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Abstract The resulting shapes in production processes of metal components are strongly influenced by defor-
mation induced residual stresses. Dual-phase steels are commonly used for industrial application of, e.g.,
forged or deep-drawn structural parts. This is due to their ability to handle high plastic deformations, while
retaining desired stiffness for the products. In order to influence the resulting shape as well as component char-
acteristics positively it is important to predict the distribution of phase-specific residual stresses which occur
on the microscale of the material. In this contribution a comparative study is presented, where two approaches
for the numerical simulation of residual stresses are applied. On the one hand a numerically efficient mean
field theory is used to estimate on the grain level the total strain, the plastic strains and the eigenstrains based
on macroscopic stress, strain and stiffness data. An alternative ansatz relies on a Taylor approximation for
the grain level strains. Both approaches are applied to the corrosion-resistant duplex steel X2CrNiMoN22-5-3
(1.4462), which consists of a ferritic and an austenitic phase with the same volume fraction. Mean field and
Taylor approximation strategies are implemented for usage in three dimensional solid finite element analysis
and a geometrically exact Euler–Bernoulli beam for the simulation of a four-point-bending test. The predicted
residual stresses are compared to experimental data from bending experiments for the phase-specific residual
stresses/strains which have been determined by neutron diffraction over the bending height of the specimen.

Keywords Residual stresses · Mean field approach · Beam element · Four-point-bending experiment

1 Introduction

In microstructured materials, residual stresses are classified based upon their range of influence into three
categories. For crystalline materials, macro residual stresses of first kind are homogeneous across large areas
of the material, meaning several grains. unzip mat On the microscale of the material, the micro residual stresses
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can be sub-divided into residual stresses homogeneous inside a grain, called residual stresses of second kind,
and residual stress fluctuations within the grain, called residual stresses of third kind.

The determination of the micro residual stresses is of great interest for the design of materials and the
optimization of process parameters. It is however quite challenging to design experiments to gather these data.
Experimental residual stress analysis can be classified into destructive (or semi-destructive) and non-destructive
methods.

Destructive methods are based on the stress relaxation caused by the cutting or removal of material. Here,
the local material removal causes stress redistribution, which can be observed. While destructive methods are
attractive for the determination of macro residual stresses, they are not applicable on the micro-scale of the
material. Also, destructive methods are not capable to capture residual stresses as they occur in an experiment.
They can only provide data at the end of a process. An overview of the characteristics of various residual stress
analysis methods is given in [22].

For the non-destructive experimental determination of phase-specific residual stresses, basically diffraction
methods can be applied. A well-established diffraction approach for using lab X-radiation bases is the sin2 ψ-
method [15]. However, when using soft X-rays (photon energies< 20 keV) themethod is only surface sensitive.
For the analysis of residual stress depth distributions the method must be combined with local materials layer
removal, e.g., by means of electro-chemical polishing. For non-destructive residual stress analysis in the bulk
material high energy synchrotron X-radiation and neutron radiation can be applied. Access to these methods
is provided by large scale research facilities. The high penetration depth of neutrons in steel, see [2], allows
the analysis of interior residual stresses without local material removal.

It may be concluded that experimental techniques provide only limited insight into the actual stresses and
strains within a material. Numerical simulations are often used as a validation layer in the analysis of residual
stresses. A common choice in this field is using finite element simulations. To date, there exist various finite
element formulations, e.g., volume elements or structural elements. While volume elements are the standard
choice, see, e.g., [27], structural elements can be used in cases which allow for certain assumptions on the
kinematics, as done in [5], in order to improve performance. Besides the choice of the kinematics and geometry
approximation, the material model has a huge influence. When modeling multiphase materials, such as duplex
steels, a homogenization technique must be applied. For an overview of various approaches it is referred to
Kanouté et al. [10]. In this work, two approaches of differing complexity are compared. A Talor ansatz, which
is an effective volume averaging of the phase specific response and a mean field approach (see, e.g., [4])
are considered. Hereby, the mean field approach is implemented as an incremental elasto-plastic constitutive
model in 3d finite element simulations. Contrary, a classical J2 plasticity model is used for the taylor approach
together with beam elements as in [5], in a comparatively simplified 2d continuum.

