscape"
appVersion "5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/88.0.4324.150
Safari/537.36"

doNotTrack "1"
language "de-DE"
languages 2.716 ["de-DE", "de", "en-US", "en"]
platform 1.200 "Win32"
product "Gecko"
productSub "20030107"
userAgent 7.150 "Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/88.0.4324.150 Safari/537.36"

vendor "Google Inc."

Table 2.1: Fingerprintable Surfaces of the navigator object related to HTTP header values.
The distinctiveness 𝐻 is sourced from [GLB18]

Notably, the Accept-Encoding header lacks an equivalent here because the encoding is only
relevant for the communication between browser and server, but loses relevance on the site
itself, and some attributes have a slightly different format from their HTTP counterparts, but
this is an otherwise acceptable alternative surface for the HTTP headers. While retrieving the
same property in multiple ways does not help with distinctiveness, as the combined entropy
of two fully correlated properties is equal to the entropy of either property on its own, it does
help with resilience. Should a browser block access to a property through one surface, there
may be others to fall back on.

A striking feature of these navigator attributes is the ease with which distinctive properties
are accessed here. Some more fingerprinting surfaces that are just as easily accessed and don’t
require further explanation are listed in table 2.2.
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Object Attribute / Method Property Example Value
navigator cookieEnabled are cookies enabled? TRUE
navigator hardwareConcurrency available logical cores 8
navigator maxTouchPoints max. number of supported

simultaneous touchscreen inputs
0

screen height screen resolution 1080
screen width screen resolution 1920
screen availHeight screen resolution 1040
screen availWidth screen resolution 1920
screen colorDepth color depth of screen 24
screen pixelDepth bit depth of screen 24

Table 2.2: Additional simple readouts. The screen resolution surfaces have a combined entropy
of 𝐻 = 4.847 [GLB18].

For some of these additional simple readouts, there are again multiple ways of extraction.
To give just one example, the cookieEnabled property could alternatively be detected by
simply trying to set a cookie and reading it again afterwards. We will discuss more alternative
methods of extraction in chapter 4.

Wewill now examine somemore fingerprinting surfaces that require a little more explanation
than the previous examples.
The plugins list navigator.plugins contains an unordered list of all plugins installed on

the computer, each represented by an object containing the plugin’s name and some other
details. Because the list is unordered, it is important to fingerprint it in such a way that the
order in which the plugins are read from the attribute does not matter.
The storage APIs navigator.storage, window.indexedDB, window.sessionStorage,

and window.localStorage can be fingerprinted for existence and accessibility, since some
installations do not implement or do not allow access to some of them.
The gamepads function navigator.getGamepads() can be used to get a list containing

an API object for every gamepad connected to the browser installation’s device. These gamepad
objects in turn have many properties like buttons or axes representing their physical proper-
ties that can be fingerprinted. Obviously, this surface may be quite unstable depending on how
often gamepads are connected to or disconnected from the device.
The speech synthesis API contains window.speechSynthesis.getVoices(), which re-

turns a list of all synthetic voices available on the fingerprinted browser installation.
The media query interface window.matchMedia() can be used to make queries for infor-

mation about a browser installation’s interfaces. For example, the query window.matchMedia(
’(max-resolution: 300dpi)’ ).matches will be true if and only if the browser installation
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is running on a device that has a screen with at most 300 dpi. Using binary search, exact prop-
erties can be found in acceptable time. Interesting properties to query include orientation,
prefers-color-scheme, resolution and more.

2.5 MembershipQuery Fingerprints

Because it will come up multiple times in the following sections, we will briefly discuss how
lists are fingerprinted if our only access to the list is through membership queries, meaning
that we cannot read the full list directly, but we can ask a fingerprintable surface questions in
the form of ’is x a member of the list?’.

If this is the case, we can simply choose a subset of the set of all elements that may possibly
be contained in the list and query for membership of all elements in that subset. By using the
same subset across all fingerprinted installations, we get comparable results, and by choosing
a suitably large subset, we may capture most, if not all, of the list’s distinctiveness.

For example, a browser installation may have a list of supported image types, but it may not
have any simple way to access that list. We can simply embed an image of some type on our
website and check if it is displayed correctly by checking the computed size of the <img> tag,
thus querying the installation for whether that image type is supported. If we could do this
for all image types in existence, we would be querying the full list of supported types in this
manner, but even querying a small subset of image types may already provide much of the
distinctiveness of the full list.

2.6 Media APIs

Modern browsers have capabilities to display not only text, but also media like video, audio, or
even 2D and 3D scenes for animation. In order to create media in the browser, they provide
mainly three APIs. For visuals, specifically images and animation, websites can use the html
canvas object and its associated javascript API. For audio, they can use the entirely javascript-
based audioContext object. And finally, for video, browsers provide the html video element.
All three interfaces make heavy use of hardware acceleration provided by a device’s graphics
and audio components in order to work efficiently.
The outcome of any operation which uses hardware acceleration may be influenced by

the capabilities and implementation of the hardware, its drivers, the operating system and of
course the implementation of the javascript API itself. Therefore, differences in these four
components between browser implementations may present themselves in media created with
the aforementioned APIs, making the rendered media a fingerprint of the components.
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Of course, differences in implementations of the four components may be present in places
only used by a subsection of one of the APIs. Therefore, we need to use as many of the API’s
capabilities as possible to capture the maximum number of differentiating properties.
Before we explain how rendering media for fingerprinting works for each of the APIs,

we should first mention, that much can be determined about a browser implementation’s
media capabilities through navigator.mediaCapabilities. This API can be asked about
the efficiency of a media encoding or decoding scheme and it will answer based on the soft-
and hardware capabilities of the browser installation. Answers consist of the three booleans
supported, smooth and powerEfficient, indicating whether a given format will likely have
the named property on the running browser installation. Because there must be lists of
supported, smooth and powerEfficient encodings for every installation, this can be used as a
membership query fingerprint.

