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Zusammenfassung

Kamerakalibrierung ist eine wichtige Grundvoraussetzung für viele Computer-
Vision-Algorithmen wie Stereo-Vision und visuelle Odometrie. Das Ziel der
Kamerakalibrierung besteht darin, sowohl die örtliche Lage der Kameras
als auch deren Abbildungsmodell zu bestimmen. Das Abbildungsmodell ei-
ner Kamera beschreibt den Zusammenhang zwischen der 3D-Welt und der
Bildebene.

Aktuell werden häufig einfache globale Kamera-Modelle in einem Kalibrier-
prozess geschätzt, welcher mit vergleichsweise geringem Aufwand und einer
großen Fehlertoleranz durchgeführt werden kann. Um das resultierende Ka-
meramodell zu bewerten, wird in der Regel der Rückprojektionsfehler als
Maß herangezogen. Jedoch können auch einfache Kameramodelle, die das
Abbildungsverhalten von optischen Systemen nicht präzise beschreiben können,
niedrige Rückprojektionsfehler erzielen. Dies führt dazu, dass immer wieder
schlecht kalibrierte Kameramodelle nicht als solche identifiziert werden.

Um dem entgegen zu wirken, wird in dieser Arbeit ein neues kontinuierliches
nicht-zentrales Kameramodell basierend auf B-Splines vorgeschlagen. Dieses
Abbildungsmodell ermöglicht es, verschiedene Objektive und nicht-zentrale
Verschiebungen, die zum Beispiel durch eine Platzierung der Kamera hinter
einer Windschutzscheibe entstehen, akkurat abzubilden. Trotz der allgemeinen
Modellierung kann dieses Kameramodell durch einen einfach zu verwendenden
Schachbrett-Kalibrierprozess geschätzt werden.

Um Kalibrierergebnisse zu bewerten, wird anstelle des mittleren Rückpro-
jektionsfehlers ein Kalibrier-Benchmark vorgeschlagen. Die Grundwahrheit
des Kameramodells wird durch ein diskretes Sichtstrahlen-basiertes Modell
beschrieben. Um dieses Modell zu schätzen, wird ein Kalibrierprozess vorge-
stellt, welches ein aktives Display als Ziel verwendet. Dabei wird eine lokale
Parametrisierung für die Sichtstrahlen vorgestellt und ein Weg aufgezeigt, die
Oberfläche des Displays zusammen mit den intrinsischen Kameraparametern
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Zusammenfassung

zu schätzen. Durch die Schätzung der Oberfläche wird der mittlere Punkt-zu-
Linien-Abstand um einen Faktor von mehr als 20 reduziert. Erst dadurch kann
das so geschätzte Kameramodell als Grundwahrheit dienen.

Das vorgeschlagene Kameramodell und die dazugehörigen Kalibrierprozesse
werden durch eine ausführliche Auswertung in Simulation und in der echten
Welt mithilfe des neuen Kalibrier-Benchmarks bewertet. Es wird gezeigt,
dass selbst in dem vereinfachten Fall einer ebenen Glasscheibe, die vor der
Kamera platziert ist, das vorgeschlagene Modell sowohl einem zentralen
als auch einem nicht-zentralen globalen Kameramodell überlegen ist. Am
Ende wird die Praxistauglichkeit des vorgeschlagenen Modells bewiesen,
indem ein automatisches Fahrzeug kalibriert wird, das mit sechs Kameras
ausgestattet ist, welche in unterschiedliche Richtungen zeigen. Der mittlere
Rückprojektionsfehler verringert sich durch das neue Modell bei allen Kameras
um den Faktor zwei bis drei.

Der Kalibrier-Benchmark ermöglicht es in Zukunft, die Ergebnisse verschie-
dener Kalibrierverfahren miteinander zu vergleichen und die Genauigkeit des
geschätzten Kameramodells mithilfe der Grundwahrheit akkurat zu bestimmen.
Die Verringerung des Kalibrierfehlers durch das neue vorgeschlagene Kamera-
modell hilft die Genauigkeit weiterführender Algorithmen wie Stereo-Vision,
visuelle Odometrie oder 3D-Rekonstruktion zu erhöhen.
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Abstract

Camera calibration is a crucial prerequisite for most computer vision tasks
such as stereo vision and visual odometry. The goal of camera calibration is to
find the transformation between multiple cameras as well as the parameters of
a camera model which describes how the 3D world is projected onto the 2D
image sensor.

Today’s choice of calibration processes often focuses on ease of use, thus, using
simple camera models. Generally after calibration, the performance of these
models is assessed using the RMS reprojection error. However, even simple
camera models which cannot accurately describe the optical systemmay achieve
small RMS reprojection errors, hiding the insufficiency of the estimated model.

To overcome these issues, a novel continuous non-central camera model is
proposed. This camera model is able to cope with various lenses and non-central
distortions induced by additional optical components, such as windshields,
placed in front of the lens. The camera model is based on uniform B-splines
which makes it efficient to compute and very flexible. While being more
powerful than simpler camera models, its parameters can still be estimated
using a fully automated, easy-to-use and robust checkerboard calibration
process.

Instead of using the RMS reprojection error metric for performance assessment,
a calibration benchmark is presented. The ground truth camera model, based
on discrete viewing rays, is generated by an active display calibration process.
We propose a local parametrization of these viewing rays and a way to jointly
estimate the surface of the display and the camera model parameters. Estimating
the display surface reduces the mean ray-point distance by a factor of more than
20, enabling the generation of true ground truth camera models.

The proposed camera model and its calibration processes are extensively
evaluated in simulation and, leveraging the calibration benchmark, the proposed
camera model is evaluated in the real world. The evaluation shows that the
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novel camera model outperforms both a global central and a non-central camera
model even in the simple case of a glass pane placed in front of the lens.
Finally, the practicability of this model is shown by calibrating an experimental
vehicle with a surround-view setup consisting of six cameras, reducing the
RMS reprojection error by a factor of two to three for all cameras.

The calibration benchmark enables researchers to compare calibration algo-
rithms and to assess the quality of camera models accurately using a verified
ground truth. The lowered calibration error of the proposed camera model
helps downstream algorithms such as stereo vision, visual odometry and
3D-reconstruction to improve the overall system performance.
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Notation and Symbols

Acronym

BCM generic B-spline distortion camera model

CMDI camera model difference

DCM discrete camera model

DOF degrees of freedom

EVD eigenvalue decomposition

FOV field of view

GCM generic global camera model

KIT Karlsruhe Institute of Technology

LLS linear least squares

LS least squares

MAE mean absolute error

NLS non-linear least squares

PCA principal component analysis

REH reprojection error histogram

RMS root-mean-square

RMSE root-mean-square error

ROI region of interest

SVD singular-value decomposition
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Notation and Symbols

General Notation

Scalars Regular (greek) lower case a, b, c, α, β
Vectors Bold lower case a, b, c
Matrices Bold upper case A, B, C
Numbers Blackboard upper case N, R, H

Indexing

xi ith element of vector x
Ai j (i, j)th element of A
A = (a1, a2) Matrix A composed of columns a1 and a2

Numbers and Sets

N Natural numbers
R Real numbers
H Quaternion numbers
Pn n-d projective space
Sn n-sphere space

Mathematical Operators

x · y Dot product of x and y
|·| Absolute value
‖·‖ Vector 2-norm
b·c Floor function
∂f
∂x Gradient (Jacobian matrix) of f with respect to x
f(n)(t) nth derivative of f
(·)+ Moore-Penrose inverse (pseudo inverse)
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Notation and Symbols

Coordinate Systems

u = (u, v)> 2D point
p = (px, py, pz)> 3D point
{A} Coordinate system A
pa Point p in coordinate system A
Tba Transformation matrix Tba to transform points from {A}

to {B}

Camera Model

x0 Base point of a line
d Direction vector of a line
P Camera model
P F Forward camera model
P B Backward camera model
P B,X Base point part of backward camera model
P B,D Directional part of backward camera model
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1 Introduction

Cameras are present everywhere in today’s life and are commonly used to take
pictures, stream live videos and enable video chat. Even low-cost cameras
provide good image quality and new cameras with higher resolutions and lower
prices reach the market every year.

In order to increase throughput, safety, reliability and comfort for humans,
cameras used as measurement tools have become increasingly interesting to
automate tedious and monotonic work. Cameras can already be found in various
work settings such as manufacturing lines for product inspection, mills to sort
out bad from good seed, in drones to inspect construction sites, augmented
reality to identify buildings and plants or humanoid robots and self-driving
cars.

Speaking of self-driving cars, due to recent breakthroughs in machine learning
with neural networks, the camera is nowadays a well-established sensor among
range sensors, radars and inertial measurement units.

For a lot of these tasks, the knowledge of solely the camera image, meaning the
intensity value of each camera pixel, is not sufficient. Additionally, the position
and orientation of the camera in relation to other sensors and the information of
how the real world is projected onto the image sensor is required. The goal of
camera calibration is to determine these quantities. The transformation between
cameras is usually described by an affine transformation and the projection is
described by a mathematical model which is called the camera model. The
parameters that are used to describe the transformation are called extrinsic and
those used to describe the camera model are called intrinsic camera parameters.

A camera model is fully defined by using either a forward or a backward model.
Forward models project a 3D point in space into the 2D image space. Backward
models map a 2D image point to a line in 3D which is called a viewing ray.
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1 Introduction

1.1 Problem Statement

Ideally, the camera model would be mathematically described by a set of
discrete viewing rays. The camera calibration process would have a simple
setup and enable a fully automated estimation of the intrinsic and extrinsic
camera parameters in reasonable time. Additionally, the determined parameters
would accurately describe the real projectionmodel of the camera. In the context
of self-driving cars, recording a calibration sequence simply by driving around
in regular traffic and then feeding the recorded sequence into a calibration
algorithm which determines the calibration parameters accurately without
manual intervention would be the ‘holy grail’.

Today most calibration processes are designed with the emphasis that they be
favorable in both setting up and performing the calibration and still deliver
acceptable accuracy. This is achieved by using special 2D targets printed by
widely available printers and hand-held recorded calibration sequences followed
by a fully automated extraction and estimation process where only a few initial
parameters need to be set by the user. Often simple camera models with a
one-digit number of parameters are used and it is assumed that all rays hitting
the image sensor pass through a single point.

The downside of this calibration process is that it is almost impossible to be
certain about the quality of the calibration results. To discern the quality of
a camera calibration, various calibration steps need to be inspected manually
for which expert knowledge is required and still even for experts it can be
hard to assess the quality of the estimated calibration. In reality, a camera
calibration is often performed by non-experts, only simple measures like the
reprojection error are used and a calibration is accepted as suitable if the
root-mean-square (RMS) reprojection error is below a certain threshold.

As a consequence, in downstream computer vision algorithms a suboptimal
camera model is trusted without directly taking any calibration error into
account. This leads to algorithms which work around the calibration error
leading to less-than-ideal performance regarding accuracy or execution time.

In this thesis, we take a step towards the ‘holy grail’ of camera calibration
by introducing a more flexible camera model which can be estimated by an
easy-to-use calibration setup and by providing a calibration benchmark to assess
calibration performance.
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1.2 Contributions

The first major contribution of this thesis is a novel non-central local camera
model that uses aminimal-parametric continuous representation of the backward
camera model based on splines with local support:

• This camera model can handle various types of distortions of different
lens types even if the camera is placed behind a windshield - a common
situation in autonomous driving.

• This camera model can be integrated into an easy-to-use and fully
automated calibration process using checkerboard targets.

• Due to the explicit backward camera model and implicit forward camera
model formulation, we show how the intrinsic camera parameters can be
estimated by using an optimal residual (reprojection error) in a non-linear
least squares (NLS) problem formulation by deriving the Jacobian matrix
of implicit forward camera models.

• We propose a computationally efficient camera model prior based on
the smoothness of splines which increases the stability of the estimation
algorithm.

• The superior performance of the camera model is demonstrated by an
extensive evaluation in simulation, in a calibration benchmark and in
a real-world scenario consisting of multiple cameras in the context of
autonomous driving.

The second major contribution is the proposal of a calibration benchmark:

• We show how to obtain a ground truth camera model. We use independent
viewing rays for each pixel which are estimated by using an active display
calibration process. In this process, the non-planarity of the display
surface is taken into account, which increases the accuracy to a level
which makes it suitable for a ground truth camera model.

• We propose a local line parametrization needed to optimize viewing rays
in a NLS problem.

• We propose a distance measure between two camera models to compare
the ground truth model with the estimated model.
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1.3 Outline

In Chapter 2 we present an overview of related work in the field of camera
calibration.

This is followed by the theoretical basics in Chapter 3 which are the funda-
mentals for the following chapters to draw on. This chapter starts with the
description of splines followed by various sections belonging to the topic of
estimation. We describe and compare different spline types, show how to
formulate and solve estimation problems and present different parametrizations
of optimization variables.

In Chapter 4 different central and non-central camera models are introduced.
We start with global camera models, where a few parameters are sufficient
to describe the full model, followed by a discrete camera model, where the
camera model is described by a set of discrete viewing rays, and finally the
novel B-spline distortion camera model. We discuss how to derive the Jacobian
matrix of an implicit forward camera model function and how a windshield in
front of a camera influences the camera model.

To actually determine the parameters of a cameramodel, two different calibration
processes are presented in Chapter 5. The first one focuses on accuracy using
a display and a three-axis linear positioning system in which a discrete camera
model can be calibrated. This process provides a highly accurate camera model
when the display is modeled as a non-flat surface. The second calibration
process lays its focus on simplicity and flexibility. Here checkerboards are
used as targets. For recording the input sequence the camera can be moved
around freely without measuring the poses. This calibration process is capable
of estimating global camera models as well as the proposed B-spline distortion
model.

In Chapter 6 we discuss methods to assess the performance of camera cali-
brations. We present the reprojection error histogram (REH) and the camera
model difference (CMDI) which is used to quantify the difference between two
camera models.

The proposed novel camera model and its calibration processes are extensively
evaluated in Chapter 7. For both calibration processes introduced in Chapter 5,
the evaluation is first done in simulation. Afterwards, we present a calibration
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benchmark using the triple camera setup for which the ground truth camera
model is generated by the active display camera calibration. This is used
to benchmark a global camera model as well as the proposed local B-spline
distortion camera model using the checkerboard calibration process. At the end
we demonstrate the gain in performance when using the B-spline distortion
model to calibrate our autonomous vehicle with a surround-view camera setup.

We finish the thesis with a conclusion and an outlook in Chapter 8.
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2 Related Work

In this chapter, we present other work related to camera calibration. We limit
the scope to target-based calibration processes in which a complete camera
model is estimated and not only, e.g., distortion parameters. We start with a
brief history followed by the state of the art.

2.1 History

Camera calibration is a fundamental computer vision problem with a long
history. There aremainly two differentmodeling approaches: camera calibration
using physical models and camera calibration using mathematical models. With
physical models we mean a modeling approach which tries to describe the
underlaying projection model of the lens, and with mathematical models we
mean a modeling approach which uses a mathematical function that has no
relationship to, e.g., any lens parameters.

Calibration using Physical Models

Back in 1972, Sobel [Sob70] described how a pinhole camera model without
lens distortions may be calibrated. He used four known 3D triangles on a plane
and showed that the intrinsic camera parameters can be estimated by solving
linear equations.

In 1987, Tsai [Tsa87] showed how to calibrate a pinhole camera model with
distortions but with a known principal point by using known marker positions
on a plane. The measurements for calibration were created by using the
corners of squares positioned on a flat surface. For estimation, he presented a
two-stage approach: First, the 3D orientation and the extrinsic xy coordinates
were estimated. Second, the intrinsic camera parameters and the z position
were determined. This approach was then extended to use multiple views of

7



2 Related Work

the calibration target whose positions were measured by a Klinger vertical
micrometer stage. This was further extended by Lenz et. al. [LT88] to estimate
the principal point.

In 1992, Weng et. al. [WCH92] used a different improved two-stage algorithm.
In the first step, the ideal camera model without distortion parameters and the
extrinsic parameters were estimated in closed form. In the second step, the full
intrinsic camera model with distortions and the extrinsic pose were determined
jointly by minimizing the reprojection error using a non-linear least squares
solver.

Up to this point, the target geometry and the movements of the target or camera
were measured by an external device such as robot arms. In 1999 and 2000,
Sturm et. al. [SM99] and Zhang [Zha99, Zha00] independently presented a
way of estimating the target poses. Sturm used a simplified camera model
and homographies to form a linear equation system and then determined the
intrinsic camera parameters. In contrast, Zhang showed how to estimate the
intrinsic and extrinsic parameters, including distortions, and the target poses by
a non-linear least squares solver minimizing the reprojection error. As targets
he used the corners of black squares on a surface.

Due to its simplicity, the same concept is still used and implemented with all
kinds of modifications such as using different targets up to this day, e.g., in the
popular OpenCV library [Bra00].

Calibration using Mathematical Models

In 1981, Martins et. al. [MBK81] presented one of the first non-central local
camera models. To generate measurements, they used a single circular white
target which was moved by a robot arm in two different calibration planes.
For each position, the image location was estimated. The camera model was
described by a set of lines defined by the hit points of the two calibration planes.
Since sparse measurements were used, different interpolation methods, namely
linear, quadratic and linear spline interpolation, were employed for each plane.
This method is also called the ‘two-planes method’. In 1988, Gremban et.
al. [GTK88] used the two-plane model to determine a complete camera model
and showed how to estimate pinhole camera model parameters based on a set
of lines.

8



2.2 State of the Art

In 1992, Champleboux et. al. [CLSC92] extended the work of Martins by
formalizing the mathematical model by a function f : R2 → R4, (u, v) 7→
(x1, y1, x2, y2) where (u, v) are image coordinates and (x1, y1), (x2, y2) are
positions on two distinct planes. They modeled this function as a bicubic
B-spline and used multiple planes for calibration.

In 2001, Grossberg et. al. [GN01] formalized a camera model in which a
discrete incoming viewing ray is mapped to ‘photo-sensitive elements on the
image detector’ [GN01]. These photo-sensitive elements which they called
‘raxels’ included geometric, radiometric and optical properties. A display
was used for calibration. Different binary-coded images were displayed on an
LCD and images were recorded by a camera at two different locations. The
movement between these two locations was measured manually. In later works,
this camera model was estimated either to cover the whole field of view (FOV),
or without knowing the motions between different views, or without the use of
active targets (see, e.g., [SR04,GN05,RSL05,RW12,SLPS20]).

2.2 State of the Art

In this section, we summarize the state of the art of camera calibration, split up
into four main subsections, namely the camera models, the inversion of camera
models, target surface estimation and calibration performance assessment.

2.2.1 Camera Models

A camera model is fully defined by using either a forward or a backward model.
Forward models project a 3D point in space onto the 2D image space. Backward
models map a 2D image point to a line in 3D which is called a viewing ray (see
Chapter 4).

In literature, a lot of different camera models have been proposed. We
refer to [SRT+11,Han11,PBSG12,ZZH13,Lub15,LRKB19] for an extensive
overview. We split our review into two sections regarding how the viewing ray
directions are described and how the viewing ray base point is modeled.
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Viewing Ray Direction Modeling

The modeling of the viewing ray direction can be physically motivated or simply
a mathematical model. Physically motivated camera models such as global
or catadioptric camera models tend to have a low number of parameters. In
general, they are easy to use, and robust calibration methods exist. In contrast,
mathematical models tend to have more parameters but they are not specific
to a single optical system. We will give an overview of such camera models
(some of these models are visualized in Fig. 2.1):

Perspective Global Camera Models The fundamental model for perspective
lenses is the pinhole camera model. As it is not possible to build a perfect
perspective lens, distortions parameters are added to the pinhole camera model.
A lot of different distortion models have been proposed. A popular choice
consists of even polynomial radial distortions and decentering distortions
which are a type of tangential distortions, e.g., in [Bro66,Tsa87,Zha99] in
forward projection and, e.g., in [WCH92] in backward projection. Instead of
using even polynomial radial distortions, rational polynomials are proposed
in [Fit01,BBV01] in a special case in backward direction and in [MCM04] in
forward direction. For tangential distortions, the decentering and tilt may be
described directly [WSZL08].