The two approaches are applied to the simulation of a four-point-bending test of the two-phase steel
X2CrNiMoN22-5-3 (1.4462), which consists of a ferritic and an austenitic phase of equal volume fraction.
The characterization of the phase-specific hardening behavior of austenite and ferrite was performed by means
of interrupted in-situ tensile tests combined with X-ray diffraction residual stress analysis, according to the
sin2 ψ-method, using conventionally generated soft X-rays. Due to the small information depths of soft X-
rays for steels this analysis is limited to the near surface region only. Results of these phase-specific analyses
were used as input for numerical material modelling. Due to the high amount of both phases and the good
separability of the diffraction lines, the material is excellently suited for the analysis of phase-specific residual
stresses. However, these tensile data provide limited information as, e.g., only data for isotropic hardening can
be extracted.

For validation of the simulated phase-specific stresses a non-destructive, in-situ neutron strain scanningwas
performed at the instrument SALSA@ILL, Grenoble (France). This allows the validation of the phase-specific
stress distributions over the height of the bending sample at the loaded state as well as after unloading.

In the following, we will introduce the main concepts of the two different material models. In the next
chapter, the material characterization is discussed, ending with the concluded sets of material parameters,
used for the bending simulation. Then a review of the experimental setup for the four-point bending test is
given. Also, some aspects of the specimen preparation and analysis are discussed, as they give a hint on
the interpretation of results. Further details on the in-situ measures during the experiment are given. In the
subsequent section, the numerical models for the different approaches are presented. The next chapter features
an in-depth review of the strains and stresses, during the experiment and numerical analysis. The residual
stress distributions are compared. An in depth discussion of the observed results is provided, before ending
with some concluding remarks.
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2 Homogenization schemes and constitutive models

For the comparative study in this contribution we utilize two models for the homogenization of a duplex steel
and apply different established constitutive models to obtain the elasto-plastic stress response. A mean field
approach will be used to determine the strain increments and stiffnesses for the individual constituents on
the one hand. The second scheme uses a simpler Taylor/Voigt homogenization ansatz, on a total Lagrangian
framework.

2.1 Mean field approach

In this work a finite element analysis is performed with the commercial software Abaqus 2019 from Dassault
Systèmes. Hereby, the mean field approach is implemented as a user material within an objective incremental
framework. In order to solve the balance of linear momentum on the macroscale the mean field model is
required to give at each integration point the increment of Jaumann stress rate Δσ̄ and the algorithmic tangent
based on the deformation gradient F̄. The macroscopic strain increment is hereby localized which allows
the computation of the phase-specific stress state. In a final step the stress increments within the phases are
homogenized to compute the required output of the user material subroutine. For details on the objective
stress rate and corresponding tangent modulus it is referred to Hofinger et al. [9]. Note that the Jaumann
stress rate, which is used for Abaqus solid continuum elements, leads to an oscillatory response in simple
shear deformation, see [14]. The range of deformation where this effect occurs, however, is far beyond the
deformation considered in this work.

In the following, time dependencies of quantities are dropped due to better readability. Quantities φ (of
arbitrary tensor rank) describing the phase-specific behavior of a microstructured material, e.g., the Cauchy
stress or strain are averaged within each phase ξ with corresponding volume Vξ by φξ = 〈φ〉ξ = ∫

Vξ
φ dV/Vξ .

For a representative volume element (RVE) with volume VRVE the phase volume fractions are given as cξ =
Vξ /VRVE. The corresponding quantity φ̄ macroscopically effective regarding the RVE results in φ̄ = 〈φ〉 =∑

ξ cξφξ . Willis [26] introduces the localization relations

ε = A[ε̄] − a, σ = B[σ̄ ] − b (1)

which localize the macroscopic strain ε̄ and the macroscopic stress σ̄ by the strain localization tensor A and
the stress localization tensor B, as well as the corresponding fluctuation fields a and b. By using ε̄ = 〈ε〉 and
σ̄ = 〈σ 〉, the side conditions

〈A〉 = I
s, 〈B〉 = I

s, 〈a〉 = 0, 〈b〉 = 0, (2)

are obtained.
The reformulation of a small strain homogenization scheme in an incremental form allows the application

in the finite deformation setting. The incremental mean field approach including the algorithmically consistent
linearization is presented in detail in Hofinger et al. [9]. In a first step, as proposed by Miehe et al. [17], the
explicit incrementally objective formulation of the macroscopic strain increment is constructed as

Δε̄ = Sym
(
2(F̄

n+1 − F̄
n
)(F̄

n+1 + F̄
n
)−1

)
. (3)