2.6.1 Canvas

Canvases are elements that allow websites to draw images, either directly or by rendering 2D
or 3D scenes. Canvas fingerprinting is done by creating an html canvas element, drawing on it
and then extracting the rendered image using canvas.toDataURL() or canvas.toBlob(). As
discussed, it is advantageous for a fingerprinter to use many different capabilities of the API.
For canvases, that is usually achieved by drawing many different things before rendering all of
them. This can include text, gradients, blending and everything else a canvas can do. Canvas
fingerprinting was found to have a distinctiveness of 𝐻 = 8.546 by [GLB18].

WebGL Webgl is an extension of the canvas element that provides a full 3D graphics library.
The starting point for using webgl is always to create a canvas element and to access its
webgl context with canvas.getContext("webgl"). This context can then be populated with
3D objects and used to render images into the canvas with custom shaders. It has multiple
fingerprintable surfaces.
Firstly, the webgl context object contains fingerprintable constants like context.VENDOR

(𝐻 = 2.282) or context.RENDERER (𝐻 = 5.541), both of which provide information about the
GPU encoded as integers [GLB18].

Secondly, webgl canvases can be fingerprinted in the same way as regular canvases, except
that instead of simply drawing on the canvas, a 3D scene is populated and subsequently
rendered using custom shaders.

Thirdly, there are fingerprintable webgl properties accessible with canvas.getParameter(),
for example canvas.getParameter(canvas.SHADING_LANGUAGE_VERSION).
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Lastly, parameters describing supported precision formats for shaders are accessible through
canvas.getShaderPrecisionFormat(), for example canvas.getShaderPrecisionFormat(
canvas.VERTEX_SHADER, canvas.LOW_INT).

2.6.2 Audio

Websites can use the window.OfflineAudioContext API to create sounds. Fingerprinting this
API works by creating an audio context, adding a basic sound generator or a sound file to it, ap-
plying some effects to the sound and rendering it. For example, context.createOscillator()
creates a basic sinus wave, and context.createDelay() adds an echo to it. Both compo-
nents need to be configured with setAudioParam, for example setAudioParam(context,

oscillator.frequency, 5000), and the components need to be plugged together before
rendering with renderAudio(context). Again, applying more generators and effects may
cover more differentiating properties.
The html audio element can also be used to find out if a browser installation supports an

audio encoding, for example with HTMLAudioElement.canPlayType("audio/mp3"). This can
be used as a membership query fingerprint.

2.6.3 Video

The html video element and its corresponding API do not currently have any rendering
or video manipulation capabilities other than HTMLVideoElement.msInsertVideoEffect(),
HTMLVideoElement.msHorizontalMirror and HTMLVideoElement.msZoom(), all of which
are specific to InternetExplorer and Edge. Frames can be extracted from a video using
CanvasRenderingContext2D.drawImage(videoElement), making fingerprinting possible
through canvas.toDataURL(). It should be noted however, that we did not find any actual
examples of video fingerprinting while examining real world fingerprinting scripts. Perhaps
the rather complicated implementation and poor browser support makes this not worthwhile
in actual applications.
The video element can also be used to find out if a browser installation supports a video

encoding, for example with HTMLVideoElement.canPlayType("video/mp4"). This can be
used as a membership query fingerprint.

2.7 Fonts

When a website requests its text contents to be displayed in a certain font, the browser needs
to know how to draw that font. This information can be found in font definition files which
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the browser looks for in three different places. First, there are the generic fonts serif, sans-serif,
monospace, cursive and fantasy, that come preinstalled with every browser. Second, a website
may supply its own fonts through the css @font-face rule. Third, the browser looks at fonts
installed on the machine it is running on. If a font can not be found on the machine, generally
one of the generic fonts is used by the browser as a fallback, but websites can specify a series
of fallbacks as well.
From the perspective of fingerprinting, the first option is uninteresting because it won’t

provide any distinctiveness and the second is uninteresting because it’s independent of the
browser installation, but the third option is quite useful. Because any program installed on a
machine may come with additional fonts, the list of all installed fonts is partially dependent on
the list of all installed programs.
Because fonts may display characters at different widths, we can test if a font is accessible

to a browser installation in the following way.
Let 𝐹 be a set of fonts. Let 𝑓 ∈ 𝐹 be a non-generic font. Let 𝐿(𝑡 (𝑓 )), 𝑓 ∈ 𝐹 be the length of a

span tag 𝑡 containing an arbitrary but fixed test string 𝑆 when it is displayed using font 𝑓 . We
will choose two generic fonts 𝑓𝑔1, 𝑓𝑔2 ∈ 𝐹 such that they do not render our test string with the
same length: 𝐿(𝑡 (𝑓𝑔1)) ≠ 𝐿(𝑡 (𝑓𝑔2)). Should no two such fonts be found, then perhaps the test
string should be changed to include more of the characters either font is capable of displaying.

We will create two span tags 𝑎 and 𝑏 containing the teststring 𝑆 . 𝑎 uses the font 𝑓 , with 𝑓𝑔1

as a fallback, while 𝑏 uses the font 𝑓 with 𝑓𝑔2 as a fallback. If 𝑓 is not accessible to the browser
installation, the fallbacks will be used and 𝐿(𝑎) = 𝐿(𝑎(𝑓𝑔1)) ≠ 𝐿(𝑏 (𝑓𝑔1)) = 𝐿(𝑏). However, if
the font is accessible to the browser installation, then 𝐿(𝑎) = 𝐿(𝑎(𝑓 )) = 𝐿(𝑏 (𝑓 )) = 𝐿(𝑏).