Wide-angle Global Camera Models To generalize the pinhole camera model
to a wider FOV and to describe the distortions induced by lenses with larger
FOVs, a function which takes the angle between the optical axis and the
viewing ray as input and outputs the distance to the principal point is introduced.
Four different functions can be identified, namely the stereographic, equidistant
or equiangular, orthogonal, and equisolid projections [Bec25,KB06].

As wide-angle lenses tend to have stronger distortions than perspective lenses,
different radial distortions models have been presented. In [BL93,BL95],
the polynomial fish-eye transform was proposed1. The radial distortions are
modeled by a polynomial series including odd and even terms. In [ZWY11],
an elliptical functionmodel using lifted coordinates was proposed. Polynomial
tangential distortions were proposed in [SA96]. The rational radial polynomial
distortions function of [Fit01,BBV01] was also used for wide-angle lenses.

1 Even though the camera model is called ‘fish-eye transform’, it cannot handle lenses with a
FOV ≥ 180°.
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Figure 2.1: Visualization of different camera models proposed in literature.
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This list contains only a few examples. More distortion models can be found,
e.g., in [HS96,KB00,DF01,BP02].

Catadioptric Camera Models Camera models for catadioptric lenses differ
mainly in which types of mirrors can be modeled, in the projection model, and
in how the intrinsic and extrinsic parameters are estimated. The unified camera
model proposed in [MR07] showed a camera model which can handle different
mirror shapes. The world point is projected onto a unit sphere, transformed
into the camera coordinate system, projected onto a normalized plane and
then projected onto the image plane using a generalized camera projection
matrix. This model was further extended in [KGM16]. Other models like the
sphere camera model [GD00] and the double sphere model [UDC18] were
also proposed. A survey can be found in [PBSG12,ZZH13].

Unifying Global Camera Models There are attempts to describe generic cam-
era models which allow the use of a single mathematical framework for
different lens types. Central catadioptric and fisheye lenses were modeled
within a unified camera model in [YH04,SMS06], a rational function lens
distortion model for general cameras was described in [CF05], a generalized
camera model including fish-eye lenses was proposed in [Gen06] and a
general linear camera which models perspective, orthographic, and many
multi-perspective cameras was presented in [YM04].

Discrete and Local Camera Models Discrete camera models are modeled
with a single ray per pixel. To estimate such a model, at least two 3D
measurements per pixel are needed. This is achieved by using a display
or sparse measurement like checkerboards corners. In the case of active
display camera calibration, either the poses of the display need to be measured
externally [GN01, GN05, HSK16] or the poses are estimated during the
calibration process [BART13]. In case of sparse measurements, there are
two approaches: either the sparse measurements or the discrete rays are
interpolated. In [SR04,RSL05], the measurements were interpolated using
homographies and in [MBK81], using linear, quadratic and spline functions.
Spline functions were also used in [CLSC92]. For interpolating discrete
viewing rays, rational basis splines in Plücker coordinates [MAQ11,MA13] or
B-splines [VT05,SLPS20,2] were proposed. In [RW12], the measurements as
well as the discrete rays were interpolated using B-splines. This camera model
can be further constrained to central camera models to reduce complexity and
increase robustness [DMW10].
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Viewing Ray Base Point Modeling

A camera model is called non-central if there is no single point through which
all viewing rays pass. This means that the base points of all viewing rays are
not the same. Sometimes the term ‘non-single viewpoint’ is used instead of
‘non-central’.

Non-central camera models are far less common than central camera models.
We split the discussion into global, catadioptric, discrete, and local camera
models.

Global Non-central Camera Models In the context of fisheye lenses, Gennery
[Gen06] proposed to use a radially symmetric shift of the base point along
the optical axis. He analysed different fisheye lens designs and modeled the
relationship between the viewing ray angle θ and the displacement s along
the optical axis as s = θ

sin(θ) − 1. This formula is extended by a polynomial
series of even powers to account for further deviations.

Catadioptric Non-central Camera Models Some catadioptric camera models
are by design non-central. E.g., the double sphere model [UDC18] is by
design non-central. The effect of the non-central property can be described
by a caustic. ‘With respect to imaging devices, caustics represent their
loci of viewpoints’ [SGN06]. In [SGN06], the shapes of the caustic for
different catadioptric lenses were analyzed and parametric representations
were derived.

Discrete Camera Models In the general discrete camera model proposed
in [GN01,GN05], the base point is modeled as a point in 3D. This model is
capable of describing all sorts of different optical systems.

Local Camera Models Local camera models interpolate the base point be-
tween a few viewing rays. In case of the general linear camera model [YM04],
these viewing rays are interpolated using affine transformations. Another
methods of interpolation use rational basis splines [MAQ11,MA13] or B-
splines [RW12] in Plücker coordinates. In [SLPS20], the 3D base points are
directly interpolated using uniform B-splines.
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Comparison with the Proposed B-spline Distortion Camera Model

Unfortunately, every single one of these models is either specifically built to
fit a special central or non-central lens or else it is not minimal-parametric,
meaning that the viewing rays are described with more than four parameters.
In this thesis, we propose a continuous minimal-parametric uniform B-spline
camera model which is not lens-specific.

2.2.2 Inversion of Camera Models

Usually either the forward or the backward camera model can be expressed
in closed form. For some camera models, there are methods to calculate
the inverse model efficiently. In [MCM06,MCM04,Hei00,MW04], different
ways of inverting a pinhole camera model with distortions are proposed. For
catadioptric lenses, special non-central forward projection models are proposed
in [ATR10,ATR11] and [GN09,Gon10]. To project a point from 3D onto the
image, the roots of a polynomial with degree between four and twelve need to
be found.

For generic non-central camera models, modeling the backward projection
is usually the only possibility. Therefore, the forward camera model is only
defined implicitly. If the Jacobian matrix of the camera model is needed during
a calibration process numeric differentiation is used (see, e.g., [SLPS20]). This
leads to sometimes unstable optimization algorithms, and numeric differentia-
tion is computationally expensive. To the best of our knowledge, an analytic
expression of the Jacobian matrix of an implicit forward camera model has so
far not been proposed.

2.2.3 Target Surface Estimation

For active display calibration, the assumption of a flat display surface does
not hold true and therefore leads to a less accurate discrete camera model. In
literature, this effect is neglected and often not even recognized. In [BCG+17],
some artifacts in the accumulated point-line distance image were noticed and it
was guessed that they might originate in the non-planarity of the display. But in
the end, the artifacts were not further investigated and the surface of the display
was neither modeled nor estimated.

14



2.2 State of the Art

For checkerboard calibration targets, there is some research on how to deal with
imperfect targets. In, e.g., [SH11,HZA13,Str15], for each 3D checkerboard
corner a 3D offset for each corner was jointly estimated with the extrinsic and
intrinsic camera parameters. In [BNPR19,BNPR20], a stereo camera setup
was calibrated by alternating between the estimation of the intrinsic and the
extrinsic camera parameters using constant corner positions on the one hand
and the estimation of the 3D corner positions without optimizing the camera
positions on the other hand.

In the context of structured-light 3D surface imaging, the calibration is assumed
to be known beforehand and only surfaces are reconstructed [Gen11].

To the best of our knowledge, a continuous display surface jointly estimated
with a discrete camera model has not been proposed before.

2.2.4 Calibration Performance Assessment

The performance of a camera calibration is frequently assessed by the minimum
of the error function. The error metric used to build the error function is
either in image space, then called reprojection error, or in world space, then
called ray-point distance. In addition, two other measures are used, namely the
parameter uncertainty and the performance difference of applications when
using different camera models.

Reprojection error The reprojection error is the difference between the mea-
sured target position in the image and the 3D target position projected onto
the image using the forward camera model. As there are multiple mea-
surements, different statistical approaches are used. The RMS reprojection
error calculated on the calibration set and sometimes also on a test set is the
most used error metric, e.g., in [KB06, SMS06,RW12,BART13,KGM16,
ZSJ+17,UDC18, SLPS20]. To get more insight on the error distributions,
other statistical measures are used. E.g., in [KGM16], the standard deviation
of the reprojection error is calculated, a box-plot is used in [Sch14] and a error
histogram is used in [Str15,BNPR20,2]. In [SLPS20], the distribution of the
reprojection errors at different image locations is inspected and compared
with a Gaussian distribution using the Kullback-Leibler divergence.

15



2 Related Work

Ray-point distance The ray-point distance is the shortest distance between
the viewing ray, calculated using the backward camera model at the 2D image
position of the target position, and the 3D target position. The mean ray-point
distance is used for performance assessment in, e.g., [RW12,MA13,Ros16].

Parameter uncertainty Another way of performance assessment is to deter-
mine the uncertainty of the estimated parameters. In [Zha00], the uncertainty
of the intrinsic camera parameters was determined by comparing the intrinsic
camera model parameters of three calibrations created from three different
input sequences. In [Ros16], the uncertainties of the estimated ray parameters
were presented.

Performance assessment using applications The performance of a camera
calibration may also be assessed by inspecting the performance difference
in applications in which the camera model plays an important role. A 3D
reconstruction of a maize seedling is shown in [ZSJ+17]. A 3D reconstruction
of a Bas-relief and an injection mould for a shoe sole is shown in [BNPR20].
In [SH11], the consistency of the difference between two 3D points is
used. In [SMS06], a 3D reconstruction experiment with a trihedron is used
and in [Sch14] a localization experiment is performed. In [WCH92], the
normalized stereo calibration error is proposed which tries to build an error
metric independent of stereo camera setup design parameters, such as FOV
or base line distance.

To the best of our knowledge, a calibration benchmark in which a generic
camera model is used as ground truth that is then compared with different
camera models has not been proposed before.
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This chapter introduces the theoretical basics used throughout the thesis. The
main tools used are splines and parameter estimation, which are covered
in Sections 3.1 and 3.2. The spline section gives an overview of different
splines and a comparison of the different spline bases. The estimation chapter
briefly discusses linear least squares (LLS) and non-linear least squares (NLS)
problems and then focuses on how parameters like rotations and lines in 3D can
be used in such optimization problems. Also, line fitting problems are shown
where a closed solution exists. Section 3.2 ends by explaining how splines and
spline priors are integrated into a NLS problem.

Some sections only briefly introduce the topic and then refer to other literature
with an in-depth description. The goal is to provide an overview to which we
reference in subsequent chapters.

3.1 Splines

We start with an example to motivate splines before giving a more precise ma-
thematical definition. Suppose given Nc distinct 2D points zi = (zi,x, zi,y)>, i =
1, . . . , Nc , we search a function s(t) which passes through or is close to these
points. A first idea might be a parametric polynomial function of degree Nc − 1

s(t) =
Nc∑
i=1

citi−1, (3.1)

where ci = (ci,x, ci,y)> are the polynomial coefficients. To determine the
polynomial coefficients we state that the function should pass through the given
points. This leads to the constraints

s(i) = zi ∀i. (3.2)
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This is a linear equation system with 2Nc equations and 2Nc unknowns. The
resulting function is of class C∞ as all derivatives exist and are continuous. The
drawback is that for a high number of points the global polynomial function
can become unstable (also called the Runge’s phenomenon).

So instead of using one global polynomial function we could use a piecewise
function

s(t) =


s1(t), t1 ≤ t < t2
s2(t), t2 ≤ t < t3
...

...

sNs (t), tNs ≤ t ≤ tNs+1

, (3.3)

where Ns is the number of spline segments and si(t), i = 1, . . . , Ns, the spline
segment functions.

Using Ns = Nc − 1 segments and a straight line for each segment results in

si(t) = ci,1t + ci,2, (3.4)

which satisfies si(ti) = zi and si(ti+1) = zi+1. Choosing ti = i−1 leads to

si(t) = zi+1(t − i + 1) + zi(i − t). (3.5)

This function is a polygonal chain which does not suffer from becoming unstable
when using a lot of points. The drawback is that at ti it is only continuous but
not continuously differentiable, so this function is of class C0.

We have seen two extreme cases, a global polynomial function of C∞ and a
polygonal chain of C0. Now we will formulate a spline mathematically and
show how we can formulate functions between those two extreme cases.

We define splines as polynomial functions s : RNi → RNo . These functions
all have in common that they are defined by the degree of the polynomial d,
Nc control points pk ∈ R

No and a strictly monotonically increasing vector
t = (t1, t2, . . . , tNs+1) ∈ R

Ns+1, ti < ti+1, ∀i. To formulate the spline function
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Figure 3.1: Visualization of a global and polygonal chain spline. On the left, the basis matrix Bi

and the basis functions bi,k for each segment is visualized. On the right, the resulting
spline using the control points pi is plotted.

for Ni = 1 we use the piecewise defined function s(t) from Eq. (3.3) and define
the segment functions si(t) as

si(t) =
Nc∑
k=1

pk bi,k(t) = P B>i a(t), (3.6)

a(t) =
(
1, t, . . . , td

)>
, (3.7)

P =
(
p1, p2, . . . , pNc

)
, (3.8)

where Bi ∈ R
(d+1)×Nc is called the spline basis. The characteristics of the

spline s(t) are controlled by the three parameters d, Bi and t. In order to
evaluate the spline, we are most interested in its smoothness, its compactness
and its efficiency and numerical stability. We denote the smoothness with the
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differentiable class Ck, k ∈ N0 ∪ {∞}, and we call a spline compact if changing
a single control point pk does not lead to a change of the whole spline. To infer
the different properties of the splines we visualize the basis Bi and the basis
function bi,k .

The visualization of the global interpolating spline and the polygonal chain
using six control points is shown in Fig. 3.1. For the global interpolating spline
there is only one segment and d = 5. The basis functions are shown above
the spline basis. In this example we have six basis functions and one spline
basis B1 ∈ R

6×6. Each column of the spline basis belongs to a control point
and each row to a polynomial coefficient. A zero is indicated by a white square,
whereas a non-zero entry is colored from dark green (smallest value) to yellow
(largest value). As there is a non-zero in every row and column of the matrix,
the spline is not compact. For the polygonal chain we have five segments and
d = 1. Using the same number of control points, the spline basis is Bi ∈ R

2×6.
For the first segment i = 1, the basis matrix B1 only contains non-zero entries
in the first two columns, so the spline value is only dependent on the first two
control points p1 and p2. For the second segment i = 2, the basis matrix B2
only contains non-zero entries for the second and third columns, so this segment
only depends on the control points p2 and p3. This is similar for the other
segments. Therefore, using such a basis results in a compact spline. From the
basis vector plot we see that the resulting spline position is a linear interpolation
between the two depending control points. The spline s(t) for both cases using
six arbitrary positioned control points is plotted on the right of Fig. 3.1.

So far the input dimension of the spline was one. To extend it to Ni = 2, we for
now assume a single segment spline and formulate it as

s0(x, y) =
Nc1∑
i=1

Nc2∑
j=1

b1,i(x)b2, j(y)pi j . (3.9)

The spline function is constructed by two 1D basis functions b1 and b2. The
control points are now located on a 2D grid. Extending the spline for Ni > 2 is
possible but not needed for this work as we are only describing surfaces with
splines.
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Figure 3.2: Visualization of an interpolating polynomial spline of degree three with six control
points. The spline passes through the control points and is not compact, as in general
all columns of the basis matrices Bi are non-zero.

In the following sections, we describe different spline bases and their influences
on the resulting spline for Ni = 1. We always use intervals of the same size for
t:

ti+1 − ti = c > 0, i = 1, . . . , Nc . (3.10)

This simplifies the comparison between the splines. In the last Section 3.1.5
the splines are compared to each other. As we are frequently using splines in
optimization problems, further information on how spline parameters can be
estimated is given in Section 3.2.7.

3.1.1 Interpolating Polynomial Splines

An interpolating polynomial spline

si(t) =
d∑

k=0
ci,k+1tk, (3.11)

uses Ns = Nc−1 spline segments of degree d and is fully defined by the
constraints

s(ti) = zi, i = 1, . . . , Ns, (3.12)

s(n)i (ti+1) = s(n)
i+1(ti+1), i = 2, . . . , Ns−1, n = 0, . . . , d−1. (3.13)

21



3 Theoretical Basics

0

1

i = 1 i = 2 i = 3

B1 B2 B3 z1

z4

Figure 3.3: Visualization of a Hermite spline of degree three. This spline is compact, and every
segment depends only on the neighboring control points and its tangents. Also, all
basis functions have the same shape for each segment. On the right, the control points,
the tangent vector and the spline curve are shown. The tangent vector length is scaled
by 1/3.

Depending on the degree of the spline, additional boundary value conditions
are needed. Typical choices specify the derivative of the spline at its beginning
and end, which can be expressed as

s(n)1 (t1) =
(
x(n)1 , y

(n)
1

)>
, n < d, (3.14)

s(n)Ns
(tNs+1) =

(
x(n)Ns

, y
(n)
Ns

)>
, n < d. (3.15)

This will lead to a linear equation system in ci,k which has a single solution.
The overall spline is of class C(d−1) and passes through the control points. The
resulting spline has global support, meaning that changing a single control
points affects the whole spline curve. An example is visualized in Fig. 3.2. We
selected a degree of three and as boundary condition the second derivative at
the beginning and end of the spline to zero.
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3.1.2 Hermite Splines

For Hermite splines, the first derivative z′i = (x ′i, y′i )> at (xi, yi)> is given in
addition to the measurement points zi = (xi, yi)>. z and z′ are concatenated to
form the control points vector pk like

p2k−1 = zk, (3.16)
p2k = z′k . (3.17)

Hermite splines are formulated in the same way as interpolating polynomial
splines with the exception that the first derivative is also given. The number of
spline segments is Ns =

Nc

2 −1 and the linear equation system is

si(t) =
d∑

k=0
ci,k+1tk, (3.18)

s(ti) = (xi, yi), i = 1, . . . , Ns + 1, (3.19)
s′(ti) =

(
x ′i, y

′
i

)
, i = 1, . . . , Ns + 1, (3.20)

s(n)i (ti+1) = s(n)
i+1(ti+1), i = 2, . . . , Ns, n = 0, . . . , d−2. (3.21)

Depending on the degree, one also needs to specify boundary value conditions.
A typical choice is presented in the interpolating polynomial spline section
in Eq. (3.15). The overall spline is of class C(d−2) resulting directly from
Eq. (3.21). A popular choice is a cubic (d = 3) Hermite spline which is
visualized in Fig. 3.3. This spline does not need any additional boundary value
conditions, it has local support, and the shape of each basis function in each
segment is the same.

3.1.3 Bézier Splines

Bézier splines are based on Bernstein basis polynomials:

bk(t) =

(
d
k

)
(1 − t)(d−k)tk . (3.22)
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Figure 3.4: Visualization of a Bézier spline using a single spline segment. The spline is based on
Bernstein basis polynomials. It is non-compact and approximating as the spline does
not pass through all control points.

In this case, the spline is not formulated by solving a linear equation system.
Instead, the spline basis functions are modeled directly (see Eq. (3.6)). In
general, this leads to an approximating spline which means that the spline
does not pass through all control points. We only show a global spline using
Bernstein basis polynomials since composite Bézier splines with multiple
segments are possible but they are a special case of B-splines discussed in the
next section. A Bézier spline for a single spline segment (Ns = 1) and with a
spline degree of d = Nc − 1 is visualized in Fig. 3.4.

3.1.4 B-splines

B-splines are based on B-spline basis polynomials. One way to define them is
using the Cox-de Boor recursion formula

bi,k(t) = bi,k,d(t), (3.23)

bi,k, j(t) =
t − t̄k

t̄k+j − t̄k
bi,k, j−1(t) +

t̄k+j+1 − t
t̄k+j+1 − t̄k+1

bi,k+1, j−1(t), (3.24)

bi,k,0(t) =

{
1, if t̄k ≤ t < t̄k+1

0, otherwise
. (3.25)

Due to the construction of its basis, a B-spline has local support as bi,k,0 is only
non-zero in [t̄k, t̄k+1]. The number of spline segments is Ns = Nc − d.
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Figure 3.5: Visualization of the clamp and uniform knot vectors.

The vector t̄ ∈ RNc+d+1 is called the knot vector which should not be confused
with the interval vector t. The knot vector must be monotonically increasing
(t̄i ≤ t̄i+1, ∀i). It controls the differentiability class and thus determines how
many control points depend on each segment. We will discuss two commonly
used choices: a clamped knot vector and a uniform knot vector.