A two-phase material is considered, i.e., ξ = {1, 2}. For the individual phases localization relations similar
to Eq. (1) can be constructed

Δεξ = Aξ [Δε̄] − Δaξ , Δσ ξ = Bξ [Δσ̄ ] − Δbξ , (4)

where σξ , εξ and ε
p
ξ denote the phase-specific stress, total strain and plastic strain respectively. As shown

in Hofinger et al. [9] the phase-specific strain localization tensors Aξ and phase-specific stress localization
tensors Bξ result from the Hill condition [8] and Hooke law as

A1 = 1

c1
(C1 − C2)

−1(C̄ − C2), A2 = 1

c2
(C2 − C1)

−1(C̄ − C1),

B1 = 1

c1
(S1 − S2)

−1(S̄ − S2), B2 = 1

c2
(S2 − S1)

−1(S̄ − S1),

(5)
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where C̄ denotes the stiffness tensor of the effective material. Furthermore, the phase-specific strain fluctuation
fields Δaξ and phase-specific stress fluctuation fields Δbξ are given as

Δa1 = 1

c1
(C1 − C2)

−1 (
C̄[Δε̄p] − c1C1[Δε

p
1] + c2C2[Δε

p
2]

)
,

Δa2 = 1

c2
(C2 − C1)

−1 (
C̄[Δε̄p] − c1C1[Δε

p
1] + c2C2[Δε

p
2]

)
,

Δb1 = 1

c1
(S2 − S1)

−1 (
Δε̄p − c1Δε

p
1 − c2Δε

p
2

)
,

Δb2 = 1

c2
(S1 − S2)

−1 (
Δε̄p − c1Δε

p
1 − c2Δε

p
2

)
.

(6)

Potential relations for the phase-stresses are obtained by the application of the Coleman-Noll procedure to the
Clausius–Duhem inequality, see Coleman and Noll [3]. The assumption of a purely energetic Cauchy stress
based on a quadratic form of the elastic free energy function of the phases results in the incremental form of
the Hooke law

Δσ ξ = Cξ [Δεξ − Δε
p
ξ ], (7)

with phase-specific stiffness tensors Cξ . The plastic strain rate of the phases are given by

ε̇
p
ξ = ε̇

p
0ξ

(√
3/2||σ ′

ξ || − σ F1
ξ

σ F2
ξ

)mξ
σ ′

ξ

||σ ′
ξ ||

(8)

with the stress exponent mξ and the reference strain rate ε̇
p
0ξ . For sake of simplicity the flow stress σ F1

ξ is

neglected while the flow stress σ F2
ξ is modeled by a phenomenological Voce-type hardening approach based

on the equivalent plastic strain ε
eq
ξ = ∫ ||ε̇pξ || dt as

σ F2
ξ = σ F0

ξ + (
σ F∞

ξ − σ F0
ξ

)
(

1 − exp

(
Θ∞

ξ − Θ0
ξ

σ F∞
ξ − σ F0

ξ

ε
eq
ξ

))

+ Θ∞
ξ ε

eq
ξ . (9)

Hereby, the initial yield stress σ F0
ξ , the saturation stress σ F∞

ξ , the initial hardening modulus Θ0
ξ and the

saturation hardening modulus Θ∞
ξ are introduced as material parameters. Note, that in this work plastic

isotropy is considered. A modeling approach for an extension of Eq. (8) to plastic anisotopy is presented in
Böhlke et al. [1]. For a simulative and experimental investigation of residual stresses within duplex steel with
consideration of a correlation between elastic and plastic anisotropy it is referred to Simon et al. [24].

2.2 Taylor approach

To account for the duplex steel character in a simplified manner, a Taylor/Voigt approximation is chosen. The
constitutive law is evaluated twice at each integration point, using the material parameters of each constituent,
namely Austenite (ξ = 1) and Ferrite (ξ = 2) individually. Following the Taylor scheme, the resulting
homogenized first Piola-Kirchhoff stresses P̄ and consistent elasto-plastic tangent moduli Ā are computed by

P̄ = c1 P1 + c2 P2 and Ā = ∂F̄ P̄ = c1 ∂F̄ P1 + c2 ∂F̄ P2, (10)

with c1 and c2 being the volume fractions of the constituents. For the constitutive model a finite strain elasto-
plastic formulation was chosen. Here we employ the well-known concept of an multiplicative decomposition
of the deformation gradient resulting in the elastic deformation represented by