This method can be used for membership query fingerprinting.
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3 Google’s Privacy Sandbox

Recall that fingerprinting is only effective if a fingerprinting network hat access to fingerprint-
able surfaces that provide sufficient amounts of distinctiveness to track a large proportion of
visitors while also having small changeability. This observation yields three ways to mitigate
fingerprinting:

1. Decreasing distinctiveness of accessible surfaces, for example by making browser instal-
lations appear more uniform.

2. Increasing changeability, for example by randomizing surfaces.

3. Decreasing distinctiveness by limiting access to surfaces.

All three are faced with the same challenge. The information and functionality of finger-
printable surfaces is very useful and in some cases necessary for websites to function, and can
therefore not easily be modified to be fingerprint resistant in any of the aforementioned ways.
In this work, we focus on the third option. Limiting access to fingerprintable surfaces can

be done in different ways. The most obvious would be to outright remove a surface, as was
practically done with the Accept-Charset HTTP header. However, we’ve already explored in
section 2.3 why this may not be applicable for most surfaces. Another way is to require explicit
user consent before allowing a website to access a surface. This is currently the case with
the geolocation API and for accessing media devices like cameras and microphones. The
consent request interrupts the user, who will likely get suspicious of a fingerprinting website
requesting access to multiple APIs seemingly without reason, and can deny the requests or
leave the site. A soft way of limiting access was proposed by [Eck10]. It tries to limit font
fingerprinting by increasing the time to load a font exponentially with the number of fonts
a website already used. This principle could trivially be extended to all membership query
fingerprints.
In late 2019, a new method of surface access limitation dubbed the "Privacy Budget" was

proposed by the developers of the Google Chrome browser as part of their "Privacy sandbox"
project [Sch19b][Sch19a]. With this method, a browser would monitor how much identifying
information a website and its hosts have extracted from a browser installation [Sch19b]. Once a
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certain, currently undefined threshold of information (the Privacy budget) is reached, the web-
site and its hosts would be cut off from accessing surfaces that would reveal more information
about the installation.

3.1 Estimating Information

As per the above plan, the Privacy Budget relies on knowing how much information an
installation has revealed about itself to a fingerprinter. As we already know, the identifying
information revealed by a fingerprinting surface can be calculated with eq. (2.1), but this
calculation relies on the probability density function of the surface’s obtainable values. To
calculate this function, Google proposes to have browser installations actively report the
information obtainable through their fingerprintable surfaces to some central collector hosted
by the browser vendor [Las20].

It should be noted that the resulting probability density function cannot be used to calculate
exactly how much information is revealed through a surface by a browser installation to a
particular website and its hosts, because they would have a different distribution of values
based only on those browser installations that visit their fingerprinting network. However,
if the set of visitors to a fingerprinting network are a sufficiently large random sample from
all browser instances, the law of averages tells us that the calculated probabilities are a good
estimate. If the selection of fingerprinted browser installations either on the browser vendor’s
side or on the fingerprinting network’s side is skewed in some way, the quality of the estimation
decreases.

If Google, or any other browser vendor who wants to implement this proposal only gathers
information about the distribution of fingerprints only from installations of their own browser,
theywill of course get a skewed distribution andwon’t be able to properly judge the information
revealed by their installation. This will be particularly problematic for less popular browsers,
because they reveal much information just by the type of browser alone, a fact which would not
show up in their collected data, as the type of browser would be uniformly theirs. Therefore,
collected data should be exchanged between vendors for the Privacy Budget to work more
accurately.

3.2 Privacy Budget

The Privacy sandbox proposal also mentions that browser installations should actively report
how much information is extracted from them by visited websites and hosts [Las20]. This
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information would then be used to find a sensible threshold for the Budget according to the
following considerations [Las20].

By lowering the budget, it would be increasingly improbable for a fingerprinting network to
identify a browser installation in a large set of visitors. It would therefore be advantageous to
choose the threshold as low as possible. However, as we discussed in section 2.2, it is strictly
necessary for many sites to access many fingerprintable surfaces and perhaps inadvertently
collect information in the process. In order to not break non-fingerprinting websites, this
inadvertent collection should either be identified as not fingerprinting related and not counted
towards the budget or be anticipated by increasing the budget. Unfortunately, it is rather
difficult to determine whether an access to a fingerprintable surface is fingerprinting related
or not, which we discuss further in chapter 4, so the second option of expanding the budget is
much more likely to be used. Currently, no value has been proposed for the budget.

Even if the budget is relatively large, some non-fingerprinting websites will still fall outside
of it, in which case Google proposes to contact them to see if they can limit their use of
fingerprintable surfaces somehow [Las20]. Should this be unacceptable for a website, it could
request an exemption from the Privacy Budget rules from the user, who would therein be
informed of potential fingerprinting threats [Sch19b][Las20].

One thing that is currently unclear from reading the proposal, is whether Google plans
to have a surface’s revealed information 𝐼 or the accessed surface’s entropy 𝐻 count against
the budget. There are cases to be made for both. If 𝐻 is counted towards the budget and a
surface 𝑠 of some browser has 𝐼𝑠 > 𝐻𝑠 , then this surface may reveal more information than
the Budget detects, potentially making it uniquely identifiable in a large set. However, if 𝐼 is
counted towards the budget, interaction with a single surface may already exhaust it in some
browser installations, and reveal almost no information in others, making it very hard for
non-fingerprinting websites to determine how many surfaces they can safely assume to be
allowed to use. A balance must be struck here between websites continuing to function and
protecting users’ privacy.

Another major problem of the Privacy Budget is that it sets a moving target. Even if a
website owner designs his site to stay within the budget limitations, changes to the browser
landscape and thus the entropy gained from any one surface may mean that the very same
website may slip outside of the budget again. This may lead to a drop in acceptance for the
Budget both among users and website owners.
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3.3 Involuntary access

Currently, much identifying information is revealed to websites and hosts even if they did not
request it, and this information would still be counted towards the budget. In order to give
websites control of how they want to use their budget, instances of such involuntary access
should be reduced.