A clamped knot vector is defined as

t̄i =


0, i ≤ d + 1
i−1−d
Nc−d

, d + 1 < i ≤ Nc + 1
1, i > Nc + 1

. (3.26)

A uniform B-spline is a B-spline for which the spacing of the knot vector is
uniform. The knot vector is defined as

t̄i =
i − 1 − d
Nc − d

. (3.27)

The knot vectors from Eqs. (3.26) and (3.27) are shown in Fig. 3.5.

The basis and the spline curves for both splines are visualized in Fig. 3.6. The
main difference between the two knot vectors is that the resulting spline curve
of the clamp knot vector starts at the first control point and ends at the last
one, whereas the uniform knot vector does not start or end at any control point.
From a computational point of view, the uniform B-spline is more efficient, as
the basis is the same for each segment and thus can be precomputed. The basis
is only dependent on the spline degree.
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Figure 3.6: Visualization of a clamped and a uniform B-spline. Both have local support. The
clamped B-spline starts at the first control point and ends at the last control point. The
basis functions of the uniform B-spline are the same for each segment.

3.1.5 Spline Comparison

We summarize the different splines in Table 3.1 by denoting the type of the spline,
which is either I for interpolating or A for approximating, the compactness,
denoted with yes if the spline is compact (otherwise no), the number of segments
Ns and the differentiability class Ck .

As we are mainly interested in modeling a continuous function with splines and
optimizing the control points given some measurements, we will introduce esti-
mation algorithms in the next section and then move on to describe which spline
basis is beneficial for the use in such estimation algorithms in Section 3.2.7.

26



3.2 Estimation

Spline Type Compact Ns Ck

Global polynomial spline I no 1 C∞

Interpolating polynomial spline I no Nc − 1 Cd−1

Hermite spline I / A yes Nc

2 − 1 Cd−2

Global Bézier spline A no 1 C∞

B-spline A yes Nc − d Cd−1

Table 3.1: Comparison of different splines. The spline type is denoted as I for interpolating or A
approximating, the compactness is denoted with yes if the spline is compact (otherwise
no), the number of segments Ns and the differentiability class Ck

3.2 Estimation

Estimation is the process of finding an approximation to a set of (noisy)
measurements. One example is the task of finding a line which best fits a set
of given 3D point measurements. To solve such a problem, we first need to
select a parametrization of the quantity to estimate (the line, in our example)
as well as to model a cost or objective function which describes what ‘best
fit’ means (e.g., the sum of distances between each 3D point and the line) and
finally to decide on an optimization algorithm which tries to compute the best
parameters. We always estimate the parameters by minimization

x = arg min
x

fc(x), (3.28)

where x are the parameters to be optimized and fc is the cost or objective
function. This is called a general unconstrained minimization problem.

In this section, we give an introduction to two more specific minimization
problems, namely LLS and NLS, as well as describe how rotations and lines in
3D can be parametrized, how problems like estimating the closest point to a
set of lines are solved and how splines can be embedded in such minimization
problems.

All of these aspects are later used in various chapters for camera calibration
like estimating a camera viewing ray given 3D measurements.
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3.2.1 Linear Least Squares

The linear least squares (LLS) method is a popular way of modeling cost
functions. The cost function has the form

fc(x) = ‖ŷ −Hx‖2. (3.29)

Here ŷ are themeasurements, x are the parameters andH is called the observation
matrix. A closed form solution for the optimal parameters of a LLS can be
derived by calculating the derivative of Eq. (3.29) with respect to x, setting it to
zero and solving the equation for x. This results in

x̂ =
(
H>H

)−1H>ŷ. (3.30)

Numerically, it is often desirable not to compute the inverse explicitly but using
a matrix decomposition like singular-value, QR or cholesky decomposition.
See, e.g., [Bjö96,Bjö15] for more details about LLS.

If the observation matrix is of full rank, the LLS problem has a single solution
which is the global minimum. If x is over-parametrized, the observation matrix
is rank deficient. Such problems can be solved by using a singular-value
decomposition (SVD) or a robustified iterative solver if the problem is large
and sparse [Ng91].

3.2.2 Non-linear Least Squares

The cost function of a non-linear least squares (NLS) problem has the form

fc(x) = ‖f(x)‖2. (3.31)

ANLS problem ismore general than a LLS problemwhichmakes it applicable to
a wider range of real-world problems, but it has the drawback of not guaranteeing
a global optimum. Generally, such problems can only be solved iteratively.
This means that given a starting point x1, the original problem is approximated
and a correction ∆x1 is determined and added to the starting point in order to
get a new starting point x2. The update step is xi+1 = xi + ∆xi . Usually, we
want to decrease the residual in every step, which means ‖f(xi+1)‖

2 < ‖f(xi)‖2,
so that every step will take us a little bit closer to the minimum. We call a step a
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successful step if this criterion is fulfilled, otherwise it is called an unsuccessful
step. A new update step is determined until a termination criterion is fulfilled.
Termination criteria may be based on the step size as well as the cost function
value.

If we approximate the problem by linearizing the cost function and solving the
resulting LLS, this results in the Gauss-Newton method:

∆xi = arg min
∆xi

f(xi) +
∂f
∂x (xi)∆xi

2
. (3.32)

In general, this leads to a lot of unsuccessful steps and thus a divergent algorithm.
For a stable solver, the step size ∆xi needs to be controlled. The algorithms to
control the step size can mainly be divided into two groups: line search and
trust region. For all NLS problems we use a Levenberg-Marquardt algorithm,
implemented in the Google Ceres Solver1, which belongs to the trust region
group. For a more in-depth description, we refer to [NW06].

Over-parametrized problem formulations can be solved without modifications
using a Levenberg-Marquardt algorithm (see [HZ04]), but it is still computa-
tionally and numerically more stable to use a so-called local parametrization.
A local parametrization fl is defined as

xi+1 = fl(xi,∆xi), (3.33)

where x ∈ Rn are the optimization parameters and ∆xi ∈ Rm,m ≤ n is the
controlled update step which needs to be added to the parameters to get the new
parameter values for the next iteration. The concept of local parametrizations
can be applied even if x is not over-parametrized as setting m = n and
fl(xi,∆xi) = xi + ∆xi results in a standard parameter update. One property the
function fl must fulfill is that a step of zero may not alter the parameter vector:

x !
= fl(x, 0), ∀x. (3.34)

1 http://ceres-solver.org/ by S. Agarwal, K. Mierle and Others, last retrieved 2020-09-22
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Using an over-parametrization is beneficial if the minimal parametrization has
singularities or is cumbersome to handle like in the case of rotations or lines.
These two cases are covered in more detail in the next two sections.

3.2.3 Parametrization of Rotations in 3D

There are several ways of representing rotations in 3D. In this section, we
discuss some of these parametrizations and how a rotation can be represented if
used during optimization. We discuss two minimal-parametric representations,
Euler angles and Rodrigues vectors, and two non-minimal parametrizations,
rotation matrices and unit quaternions. A more detailed description may be
found in appendix A6.9 in [HZ04].

Rotation Matrices A matrix R ∈ R3×3 is a rotation matrix if R> = R−1 and
det(R) = 1. Rotating a point p ∈ R3 is simply done by a matrix vector
multiplication p′ = Rp. Even though rotation matrices are efficient for
transformations, they are not really suitable to be used as optimization
parameters due to their high number of parameters and their two constraints
which cannot be easily enforced during optimization. Also, the projection
step from an arbitrary matrix to a rotation matrix is computationally expensive
since it usually involves a SVD or an eigenvalue decomposition (EVD).

Euler Angles Euler angles represent a rotation by three angles α, β, γ. To
rotate a point, the Euler angles are usually converted into a rotation matrix
R = R(α)R(β)R(γ). Euler angles are very intuitive to use but many differ-
ent conventions exist and they generally suffer from gimbal lock or gauge
ambiguity (see [McL00]).

Angle-axis Representation The Rodrigues vector v represents a rotation with
a 3D vector where the rotation angle is defined as θ = ‖v‖ and the normalized
rotation axis is v = v/‖v‖. To convert v to a rotation matrix one can use the
exponential map R = exp(skew(v)). The skew function is defined as

skew(v) =
©«

0 −v3 v2

v3 0 −v1

−v2 v1 0

ª®®¬ . (3.35)
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When used in a NLS problem, special care needs to be taken for zero degree
rotations (v = 0) as their rotation axis is undefined.

Moreover, there is a 2π periodicity as v and v + 2πnv, n ∈ N yields the same
rotation matrix. To avoid this ambiguity we can change the length of the
vector in steps of 2π until ‖v‖ ∈ [0, π):

v∗ = v
(
1 −

2πn∗

‖v‖

)
, (3.36)

n∗ =
⌊
‖v‖ + π

2π

⌋
. (3.37)

Unit Quaternions A unit quaternion q ∈ H is fully described by a four
dimensional vector where ‖q‖ = 1. We only give a short introduction to
quaternions, the interested reader can find more information in, e.g., [Kui99].
Unit quaternions also describe 3D rotations. Compared to Euler angles they
do not suffer from gimbal lock, and compared to rotation matrices their
composition is more efficient and numerically stable. A unit quaternion can
be constructed from a Rodrigues vector as follows (for v , 0):

q =
(

sin(θ)
v cos(θ)

)
. (3.38)

To compose unit quaternions, the quaternion product is needed. Since
rotations have three degrees of freedom (DOF) but unit quaternions have
four parameters, unit quaternions are over-parametrized. We use the local
parametrization from appendix A6.9.2 in [HZ04]. The local parametrization
q∗ = fq(q,∆q) with ∆q ∈ R3 can be defined as

q∗ = ©«
cos

(
‖∆q‖

2

)
∆q si

(
‖∆q‖

2

)ª®¬ ∗ q, (3.39)

where ∗ is the quaternion product.

31



3 Theoretical Basics

Rotation type # params. Local param. Singularities Composable

Rotation matrix 9 no yes yes
Euler angle 3 N/A yes no
Rodrigues vector 3 N/A yes no
Unit Quaternions 4 yes no yes

Table 3.2: Comparison of the different rotation parametrizations.

Summary

In Table 3.2 we give an overview of the different rotation parametrizations.
In this work we will use either Rodrigues vectors or unit quaternions for
parametrization of 3D rotation.

3.2.4 Parametrization of Lines in 3D

A line in three dimensional space can be described by a base point x0 ∈ R
3 and

a direction d ∈ R3 \ {0}. Every point on such a line can be described as

x = x0 + sd, s ∈ R. (3.40)

A line in 3D is parametrized with six parameters but has 4 DOF. Neither
moving the base point in the direction of d nor changing the norm of the
direction vector alter the line. One can add two constraints to eliminate the two
extra DOF: The first constraint fixes the norm of the direction vector to one.
The second selects the base point to be the point on the line with the shortest
distance to the coordinate origin. This can be expressed as

‖d‖ = 1, (3.41)
d · x0 = 0. (3.42)

As we have an over-parametrized line, we need a local parametrization (see
Section 3.2.2). Hence we seek a function fl : R6 × R4 → R6 such that we
can update a line l = (x0, d) with local coordinates ∆y = (∆x0,∆d) with
∆x0,∆d ∈ R2 to l∗ = fl(l,∆y). We split the local parametrization into two
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fd,sh fd,se fd,sf

Figure 3.7: Visualization of three mapping functions from two dimensional space to a three
dimensional sphere. As the mapping is rotational symmetric only one slice is shown.
fd,sh only maps a half sphere, fd,se maps the whole sphere but has singularities, fd,sf
also maps the whole sphere but without singularities. See Eq. (3.44) to Eq. (3.46) for
the mathematical formulation.

parts, one for each constraint, and start with the unit length constraint of d
(Eq. (3.41)). This is exactly the parametrization of a 3D sphere with radius one.
We follow the n-sphere local parametrization formulation in [HZ04] appendix
A6.9.3: The local parametrization fd we seek is

d∗ = fd(d,∆d). (3.43)

The update step is split into two parts d∗ = fd,t(d, fd,s(∆d)), a mapping function
fd,s : R2 → S2 which transforms a cartesian point onto the unit sphere, and a
coordinate transformation fd,t : R3 × S2 → S2. There are several possibilities
for fd,s, three of which are presented here:

fd,sh (∆d) = (∆d, 1)>(∆d, 1)>
, (3.44)

fd,se (∆d) =
(
si(‖∆d‖)∆d
cos(‖∆d‖)

)
, (3.45)

fd,sf (∆d) = 1
4 + ‖∆d‖2

(
4∆d

4 − ∆d ·∆d

)
. (3.46)

These functions are visualized in Fig. 3.7. All of these mappings are continuous.
fd,sh maps only a half-sphere, fd,se maps a full sphere but is not bijective. fd,sf

also maps the whole sphere excluding one pole, and it is bijective. All of these
mappings are well defined at zero and map a zero displacement to ez .
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v

d

ez

Figure 3.8: Visualization of the Householder
transformation. We use it to trans-
form a unit length vector d to ez
and vice versa. The dashed line is
the reflection plane.

fx,d(x0, d∗)
d∗

d
x0

x∗0

Figure 3.9: Correction of the line base point
due to a change of the line direction
fx,d(x0, d∗).

The next step is to design the coordinate transformation function fd,t in such
a way that fd,t(d, fd,s(0))

!
= d, ∀d. The function fd,t must be singularity-free

and needs to map ez to d since fd,s(0) = ez . To define such a coordinate
transformation, we use a Householder transformation (see, e.g., [VG13] for
more information). A Householder transformation describes a reflection on a
plane containing the origin. It is a linear transformation and can be described
by a Householder matrix H. A Householder matrix is only dependent on the
plane normal vector v ∈ R3. We define fh : R3 → R3×3, v 7→ H, as

fh(v) = I − 2
v · vvv>. (3.47)

See Fig. 3.8 for a visualization of the Householder transformation. The
Householder matrix is symmetric (H = H>) and unitary (H> = H−1). As
fd,s(d, 0) = ez , we choose v in such a way that ez is transformed to d in order to
fulfill fd(d, 0) = d. This can be achieved by choosing v as

v = fv(d) =
{

d − ez, d3 ≥ 0
ez − d, otherwise

. (3.48)

The resulting Householder transformation projects the direction vector d to ez ,
which can be written as

ez = fh(fv(d))d. (3.49)
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As fh(fv(d)) is unitary, we define fd,t as

fd,t(d, d∆) = fh(fv(d))d∆ . (3.50)

The combination of fd,t and fd,s results in the final local parametrization of a
unit vector:

d∗ = fd(d,∆d) = fh(fv(d))fd,s(∆d). (3.51)

The next step is to define a local parametrization for the base point. This
parametrization is a function of the line parameters (x0, d) and the updates
(∆x0, ∆d)

x∗0 = fx(x0,∆x0, d,∆d). (3.52)

We will show two different parametrizations and start with the one that fulfills
Eq. (3.42). For modeling, we split that function into two parts, one that copes
with the movement of the base point due to a change in the direction fx,d(x0, d∗)
and the second one that copes with the delta movement ∆x0, which we define
as fx,∆(∆x0, d∗). The final function is the summation of both parts:

fx,a(x0,∆x0, d,∆d) = x0 + fx,d(x0, fd(d,∆d)) + fx,∆(∆x0, fd(d,∆d)). (3.53)

The change of the base point, resulting from a change in the line direction, is
computed by moving the base point along the line (x0, d∗), until it is the point
with the shortest distance to the coordinate origin. This can be achieved by
determining the closest point on a plane with respect to x0, where the plane
passes through the coordinate origin and has a normal vector of d∗ (see Fig. 3.9):

fx,d(x0, d∗) = −(d∗ · x0)d∗. (3.54)

The movement of the base according to ∆x0 is inspired by the local parametriza-
tion of the unit vector. As a tangent plane, we use the plane with the normal
vector d∗. To achieve a continuous and singular free mapping, we use a House-
holder matrix which transforms d∗ to ez . As only movements perpendicular
to d∗ result in a different base point, the base point displacement must be per-
pendicular to ez . This is achieved by appending a zero to ∆x0. Concatenating
these two functions results in

fx,∆(∆x0, d∗) = fh(fv(d∗))
(
∆x0

0

)
. (3.55)
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Direction parametrization Base point parametrization

Number of iterations

Figure 3.10: Box whisker plot of number of iterations when fitting a line through two points for
different line parametrizations. For each combination a box whisker chart of successful
and unsuccessful steps is plotted. According to this experiment, the best option is
fd,se combined with fx,b as this combination has the lowest number of iterations.

As the Householder matrix is an orthogonal matrix, the second constraint
defined in Eq. (3.42) is fulfilled for all ∆x0.

A different version of the base point local parametrization may be found if we
drop Eq. (3.42) and instead define the movement to be perpendicular only to
the original line direction vector d. This results in

fx,b(x0,∆x0, d) = x0 + fh(fv(d))
(
∆x0

0

)
. (3.56)
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none fd,sh fd,se fd,sf

none 262 (134) - - -
fx,a - 726 (6) 21 (0) 738 (12)
fx,b - 79 (0) 21 (0) 220 (0)

Table 3.3: Number of iterations needed for convergence when optimizing 105 lines jointly. For
each line, we generate two point measurements and use the shortest distance between the
line and the measurement as the residual. The number of unsuccessful steps is shown in
braces, and ‘-’ means no convergence after 1000 steps. fd,se with fx,a or fx,b is the best
option.

Compared to Eqs. (3.53) to (3.55), this is a simpler local parametrization of the
base point as it is not dependent on the updated direction d∗.

To compare the different local line parametrizations, we perform two experi-
ments. The first experiment aims to fit a 3D line through two random points.
The initial base point is chosen to be x0 = 0 and the line direction d = ez . The
random points are uniformly sampled from a cube with a side length of 200
centered around zero. We solve the NLS problem for a single line where the
residuals are the distance vectors between the line and the two points. This
experiment is repeated 105 times, recording the number of successful and
unsuccessful iterations needed for convergence. An unsuccessful step is a step
after which the residual is larger than in the previous step. A box whisker plot
of the data is shown in Fig. 3.10. As one can see, the half sphere mapping fd,sh

(Eq. (3.44)) and the full sphere mapping fd,sf (Eq. (3.46)) require significantly
more steps for convergence regardless of the base point local parametrization.

According to this experiment, the best combination is either no local parametriza-
tion or fd,se together with the base point parametrization fx,b, where the second
case has a slightly smaller number of unsuccessful steps.

The second experiment uses the same residuals but optimizes all 105 lines in a
single optimization problem. Again, the number of successful and the number
of unsuccessful iterations are recorded and shown in Table 3.3. The columns of
this table show the different line direction parametrizations and the rows show
the different base point parametrizations. From this experiment fd,se with fx,a
or fx,b is the best option.
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We therefore showed that the number of iterations needed for convergence is
highly dependent on the choice of local parametrization. The best results in
both experiments are achieved by using fd,se together with fx,a or fx,b.

So in this work, we will use fd,se as a line parametrization for the directional
part as it always results in the lowest number of iterations and fx,b for the base
point as it is simpler and thus faster to compute than fx,a.

To summarize, the used local line parametrization is

d∗ = fh(fv(d))
(
si(‖∆d‖)∆d
cos(‖∆d‖)

)
, (3.57)

x∗0 = x0 + fh(fv(d))
(
∆x0

0

)
. (3.58)

In the following two Sections 3.2.5 and 3.2.6, we discuss two specific estimation
problems which can be solved in closed form. We will then finish the estimation
Section 3.2 by demonstrating how spline functions can be integrated into a least
squares (LS) problem (Section 3.2.7).

3.2.5 Estimate Line given 3D Points

In this section we derive how to estimate a line given a set of 3D points. We
model the line as

x = x0 + sd, s ∈ R, (3.59)

where x0 ∈ R
3 is the base point and d ∈ R3 \ {0} the direction vector, and

denote the set of N points as pi ∈ R
3, where i = 1, . . . , N . The line should

have the smallest possible distance to all points, so as the cost function we use
the sum of the shortest distances between the line and the points is used. We
express the cost function as

N∑
i=1
‖er ‖2 (3.60)
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with

er = ∆i −

(
∆i · d

)
d, (3.61)

∆i = pi − x0, (3.62)

d = d
‖d‖ . (3.63)

The best fit base point is the mean of all measurements:

x̂0 =
1
N

N∑
i=1

pi . (3.64)

To calculate the directional part d̂, a principal component analysis (PCA) may
be used. The directional part is the first principal component which means it
has the largest possible variance. To apply the PCA, we need the data matrix
with column-wise zero empirical mean X ∈ RN×3 which in this case is

X =
©«

p1 − x̂0
...

pN − x̂0

ª®®®¬ . (3.65)

Finally, the directional part can either be calculated using an EVD of XTX or
via a SVD of X. For more details about PCA see, e.g., [Shl14].

