KIT | KIT-Bibliothek | Impressum | Datenschutz

Coupled simulation of flow-induced viscous and elastic anisotropy of short-fiber reinforced composites

Karl, Tobias ORCID iD icon 1,2; Gatti, Davide 2; Böhlke, Thomas ORCID iD icon 1; Frohnapfel, Bettina ORCID iD icon 2
1 Institut für Technische Mechanik (ITM), Karlsruher Institut für Technologie (KIT)
2 Institut für Strömungsmechanik (ISTM), Karlsruher Institut für Technologie (KIT)

Abstract:

The present work discusses the impact of the back coupling of the fiber orientation distribution on the base flow and on the fiber orientation itself during mold filling simulations. Flows through a channel and over a backward-facing step are investigated. Different closure approximations are considered for modeling the flow-induced evolution of anisotropy. The results corresponding to the decoupled approach, in which the effect of fibers on local fluid properties is neglected, build the basis of comparison. The modeling is limited to a laminar, incompressible, and isothermal flow of a fiber suspension consisting of rigid short fibers suspended in an isotropic Newtonian matrix fluid. A linear, anisotropic constitutive law is used in combination with a uniform fiber volume fraction of 10% and an aspect ratio of 10. To evaluate the impact of back coupling and of different closure methods in view of the manufactured solid composite the resulting anisotropic elastic properties are investigated based on the Mori–Tanaka method combined with an orientation average scheme. Relative to the range [0, 1] the pointwise difference in fiber orientation between the decoupled and the coupled approach is found to be ±5% in the channel and ±30% in the backward-facing step, respectively. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000131113
Veröffentlicht am 06.04.2021
Originalveröffentlichung
DOI: 10.1007/s00707-020-02897-z
Scopus
Zitationen: 12
Web of Science
Zitationen: 12
Dimensions
Zitationen: 11
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Strömungsmechanik (ISTM)
Institut für Technische Mechanik (ITM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 0001-5970, 1619-6937
KITopen-ID: 1000131113
Erschienen in Acta mechanica
Verlag Springer
Band 232
Heft 6
Seiten 2249 - 2268
Vorab online veröffentlicht am 15.03.2021
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page