A prime example of involuntary access are the HTTP headers. Under the proposal, starting
at some future version of Chrome, the user agent string will be set to some common, frozen
value, and fractions of the information formerly contained in the string called ’user agent
client hints’ will instead be retrievable at a new javascript API or be optionally sent along with
HTTP requests as new headers when needed [TWw21]. Need for a client hint is signaled by an
appropriate value in the the Accept-CH header in a server’s HTTP response [TWw21].
The proposal also includes removing the Accept-Languages header in favor of a Lang-CH

client hint.
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4 Detecting Fingerprinting

As we began to discuss in section 3.2, the Privacy Budget cannot be set so low as to break
large parts of the web that do not fingerprint. Websites requiring access to surfaces beyond the
budget for non-fingerprinting purposes would likely request from the user to be exempt from
the Budget rules. If many non-fingerprinting websites did this, the user may get accustomed to
granting these exemptions, forming a habit which fingerprinting websites may abuse, similar
to how users have been conditioned to accept cookies in areas where the law demands websites
to ask for consent before setting cookies. Websites may even shut users out, lest the users
grant an exception from the Budget, similar to how many websites react to users who block
advertisements from being shown. And if such exemptions are not allowed for websites, too
many broken sites would likely prompt users to outright disable the Budget or switch browsers.
In order to estimate how low the budget could be set under these considerations, we must

know how much information non-fingerprinting sites inadvertently collect. To measure how
much information websites usually collect from fingerprinting surfaces, we visited a large set
of websites with a modified browser in which we implemented a system to record websites’
accesses to fingerprinting surfaces which we dubbed FPLog. We will explain our concrete
implementation in chapter 5 alongside our selection of websites, but begin here by explaining
how fingerprinting surface access can be detected in theory. This theory also applies to any
fingerprinting access detection implemented as part of the Privacy Sandbox.

4.1 Detecting Access

To detect access to surfaces for the purpose of fingerprinting, a browser must first be able
to detect access for any purpose. In case of the Privacy Budget, the amount of extracted
information must also be determined.

As an example, we will examine the fingerprintable property ’number of available hardware
threads’. If it is accessed through navigator.hardwareConcurrency, noticing the access is a
simple matter of modifying the method in the browser responsible for supplying the value
to this attribute, and measuring the amount of extracted information can be achieved by
calculating 𝐼 , assuming we know this surface’s probability distribution.
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However, the same property may also be extracted by launching a series of truly concurrent
web workers until their collective performance begins to drop. In this case, there is no obvious
point at which the browser should assume that the property has been accessed. One could
try to make the browser notice when the worker’s performance is being measured, which is
practically impossible considering the countless number of ways in which such a measurement
could be made. So in any practical application, the assumption of access may have to be
made as soon as even one web workers are launched, considering that the knowledge that an
installation has two or more hardware threads may yield distinctiveness already.
Another example of a difficult to detect fingerprinting access is testing the availability of

APIs and other functionalities and the presence of bugs to determine a browser’s type and
version. Because every surface in any browser was surely unavailable or bugged at some point
in the browser’s history, any access to any surface would have to be considered as extracting
version and type information. This is even true for two consecutive accesses to the same
surface with the same parameters, as side effects from other changes on the website may
have provoked a bug in the meantime. Since the value extracted from this surface depends
on whether the exact situation that provokes a bug in some versions of some browsers is
present, the Privacy sandbox would need to know about all of these exact situations for an
accurate measurement of extracted information. This seems fairly impractical, so it may be
necessary to simply always assume that the browser’s type and version have been extracted,
which immediately uses up part of the website’s budget.

4.1.1 Media APIs

Just as we discussed for the number of available hardware threads, many of the ways in which
media APIs are used for fingerprinting are also hard to detect because there are multiple
ways of extracting the same property. But the media APIs also face another, unique challenge.
Because the amount of information extracted from them through rendering media is dependent
on what exactly is being rendered, it is rather difficult to determine just how much information
was extracted in a surface access, since there is no practical way the browser vendors could get
the probability distributions for all media that may possibly be rendered through these APIs.
Therefore, the Privacy Sandbox may have to simply assume their value of 𝐻 to have been

extracted during any render, regardless of what was actually rendered.

4.1.2 Fonts

Font fingerprinting, as well as any other membership query fingerprint, is dependent on the
lists of values being queried for. However, every font requested from a browser may deliver a
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small amount of information, so it may be useful here to just count the availability of each
font as an individual surface. That would also mean, that even just using some basic fonts
without going through any long list would be counted towards the budget. Even if we found
that fingerprinting networks currently typically requested more than 𝑛 fonts, while most
non-fingerprinting sites request less, implementing some threshold underneath which we
assume no fingerprinting to have taken place would surely be fully used by fingerprinters to
extract information without being limited by the budget anyways.

4.2 Distinguishing fingerprinting and non-fingerprinting
access

Any information extracted from a browser can only be determined to be non-fingerprinting
related until it leaves the browser’s vision. At that point, in order to protect the user’s privacy,
the Sandbox would simply have to assume that the information is being used for fingerprinting.

The complement is also true: if extracted information, even if it is definitely fingerprinting
related, does not leave the browser and reach its fingerprinting network in some way, it cannot
actually have been utilized for identification purposes, and is therefore irrelevant.
Therefore, if and only if information extracted from a fingerprinting surface leaves the

browser should it be counted towards the budget.