3.2.6 Estimate Closest Point to a Set of Lines

In this section we seek the closest point to a set of lines. We denote the point as
p and use the sum of squared distances to the N given lines as the cost function.
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Starting from the line in Eq. (3.59) and the point to line distance in Eqs. (3.61)
to (3.63) the following relationship holds:

p − x0,i =
( (

p − x0,i
)
· di

)
di

⇔

(
x0 · di

)
di − x0,i =

(
p · di

)
di − p

⇔

(
x0 · di

)
di − x0,i︸               ︷︷               ︸

xi

=
(
d>i di − I

)
︸       ︷︷       ︸

Hi

p

⇔ xi = Hip. (3.66)

The resulting equation is linear. So this is a LLS problem with three residuals
per line.

3.2.7 Spline Functions in Least Squares Problems

Splines are a flexible way of modeling continuous functions, as the fidelity
by the number of control points and the differentiability class by the spline
degree can both be controlled in an intuitive manner. Once having selected the
spline degree and the number of control points, we are left with the task of
estimating the control point positions. Given some measurements, we estimate
the control points by formulating and than solving a LS problem. To increase
the robustness of the estimation, we would like to also integrate a prior in the
problem formulation. In this section, we assess what the requirements are for a
spline basis so that it can be integrated into a LS problem efficiently and how a
spline prior can be formulated.

Spline Basis

As seen in the spline summary (Section 3.1.5), splines can be either interpolating
or approximating and either compact or non-compact. A non-compact spline
with many control points will result in a huge, dense LS problem which is very
slow to solve. The property of approximating or interpolating is usually not
important when the control points are estimated by solving a minimization
problem.
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In this work, we choose the uniform B-spline basis, as this results in a spline
which is compact and whose differentiability class can be controlled by the
spline degree. Also, the uniform B-spline basis is efficient to compute, as the
spline basis is the same for each segment and only depends on the spline degree
d. Using a uniform B-spline basis we can simplify the piecewise function
definition of Eq. (3.3) for each segment by a single spline function s : R→ RNo

s(t) = Pis(t)B>da(iv(t)), (3.67)

where Bd is the uniform B-spline basis matrix, P the control points matrix and
a(t) the polynomial vector (see Eq. (3.7)). The segment function is : R→ N
and the value function iv : R→ R are defined as

is(t) = bt · (Nc − d)c, (3.68)
iv(t) = t · (Nc − d) − is(t), (3.69)

where Nc is the total number of control points. The control point matrix is
defined as

Pis(t) = (pis(t)+1, pis(t)+2, . . . , pis(t)+d+1). (3.70)

In case of a spline surface, we get s : R2 → RNo :

s(u, v) =
d+1∑
k=1

d+1∑
l=1

bk(u)bl(v)pis(v)+l,is(u)+k, (3.71)

b(t) = B>da(iv(t)). (3.72)

The control points are now laid out on a two dimensional grid. The basis itself
is separable and depends only on one variable.

If No = 1, this can be written in matrix notation without the need for tensors:

s(u, v) = a>(iv(v))BdPc,is(v),is(u)B>da(iv(u)), (3.73)

Pc,i, j =
©«

pi+1, j+1 . . . pi+1, j+d+1
...

. . .
...

pi+d+1, j+1 . . . pi+d+1, j+d+1

ª®®®¬ . (3.74)
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For the problems we are solving, the position (u, v) at which the spline is
evaluated is fixed during optimization, and only the control point positions are
estimated. Given a known position, the spline evaluation during optimization
is reduced to a single matrix vector product. This makes it really efficient in
computing the spline value during optimization.

Smoothness

If one uses splines in a NLS problem, it is often desirable to use a prior. This
usually helps in reducing the number of iterations and reduces the effect of
outliers. We formulate a prior which is dependent only on the control points.
The prior we choose is that we want to have a smooth function. For a spline
s : R→ RNo this can be formulated as

es =
∫ 1

0

s(n)(t)
2

dt. (3.75)

Using es in a NLS problem means minimizing the absolute integral of the nth
derivative.

When minimizing es , s(n)(t) will be zero for all t. Intuitively, the optimization
result for n = 0 is a null spline, for n = 1 a constant spline and for n = 2 a
straight line.

The question which arises is how to integrate such a smoothness term into a
NLS problem. A straightforward way would be to numerically integrate the
function using Gaussian quadrature

es =
∫ 1

0

s(n)(t)
2

dt ≈
∑
i

√wis(n)(ti)
2
, (3.76)

where wi > 0 are the integration weights. But in the case of a 1D and 2D
uniform B-spline the smoothness integral can be calculated in closed form. We
start with the smoothness derivation of a 1D uniform B-spline followed by the
2D uniform B-spline.

For the 1D uniform B-spline smoothness we need to find the relationship

es =
∫ 1

0

s(n)(t)
2

dt ?
= ‖fs(P)‖2F. (3.77)
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3.2 Estimation

Using the Frobenius norm of the matrix makes it possible to integrate it directly
into a LS problem.

Without loss of generality, the following proof is shown for a single spline
segment as every segment is similar for a uniform B-spline. We dropped the
indices and write a(t) instead of a(iv(t)) and to increase readability.∫ 1

0

s(n)(t)
2

dt =
∫ 1

0
s>(n)(t)s(n)(t) dt (3.78)

=

∫ 1

0
a>(n)(t)BdP>PB>da(n)(t) dt (3.79)

= Tr
(
PB>d

∫ 1

0
a(n)(t)a>(n)(t) dt︸                    ︷︷                    ︸

S

BdP>
)

(3.80)

=

PB>dS1/2
2

F
. (3.81)

So this leads to

fS(P) = PBs, (3.82)

Bs = B>d
(∫ 1

0
a(n)(t)a>(n)(t) dt

) 1
2

. (3.83)

We see that Bs only depends on the smoothness derivative n and the spline
degree d. This means that Bs can be precomputed which makes it really efficient
to compute it in a LS problem.

Now we extend the above formulation to a 2D uniform B-spline s : R2 → RNo .
Without loss of generality and similar to the proof of the 1D case, the following
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3 Theoretical Basics

proof is shown for a single spline segment, No = 1, n = 1, Pc = Pc,0,0 and
Z = BdPcB>d :∫ 1

0

∫ 1

0
‖s(u, v)‖2 du dv =

∫ 1

0

∫ 1

0
a>(u)Z>a(v)a>(v)Za(u) du dv (3.84)

=

∫ 1

0
a>(u)Z>

∫ 1

0
a(v)a>(v) dv︸               ︷︷               ︸

S

Za(u) du (3.85)

= Tr
(
Z>SZ

∫ 1

0
a(u)a>(u) du︸               ︷︷               ︸

S

)
(3.86)

= Tr
(
S1/2Z>S1/2S1/2ZS1/2

)
(3.87)

=

S1/2ZS1/2
2

F
(3.88)

= ‖B>s PcBs︸   ︷︷   ︸
fS(Pc)

‖2F . (3.89)

For n = 2, this results in the smoothing thin plate spline [Duc77].

We have not found a way to extend this formula further for higher dimensional
uniform B-splines, but as we will only deal with spline surfaces this is enough
for us.
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4 Camera Models

Camera models describe mappings between a 2D plane and a 3D world. In
computer vision the 2D plane is an image sensor, and the 3D world is the
environment which one wants to observe. Typically, all commonly used cameras
need a lens to map the 3D world to a 2D plane. The lens is the actual device
which is mounted in front of the image sensor.

In this chapter, different mathematical models of lenses are introduced. We
call them camera models. “A camera model is fully defined by either using a
forward or backward model. The forward model is defined as P F : R3 → R2,
which projects a 3D point in space onto the two-dimensional image space. The
backward model is defined as P B : R2 → P3 which maps a two-dimensional
image point to a line in R3 which is called viewing ray.” [2]

In the following sections, the forward model is usually parametrized as p 7→ u
and the backward model as u 7→ (x0, d), where p ∈ R3 is a point in 3D, u ∈ R2

is a point in image space, x0 ∈ R
3 is the base point and d ∈ R3 the direction of

a line in 3D.

Usually, we use the backward model to describe the camera model, as often-
times the forward model cannot be expressed in closed form. We divide the
backward model into the directional part d = P B,D(u) and the base point part
x0 = P B,X(u) (see Fig. 4.1). The simplest choice of P B,X is the null function.
This means that all viewing rays pass through a single point. Such models are
called central or sometimes single view point models. For all other non-trivial
choices of P B,X, the models are called non-central or non-single viewpoint
models. The parameters which define a camera model are called its intrinsic
parameters and are denoted as kI.

There are several ways how a camera model may be mathematically formulated.
Most models can be classified as global, discrete or local camera models. We
will describe a generic global camera model, followed by the discrete camera
model and the novel B-spline distortion camera model belonging to the class of
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p

d

x0

P B,D

P B,X

P F

P B

u
v

x
y Viewing ray

u

Image space World space

Figure 4.1: Visualization of the camera model function. The forward projection P F transforms a
world point p to image space coordinates u, and the backward projection P B transforms
an image point u to a viewing ray which is modeled as a base point x0 and a direction
vector d.

local camera models. We finish the chapter by showing how the Jacobian matrix
of an implicit forward camera model can be derived and how a windshield in
front of a camera influences the viewing rays.

4.1 Global Camera Model

A global camera model is usually defined by only a few parameters, which
affect the mapping globally. This means a change in one parameter varies the
viewing rays of every pixel. These camera models are widely used, as they
are relatively easy to calibrate due to their low number of parameters resulting
from a usually physically motivated modeling.

We will start with the pinhole camera model without or with distortions by
specifying the forward model. Then more general camera models are described
by formulating the backward projection P B separated into the directional part
P B,D and the base point part P B,X.
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xy
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Figure 4.2: The projection model of an ideal pinhole camera model. This model is fully defined by
the focal length f and the principal point c.

4.1.1 Viewing Ray Direction Modeling

Pinhole Camera Model

A pinhole camera model is the classic camera model used to project 3D worlds
to an image. The appearance of such an image is very natural due to the fact
that straight lines in 3D remain straight lines in the image space. The ideal
pinhole camera model can be described by three parameters: the focal length f
and the principal point c = (cu, cv)> ∈ R2 (see Fig. 4.2). The focal length is the
distance between the focal plane and the image plane. It is usually specified
in pixel or metric coordinates. These values can be converted using the pixel
pitch of the image sensor. The focal length is directly related to the FOV. A
larger focal length results in a smaller FOV and vice versa. The principal point
is the orthogonal shift of the image plane coordinate system with respect to the
optical axis.

The backward model can be derived geometrically from Fig. 4.2:

P B,D(u, v) =
©«
u − cu
v − cv

f

ª®®¬ . (4.1)

In the case of an ideal pinhole camera model, the forward model has a closed
form and can be written as

P F(x, y, z) =

(
f x
z + cu

f y
z + cv

)
. (4.2)
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4 Camera Models

In practice, it is not possible to produce a lens which can be described by the
ideal pinhole camera model due to costs, size constraints and manufacturing
accuracy limitations. In order to compensate for these kind of errors, the ideal
camera model is extended by so-called distortion coefficients. Distortions
can be separated into a radial function fR : R → R and a tangential function
fT : R3 → R3. They are embedded into the camera model as

uI =

(
x
z
y
z

)
, (4.3)

uD = uIfR(‖uI‖) + fT(uI), (4.4)
P F(x, y, z) = f uD + c. (4.5)

In literature, a lot of different distortion models are proposed. One of the most
popular choices is [WCH92]

fR(r) = 1 +
Nr∑
i=1

kir2i, (4.6)

fT(u, v) =

(
2p1uv + p2(r2 + 2u2)

p1(r2 + 2v2) + 2p2uv

)
, (4.7)

r = ‖uI‖, (4.8)

with the radial distortion parameters ki and the tangential distortion parameters
p1 and p2. Usually, all odd powers of the radial distortion polynomial are
dropped to preserve circular symmetry.

In general, it is sufficient to choose Nr = 3 which will result in a model with
eight intrinsic parameters:

kI,G = ( f , cu, cv, k1, k2, k3, p1, p2)
>. (4.9)

Generalized Camera Model

The pinhole camera model cannot describe cameras with a FOV ≥ 180°.
For such lenses, a generalized central camera model is usually formulated
in backward direction. This makes it possible to later be generalized into a
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4.1 Global Camera Model

non-central camera model. In the following, we will describe the camera model
proposed in [Str15] that fits the above requirements.

In this model, the direction vector is described using spherical coordinates with
an azimuthal angle θ and the polar angle φ as

d(θ, φ) =
©«
sin(θ)cos(φ)
sin(θ) sin(φ)

cos(θ)

ª®®¬ . (4.10)

Now we seek a function which maps an image point to the azimuthal and the
polar angle. This function is split into two parts, an ideal camera model part
and a distortion part. The distortion part is similar to Eqs. (4.6) to (4.8) of the
pinhole camera model, but it points in the opposite direction:

uI =
1
f
(u − c), (4.11)

uD = uIfR(‖uI‖) + fT(uI). (4.12)

The ideal part is defined as

φ = arctan
(

uD,2

uD,1

)
, (4.13)

θ = f−1
P (‖uD‖), (4.14)

where fP : R→ R, θ 7→ r . The azimuthal angle θ depends on the used lens. In
literature, mainly the following formulations are used for fP [KB06]:

Perspective projection fP(θ) = tan(θ) (4.15)

Stereographic projection fP(θ) = 2 tan
(
θ

2

)
(4.16)

Equidistance projection fP(θ) = θ (4.17)

Equisolid angle projection fP(θ) = 2 sin
(
θ

2

)
(4.18)

Orthogonal projection fP(θ) = sin(θ) (4.19)
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The directional part of the camera model is

P B,D(u) = d(θ, φ), (4.20)

where φ and θ is from Eqs. (4.13) and (4.14) respectively.

This camera model has the same number of intrinsic parameters as the standard
pinhole camera model. When choosing fP as the perspective projection, the
resulting model describes a pinhole camera model with distortions formulated
in backward direction.

4.1.2 Base Point Modeling

In general, the non-central part of the cameramodel is often neglected for pinhole
and even for fisheye lenses and set to zero. But if targets like checkerboards
with little distance to the camera are used for calibration, the central camera
model approximation will induce errors in the directional part of the camera
model.

As described in [SRT+11], there are mainly two kinds of non-central cameras:
In the so-called oblique model, all viewing rays are skew to each other. In the
axial or x-slit model, all rays hit a single or two axis. For fisheye cameras, an
axial model is usually sufficient (see [Gen06]).

In axial models, the base point function P B,X only has a z-component, and for
fisheye lenses, this component is radially symmetric. We formulate this part as

P B,X(u) =
©«

0
0

fz(θ)

ª®®¬ , (4.21)

where θ is from Eq. (4.14).

As shown in [Gen06], the base point of the viewing rays can be described as

fz(θ) =

(
θ

sin(θ)
− 1

) ND∑
i=0

εiθ
2i, (4.22)

where εi, i = 1, . . . , ND, are the intrinsic base point parameters.
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4.2 Discrete Camera Models

We use ND = 2 which adds three additional parameters to the intrinsic
parameters, namely

kI,B = (ε0, ε1, ε2)
>. (4.23)

4.2 Discrete Camera Models

Discrete camera models estimate the mapping between a pixel coordinate and a
viewing ray at discrete points, e.g., at the center of every pixel. This means
we need at least two 3D measurements for each ray. This can be achieved
by interpolating sparse measurements [SR04] or by using a structured light
technique [GN05]. In addition, not only the geometric properties of the ray can
be estimated but also the radiometric properties and the point spread function.
Such a viewing ray is called ‘raxel’ [GN05]. Since this work focuses only on
geometric camera calibration, the intrinsic parameters are

kI,R =
(
x0,1, d1, x0,2, d2, . . .

)
. (4.24)

The viewing ray is denoted by

x = x0,i + sdi, s ∈ R. (4.25)

If a continuous camera model is needed for steps like undistortion, the viewing
rays can be interpolated or fitted to a local camera model (see Section 5.1.4).

4.3 Generic B-spline Distortion Camera Model

In this section, we describe the novel generic B-spline distortion camera model.
The goal of this camera model is to design a model which is more generic
than a global model (Section 4.1) and still continuous which is not the case for
discrete camera models (Section 4.2).

The use of uniform B-splines for this camera model gives us control over the
number of intrinsic parameters determined by the number of control points as
well as the smoothness determined by the spline degree. Uniform B-splines
are efficient to compute due to the uniform basis and the local support. Also,
B-splines can be efficiently integrated into NLS problems (see Section 3.2.7).
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The question is how to formulate a camera model using splines. For the
directional part, it is possible to use a B-spline which maps an image point to
a 3D vector (see [RW12] and [2]). Similarly, for the support point a spline
mapping from an image point to a 3D point can be used (see [RW12,SLPS20]),
with the drawback that the use of an over-parametrized spline function leads to
more parameters (six instead of four for the full model). Also, a prior cannot
easily be integrated.

We propose a B-spline distortion model which is minimally parametric in both
the direction part and the base point part.

4.3.1 Viewing Ray Direction Modeling

Instead of modeling the viewing ray direction directly by a spline, we use the
spline as an image distortion spline which maps an image point to a distorted
image point. The distorted image point is afterwards mapped to a unit sphere
which describes the viewing ray direction.

To map the distorted image point to a unit sphere, we use the ideal part of the
formulation of the generalized global camera model (Eq. (4.13) to Eq. (4.20)).
The choice of the projection model does not need to match the type of the lens
as the distortion function is generic enough to model the remaining deviations.
Since we would like to handle lenses with a FOV > 180°, we use the equidistance
projection function. This leads to

P B,D(u, v) =
©«
sin(r) cos(arctan(c))
sin(r) sin(arctan(c))

cos(r)

ª®®¬ , (4.26)

r = ‖fD(u, v)‖, (4.27)

c =
fD,y(u, v)
fD,x(u, v)

, (4.28)

where fD : R2 → R2 is the generic distortion function. The principal point and
the focal length is no longer modeled explicitly but they are contained in the
generic distortion function.
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4.3 Generic B-spline Distortion Camera Model

This formulation can be simplified by using the relationships

sin(arctan(c)) =
c

√
1 + c2

, (4.29)

cos(arctan(c)) =
1

√
1 + c2

, (4.30)

which results in

P B,D(u, v) =

(
fD(u, v) si(r)

cos(r)

)
, (4.31)

where si(r) = sin(r)
r .

For an ideal pinhole camera model, the distortion function fD is a plane (see
Eq. (4.11)). Therefore, we use a plane as a prior for camera calibration. This
can be efficiently integrated into a NLS as we can directly use the smoothness
of the third spline derivative (see Section 3.2.7).

4.3.2 Base Point Modeling

In literature, the non-central part of a camera model is mainly studied for fisheye
or catadioptric lenses since the modeling of the non-central part is usually
physically motivated. For catadioptric lenses, the mirror surface is parametrized
and estimated, and for fisheye lenses a model of the caustic is used. These kinds
of models cannot describe non-central rays introduced by, e.g., a windshield
which is placed in front of a lens (see Section 4.5). We propose a more general
approach to model the base point of viewing rays using uniform B-splines.

We observe that the base point has only two degrees of freedom as moving the
base point along the line direction results in the same ray. This means only
the displacement in the plane with a normal vector parallel to the viewing ray
direction results in a different ray. Therefore, the description of the non-central
part is formulated in the tangent space of P B,D (see Fig. 4.3). We use the
derivatives of P B,D as a curvilinear basis and describe the base point as

P B,X(u) =
∂P B,D

∂u (u) fX(u), (4.32)
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P B,D

∂
∂u
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∂
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Figure 4.3: Tangential plane for the displacement of the viewing ray. The tangential plane is built
by the Jacobian matrix of P B,D. This is a tangent to the unit sphere as

P B,D
 = 1 and

the basis ( ∂∂u P B,D,
∂
∂v P B,D) is curvilinear.

where the function fX : R2 → R2 is the displacement function. This equation
can be used for any direction model where the derivative of P B,D is smooth.
We will show how the tangent space is computed in the case of the generic
B-spline distortion camera model (Eq. (4.31)).

Using the derivative of the sinc function

∂ si(r)
∂r

=
cos(r) − si(r)

r
(4.33)

and the derivative of the norm function

∂

∂u ‖fD(u)‖ =
1

‖fD(u)‖

(
∂fD
∂u (u)

)>
fD(u), (4.34)

the basis vectors are

∂P B,D

∂u =
©«
si(r) ∂fD

∂u +
cos(r)−si(r)

r2

(
∂fD
∂u

)>
fD f>D

− si(r)f>D
(
∂fD
∂u

) ª®¬ . (4.35)

We dropped the function arguments to increase readability.
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This function is continuous if the derivative of fD is continuous. At r = ‖fD‖ = 0,
the limit exists, and the basis vectors are

∂P B,D

∂u =

(
∂fD
∂u
0>

)
. (4.36)

For fX, we use a uniform B-spline. We choose the prior in such a way that the
camera model behaves locally like a central model. This means neighboring
viewing rays have the same displacement. We achieved this by using the
smoothness of the second spline derivative (see Section 3.2.7).

4.4 Jacobian Matrix of Implicit Forward Camera
Models

Of all proposed non-central camera models, only the backward camera model
can be formulated as an analytic expression. If the forward projection is needed
for camera calibration, we can invert the backward camera model numerically:
Given a world point p ∈ R3, we search for the corresponding image point
u ∈ R2. This can be done by solving an optimization problem where the norm
of the distance vector r(u) between the viewing ray and the world point is
minimized:

r(u) =
(
p − P B,X(u)

)
× P B,D(u). (4.37)

As an iterative solver is used, an initial value of the pixel position is needed.
Since the world point p is generated by a measurement which is usually in
image space, we use the measured image position for initialization. This leads
to an optimization problem which is well defined and can be solved in only a
few steps.

But as we use the forward projection model during optimization, the Jacobian
matrix is needed as well. Trying to use numeric differentiation can fail because
for its calculation, we need to select a step size. If the step size is too small,
numerical issues will falsify the result, and if the step size is too large, the
approximation of the derivative worsens. As an optimization algorithm is used
for inverting the backward camera model, the termination criterion needs to
be adapted to the step size of the finite difference. Propagating the step size to
the backward camera model is often not possible. The only option is to use
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a fixed termination criterion. This leads to inaccurate Jacobian matrices. In
general, using numeric differentiation leads to slower convergence and is very
expensive in terms of computation time.

We therefore propose another approach which directly calculates the derivative
of the forward camera model using the backward model. The derivation is
closely related to the implicit function theorem and the inverse function theorem.
We start with a proposition which is later used to derive the Jacobian matrix of
an implicit forward camera model.

Let f : Rn ×Rm → Rk and g : Rn → Rm be continuous differentiable functions
where Rn × Rm have coordinates (x, y), such that f(x, g(x)) = 0, ∀x ∈ Rn. We
take the point (x∗, y∗) which satisfies g(x∗) = y∗ and thus f(x∗, y∗) = 0 and
calculate the derivative ∂g

∂x at (x∗, y∗) by means of ∂f
∂x as

0 = f(x∗, g(x∗))

⇒ 0 = ∂f(x, g(x)))
∂x

����
x=x∗

⇔ 0 = ∂f
∂x (x

∗, y∗) + ∂f
∂y (x

∗, y∗)∂g
∂x (x

∗)

⇔
∂f
∂y (x

∗, y∗)∂g
∂x (x

∗) = −
∂f
∂x (x

∗, y∗)

⇒
∂g
∂x (x

∗) = −

[
∂f
∂y (x

∗, y∗)
]+
∂f
∂x (x

∗, y∗), (4.38)

where [·]+ denotes the Moore-Penrose inverse. We can think of f being the
inverse function of g in an implicit form.

We will apply this relation to derive the derivative of the forward camera model.
We restate the definition of the forward and backward camera model functions

P F(p, kI) = u, (4.39)

P B(u, kI) =

(
x0

d

)
, (4.40)

p = x0 + sd, (4.41)
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where p is a 3D point, kI are the intrinsic parameters, u is an image point, x0
is the viewing ray base point, d is the viewing ray direction and s ∈ R is the
distance between the base point and the world point. In contrast to the former
definition of the camera model, we now treat the camera model function not
only as a function of u or p but also of the intrinsic camera parameters kI. The
goal is to calculate ∂P F

∂(p,kI)
using P B.

To calculate the derivative at (p∗, k∗I ), we use the point (p∗, k∗I , u∗), where u∗
is determined by numerically inverting P B. Plugging Eqs. (4.40) and (4.41)
together we get

p∗ = P B,X(u∗, k∗I ) + s P B,D(u∗, k∗I ). (4.42)

At the fix point, the distance s between the base point and the world point can
be determined by projecting the vector pointing from x0 to p∗ onto d, which
results in

s =
(
p∗ − P B,X(u∗, k∗I )

)
·P B,D(u∗, k∗I ), (4.43)

assuming
P B,D(u, kI)

 = 1, ∀u, kI.

Combining Eq. (4.42) with Eq. (4.43), we get the implicit function equation

0 = P B,X(u∗, k∗I ) +
[ (

p∗ − P B,X(u∗, k∗I )
)
·P B,D(u∗, k∗I )

]
P B,D(u∗, k∗I ) − p∗︸                                                                                     ︷︷                                                                                     ︸

f(p∗,k∗I ,u∗)

.

(4.44)

As u∗ = P F(p∗, k∗I ) we can apply Eq. (4.38) to calculate the derivatives
∂P F
∂p (p∗, k

∗
I ) and

∂P F
∂kI
(p∗, k∗I ). In the following, we shall drop the star and write

(p, kI, u) instead of (p∗, k∗I , u∗) for the sake of readability.

We start with the derivative with respect to the world point p. We apply
Eq. (4.38) and get

∂P F
∂p (p, kI) = −

[
∂f
∂u (p, kI, u)

]+
∂f
∂p (p, kI, u). (4.45)
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The derivatives are

∂f
∂u =

(
I3 − P B,D P >B,D

) ∂P B,X

∂u +(
P >B,D

(
p − P B,X

)
I3 + P B,D

(
p − P B,X

)>) ∂P B,D

∂u

(4.46)

and
∂f
∂p = P B,D P >B,D − I3. (4.47)

We denote I3 as the 3×3 identity matrix. The function arguments were dropped
to increase readability.

Similarly applying Eq. (4.38) to calculate the derivative of the forward camera
model with respect to the intrinsic parameters kI yields

∂P F
∂kI
(p, kI) = −

[
∂f
∂u (p, kI, u)

]+
∂f
∂kI
(p, kI, u). (4.48)

The derivative ∂f
∂u (p, kI, u) is shown in Eq. (4.46) and ∂f

∂kI
(p, kI, u) is:

∂f
∂kI
=

(
I3 − P B,D P >B,D

) ∂P B,X

∂kI
+(

P >B,D
(
p − P B,X

)
I3 + P B,D

(
p − P B,X

)>) ∂P B,D

∂kI
.

(4.49)

To summarize, Eqs. (4.45) to (4.49) are used to calculate the derivative of the
forward camera model by using the backward camera model. Compared to
numeric differentiation, these formulas are much more efficient to compute and
numerically more stable.

4.5 Influence of Windshields on Camera Models

For autonomous driving, cameras are often placed behind windshields. This
has many advantages like protecting the camera against the environment like
rain or snow. During rain, wipers remove the rain drops which would otherwise
result in distorted images. The drawback is that the windshield itself introduces
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Figure 4.4: Distortion of a ray by a glass pane. We would like to determine two values, the
displacement of the ray on the outgoing surface f∆x0 and the displacement of a ray
traveling through the glass ∆x0,eff. On the right, the displacement in both cases is
plotted for n1 = 1, n2 = 1.5 and dg = 10 mm.

distortions of the viewing rays. In this section, the introduced distortions are
investigated and analyzed in detail.

We shall start with Snell’s law which describes the refraction of a ray when
traveling from one medium to another. In our case the media involved would
be air and glass. Snell’s law is defined as

n1 sin(α1) = n2 sin(α2) , (4.50)

where n1 and n2 are the refractive indices of the first and second medium, and
α1 and α2 are the angles measured from the surface normals to the incoming
and outgoing ray respectively (see Fig. 4.4).

We are interested in two cases: How much is a ray distorted a) at the back
surface of the glass, for instance in the case of a protection glass pane in
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4 Camera Models

front of a monitor used for active pattern calibration (see Section 5.1), and b)
when traveling through a glass pane. In the first case, we are interested in the
displacement f∆x0 of the ray relative to the normal of the glass pane (see upper
left Fig. 4.4). In the second case, we have two interfaces, the first one where
the ray enters the glass and the second one where the ray exits the glass. Since
the enter and exit media are the same, the direction of the ray is not changed,
and only the base point is shifted. Therefore we are interested in the shift of the
base point (see lower Fig. 4.4). We shall start with a derivation of the first case
followed by the second.

In order to derive the geometric relationships, we use th top schematic in
Fig. 4.4. The relationships between the angles α1 and α2 and the displacements
d1 and d2 are

tan(αi) =
di
dg
, i ∈ {1, 2} , (4.51)

where dg denotes the thickness of the glass, d1 the position at which the ray
would hit the bottom surface without a glass and d2 with a glass. In this manner,
we can derive the displacement f∆x0 : R→ R depending on the incident angle
α1:

f∆x0 (α1) = d2 − d1 (4.52)
= dg(tan(α2) − tan(α1)). (4.53)

Now we determine α2 by using Snell’s law (Eq. (4.50)):

α2 = arcsin(nr sin(α1)), (4.54)

nr =
n1
n2
. (4.55)

Combining this with Eq. (4.53) results in

f∆x0 (α1) = dg(tan(arcsin(nr sin(α1))) − tan(α1)) (4.56)

= dg

(
nr sin(α1)√

1 − n2
r sin2(α1)

− tan(α1)

)
. (4.57)

This function is plotted on the right-hand side of Fig. 4.4. The last step is now
to derive the vector-valued displacement given a line direction d where ‖d‖ = 1.
We assume that the direction vector is specified in a coordinate system in which
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4.5 Influence of Windshields on Camera Models

the z axis is normal to the pane surface. In our case nr is smaller than or equal
1, as, e.g., the refractive index of air is ≈ 1 and that of glass lies between 1.4
and 1.9. Using these assumptions we get

∆x0 = f∆x0 (arccos(|dz |))
1√

1 − d2
z

©«
0
0
dz

ª®®¬ . (4.58)

Finally, the displaced point is

x0,D = x0 + ∆x0. (4.59)

In the second case where a ray passes through a glass pane, we have two
transitions: one from air to glass and a second from glass to air. This case is
very similar to the first, but now we are not only interested in the displaced
point but also want to know the resulting ray. As the ray direction is the same
after transitioning through a medium with parallel surface normals, we can
directly use Eq. (4.59) for the base point. This results in the distorted line

x0,D = x0 + ∆x0, (4.60)
dD = d. (4.61)

To measure the effective displacement ∆x0,eff, only the amount perpendicular to
the ray direction is relevant. We compute ∆x0,eff by projecting the displacement
vector onto the plane whose normal vector coincides with the ray direction:

∆x0,eff =
(
I − dd>

)
∆x0. (4.62)

The norm of the effective displacement depending on the incident angle is
shown on the right-hand side of Fig. 4.4.
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5 Camera Calibration

Camera calibration is the process of estimating the parameters of a camera
model as well as the transformation between cameras. The parameters of a
camera model are called the intrinsic parameters and the transformation between
cameras extrinsic parameters.

The calibration process can be divided into two parts, the recording of input
data and the estimation of parameters. Several approaches with varying levels
of complexity of both steps are proposed. Obviously, one would strive for an
easy setup, a simple process for recording the calibration input data and a fully
automatic estimation process which ideally yields a precise result. However, all
of these goals cannot be achieved simultaneously.

In this work, we focus on a calibration process that uses targets with special
markers. This helps to make the process both more robust and precise. As
the markers are specially designed, outliers can be detected and rejected more
easily, and the position of the markers can be determined with an accuracy
up to subpixel scale. The drawback of using special targets is that it requires
them to be built and arranged around the calibration object, which can be
time-consuming and cumbersome.

Since a single image is not sufficient to calibrate the intrinsic and extrinsic
parameters accurately, we record a sequence of images where the target is viewed
under various angles. To estimate the intrinsic and extrinsic parameters, we
need to transform the markers from the target frame to the camera frame. These
transformations must be either estimated jointly with the camera parameters or
else they must be measured by an external sensor. Measuring them increases
the complexity of the calibration setup significantly as an additional sensor is
needed. This sensor then needs to be synchronized with the camera in order to
be capable of accurately measuring the transformations.

For each camera, a camera model needs to be selected (see Chapter 4).
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5 Camera Calibration

There are specific camera models which can be used for only a limited number
of different lenses and more general models which can be used for a wide range
of lenses. More specific camera models, like global camera models, have the
benefit of using a lower number of intrinsic parameters whereas more general
ones, like local camera models, have hundreds or even thousands of parameters
for each camera. To select a more specific camera model, good knowledge of
the target platform is needed. On the other hand, more general camera models
increase the risk of overfitting, and generally more data is needed for calibration,
which leads to a longer calibration process. One of the most general camera
models is a discrete camera model where each pixel is mapped to a different
viewing ray. Such a model can also describe non-continuous camera models
as the viewing rays of each pixel are independent of each other. In order to
calibrate such a model, we need at least two distinct measurements per pixel,
which usually imposes either some interpolation between sparse measured
markers or requires a more complex target which provides dense measurements.

In the following chapters, two different approaches to camera calibration
are introduced: a calibration process that uses a display providing dense
measurements as target (Section 5.1) and a calibration processwith checkerboard
targets which makes for a simpler setup (Section 5.2). The active display camera
calibration process can be used to estimate discrete camera models whereas the
checkerboard camera calibration is suitable for local and global camera models.

5.1 Active Display Camera Calibration

In this section, we present a camera calibration process using a display. The
display allows to generate measurements for every camera pixel in which the
display is visible.

In our case, the display is a computer monitor. A camera is mounted on a
three-axis linear positioning system that points towards a monitor. The camera
is moved using the linear positioning system. For each position, various patterns
are displayed and recorded by the camera. The goal is to get multiple 3D point
measurements for each camera pixel in a global coordinate system. These
measurements are then used to estimate the extrinsic and intrinsic parameters
of the camera model. The coordinate systems used in the following chapters
are the camera coordinate system {C}, which is fixed at a camera, the rig
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5.1 Active Display Camera Calibration

Pose 1

Estimate display surface (sec. 5.1.3)

Estimate viewing rays (Sec. 5.1.4)

Optional: Fit continuous camera model (sec. 5.1.4)

Pose n

Estimate phases (Sec. 5.1.2)
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Figure 5.1: Process overview of the active display camera calibration.
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t = t1 t = t2
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Figure 5.2: Overview of the coordinate systems and the variables used for transforming the display
point measurement ud into the camera coordinate system {C} for a single camera.
For this transformation we need the display surface function fgd

S , the measured time
dependent translation trg(t) and the extrinsic camera pose Tcr.

coordinate system {R}, the global coordinate system {G}, which is fixed in the
world, and the display coordinate system {D} (see Fig. 5.2).

The overview of the calibration process is shown in Fig. 5.1. Since we are using
a display for calibration, the display itself needs to be calibrated (Section 5.1.1).
Secondly, we introduce a method where the 2D position ud on the display
can be estimated for each camera pixel in which it is visible (Section 5.1.2).
For calibration, the display point needs to be mapped to a 3D point in rig
coordinates pr using the mapping function fgd

S (Section 5.1.3). The last step is
to estimate a camera model based on these 3D points and the extrinsic pose
Tcr (Section 5.1.4). In the following sections, all of these steps are explained
in detail.

5.1.1 Display Calibration

Since a display is used for calibration, the display itself needs to be calibrated.
This section is about gray value calibration and not about geometric calibration
(see Section 5.1.3 for display surface estimation). To calibrate the display, a
camera is placed in front of it, and a constant gray value is displayed. We record
one image for every discrete monitor gray value. Example images for different
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5.1 Active Display Camera Calibration

Figure 5.3: Recorded gray images during display calibration.
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Figure 5.4: Display calibration. The response curve of a display is shown before calibration (on the
left) and after calibration (in the middle). On the right, the RMSEs for a normalized
gray value range of each monitor pixel is shown.

gray values are shown in Fig. 5.3. It is clearly visible that the intensity depends
on the viewing angle. The camera gray value decreases for higher viewing
angles. On the left-hand side of Fig. 5.4, the measured gray values are shown
as a function of the displayed gray value at different image locations. We see
that these curves are non-linear as computer monitors usually apply gamma
correction. For the later calibration steps, we need a linear curve. To get a
linear relationship between gc and gd, the displayed gray is corrected by

gdc = (gd)
1
γ , (5.1)

where gd is the input intensity and γ the gamma value used to correct the image.
The gamma value is usually between 1.8 and 2.2. In addition, small display
gray values are clipped by the camera. This means that the intensity of the
lowest gray value needs to be increased.
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To correct the non-linearity, the camera pixel with the highest amplitude is
chosen, and the residual

er =

{
fg(g

d
0 ) − g

c, gd < gd
0

fg(g
d) − gc, otherwise

, (5.2)

fg(g
d) = a(gd − gd

0 )
exp(γe ) + gc

0, (5.3)

is used in a NLS problem. The optimization parameters are the gray value
shift gd

0 , which is used to account for the display gray values below the black
level the camera, the gamma value γe mapped to a positive value using the
exponential function to prevent negative power values, the amplification a, and
the camera gray value offset gc

0 .

To get to a linear curve between the display value and the measured gray value,
the fitted function fg is inverted for gd > gd

0 , which leads to

f−1
g (g

c) =

(
gc − gc

0
a

) 1
exp(γe )

. (5.4)

This function is applied to every display pixel, assuming that the damping of
the display light is not position-dependent and independent of the viewing
direction.

To test our approach, we again record an image for each discrete gray value but
apply f−1

g to each value. The resulting response curves and the RMSEs for a
normalized gray value range are plotted in Fig. 5.4. We see that all response
curves are almost linear and thus the assumption of the independence of the
viewing angle holds true.

5.1.2 Dense Measurement Generation

The process of how dense measurements can be generated using a display is
mainly adapted from [Rap12]. Sinusoidal fringe patterns are displayed where
the phase encodes the position on the display. These patterns have the advantage
of creating highly accurate position estimates even if the display is not in the
focus plane. Placing the display in the focus plane is not always possible as
multiple depths need to be recorded and the estimation accuracy increases for
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Figure 5.5: Visualization of the geometric relations to calculate the gray value for each display
pixel position gd

i,k,α
(ud). The display size in pixels is denoted as (lu, lv ).

close display positions. Another advantage is that the spatial discretization of
the camera pixels does not alter the estimation of the phase shift.

The sinusoidal fringe pattern, which will be shown on the display, is described
as (see also Fig. 5.5)

gd
i,k,α(ud) =

1
2
+

1
2

cos
[
2π

(
k

sα(ud)

l
+

i
N

)]
, (5.5)

sα(ud) =

(
cos(α)
sin(α)

)
· ud, (5.6)

l =
√

l2
u + l2

v, (5.7)

where gd
i,k,α

is the display pixel value, α is the wave angle, k is the wave number,
i ∈ {0, . . . , N − 1} the phase shift index, N the number of phase shifts and lu
and lv are the number of pixels in the horizontal and vertical axis of the display.
Some example patterns are shown in Fig. 5.6. As monitors have a non-linear
response curve, this gray value is transformed with f−1

g (see Section 5.1.1).

Given a set of recorded camera images gc
i for each k and α, where i is the phase

shift index shown on the display, the goal is to estimate a cosine wave for each
pixel. A cosine wave can be described by a phase wφ , offset wc and amplitude
wa for each pixel:

gc
i (uc) = wc(uc) + wa(uc) cos

(
wφ(uc) + 2π

i
N

)
. (5.8)
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Figure 5.6: Sinusoidal fringe patterns which are shown on a display for dense measurement
generation. Shown are the normalized gray values of gd

i,k,α
(ud) (see Eq. (5.5)) for

different phase shift indices i (first row), different wave numbers k (second row) and
different wave angles α (last row).