4.3 Traceability of gathered Information

Unfortunately, tracking information as it moves through the browser is simply impractical.
Imagine that a website read a value from some surface. One could simply assume that any
variable who’s value was calculated using the surface’s value carries at least part of the surface’s
value as well. If any such variable leaves the control of the browser, the information contained
in the surfaces’ value is assumed to have been used for fingerprinting. However, ’calculation’
of course also includes any control flow, so as soon as a surface’s value or a variable carrying
part of it has been used as a conditional, any variable accessed inside the conditional must
also be assumed to carry part of the surface’s value. This problem gets worse, if side channels
like observing caching behavior or timings is considered. In that case, practically any code
executed after the access to a surface must be assumed to carry part of the surface’s value.
Worse still, semi-permanent storage like first party cookies may carry surfaces’ values from
one session on a website to the next.
In conclusion, it may be most practical for implementations of the budget to assume any
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value extracted from any surface to be present in every variable in session storage until the
end of the session, and any writing interaction between session and permanent storage to
transport all values present in one’s variables to all variables in the other.

4.4 Fingerprinting with multiple sites

If two sites are part of the same fingerprinting network and a browser installation visits one
of its sites, that site may use its unused budget to fingerprint some surfaces. If the user then
follows a link or redirect to the second site in the network, the link may carry the first site’s
partial fingerprint as an HTTP GET parameter. The second site may then use its own remaining
budget to complete the fingerprint. One practical way to use this would be to have one site
split itself across multiple domains, for example a news website which shows a list of previews
of available articles on example.com along with links to the full texts on reading-example.com.
Considering our arguments on the traceability of gathered information, any redirect to

any website carrying any information, perhaps even encoded in the path, may have to be
considered as carrying fingerprinting information. This would mean that the privacy budget is
emptied even when navigating across different websites, at least as long as links are followed
between them. The Privacy Budget proposal currently has no strategy to deal with this. We
believe this to be a major oversight.
A similar challenge is posed by IFrames. The proposal does not currently make it clear,

whether the information gathered by a site B embedded in an IFrame on site A should be
counted towards the budget of A and vice versa. Theoretically, in the HTTP GET parameters,
A can send a UUID when setting up the IFrame, perhaps even encoded in the path, which could
then be used by the hosts of both sites to exchange any gathered fingerprinting information.
Therefore, both sites’ budget should theoretically be unified. This creates a large problem for
sites which embed other sites they don’t coordinate with. The embedded site may increase it’s
use of the budget and inadvertently break the embedding site.
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5 Implementation

As mentioned in chapter 4, FPLog is system for logging a website’s access to certain finger-
printing surfaces.1 It consists of a modified Firefox browser and a Firefox web extension. In
this chapter, we will explain how FPLog was implemented, how we checked for its correct
functioning, how we used it, and what challenges we identified for an implementation of the
Privacy Budget along the way.

To begin with, an important consideration for FPLog is that we want the browser to appear
normal to most visited websites. This means that unless a website is specifically checking
for the presence of FPLog, the site should function as it does in any regular browser. This is
important because if a website experienced some abnormal behavior and stopped execution of
its scripts, we would not get to see all surfaces it would usually utilize.

Our implementation also has to consider the challenges described in chapter 4. We decided
to only monitor a select set of surfaces, so FPLog does not detect all extracted fingerprintable
properties. We also decided to consider any information extracted from any monitored surface
as having been used for fingerprinting regardless of whether it actually left the browser,
because tracing that information would have required extensive modifications to our browser’s
javascript engine. Partial fingerprinting with multiple sites has not been considered by our
implementation, as there is currently no pressure for websites to use this technique, making
us assume it to be quite rare. Also, according to the considerations in section 3.3, access to
surfaces in the protocol stack (e.g. TCP / IP / TLS / HTTPS) is not detected by FPLog.

5.1 Javascript

With the sole exception of fonts, every fingerprintable surface monitored by FPLog is accessed
by fingerprinting networks through javascript. A complete list of monitored javascript surfaces
can be found in table 5.1. All of these surfaces are implemented in native code, meaning they
reflect some function or attribute implemented in the browser’s core, outside of javascript or
its interpreter.

1 The source code of FPLog can be found alongside installation instructions at [Gre21]
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In order to get to the native code implementation of a surface, execution steps through
various modules of the browser. First, the javascript interpreter has the javascript control
flow enter the called function. If the surface is not a function but an attribute, for example
navigator.userAgent, that attribute’s getter is entered instead. Once inside the function,
control flow quickly reaches a special instruction for the interpreter that signals a call to native
code. At this point, the javascript execution is halted, and the interpreter’s control flow finds
and enters the appropriate native function. Specifically, a binding is called, which is essentially
an API the core browser provides for interactions with the javascript interpreter. This binding
layer already contains caches for some values that don’t typically change during execution,
such as navigator.userAgent. However, if a value has no cache or that cache is invalid,
the control flow passes through the binding layer into the actual native functions. These are
usually organized in ways that reflect the javascript API they implement, so for example the
javascript navigator object has an equivalent c++ mozilla::dom::Navigator class.
To summarize, FPLog could log access to surfaces at any of the following four points:

the called javascript function, the javascript interpreter, the binding layer and the surface’s
implementation in the browser’s core. At first, we implemented logging only in the core, only
to find out about the binding layer’s caching, which caught many surface accesses before they
could reach the core. Next, we attempted to log surface access in the binding layer, which
proved effective but also made subsequent development of FPLog prone to failures in Firefox’s
build system. This was because we had to manually disable parts of the build system that
would ordinarily regenerate the binding layer from .webidl files to make our modifications
persistent. This also made it harder for others to build FPLog to reproduce our results, so we
dropped this approach.
FPLog ended up logging javascript surface access from two locations: javascript itself, and

the browser’s core. As for the core, we created a logging module and compiled it as a library we
then used across the browser. Native implementations of surfaces were then simply augmented
with a call to a function from this logging module to record any access to the surface. These
calls to our library can also carry information about the nature of the access.
On the javascript side, we are able to use javascript’s capability to redefine an object’s

properties (both attributes and methods) using the defineProperty function. With this, we
swap out the ordinary implementations of surfaces for ones that contain calls to our logging.
However, the surfaces we swap in also have to behave normally when viewed from the
perspective of a website. FPLogs achieves this in two different ways. If a surface only returns a
value that is constant throughout a visit to a website, such as navigator.userAgent, FPLog
reads and stores the surface’s value before replacing the implementation with a logger which
then returns the stored value on every subsequent access. All surfaces that are cached in the
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binding layer are implemented in this way, so that only surfaces without binding layer caches
are logged in the core.