These parameters can be estimated in closed form using a linear least squares
formulation (see [Rap12])

wa(uc) =
2
N

�����N−1∑
i=0

gc
i (uc) exp

(
−2πi

i
N

)�����, (5.9)

wφ(uc) = arg

[
N−1∑
i=0

gc
i (uc) exp

(
−2πi

i
N

)]
, (5.10)

wc(uc) =
1
N

N−1∑
i=0

gc
i (uc), (5.11)

where i is the imaginary unit of a complex number.
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By comparing Eq. (5.5) with Eq. (5.8), one can determine a relationship between
the estimated phase and the display position sα:

l
2πk

wφ(uc)
!
= sα(ud). (5.12)

To estimate ud for each camera pixel uc, multiple wave angles are needed. Given
multiple wave angles and using Eq. (5.6), a linear least squares formulation is
used to estimate the display position ud:

©«
wφ,α1 (uc)

wφ,α2 (uc)
...

ª®®®¬ =
2πk

l

©«
cos(α1) sin(α1)

cos(α2) sin(α2)
...

ª®®®¬ ud. (5.13)

To increase the accuracy, a high wave number is desirable, but this will make
the phase reconstruction ambiguous. To overcome this problem, a multi-phase
shift approach combined with a Gray code similar to [Rap12] is used.

To detect whether ameasurement is reliable and if the camera pixel is illuminated
by the display, the estimated amplitude wa(uc) is used. This amplitude
can be used for an uncertainty measure as lower amplitudes yield higher
uncertainties (see [Rap12]). Therefore, a threshold is used to remove non-
reliable measurements.

So far we have described the process of measuring the display positions ud

at the corresponding image positions uc. To estimate the camera model, we
need to transform the display positions to the rig frame for which a mapping
from the display surface to the fixed world coordinate system is needed. The
modeling and estimation of this mapping is explained in the next section.

5.1.3 Display Surface Estimation

In this section, the estimation of the mapping between the 2D display coordinate
system {D} and a fixed world coordinate system {G} is described (see Fig. 5.2).
We will specify that mapping using two different assumptions: a flat display
versus a non-flat display.
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When assuming a flat display, the mapping can be divided into two transfor-
mations: one between {D} and {G}, denoted as Tgd, and the other between
the display pixel coordinates ud and the 3D coordinates pd. In general, Tgd

contains a translational and a rotational part. However in our setup, the camera
is only translated. This means, that the translation tgd cannot be distinguished
from the displacement of the viewing rays in the rig coordinate system. So we
can only estimate the rotational part and set the translational part to zero. In
order to estimate the transformation between the display pixel ud and the metric
display coordinate pd, the size of a monitor pixel in meter needs to be known.
Since we assume a flat display, the transformation function fgd

S,F : R2 → R3,
ud 7→ pg, is

fgd
S,F(ud) = Rgd ©«

ud
usu

ud
vsv
0

ª®®¬ , (5.14)

where s = (su, sv)> is the size of a monitor pixel in u- and v-direction in meters
and Rgd is the rotation matrix. In total, there are five parameters to be estimated.

Unfortunately, real displays are not perfectly flat. To model a non-flat display,
we use a uniform B-spline function fgd

S,C : R2 → R3 (see Section 3.1) and
transform ud by

pg = fgd
S,C(ud). (5.15)

The parameters to estimate are the control points of the spline.

The next question is how to estimate the parameters of fgd
S . As neither the

intrinsic nor the extrinsic camera parameters are known, these parameters are
jointly estimated with fgd

S . The measurements are the display points ud, and
we assume that all measurements of the same camera pixel transformed into
the camera coordinate system must be located on the same line. Given a set of
display point measurements ud

a(ti) for one camera pixel a, the points are first
transformed into the camera coordinate system by

pr
a(ti) = trg(ti) + fgd

S (ud
a(ti)), (5.16)

where trg(ti) is the measured rig translation at time ti . Then the distance of the
line expressed as xr

0,a, d
r
a at the camera pixel a is used to calculate the display
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Figure 5.7: Visualization of the residual used for estimating the display surface mapping function
in a 2D simulation. The top image shows the simulation setup. In the middle, the
display point measurement distance to the optimal viewing ray √eR,a is plotted over the
display angle α for different viewing rays βi . For β , αgt, there is a second minimum
at 2β − αgt. The bottom plot shows the final residual with a single minimum at αgt.
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surface parameters kS. This results in a nested optimization problem, which
can be expressed as

arg min
kS

∑
a∈NA

eR,a
2
, (5.17)

eR,a = min
Nt,a∑
i=1

(pr
a(ti) − xr

0,a

)
× dr

a

2
, (5.18)

where NA is the set of all camera pixels and Nt,a is the number of display
measurements at the camera pixel a. The minimization problem in Eq. (5.18)
can be solved by using a SVD (see Section 3.2.5).

To further investigate the properties of this residual, a 2D simulation with a flat
display surface is used (see Fig. 5.7). The translation vector trg and the viewing
rays xr

0, d
r are all in the xy-plane. The values of the second dimension of ud

are all zero, and the rotation can be expressed by a single angle α, which leads
to the display surface function

fgd
S,2D(ud) =

©«
cos(α) 0
sin(α) 0

0 0

ª®®¬ ud. (5.19)

To generate the necessary measurements, we assign a viewing ray with the base
point x0,a = 0, ∀a and the direction d = (cos(a1), sin(a1), 0)>, a = (β, 0)> to
each camera pixel. We set α = αgt and create different ud

a(ti) by varying trg(ti).

Finally, since we have only a single parameter to estimate, we plot the residual
√

eR,a over α for three different angles βi, i ∈ {1, 2, 3} with β1 = αgt and
β1 < β2 < β3 (see middle plot in Fig. 5.7). It can be seen that the residual is
zero at α = αgt. But if β , αgt, we get a second minimum at 2β − αgt. These
two cases are shown in the top image of Fig. 5.7. In the bottom plot, the final
residual is shown. Due to the variation of the second minimum, there is a single
minimum for the final residual. So in order to get a residual with one global
minimum, multiple viewing rays and the display surface function need to be
optimized jointly.

As the residuum is a non-linear function, a NLS solver is used. This formulation
of the residuum has two downsides which are both related to the best line fit in
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the residual calculation where the inner problem (Eq. (5.18)) is solved using a
SVD as mentioned in Section 3.2.5. The first downside is that any NLS solver
needs the derivative of the residuum function. Considering that close to the
optimum a SVD of an almost rank-deficient matrix is needed, an analytical
derivative is non-trivial and numerical differentiation is unstable (see [PL00]).
The second downside is the single residual per viewing. This makes each
residual dependent on a lot of different display positions, and the problem gets
dense even if a compact function like a uniform B-spline is used for fgd

S .

To overcome these downsides, the problem is reformulated by moving the best
line fit estimation to the outer NLS problem. This means that in addition to the
display surface function parameters, the line parameters for each viewing ray
are estimated. The optimization problem can be defined as

arg min
kS,Xr

0,D
r

Nt∑
i=1

∑
a∈Na, i

(pr
a(ti) − xr

0,a

)
× dr

a

2
, (5.20)

where kS are the parameters of the display surface fgd
S and Xr

0, Dr
0 are the

viewing ray parameters for every camera pixel. NA,i denote the set of all camera
pixels containing a measurement at the time point ti . As the viewing rays are
over-parametrized, we use the local line parametrization from Section 3.2.4.

This problem formulation is sparse since each residual can now be split up
into each display point at the expense of having more parameters to estimate.
Also, the local support of the uniform B-spline function of the non-flat display
surface function contributes to the sparsity.

A visualization of the non-flat surface can be found in the evaluation chapter in
Fig. 7.13.

After having estimated the display surface, all measurements can be transformed
into the rig frame. The final step of the active display calibration process is
the estimation of the camera model using these measurements. This will be
explained in the next section.
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5.1.4 Camera Model Estimation

The final step of the active display calibration process is the generation of a
camera model using the estimated display points in the rig frame. Depending on
further applications, either a discrete or a continuous camera model is chosen.
The estimation of both choices will be investigated in the following two sections.

Discrete Camera Model

The discrete camera model consists of one ray per pixel (see Section 4.2).
Such a camera model is very flexible as it can cope with non-continuous and
non-central lenses.

To estimate the rays, a coordinate system needs to be defined. The simplest
case is to omit the camera coordinate system and estimate the rays in the
rig coordinate system. This can be done by transforming the display point
measurements to the rig coordinate system and estimate one ray per pixel
by minimizing the squared distance between the ray and the 3D points (see
Section 3.2.5). The extrinsic camera poses are implicitly captured by the
relation between the viewing rays.

If a camera coordinate system is desired, the coordinate transformation between
the rig frame and the camera frame needs to be defined. The translational part
could be defined as the closest point to all viewing rays for each camera. This
point can be determined by solving a LLS problem (see Section 3.2.6). For the
rotational part of the transformation, there is no obvious choice. One way to
define this part is to use the center pixel in the image aligned with the z axis
and the image u axis aligned with the x axis. The y axis must be perpendicular
to the x and y axes to form an orthogonal basis. Another way is to choose
a global camera model which best models the used lens and to estimate its
parameters by fitting the global camera model to the discrete camera model
(see next section). This has the benefit of transferring the characteristics of
the camera coordinate system of a global camera model, like having an optical
center which is aligned with the z axis, to the discrete model. This can be
important for further algorithms such as image rectification or undistortion, as
sometimes these algorithms rely on such properties.
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Continuous Camera Model

Continuous camera models can be mainly divided into local and global types.
Non-central local camera models like the B-spline distortion camera model
(see Section 4.3) are preferred as they are flexible enough to accurately describe
the discrete camera model. The high number of parameters that local camera
models require can be robustly estimated due to the availability of dense
measurements.

Since camera model functions are non-linear, a NLS problem is formulated
and solved. As a residual, the distance between the viewing rays either to the
display points or to the estimated discrete camera model in the rig frame can
be used. The parameters to estimate are the extrinsic and intrinsic camera
model parameters. We use the local B-spline distortion camera model (see
Section 4.3) wherever a continuous model is needed. Due to the non-linear
problem formulation, an initialization is needed.

For initialization, the lens projection model and rough estimates of the focal
length and the principal point need to be known beforehand. These parameters
can usually be derived from the used camera and the mounted lens. If an
identity transformation for the extrinsic transformation is used to estimate
the non-central distortion B-spline camera model, the NLS solver converges
really slowly. This is why a three-stage approach is used. In the first stage,
the distortion-free central global camera model (see Section 4.1.1) with fixed
intrinsic parameters is fitted. This provides a rough initialization of the extrinsic
camera parameters. In the second stage, a central global generalized camera
model with distortions is used. In the final step, the distortion B-spline camera
model with fixed extrinsic parameters is fitted. The first two stages are fast
to compute due to their low number of parameters. In the first stage, there
is only one transformation with six DOF to estimate. In the second stage,
eight additional intrinsic camera parameters are determined. The last stage
takes longest as the non-central distortion B-spline camera model usually has
hundreds of parameters. But due to the close-to-optimal initialization of the
previous steps, only few iterations are needed for convergence.
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Figure 5.8: Process overview of the checkerboard camera calibration.
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Figure 5.9: Overview of the coordinate system and variables used for transforming the checkerboard
position ubi to the camera coordinate system {Ci}.

5.2 Checkerboard Camera Calibration

In this section, we introduce the checkerboard camera calibration. The goal of
this calibration process is tomake the recording and the cameramodel estimation
simple and fast but still accurate. This is achieved by using independent 2D
checkerboards. Such checkerboard are easy to fabricate as they can be printed
by generally available printers. The image recording is done by freely moving a
camera rig around without the need to measure any pose. A robust and accurate
corner detection together with a joint estimation of the checkerboard poses
provides an accurate estimate of the intrinsic and extrinsic parameters of the
camera model. An overview of the calibration process is visualized in Fig. 5.8.

A lot of different patterns are used in literature, such as checker patterns [Zha00],
circular patterns [MH03], checker boards [LM02], concentric circles [JQ05]
or April tags [RSO13] to only name a few. A comparison of the detection
quality of circular and checkerboard patterns is presented in [MW07]. We use
checkerboards as targets and the checkerboard corner positions as measurements
as they are easy to build and have one of the smallest detection biases under
distortion or when viewed from a flat angle.
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The coordinate systems used in the next sections of this work are the global
coordinate system {G}, the checkerboard coordinate system {B}, the rig
coordinate system {R} and the camera coordinate system {C} (see Fig. 5.9). It
is assumed that both the transformation between the camera and the rig and the
transformation between the global and the checkerboard coordinate system are
time-invariant during calibration. Only the transformation between the global
and the rig coordinate system changes over time.

The checkerboard camera calibration follows the work presented in [8] and
[Str15]: The checkerboard extraction process is described in Sections 5.2.1
to 5.2.3, followed by the final camera model estimation which estimates the
intrinsic and extrinsic camera model parameters given the checkerboard corners
in Section 5.2.4. We give only a brief overview. A more detailed description
can be found in [Str15].

5.2.1 Checkerboard Corner Detection

Checkerboard corner detection is split into two parts: The first step is a
classification problem to find checkerboard corner candidates, followed secondly
by corner refinement to achieve subpixel accuracy.

A sufficiently small region around an ideal checkerboard corner has two
properties which we use for detection: The region is point-symmetric, and
the image gradient vectors align with the tangent to a circle centered at the
checkerboard corner. These two features are calculated for the whole image.
The norm of the feature vector directly correlates with how similar the recorded
corner is to an ideal corner (the smaller the values, the closer). Therefore, we
classify all pixels as checkerboard corners where each component of the feature
vector is smaller than that of an empirically selected threshold. In addition,
we only label pixels as corners if their image gradient orientation feature has a
local minimum.

As a next step, these corner candidates are then refined to achieve subpixel
accuracy. This is done as in [GMCS12]. The image gradient of a neighbor pixel
should be perpendicular to the connection vector between the corner candidate
and this neighbor pixel. This leads to a LLS problem which can be solved
efficiently.
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5.2 Checkerboard Camera Calibration

To increase the overall corner detection performance, we filter out corners
in saturated image regions or in low contrast regions as they tend to be less
accurate. To detect corners of different checkerboard sizes, an image pyramid
is used. To speed up the detection, the corner classification is implemented on
a GPU using CUDA.

5.2.2 Checkerboard Corner Meshing

The goal of corner meshing is to group all corners of a single board together and
then to assign the same local corner ID to each of these corners. The meshing
process is divided into three parts: pairing corners, building checkerboard
patches and creating checkerboards.

Two corners form a pair if they are adjacent along a checkerboard edge. Corners
with no neighbors are filtered out. The corner pairs are then used to form board
patches. A board patch consist of four pairs with each corner always being part
of two pairs. To create a checkerboard, a starting patch is selected randomly,
and a local board coordinate system is attached. Then neighboring patches,
meaning patches that share one corner pair, are added to this checkerboard until
no new neighboring patch is found. Afterwards, a new checkerboard is started
by randomly selected a patch from the remaining ones. This is repeated until
no more patches are available.

5.2.3 Global Checkerboard Extraction

Given checkerboard detections with local corner indices, the goal is now to
assign a checkerboard ID to each corner which is the same for all measurements
on the same checkerboard. Also, we need the 2D global corner index, which is
the global corner position with respect to a fixed coordinate system attached to
that checkerboard.

We achieve this by adding a binary code around the checkerboard (see Fig. 5.10).
This code is made up of hexagons, which reduces the chance of falsely detecting
checkerboard corners on the binary code strips as hexagons corners are not
point-symmetric. Nine hexagons at a time form a code patch which is as big
as one checkerboard tile. The bit pattern of each code patch is random. After
checkerboard extraction, the code around the board is read by extrapolation. As
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Figure 5.10: The checkerboard code around the board. Each hexagon encodes one bit of information.
The hexagons are then distributed around each checkerboard. Nine hexagons at a time
form a code patch (marked in red). All bit patterns of all patches together with their
position and the global board ID are stored in a codebook. The read code patch is
looked up in the codebook and used to extract the global board ID as well as the global
checkerboard corner indices.

a good camera model is needed for extrapolation, we calibrate each camera with
the local boards and local corner indices. The read code patch is then looked up
in a codebook. The codebook stores all known code patches together with their
corresponding positions and global checkerboard IDs. We use multiple code
patches and a voting scheme to determine the best match in the codebook as
there are only 29 = 512 different codes which is not sufficient for many different
or large boards. From the best match, the coordinate mapping is calculated to
transform the local corner indices to the global ones. Also, the global board ID
is assigned to each corner of that board.

5.2.4 Camera Model Estimation

Given the global checkerboard corners, the whole calibration problem is
formulated as a NLS problem by minimizing the reprojection error. The
reprojection error eR,i is defined (see also Fig. 5.9) as

eR,i(tk) = u
i
cl(tk) − P l

F

(
TclrTrg

(tk)Tgb jp
i
b j (tk)

)
, (5.21)

p
i
b j (tk) =

(
u
i
b j (tk)

0

)
. (5.22)

The checkerboard corner pb j is first transformed into the camera coordinate
system and then projected onto the image using the camera forward model
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P F. The reprojection error is the vector between the projected point and the
measured checkerboard corner position uC in the image.

As the camera is moved around, we could estimate one checkerboard pose per
camera image Tclb j (tk). We reduce the number of poses, especially in multi-
cameramulti-checkerboard setups, by taking into account that the transformation
between the cameras and the transformations between the checkerboards do not
change over time. As the camera rig is moved around, we estimate k rig poses
Trg(tk). The coordinate origin of {G} and {R} are arbitrary, so we select {G}
to be equal to the first checkerboard Tgb1 = I and {R} to be equal to the first
camera Tc1r = I.

To summarize, the parameters that need to be optimized are the checkerboard
poses Tgb j , j ≥ 2, the rig poses Trg(tk), k ≥ 1, the extrinsic camera poses
Tclr, l ≥ 2 and the intrinsic camera parameters kI of P l

F of each camera.

These parameters are estimated using a NLS solver with the following problem
formulation

arg min
kI,Tcl r,Trg(tk ),Tgb j

Nt∑
k=1

Ni,k∑
i=1

eR,i(tk)
2
, (5.23)

where Nt is the number of recorded time points and Ni,k is the number of
detected checkerboard corners at time tk .
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6 Calibration Performance
Assessment

Calibration performance assessment answers the question of how good a
calibration is. We propose two calibration performance assessment methods, the
reprojection error histogram (REH) and the camera model difference (CMDI),
which will both be explained in the following two sections.

6.1 Reprojection Error Histogram

The reprojection error is defined as the difference between a 3D point p projected
onto the image plane by using a camera model forward projection function P F
and a measurement û of the same 3D point in image space. In case of camera
calibration with checkerboards, the measurement is a detected corner in the
image space and the 3D point is determined by the transformation between the
checkerboard corner and the camera. The reprojection error is defined as

eR = û − P F(p). (6.1)

Since we are using multiple checkerboard corners, we also have multiple
reprojection errors eR,i. We assume that the detector noise of the measurements
is normally distributed and thus the reprojection errors should as well be
normally distributed. In literature, the RMS reprojection error

eR,RMS =

√√√
1
N

N∑
i=1

eR,i
2
, (6.2)

is often used as a performance measure, but this value is only an indicator
and the absolute value cannot be used to predict absolute error bounds as we
will show later in simulation (see Section 7.4.2). Also, the distribution of the
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Figure 6.1: Example of a REH. As the reprojection error is 2D, the REH is in 3D. On the left-hand
side the 3D REH is shown. On the right-hand side the same histogram is plotted as a
contour plot. The height of the histogram is color-coded. The upper left number in the
contour plot is the RMS reprojection error.

reprojection error is not visible in this value. So instead of using the RMS
reprojection error, we use a 3D histogram of the reprojection error (see Fig. 6.1).
Using this kind of histogram has the benefit of making the reprojection error
distribution visible. To visualize the histogram we can either plot it in 3D or
use a contour plot where the height of the contour plot is color-coded.

6.2 Camera Model Difference

As we would like to compare different calibration processes using different
camera models, we seek a descriptive measure of how similar two camera
models are. Expressing the similarity by a single number would not be
descriptive enough since the location of the difference would be lost. E.g., if
the focal lengths of the camera models are slightly different, their difference
is zero at the principal point and increases towards the border. So instead of
using a single number, we seek a similarity measure function fD which takes
two camera models P A, P B and an image position u. This can be expressed as

eS = fD

(
u,P A,P B

)
. (6.3)

The next important question is which unit to use for the per-pixel measure. The
required quality of a calibration is usually dependent on the application. E.g.,
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for stereo vision, the images are rectified in such a way that the epipolar lines
are horizontal and in the same pixel row. If the matching search direction is
only horizontal, it is important that the calibration error in vertical direction is
less than one pixel. Another possible application would be the estimation of
3D landmarks in different images. If a feature detector is used in image space
and the reprojection error of the landmark is minimized, again, a pixel-based
measure would give an idea about the expected error induced by the camera
calibration. So we use a per-pixel measure where the error unit is pixel.

The basic algorithm for estimating the difference between two camera models
consists of two steps: In the first step, a transformation Tba of one camera
with respect to the other is determined. Due to possible varying scales of
different calibration processes, Tba consist of a rotation, a translation and a
scale. In the second step, the transformation is fixed and the per-pixel difference
is calculated.

For both steps, an optimization problem is solved by projecting 3D points onto
each camera image and then minimizing the distance between both of them. Let
fP : R2 → R3 be a function which takes a pixel position and translates it into a
3D point. The residual for the optimization problem can then be expressed as

eS = P A
F (fP(u)) − P B

F (TbafP(u)). (6.4)

We design fP to be

fP(u) = P A
B,X(u) + s P A

B,D(u) . (6.5)

We select a reference camera, in this case camera A, and use a point on the
viewing ray which belongs to the pixel position for which the residual should
be computed. P A

B,X(u) is the base point on the viewing ray u which is closest to
the camera center and P A

B,D is the viewing ray direction. s ∈ R∪ {∞} describes
the distance between the 3D point and the base point. For central cameras, the
camera center is well defined since P A

B,X(u) = c, c ∈ R3, ∀u. For non-central
cameras, we choose the camera center to be the point which is closest to all
viewing rays using the algorithm described in Section 3.2.6.

The downside of using a reference camera is that in this case the distance
measure is non-symmetric, as the result is different if we swap P A and P B. This
can be circumvented by calculating the error difference twice, first with camera
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A and secondly with camera B as the reference camera, and then calculating
the mean between both results. In practice, the error difference turns out to
be almost the same for both cases. The upside of using only one camera as
reference is that only the non-reference camera needs to be continuous and the
reference camera can be either discrete or continuous. This property is used
to compare discrete camera models with continuous camera models without
fitting a continuous model to the discrete one.

By projecting a 3D point into the image space with P A
B , this will lead to the

original image position u. Plugging Eqs. (6.4) and (6.5) together results in

eS(ua, s) = ua − P B
F

(
Tba

(
P A

B,X(ua) + s P A
B,D(ua)

))
. (6.6)

The distance parameter s can be chosen in two ways: regular points in 3D which
are influenced by the non-central aspect of the camera, and 3D points at infinity.
For regular 3D points we directly use Eq. (6.6). In case of points at infinity, we
need to change the formulation. As for points at infinity the displacement of a
viewing ray vanishes, only its direction needs to be considered. This is done by
searching for the one image point whose viewing ray direction is the same as
the transformed viewing ray of the other camera model:

eS(u,∞) = u − arg min
u∗

P B
B,D(u∗) − LbaP A

B,D(u)
2
. (6.7)

To transform the line direction, we need to use only the linear part of the affine
transformation which we denote as Lba.

With the residual eS, the optimization problem for Tba is formulated as

arg min
Tba

∑
i

bIu/nc∑
j=1

bIv/nc∑
k=1

eS((nj, nk)>, si)
2
, (6.8)

where Iu and Iv are the number of columns and rows of the image respectively
and n controls the pixel step size. For high-resolution cameras, the number of
residuals can become huge, resulting in high computational costs for solving
the optimization problem. But since we assume smooth camera models, it is
not necessary to use every pixel. In this case, we may simply increase the pixel
step size n in order to reduce the number of residuals.
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For our applications like autonomous driving, the non-central part of the camera
model can often be neglected in further applications as the objects of interest
are far away. For this purpose, we use only s = ∞. Since this would lead
to a nested optimization problem (see Eqs. (6.7) and (6.8)), we approximate
the optimization problem by calculating the difference between the direction
vectors directly:

arg min
Lba

bIu/nc∑
j=1

bIv/nc∑
k=1

P B
B,D((nj, nk)>) − LbaP A

B,D((nj, nk)>)
2
. (6.9)

When comparing camera models from different calibration processes, the scale
of the 3D space may be slightly different. As this error might dominate the
CMDI, we will compensate it. Thus, the affine transformation Tba consists of
a translation, a rotation and a scale matrix. The rotation matrix Rba and the
scaling vector sc ∈ R

3 form the linear part of the affine transformation Lba.
The linear part combined with the translational part results in the final affine
transformation:

Lba = Rba diag(sc), (6.10)
Tba = (Lba, tba). (6.11)

To visualize the per-pixel CMDI, we plot the norm of eS at u in the reference
camera and color-code it. In Fig. 6.1, an example of the CMDI is shown. We
use a pinhole camera model for both P A and P B with the same principal point
at the image center but a different focal length. Since the direction of the optical
axis is independent of the focal length, the difference at the principal point is
zero. The difference increases with the distance to the optical axis. For this
synthetic case, the scaling vector is fixed to vector of all ones as otherwise the
difference would be zero.
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Figure 6.2: The CMDI of two pinhole camera models with slightly different focal lengths. Shown
is the color-coded norm projection error ‖eS(u,∞)‖ (see Eq. (6.7)). The image size is
(1500 px, 1000 px) and the principal point is at (750 px, 500 px). The focal length of
the first camera is 1000 px whereas the second focal length is 1010 px.
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In this chapter we evaluate the performance of the generic global camera
model (GCM) and the generic B-spline distortion camera model (BCM) using
a checkerboard calibration process as well as the discrete camera model (DCM)
using an active display calibration process (see Chapter 4 and Chapter 5). Each
camera model is evaluated by comparing it with the ground truth camera model.
To measure the difference between two camera models we use the camera model
difference (CMDI) introduced in Section 6.2.

We first evaluate the performance of the camera models using the triple camera
setup consisting of three cameras where one camera can be placed behind a
glass pane under various angles. This setup is replicated in simulation and
the performance is assessed for all three camera models. In simulation the
environment is well-known. This enables us to see the effect of a single
parameter on the estimated result, e.g., the pose of the glass pane or the
non-planarity of the display. Afterwards, a calibration benchmark is proposed
which uses the DCM with an active display calibration process serving as the
ground truth camera model. This benchmark is used to assess the quality of the
GCM and BCM calibrated with the checkerboard calibration process.

In the last section of this chapter, a multi-camera system for autonomous driving
is calibrated to show the performance benefits of the BCM in a real-world
scenario.

7.1 Evaluated Camera Models

In this section, we describe the camera models used for evaluation, summarized
in Table 7.1. As a baseline, we choose the GCM. This model has a low number
of intrinsic parameters, utilizes the widely used lens distortion model and can
handle various lens types. This model is compared with the proposed BCM.
For the BCM, we use a uniform B-spline of order four and one control point per
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Name Class Type
# intrinsic
parameters

Reference

GCM-C global central 8 sec. 4.1
GCM-NC global non-central 11 sec. 4.1
BCM-C local central bIu/100c · bIv/100c sec. 4.3
BCM-NC local non-central 2 · bIu/100c · bIv/100c sec. 4.3

DCM discrete non-central 4 · Iu · Iv sec. 4.2

Table 7.1: Overview of the camera models used for evaluation. As a baseline, we use the GCM and
compare it with the proposed BCM. Both are used in a central and a non-central version.
The DCM is used as the ground truth camera model for the calibration benchmark.

100 px. The number of control points was determined empirically. Additionally,
a regularization is added to the problem: for the central part the third and
for the non-central part the second order derivative smoothness integral (see
Section 3.2.7). The parameters of the DCM are estimated using the active
display calibration process. This DCM serves as the ground truth camera model
of the calibration benchmark.

In the following sections, we refer to camera model names as listed in Table 7.1.

7.2 Triple Camera Setup

The triple camera setup consists of three grayscale FLIR Blackfly S cameras
(BFS-PGE-50S5M-C) with a resolution of 2448 px × 2048 px. We use a bit
depth of 12 bits for recording. All cameras use the same S-mount lens from
Lensation with a focal length of 4 mm and an aperture of F/1.8 (Lensagon
BM4018S118). Two cameras are mounted on the same horizontal axis and the
third one is placed roughly in the middle (see Fig. 7.1). This setup allows to
mount a glass pane with a thickness of 10 mm in front of the middle camera.
Also, the angle of that pane can be changed. Due to space constraints, the size
of the glass pane is limited and, because of the wide FOV for larger angles of
the glass pane, only some parts of the incoming light rays travel through it. To
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No pane Perpendicular pane Angled pane

Figure 7.1: The triple camera setup consists of three cameras pointing roughly in the same direction.
The first setup (left), no pane, is without a glass pane, the second one (middle),
perpendicular pane, with a glass pane perpendicular to the optical axis and the third
one (right), angled pane, has an angle of about 45° between the optical axis and the
glass pane. The glass pane has a thickness of 10 mm.

circumvent that problem, we limit the FOV of the middle camera by setting a
region of interest (ROI) resulting in a total resolution of 1528 px × 1100 px.

We use three different settings: The first setting, no pane, is without a pane, the
second one, perpendicular pane, is with a pane perpendicular to the optical
axis and the third one, angled pane, has a glass pane where the angle between
the pane and the optical axis is about 45°.

7.3 Triple Camera Datasets

In this section, the recorded datasets with the triple camera setup are described.
We start with the dataset for the active display calibration process (Section 7.3.1)
and then move on to the checkerboard dataset (Section 7.3.2).
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Figure 7.2: The active display calibration setup. We use a milling machine as a linear positioning
system and a 4k monitor to display the sinusoidal fringe patterns. A molleton cover is
used to reduce the influence of extraneous light.

7.3.1 Active Display Dataset

For the active display calibration dataset, we mount the triple camera setup on
the linear positioning system, place a display in front of it and record images
of different sinusoidal fringe patterns. As linear positioning system, we use a
Deckel FP4 milling machine. A Dell UP3216Q monitor with a resolution of
3840 px × 2160 px and a color bit depth of 10 bit serves as display. To reduce
the influence of extraneous light, we cover the milling machine with molleton
(see Fig. 7.2).

For the sinusodial fringe patterns, we use a wave number of 192, eight face shifts,
and eight wave angles equally distributed in the range [0, π/2]. To resolve the
phase reconstruction ambiguity, we use a multi-phase shift approach combined
with a Gray code. We use three face shifts and two wave angles and start with
a wave number of one. The wave number is doubled until the desired wave
number is reached (2nk , nk = 0, . . . , 7). Additionally, we As the gray values are
directly used to estimate the position on the display, it is important to reduce
the noise of the camera image. This is achieved by acquiring the images with
the highest possible bit depth of the camera, in this case 12 bit, as well as by
taking multiple shots and then averaging the recorded images. Some of the
recorded images of a single pose are shown in Fig. 7.3.
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Figure 7.3: Fringe pattern calibration input images of a single display pose. Going from left to
right and top to bottom, the first two images show the Gray code, the next eight images
show the increase of the wave number (1, 2, 4, 8, 16, 32, 64, 128) used to resolve phase
reconstruction ambiguities and the last eight images show the eight different wave
angles used at the desired wave number of 192. For higher wave angles, a magnifier
with a factor of 10 is added. Best viewed digitally with zoom.
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Figure 7.4: The checkerboard targets used for the checkerboard dataset. The truncated pyramid
(left) consists of five checkerboards whereas the big boards setting (right) is built by
three single checkerboards distributed in a room.

To vary the pose of the display, we use the linear positioning system. The
positions are located on an equally spaced 3 × 3 × 4 grid with a cell size of
270 mm × 195 mm × 100 mm.

For each setting, we record 4176 images per camera in total which takes
approximately 1.5 h.

7.3.2 Checkerboard Dataset

For the checkerboard dataset, two different checkerboard configurations are
used (see Fig. 7.4): on the one hand, five checkerboards arranged in a truncated
pyramid and on the other hand, three big boards. The checkerboards of the
truncated pyramid consist of 10×10 full tiles with a tile size of 3.6 cm×3.6 cm.
The three big boards, where one board is farther away, consist of 16× 6 full tiles
with a tile size of 9.6 cm × 9.6 cm. The overall checkerboard size including the
binary code is 1 m × 2 m. To perform global association of checkerboards, a
binary code is arranged around each board (see Section 5.2.1 for more detail).

To record the image sequences, the camera rig is moved by hand. For all
three settings, no pane, perpendicular pane and angled pane, a sequence with
the truncated pyramid is recorded. For the two setups with a glass pane, a
second sequence with the big boards is recorded to make the estimation of the
non-central part of the camera model more robust. To record the sequences,
all cameras are synchronized by an external trigger. Also, the exposure time
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Figure 7.5: For checkerboard calibration, we use two different checkerboard setups. One consists
of a truncated pyramid (left two columns) and the other one consists of three 2 m × 1 m
checkerboards where one board is farther away (right column).
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Setup
# images # checkerboard corners

Truncated
pyramid

Big
boards

Center
camera

Left
camera

Right
camera

No pane 275 - 93315 136221 136080
Perpendicular pane 325 365 179098 258765 264324
Angled pane 250 282 136554 191759 204449

Table 7.2: Number of recorded images and number of checkerboard corners for each setting of the
triple camera setup (see Section 7.2).

of all cameras is fixed and set to the same value. The number of images and
the number of detected checkerboard corners are listed in Table 7.2 and some
recorded images of the dataset and detected corners are shown in Fig. 7.5.

In the following section, we evaluate the estimation accuracy of the camera
models (Section 7.1) in simulation using the triple camera setup (Section 7.2)
by virtually generating the dataset from this section. Afterwards, the real-world
dataset is used to create a calibration benchmark (Section 7.5) followed by an
experimental evaluation of the GCM and BCM calibrated with the checkerboard
calibration process (Section 7.6).

7.4 Simulation

In this section, the active display and checkerboard calibration processes (see
Chapter 5) with different camera models (see Section 7.1) are evaluated in
simulation. The goal is to assess the performance of these methods in a
controlled and noise-free environment.

We create a meaningful simulation by replicating the no pane setting of the
triple camera setup (Section 7.2). We use the same checkerboard targets which
are used to record the dataset (Section 7.3.2). The ground truth camera models
and the poses of the camera rig are taken from an estimate of a real calibration.

The output of the simulation consists of rendered images which are then used
in the calibration process. The rendered images are created by ray casting (see
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Figure 7.6: The simulation is based on ray casting. For each pixel in image space, the corresponding
viewing ray is determined using the camera model. Then the hit point of that ray
with the target is calculated and its brightness is determined. If a glass pane is placed
between the viewing ray base point and the target, the displacement is calculated by
using Snell’s law (see Section 4.5).

Fig. 7.6). Starting from a pixel position in image space, we determine the
viewing ray using the backward camera model. The viewing ray is transformed
into the target coordinate frame and the intersection point with the target is
calculated. The target is modeled as a surface and the 2D coordinate on that
surface is determined. This 2D coordinate is finally used to determine the
brightness of the camera image pixel. To increase simulation accuracy, we use
multiple rays per pixel and average the determined brightness values.

In the same simulator, a glass pane can be placed between the camera and the
target to create the other two settings, perpendicular pane and angled pane. We
assume a flat pane and calculate the distortion of the ray according to Eqs. (4.60)
and (4.61) using the pane normal vector and the ray direction.

The camera lens is modeled only as a geometric mapping between an image
pixel and a viewing ray without considering other effects of a real lens like
vignetting, diffraction at the aperture or depth of field.

We evaluate the performance of the calibration process in simulation, starting
with the simulated active display calibration process where the movement of
the camera is known (Section 7.4.1). Next, the checkerboard calibration is
evaluated using the GCM and BCM in simulation.
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7 Evaluation

7.4.1 Simulated Active Display Camera Calibration

In this section, the DCM, calibrated with the active display calibration (Sec-
tion 5.1), is evaluated in simulation. We use the same 3 × 3 × 4 poses of the
camera rig and the same wave numbers as in the real active display calibration
(Section 7.3.1).

We model the display as an ideal target without any noise and discretization
error, neither in spatial nor in brightness. The DCM is estimated and compared
with the ground truth camera model using the CMDI in two settings: a flat
and non-flat display surface. We will show that the estimated DCM with the
active display calibration process is highly accurate. But as we will further
demonstrate, in case of a non-flat display surface, the simplistic assumption of
a flat display leads to a high inaccuracy of the estimated model.

Flat Display Surface

Using a flat display surface in simulation and a flat display surface function
during estimation, the DCM can be perfectly estimated1 for all settings, no
pane, perpendicular pane or angled pane.

This is because of the way the dense measurements are generated from a display
in front of the camera. Using simulated images without noise results in a perfect
reconstruction of the viewing rays since a single ray per pixel is estimated and
the spatial discretization of the camera does not affect the phase measurement.
This results in a perfect monitor position estimate and thus, as the translations
of the target are also known (not estimated), in a perfect ray estimation. The
viewing rays are perfectly estimated even if a simulated glass pane is placed
in front of the camera as we estimate one ray per pixel and the viewing ray
variation within a single pixel is negligible. This underscores the generality of
the DCM.

1 ‘Perfect’ estimation means errors close to machine precision. That is the reason why we have
not presented the CMDI as they would show a difference of zero for every single pixel.
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Figure 7.7: Simulation result for the active display calibration. This simulation uses a non-planar
display. In the top row, the estimation results are shown assuming a flat surface, in the
bottom row using a B-spline surface. Even though the flat surface assumption shows
a maximum MAE of around 500 µm, the resulting pixel error is more than 1.5 px in
certain areas. Using a B-spline surface shows a perfect fit with the ground truth.

Non-flat Display Surface

In this section, we focus our evaluation on the influence of a non-planar display.
We answer the question of how a non-planar display affects the estimation
errors of the DCM. In simulation, we model the non-flat display surface as
a uniform B-spline. The parameters of the control points are taken from the
real-world data of the calibration benchmark in Section 7.5. We estimate the
camera model in two settings: First, we assume the display to be flat and second,
we use a B-spline with the same number of control points as in simulation to
model the display surface (see Section 5.1.3). For comparison, we plot the
MAE of the ray point distance after calibration and the CMDI with the ground
truth camera model used for simulation (see Section 6.2). The MAE of the ray
point distance is used as a cost function to estimate the DCM. The results are
shown in Fig. 7.7.
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Even though the flat surface assumption shows a maximum MAE of around
500 µm, the resulting maximum CMDI is around 1.5 px. Additionally, there
are jumps in the CMDI. These jumps are located at the border of the display.
This is because different display poses contribute to different viewing rays since
the display is generally not visible in all camera pixels. The model violation
of the display surface then leads to jumps as we are minimizing the shortest
distance between the viewing rays and the measured display point.

The choice of a B-spline surface results in a perfect fit with no difference to
the ground truth camera model. This goes to show, that the chosen residual
described in Section 5.1.3 enables us to correctly estimate the display surface
using a uniform B-Spline.

7.4.2 Simulated Checkerboard Calibration

Our goal is to evaluate the GCM and the BCM using the CMDI in both a central
and a non-central version. When we refer to the central version, we append a
‘-C’, when we refer to the non-central version, we append a ‘-NC’ to GCM or
BCM respectively (see Table 7.1).

For simulation we need various poses (board poses, rig poses and extrinsic
camera poses) and a camera model (see Section 5.2). We use the no pane
setting of the checkerboard calibration dataset (see Section 7.3.2) to extract
these poses after a calibration run. We use this information to render ideal
checkerboard images.

The simulated images are shown in Fig. 7.8. The first column shows some
recorded images of the real recorded sequence, the second one the ideal
simulated images and the third column the detected checkerboards used for
calibration. To generate the perpendicular pane and angled pane settings in
simulation, we place an infinite plane in front of the middle camera at roughly
the same location as in the real experiment.