If a surface does not return constant values however, any logger overriding it cannot mimic
the surface, since there is no way for the logger to access the overridden property. To get around
this problem, we added a mirror for every such surface. The native implementations of these
mirrors simply call the native implementations of their regular counterparts. For example, the
canvas element’s toDataURL() method is mirrored by the newly created toDataURLFPLog().
Note, that all surfaces currently using this mirror approach could have also been logged in
the core, completely eliminating the need for this mirroring. Time constraints prevented us
from making the necessary changes. Information on which method of logging is used for each
monitored javascript surface can be found in table 5.1.

Object Attribute / Method Method Duplicate API
audioContext constructor core no
canvas constructor core no
canvas toDataURL() extension yes
canvas toBlob() extension yes
canvas getContext(’webgl’) extension yes
canvas getContext(’webgl-experimental’) extension yes
document createEvent(’TouchEvent’) extension yes
navigator appCodeName extension no
navigator appName extension no
navigator appVersion extension no
navigator buildID extension no
navigator cookieEnabled extension no
navigator doNotTrack extension no
navigator hardwareConcurrency extension no
navigator language extension no
navigator languages extension no
navigator maxTouchPoints extension no
navigator mediaCapabilities extension yes
navigator oscpu extension no
navigator platform extension no
navigator plugins extension no
navigator product extension no
navigator productSub extension no
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Object Attribute / Method Method Duplicate API
navigator storage extension yes
navigator userAgent extension no
navigator vendor extension no
navigator vendorSub extension no
navigator cpuClass extension no
navigator getGamepads() extension yes
screen height extension no
screen width extension no
screen availHeight extension no
screen availWidth extension no
screen colorDepth extension no
screen pixelDepth extension no
speechSynthesis getVoices() extension yes
window sessionStorage core no
window localStorage core no
window indexedDB core no
window matchMedia() extension yes
body clientWidth extension no
documentElement clientWidth extension no

Table 5.1: All javascript attributes and methods for which FPLog logs access, and the means of
logging.

Every part of FPLog on the javascript side is implemented as part of a Firefox web extension.
It is configured to be loaded and executed on any visited website before the website itself begins
its execution, ensuring that FPLog doesn’t miss any surface access. Because web extensions
can usually not interact directly with the website’s javascript execution environment, the
surface replacement code is injected into this execution environment by the extension using
the window.eval() function. Because websites cannot ordinarily write to files, we extended
the navigator object with a method logFPLog(), which forwards its parameters directly to
our logging implementation in the browser core, which in turn writes them to a file.

A log entry generated by FPLog to document a website’s access to a javascript surface usually
shows only exactly which surface was accessed along with the host information described in
section 5.3.

We would like to note that while the original method of logging access in the binding layer
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was dropped after a while, we did use it to validate the results gathered by the logging FPLog
ended up using. Both methods showed the exact same results on a sample of 100 websites.

5.2 Fonts

Because detecting the presence or absence of a font in a browser installation is as simple as
rendering elements with same contents using different fonts and comparing their lengths, and
because there are countless indirect methods of measuring an element’s length in javascript,
we decided not to log whether the length of an element rendered in a certain font was measured
and instead only log whether a font was requested by a website at all. Because there are also
many different ways in javascript to create an element and have it be displayed in a certain
font, we decided to not log requested fonts in javascript, but instead in the layout engine.
Here, every displayed element is associated with a node (nsIFrame) in a layout tree, and this
node carries, among other things, the element’s computed style (nsIFrame.mComputedStyle),
including the fonts the element has been requested to be drawn in. Importantly, this also
includes fonts not present in the browser installation. FPLog records requested fonts every
time the computed style member of any node in the layout tree is modified, including during
the node’s construction. For every font-family declaration on any element, the names and
order of all fonts appearing in the declaration are logged.

5.3 Hosts

Sites can embed other sites through IFrames. In order to correctly link accessed surfaces to
visited sites, FPLog logs not only the URL of the site which accessed a surface alongside the
access’ description, but also the URL of the site’s embedder. If a site is visited directly by the
browser and not embedded in an IFrame, both URLs are the same.

5.4 Limitations of FPLog

Because FPLog is built on Firefox, any bugs present in the browser that may prevent the
correct functioning of a website could skew our results. FPLog also makes changes to the
navigator object and other built-in APIs, which could make some sites behave abnormally if
they regularly check for being executed in an irregular browser. Most importantly however,
there are many fingerprinting surfaces that FPLog does not currently monitor, or monitors
only with very rough granularity. For example the individual surfaces accessed during webgl
fingerprinting are not monitored at all, instead only the canvas element’s getContext(),
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toDataUrl() and toBlob() methods are monitored, with the last two being in a way that
does not even distinguish between a regular and a webgl canvas. With enough time, the issues
around logging detail could be addressed, but for now it is left for future work.

5.5 Selecting Websites to Log

As we explained in chapter 4, a large number of websites should be visited with FPLog to get
an idea of how high the Privacy Budget threshold must be for a regular, non-fingerprinting
website to function. We also argued, that user acceptance and conditioning will be major
factors in determining the Privacy Budget’s success. It therefore stands to reason, that when
we randomly choose websites to visit with FPLog, the influence a site would have on the
acceptance and conditioning of users with regards to the Budget should be it’s weight. We
could find no published list of websites with such a metric. Instead, we simply selected websites
based on their popularity, which we hope is correlated to the number of people which would
be influenced by the website with regards to acceptance and conditioning and the extend of
that influence.
For our experiment, we visited the top 10000 most popular websites as determined by the

methodology of [Poc+18].2 However, this list is actually a list of popular domains, not websites.
To filter out domains that don’t host a website, we let a script automatically make requests to

each domain in the list, requesting location / through both HTTP and HTTPS. On an HTTP(S)
reply with status code 200 (OK), we assume a website is available at the domain. On a reply
with status code 301, 302, 303, 307 or 308, all of which are various types of redirects, we follow
the redirect as long as is remains on the same domain and recursively make an HTTP(S) request
again. The assumption here is that should a popular website be reached through a redirect
from a different domain, the popular website would likely have its own entry with its own
domain in the list. Any other status code or a timeout leads to an exclusion from the list. We
set the timeout to 30 seconds.

This method produced a new list with 10000 entries. Entry number 10000 in the filtered list
has index 12561 in the unfiltered list, indicating that 2561/12561 = 20.4% of the original list did
not host a website at location /.
Some other biases of the list were left uncorrected. Many sites are not actually popular

in the sense that regular users would usually visit them, but instead simply share a domain
with a high traffic API endpoint. This is particularly notable with advertisement networks,

2 The list of websites can be downloaded at https://tranco-list.eu/. It is updated daily and we use the
version published on the 17th of January 2021. Subsequent filtering of the list was performed on the 17th of
January 2021 as well.

https://tranco-list.eu/
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presumably because their content is embedded on many other websites, but we also saw
domains for non-http APIs in the list, for example ntp.org.

5.6 Automation

Visiting 10000 websites with a browser requires some automation, which we achieved with
the selenium library. It allowed us to start instances of our browser, equip them with the FPLog
extension and have them visit the 10000 sites in sequence. For each website, only the path
that was answered with a 200 during our website selection process was initially visited, but
redirects by the site were followed unconditionally. Every website was given 60 seconds to
complete all redirects and fully load. If a website did not complete loading in time, we moved
to the next site. If the website did completely load, we waited a further 5 seconds to let the
website execute some scripts before moving to the next site in the list.

Not exploring visited sites further than the initial redirect from the / path means that we
only got a limited view of what surfaces the sites use. This could have been corrected, for
example by following all links on the site that stay on the site’s domain perhaps recursively up
to a certain recursion depth, but for now that is left for future work.
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Of the 10000 websites visited, we could not gather data for 274. This was usually because
the site failed to finish redirecting and loading within 60 seconds or because our browser ran
into some kind of error that resulted in the browser’s sole tab or the browser itself crashing.
All further statistics are based on visiting the remaining 9726 sites. Due to following html
and javascript redirects, the actual number of visited URLs was 10542. HTTP redirects were
followed, but not added to the list of visited URLs.
Because sites in IFrames can easily have collected data connected to the site embedding

them, for example through UIDs in HTTP GET parameters, every surface access made in an
IFrame is treated as if it were made by the embedding site. This rule is applied recursively, so
that an access made by a site C which is embedded on a site B which is in turn embedded on a
site A is counted as an access made by A. Crucially, an access made by count C is not counted
towards the site C, as we would otherwise create a bias against sites embedded in different
ways on many websites.

6.1 Fonts

Recall that an element can have a list of fonts associated with it that is ordered from highest
(0) to lowest priority. If it is available, the font with priority 0 will be used. Otherwise, the
font with the next highest priority (1) is used if available and so forth. Therefore, if we want to
examine the minimal list of fonts a website needs to have available in order to display properly,
examining only fonts that appear somewhere on the site with priority 0 is sufficient.
Of the 10542 websites visited URLs, 10269 or 97.5% used less than 20 fonts with priority 0

and 9640 or 91.4% used fewer than 10. fig. 6.1 shows the exact distribution of sites across the
number of fonts used in this category. When including fonts a site only uses with a priority
smaller than 0, the distribution widens as seen in fig. 6.2, but 10256 sites still use fewer than 30
fonts.

Going back to only examining font usage with priority 0, the remaining 273 websites using
20 or more fonts are distributed as shown in fig. 6.3. Many of these sites specifically collect data
on font availability, usually through javascript. Purposes for this include, but are not limited
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Figure 6.1: Number of websites using between 0 and 19 Fonts with priority 0.

to, font fingerprinting. Some websites also reach these high values because they include many
sites through iframes that use different fonts. The highest number of fonts a site used with
priority 0 is 640.
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Figure 6.3: Number of websites using between 20 and 640 Fonts with priority 0.
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Figure 6.2: Number of websites using between 0 and 29 Fonts with any priority.

We do not have access to information on the distribution of font availability across browser
installations, as this data is not currently made available by any research project we are aware
of and because we did not have the resources and time to create our own fingerprinting project
and collect enough data. Because we only need a rough idea of the minimal necessary Privacy
Budget, we will assume that the probability for any font to be available is constant across
fonts and that the availability of any one font is statistically independent from the availability
of all other fonts. With these assumptions, the 66 fonts that had their ability checked for
by the fingerprinting algorithm of [GLB18] would all contribute equally to the 6.904 bits of
distinctiveness found for font fingerprinting in that paper. According to this, every font would
consume 6.904/66 = 0.1046 bits from the budget. Looking at fig. 6.2, it seems reasonable to
allow for up to 25 fonts (2.615 bits) of any priority in the budget. Considering fig. 6.1 and the
availability of generic fonts as fallback, this budget may be tightened to 20 (2.092 bits) and
perhaps even 15 (1.569 bits) at some point if enough websites try to reduce their font usage to
gain more freedom in other parts of the budget.