All three settings are calibrated with the GCM camera model for the left and
right cameras and the four camera models GCM-C, GCM-NC, BCM-C and
BCM-NC for the middle camera. The estimated result is then compared with
the ground truth camera model, using the CMDI to assess the performance.
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7.4 Simulation

Figure 7.8: Checkerboard simulation input and output. The left column shows the recorded camera
image which forms the basis for simulation, the middle shows the corresponding
simulated camera image and the right column shows the detected checkerboard corners.
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7 Evaluation

The evaluation results are shown only for the middle camera as this is the
camera which is most affected by the pane. Despite that, the checkerboard
calibration is performed with all three cameras jointly. This makes the result
more accurate since the checkerboard poses can be estimated more accurately
as multiple cameras at the same rig pose detect the same checkerboard.

We start with the discussion of the evaluation results of the GCM followed by
those of the BCM.

Global Camera Model

The calibration results of the GCM are depicted in Fig. 7.9. Regarding the no
pane setting, we expect an error close to zero as the simulated images were
generated using a GCM without noise. The only remaining errors come from
the spatial discretization of the camera image which result in some noise of the
detected checkerboard corners. But, as can be seen in the reprojection error
histogram (REH), that noise is very small and normally distributed with zero
mean. The REH is point-symmetric with its maximum at zero. The same holds
for the GCM-NC because the non-central model transitions into a central model
when all non-central intrinsic parameters are set to zero. Not only is the RMS
reprojection error very small but the CMDI is also almost zero. This can be
seen in the CMDI plot as the difference is almost zero everywhere, meaning
that the calibration algorithm converges to the correct minimum.

For the perpendicular pane setting, the RMS reprojection error for the central
model increases slightly whereas for the non-central case it stays unchanged.
As the viewing rays are displaced parallel when traveling through the glass pane,
the camera model is no longer central. The displacement is dependent on the
incident angle (see Fig. 4.4). Since the incident angle is nearly point-symmetric
with respect to the optical axis, the chosen non-central camera model is a good
fit. The CMDI shows almost no difference in the non-central case whereas the
central model shows a significant difference. The difference is greater than 1 px
at the image border even though the RMS reprojection error is 0.13 px. The
RMS reprojection error is still small because the poses of the checkerboards
and the camera rigs are optimized together with the camera model. If the model
cannot cope with, e.g., non-central viewing rays, then the error may be partly
compensated by changing the poses of the rig and the checkerboards.

104



7.4 Simulation

Se
tti
ng

G
CM

-C
G
CM

-N
C

0.
06

px
−

0.
5

0
0.

5

−
0.

50

0.
5

0.
06

px
−

0.
5

0
0.

5

−
0.

50

0.
5

00.
2

0.
4

0.
6

0.
8

1

px

0.
13

px
−

0.
5

0
0.

5

−
0.

50

0.
5

0.
06

px
−

0.
5

0
0.

5

−
0.

50

0.
5

0.
90

px
−

0.
5

0
0.

5

−
0.

50

0.
5

0.
89

px
−

0.
5

0
0.

5

−
0.

50

0.
5

Fi
gu

re
7.
9:

Ev
al
ua
tio

n
re
su
lts

of
th
e
G
CM

in
sim

ul
at
io
n.

Fo
rt
he

no
pa
ne

se
tti
ng
,t
he

es
tim

at
e
is
pe
rfe

ct
.F

or
th
e
pe
rp
en
di
cu
la
rp

an
e
se
tti
ng
,t
he

G
C
M
-C

sh
ow

ss
ig
ni
fic
an
te
rr
or
se

sp
ec
ia
lly

at
th
e
im

ag
e
bo
rd
er

w
he
re
as

th
e
G
C
M
-N

C
is
sti
ll
an

al
m
os
tp

er
fe
ct
fit
.F

or
th
e
an
gl
ed

pa
ne

se
tti
ng

,b
ot
h
ca
m
er
a
m
od

el
sa

re
fa
ra
w
ay

fro
m

th
e
gr
ou
nd

tru
th

m
od
el
.

105



7 Evaluation

The fact that the REH is still normally distributed makes the detection of
modeling errors difficult. When the ground truth camera model is not known,
it is hard to tell whether the increased error results from a higher checkerboard
corner detector noise or from the wrong choice of camera model.

In the angled pane setting, both the central and the non-central camera model
fail. The RMS reprojection error is significantly increased and the REH is not
normally distributed. Even though the RMS reprojection error is almost the
same for both models, the CMDI is slightly smaller for the non-central camera
model.

Generic B-spline Distortion Camera Model

Now we move no to discuss the estimation results of the BCM-C and the
BCM-NC.

The results of the BCM-C are comparable with those of the GCM-C. In the
no pane setting, the RMS reprojection error is small and the CMDI between
the ground truth camera model and the estimated one is close to zero. This
shows that the BCM is capable of modeling a global camera model since a
global model is used to simulate the rendered images. In the perpendicular
pane setting, the RMS reprojection error increases slightly whereas the CMDI
increases a lot. Considering the results of the angled pane setting, the RMS
reprojection error conveys the impression that the BCM-C is superior to the
GCM-C. However, the CMDIs between the camera models and the ground
truth model show that the opposite is true. The higher number of parameters of
the BCM-C combined with the simultaneous estimation of the poses leads to
smaller reprojection errors but the estimated model is still worse.

For the BCM-NC, the reprojection errors are very small in all three settings
and the CMDI to the ground truth model is almost zero. This means the
optimization algorithm always converges to the correct global minimum and
the non-central part induced by the glass pane can be modeled with a uniform
B-spline.

We further compare the GCM-NC and the BCM-NC for the perpendicular
pane setting in more detail by magnifying the CMDIs (see Fig. 7.11). Using
the GCM-NC leads to a smaller and more homogeneous error compared to
the BCM-NC. The BCM-NC also performs worse at the image borders. This
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Figure 7.11: CMDI between the estimated GCM-NC (left image) / BCM-NC (right image) and the
ground truth model in a more detailed view of the perpendicular pane setting.

is because B-splines have local support and the number of measurements
decreases with the distance to the image borders.

Summary

The BCM-NC can handle all three settings, no pane, perpendicular pane and
angled pane, with high accuracy. But due to the higher number of parameters
compared to the GCM, more calibration images are needed. So it is advisable
to choose the camera model with the least parameters which is sufficient for the
given camera setup.

7.5 Calibration Benchmark

In order to evaluate different camera models in the real world, we propose a
checkerboard camera calibration benchmark. For the benchmark, three things
are needed: a checkerboard calibration dataset, the ground truth camera model
and a measure to compare the ground truth camera model with the results of
the checkerboard calibration.

For comparing camera models, we use the checkerboard calibration dataset
described in Section 7.3.2 and the CMDI described in Section 6.2. In this
section, we focus on how to generate the ground truth camera model.
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Setting Mean ray point distance Validation REH

0

2

4

6

8

10

12

14

16

µm

0.14

px −0.4 0 0.4
−0.4

0

0.4

0.15

px −0.4 0 0.4
−0.4

0

0.4

0.17

px −0.4 0 0.4
−0.4

0

0.4

Figure 7.12: Visualization of the results of the active display calibration for the three different
settings. The mean ray point distance in µm is shown in the middle column. As
one viewing ray per pixel is estimated, the glass pane can be modeled perfectly. The
validation checkerboard REHs are plotted on the right. They are normally distributed
with an almost zero mean and a small RMS reprojection error. This proves the high
accuracy of the estimated DCM using the active display calibration model. So it can
be used as a ground truth camera model in the calibration benchmark.

The goal is to use a method which is more accurate than the checkerboard
calibration and has fewer model assumptions. We achieve this by using the
active display calibration (see Section 5.1) with the DCM. We have shown in
simulation that this method is capable of estimating the camera model with
very high accuracy (see Section 7.4.1). This is achieved by using the DCM and
measuring the movement of the display with a linear positioning system. This
enables us to estimate the display surface in order to increase the accuracy of
the active display calibration to a level which makes it suitable for a ground
truth calibration method.
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7 Evaluation

The cost of using this method is its long measurement time and its reduced
flexibility as the camera rig needs to be mounted on the linear positioning
system.

For calibration, we use the dataset from Section 7.3.1. The DCM and the
display surface are estimated jointly. The display surface is modeled as a
uniform B-spline of order four with 14 × 7 control points.

To validate the resulting DCM, we use the recorded checkerboard calibration
sequence (see Section 7.3.2), fix the camera model, estimate the checkerboard
and rig poses and plot the REH. We expect the resulting REH to be normally
distributed with a small RMS reprojection error.

As we need a continuous camera model for the checkerboard calibration, we fit
the non-central generic B-spline distortion camera model (see Section 4.3) of
order four and with 30 × 20 control points to the discrete viewing rays. The
high number of control points is chosen in order to keep the fitting error almost
zero. The results are shown in Fig. 7.12.

The mean ray point distance plot looks quite similar for all three settings,
no pane, perpendicular pane and angled pane. The mean ray point distance
is very small with a maximum value of about 17 µm. This shows that the
DCM can be estimated correctly with the active display calibration process.
A closer look does reveal some jumps in the error. We think that these come
from the measured translation of the milling machine as the error is in the
micrometer range. The validation REH is normally distributed with a small
standard deviation and almost zero mean. The RMS reprojection error ranges
from 0.14 to 0.17. This shows that the DCM we obtained from the active
display calibration is suitable to be used as ground truth.

We further analyse the influence of the non-planar display surface. The estimated
display surface is shown in Fig. 7.13. The distance between the highest and the
lowest point is 1.9 mm for a display size of roughly 70 cm× 39 cm. The highest
point is in the middle of the display which is reasonable as the display is placed
horizontally in the milling machine and the stand is mounted in the middle of
the display. To see the effect of the display surface model, we estimate the DCM
using a flat display and validate that model with the checkerboard sequence.
These results are compared with the non-flat display results (see Fig. 7.14).
The maximum error of the mean ray point distance increases from 17 µm
to 400 µm. Also, the validation REH shows a significantly higher standard
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Figure 7.13: Visualization of the display surface, on the left in 3D and on the right as a contour
plot. The distance between the highest and the lowest point is 1.9 mm for a display
size of 70 cm × 39 cm.

deviation emphasizing the necessity of a non-planar display model for a highly
accurate estimate of the DCM.

To sum up, we choose the active display calibration and estimate the display
surface using a uniform B-spline to get a camera model which is able to serve as
ground truth. The camera model is validated with the checkerboard calibration
sequence. In the next section, we will use this benchmark to evaluate different
camera models using the checkerboard calibration process.

7.6 Experimental Evaluation

In this section, the GCM and the BCM, estimated with the checkerboard
calibration process, are evaluated in real world. We use two different camera
setups: The first one uses the triple camera setup and the calibration benchmark
to evaluate the performance (Section 7.6.1). The second one shows the
performance benefits of the BCM over the GCM when calibrating the cameras
of our experimental vehicle (Section 7.6.2).

7.6.1 Triple Camera Setup

To assess the accuracy of the GCM and the BCM calibrated with the checker-
board calibration process, we use the checkerboard calibration benchmark
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Figure 7.14: Comparison of the estimated DCM assuming a flat display (top row) and a non-planar
display (bottom row) using the angled pane setting. On the left, the mean ray point
distance is plotted and on the right the validation REH is plotted. The introduced
errors when using a planar display surface are so huge that this model would not be
accurate enough to serve as ground truth.

described in Section 7.5 and all three settings, no pane, perpendicular pane
and angled pane.

To determine the camera model parameters, we jointly estimate the checker-
board poses, the rig poses, the extrinsic camera poses and the intrinsic camera
parameters of each camera. Even though all benchmark sequences are synchro-
nized by an external trigger, we did notice a significant increase in the RMS
reprojection error and a bigger CMDI, independent of the camera model, if
we estimate one rig pose for all cameras per recorded image and one extrinsic
camera pose per camera. Both errors are reduced significantly if we estimate
one rig pose per camera image. We think that these observed differences result
from different trigger delays arising from different processing times in each
camera.
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We start with the discussion of the evaluation results of the GCM followed by
those of the BCM.

Global Camera Model

The calibration results of the GCM-C and the GCM-NC are as follows (see
Fig. 7.15): We see a similar pattern as in simulation for the no pane and
perpendicular pane settings. Without a glass pane, the central and non-central
models are almost equal in performance. Only at the borders of the image,
the performance of the non-central model is slightly better as the lens itself is
probably non-central due to the large FOV. For the perpendicular pane setting,
the central model performs considerably worse while the non-central model
still performs well. As in simulation, the REH of the central camera model
is normally distributed. Thus, without a ground truth, it is hard to assess the
performance of a calibration using only the RMS reprojection error.

In the third angled pane setting, both the GCM-C and the GCM-NC perform
badly. The RMS reprojection error is significantly higher and the CMDI shows
larger errors with an irregular pattern. The errors aren’t as large as in simulation
though (see Fig. 7.9) which probably comes from the fact that we additionally
use the big checkerboards.

Generic B-spline Distortion Camera Model

Now, we discuss the results of the BCM-C and the BCM-NC (Fig. 7.16). The
BCM-C shows a similar behavior as in simulation. In the no pane setting,
the RMS reprojection error and the CMDI show only small deviations. In the
perpendicular pane setting, the REH shows a normally distributed reprojection
error and the CMDI shows a point-symmetric error around the optical axis.
This is in good accordance with the simulation results (see Fig. 7.10). In the
angled pane setting, the RMS reprojection error is smaller compared to the
GCM but the CMDI shows larger errors. This comes from the fact that the
flexibility of the BCM-C allows to estimate the poses wrongly in favour of a
smaller reprojection error.

The BCM-NC performs equally well in all settings. As already shown in
simulation, this camera model can cope with all kinds of distortions induced by
the glass pane. However, due to the higher number of parameters, the accuracy
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7 Evaluation

of the estimated BCM-NC is not quite as good as for the GCM-NC in the simple
setting. This results in less accurate intrinsic camera parameters compared to
the GCM when using the same number of checkerboard corners.

In the following section, we show the benefits of using the BCM-NC in a
real-world calibration scenario.

7.6.2 Experimental Vehicle Calibration

In this section, a real-world camera calibration is performed using our experi-
mental car. We demonstrate that the checkerboard calibration process scales to
a real-world setup and analyze the effect of choosing proper camera models. We
use six cameras in total: one color camera and a stereo pair pointing forward,
one camera each to the left and to the right side and one to the rear. All cameras
have a resolution ranging from 2.8 Mpx to 7.2 Mpx and a FOV of at least 110°.
The used cameras and attached lenses are depicted in Fig. 7.17.

We use two different checkerboard targets for calibration: The first setup uses
five boards arranged in a truncated pyramid (see Fig. 7.4) and the second board
setup uses four 1 m × 2 m boards placed around the experimental car. We use
the image sequence of both setups to jointly optimize the board, frame and rig
poses and the camera model parameters.

The cameras pointing forward are mounted behind the windshield, the one
pointing backwards behind the rear window and the cameras to the side are
mounted uncovered. We compare two different settings: In the first setting, we
choose GCM-NC (see Section 7.1) for all six cameras. In the second setting,
we switch the four camera models for those cameras that are mounted behind a
window to BCM-NC. The REHs are shown in Fig. 7.18. As can be seen, the
reprojection errors are significantly smaller when using BCM-NC instead of
GCM-NC. This is also true for the cameras not mounted behind a window even
though the same camera models are used. The GCM-NC cannot cope with
the distortions from a window. As all poses and the camera model parameters
are estimated jointly, the modeling error results in wrongly estimated poses.
This also affects the camera models not behind a window resulting in higher
reprojection errors for all cameras.
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Camera
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Figure 7.18: Example images for all cameras and REHs for two different settings. GCM-NC is
boxed in red and BCM-NC is boxed in green. In the first setting, we use the GCM-NC
only. In the second setting, BCM-NC is used for all cameras behind a window. The
second setting outperforms the first one reducing the RMS reprojection error by a
factor of two to three for all cameras.
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7.7 Conclusion

7.7 Conclusion

As seen in the real-world experiment as well as in simulation, the BCM-NC
can handle various lens distortions and non-central optical systems resulting
from a glass pane in front of the camera and the BCM-NC can be accurately
estimated using a checkerboard calibration process. The experimental vehicle
calibration demonstrates a real-world application that hugely benefits from
using the BCM-NC over GCM-NC for cameras behind a window. But one need
to keep in mind that due to the higher number of parameters of this camera
model, more checkerboard detections are needed to obtain an accurate estimate.

Hence, for good calibration results, it is key to select the right camera model
which is in compliance with the whole optical system consisting not only of the
lens but also of windshields or similar optical sources of distortion. In general,
choosing an unsuitable camera model for one camera will negatively affect the
calibration of all other camera models. If one is certain that a global camera
model is sufficient, then it is usually preferred over a local model due to its
lower number of parameters. But if in doubt, it is preferable to use a local
camera model and longer calibration sequences.

Another finding is that the REH and especially the RMS reprojection error is
not always a good measure to assess the estimation quality of a camera model.
If the camera model is not selected in compliance with the used optical system,
then the REH may be normally distributed and the RMS reprojection error
small but the difference to the true camera model may still be huge.
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8 Summary and Outlook

In this thesis, we presented a novel non-central B-spline distortion camera
model belonging to the class of local camera models. A camera model maps
pixel positions to a viewing ray described by a base point and a direction vector.
The direction vector was modeled by an ideal equidistant angle projection model
combined with a distortion function based on uniform B-splines. The base
point of the viewing ray was modeled as a displacement vector perpendicular
to the direction vector. The displacement vector field was also described by a
uniform B-spline formulated on the tangent plane of the direction vector field.

We demonstrated that this camera model can be estimated in a multi-camera
setup by an easy-to-use calibration process based on checkerboard targets.
To generate the input data of the calibration process, one simply records a
sequence of images in which the checkerboard targets are viewed from different
orientations. To estimate the camera model parameters and the translation
between the cameras, a non-linear least squares problem is formulated and
solved. As a residuum function, we used the reprojection error with the forward
camera model, which projects a point in 3D onto the image. We showed
how to derive the Jacobian matrix for camera models where only an implicit
formulation of the forward camera model is available, which is often the case
for non-central models. To increase the robustness of the estimate in areas
where the density of measurements in the image is low, a prior which can be
efficiently integrated into the problem formulation based on the smoothness
of uniform B-splines was added. We showed in simulation that a glass pane
mounted in front of a camera leads to distortions - distortions which can be
handled by the proposed non-central B-spline distortion camera model.

To evaluate this novel camera model not only in simulation, we developed
a calibration benchmark consisting of an experimental setup, a ground truth
camera model and a measure to compare camera models with each other. For
the experimental setup, three cameras pointing in the same direction were
used. For one of the cameras, a glass pane was mounted in different angles
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8 Summary and Outlook

to simulate the effect of a windshield. The ground truth camera model was
generated by an active display camera calibration process. For this purpose,
the experimental setup was mounted on a linear positioning system facing
in the direction of a monitor displaying different sinusoidal fringe patterns.
These patterns were used to estimate the positions of 2D points on the display
which were then used to determine a discrete camera model. We showed that
the monitor cannot be assumed to be flat and therefore modeled the display
surface as a uniform B-spline. The surface and the viewing rays were jointly
estimated by a non-linear least squares solver. The rays were parametrized by
the base point and the line direction, and a local parametrization was proposed
to speed up the estimate and increase its robustness. This resulted in a highly
accurate camera model which served as ground truth verified in simulation. The
measure for comparing different camera models was based on projecting points
in world space to the image space of both camera models and then calculating
the difference between these two points.

We used the calibration benchmark to evaluate a global and the B-spline
distortion camera model, in both a central and a non-central formulation. In the
case of cameras mounted behind an angled glass pane, the non-central B-spline
distortion model outperforms all others. We also demonstrated the benefits of
using this camera model when calibrating our experimental vehicle equipped
with a surround-view camera system consisting of six cameras.

All of the experiments showed that it is essential to choose a camera model
which fits the used camera system and that the widely utilized RMS reprojection
error cannot be used as a quality measure for checkerboard camera calibration
if the wrong camera model was chosen.

This brings us to the open question of how to measure the quality of an estimated
camera model when no ground truth is available. A future field of research
could be to investigate the use of additional sensors such as range-sensors and
inertial measurements to assess the quality of the estimated camera model.

Another direction would be to not use artificial targets but instead to calibrate
the sensor setup with natural scenes in order to further simplify the calibration
process. To assess the performance of such estimated camera models, the
proposed benchmark can provide a ground truth camera model.
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