6.2 Javascript

The number of websites to access each monitored javascript surface can be found in table 6.1.
All of these numbers are out of 10542.
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Surface Parameter Websites
AudioContext constructor 227
canvas constructor 4320
document.createEvent touchevent 467
body.clientWidth 6755
documentElement.clientWidth 8824
canvas.getContext 2d 2978
canvas.getContext bitmaprenderer 177
canvas.getContext experimental-webgl 445
canvas.getContext experimental-webgl2 177
canvas.getContext moz-webgl 22
canvas.getContext webgl 2159
canvas.getContext webgl2 205
canvas.getContext webkit-3d 18
canvas.toDataURL 1648
navigator.appCodeName 732
navigator.appName 4354
navigator.appVersion 7040
navigator.buildId 13
navigator.cookieEnabled 5554
navigator.cpuClass 1101
navigator.doNotTrack 3988
navigator.getGamepads 175
navigator.hardwareConcurrency 1838
navigator.language 8134
navigator.languages 2557
navigator.maxTouchPoints 3155
navigator.mediaCapabilities 474
navigator.oscpu 628
navigator.platform 6062
navigator.plugins 8232
navigator.productSub 903
navigator.storage 375
navigator.userAgent 9980
navigator.vendor 4223
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Surface Parameter Websites
navigator.vendorSub 584
navigator.webdriver 1978
screen.availHeight 4655
screen.availWidth 4691
screen.colorDepth 8086
screen.height 9123
screen.pixelDepth 1307
screen.width 9155
speechSynthesis.getVoices 451
window.indexedDB 2918
window.localStorage 8414
window.matchMedia 4105
window.sessionStorage 6895

When using selenium to automate a browser, navigator.webdriver is true. So the 1978
sites to access this value would have been aware that we are a bot and may have decided to
execute differently because of it. This may have biased both our measurements on javascript
surfaces and on fonts.
Firefox sometimes calls navigator.userAgent when a website accesses some unrelated

surface like navigator.doNotTrack. We do not now why this happens, but it causes virtually
any website to show up as having accessed navigator.userAgent, which makes our mea-
surement for this surface meaningless. It is important to keep in mind that all parts of the user
agent string can currently still be extracted server-side. When the HTTP user agent header
is deprecated and replaced with client hints, client-side access to these surfaces will likely
increase.

We do not have access to information on the distribution of surface values or their correla-
tions, meaning that we cannot say how much entropy some combination of surfaces reveals.
We can therefore also not calculate a minimum budget. A heuristic we tried using is to group
related surfaces like screen.width and screen.height together and associating the group
with a combined entropy which is assumed to have been accessed when a certain number of
group members is accessed. Entropy gathered by a website from different groups is then added
up as if the groups are completely uncorrelated. Unfortunately, this approach and some others
like it involve too much guesswork and for us, they resulted in some websites gathering more
than 60 bits of entropy even after double checking many assumptions. This is not compatible
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with the results of [Eck10] and [GLB18], both of which found a combined entropy of less than
21 bits for their respective fingerprint datasets. We have therefore simply published our data at
https://github.com/JakobGretenkort/FPLog and leave it for future work to perform an
analysis using actual surface correlation data.

https://github.com/JakobGretenkort/FPLog
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7 Lowering Surface Use

As we mentioned in section 3.2, Google proposes to contact websites which fall outside of the
budget in hopes of persuading them to lower their use of fingerprintable surfaces. While we
have not done any quantifiable work on this, we did try to find some examples of websites
accessing surfaces that could be eliminated.

7.1 Compression

Some websites, for example https://www.facebook.com/, use canvases to create images in
the user’s browser, rather than having the user download them. This could be especially useful
for simple animations, as the instructions needed to have a canvas recreate an animation may
require significantly less bandwidth than the corresponding video file. It is however often
replaceable with an image or a video. Audio interfaces may also be used in this way.

7.2 Compatibility

One thing we have encountered quite often is websites gathering some form of compatibility
information, for example for market research or to know what fonts a company should ship
with their software. This is a fairly legitimate and fairly widespread use of surfaces and it
remains to be seen whether websites will step away from it.

https://www.facebook.com/
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8 Conclusion

In this work, we found some challenges and limitations that will need to be addressed before
Google’s Privacy Budget or any similar scheme to make limitations to fingerprintable surfaces
based on entropy can confidently go forward.
We newly created a clear definition of what fingerprintable surfaces are. In doing this, we

also established a new metric for a fingerprint’s stability which we managed to relate roughly
to distinctiveness. More work has to done on this topic in the future so that we may perhaps
find a clear way to calculate the recognizability of a user across multiple visits from only
distinctiveness and stability.
In section 3.2, we examined the balance between Privacy and user acceptance that has

to be struck when first establishing the Budget. This was elaborated on in chapter 4 and
throughout this work. We found that this is one of the major challenges to the establishing of
the Budget, with websites having a vested interest to incentivise, condition or force users to
grant exceptions from the Budget, similar to how websites currently get users to consent to
tracking and disable systems to block websites from showing advertisements.

In section 4.2 and section 4.3, we established that any implementation of the Budget would
likely not be able to differentiate whether a surface is accessed for fingerprinting or other
purposes and any access would therefore necessarily be assumed to be fingerprinting related.
A major question any implementation of the Privacy Budget needs to address is how to

deal with fingerprinting across multiple websites as described in section 4.4. If this problem
remains unsolved for either redirects or IFrames, websites may simply circumvent the Privacy
Budget entirely.
We were able to implement and use our system for the detection of fingerprinting, FPLog,

to gain an insight into how many fingerprintable surfaces websites currently access. However,
we were not able to establish a lower bound for the Privacy Budget as we had hoped. For this,
we would need data on how fingerprinting surfaces are correlated to one another. Such data
is currently not available and both gathering it and combining it with our data on websites’
fingerprinting is left for future work.
Both the surface usage we saw in or data from FPLog and what applications we saw using

these surfaces on the internet lead us to believe that it is entirely feasible to limit access to
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fingerprintable surfaces based on the surfaces’ usage of entropy in the manner proposed by
Google, and that the limitations could be set up in such a way as to make fingerprinting
ineffective for tracking users.
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