Fe
ξ = F̄ Fp−1

ξ and Ce
ξ = FeT

ξ Fe
ξ (11)
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Fig. 1 Uniaxial tensile test simulation results based on mean field theory (MFT) and Taylor approach with the J2 formulation
(TJ2). The phase-specific Cauchy stresses for austenite and ferrite are shown versus the macroscopic strain (Δl/ l). Experimental
results of Simon et al. [24]

where Fe
ξ and Ce

ξ represent the elastic part of the deformation gradient and the elastic right Cauchy–Green
deformation tensor, for each of the constituents, respectively. The stresses, based on elastic deformations are
obtained from a nonlinear Neo-Hookean free energy

ψξ = λξ

4

(
det(Ce

ξ ) − 1 − ln(detCe
ξ )

) + μξ

2

(
tr(Ce

ξ ) − 3 − ln(detCe
ξ )

)
(12)

with the phase specific Lame constants λξ and μξ . The plastic flow is triggered by a von Mises flow criteria
to the Kirchhoff stresses τ

φ =
√
2

3
dev(τ ξ ) dev(τ ξ ) − τy,ξ ≤ 0 (13)

where the yield surface evolves by linear and exponential hardening. For a better comparison of the results we
employ the same yield stress formulation as introduced in Eq. (9), but formulated in the Kirchhoff stresses. If
for any constituent the yield criterion demands plastic evolution, an associative flow rule is employed. Implicit
time integration is used to update the phase specific internal variables of plastic flow. In our case we used Fp−1

ξ

and ε
eq
ξ . Implementation and theory of finite plasticity is intensively covered in the literature. As a starting

point the interested reader is referred to, e.g., [23].

3 Identification of material parameters

The material parameters are obtained based on the experimental results of Simon et al. [24]. In their study
the strain hardening of ferrite and austenite are investigated for a cold rolled duplex stainless steel of type
X2CrNiN23-4, which resembles the duplex stainless steel investigated in this work. Phase-specific X-ray
diffraction stress analysiswere carried out for the {220}-austenite and the {211}-ferrite diffraction lines accord-
ing to the sin2 ψ-method using Vanadium-filtered CrKα—radiation for samples being stepwise loaded in ten-
sion up to total strain of about 10%. The uniaxial loadingwas carried out using aminiature tensile/compression
module DDS-2 from Kammrath and Weiss GmbH, Germany. For further experimental details it is referred to
[24]. Although the experiments were carried out in three different directions with respect to the rolling direc-
tion, due to the assumption of an isotropic plastic material behavior, here only the data from the experiment
in transverse direction is considered. The experimental results show that the transverse orientation is least
affected by texture-based evaluation errors. The elastic constants were determined based on the orientation
distribution function and single-crystal elastic constants, while the initial yield stresses were estimated based
on the evolution of integral breadths X-ray diffraction lines. The effective stiffness is approximated using the
geometric mean of Lame’s constants [16]. This procedure is in accordance with [24].

For the mean field theory (MFT) the phase-specific material parameters of the hardening curve, Eq. (9),
are fitted with a least-squares optimization using the Levenberg-Marquardt algorithm. The hardening curves
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Table 1 Material parameter of austenite and ferrite for X2CrNiMoN22-5-3 based on uniaxial tensile tests of Simon et al. [24].
Elastic properties are computed based on the orientation distribution function with single crystal elastic constants of austenite
[13] and ferrite [11].

Austenite Ferrite
TJ2 MFT TJ2 MFT

Single crystal elastic constants C11 233GPa 230GPa
C12 163GPa 135GPa
C44 123GPa 114GPa

Young’s modulus E 197GPa 211GPa
Poisson ratio ν 0.31 0.29
Initial yield stress σ F0 420MPa 380MPa
Saturation stress σ F∞ 564MPa 573MPa 509MPa 480MPa
Initial hardening ΘF0 39.21GPa 35.5GPa 30.8GPa 21.8GPa
Saturation hardening Θ∞ 2.95GPa 3.0GPa 75.6MPa 90MPa

50 mm 50 mm 50 mm

x

z

y
15 mm

10 mm

4/F4/F

4/F 4/F

Fig. 2 Four-point-bending setup: sample dimensions and positions of the support pins or the loading pins, respectively

are fitted to experimental data from uniaxial tensile tests. Hereby, the phase-specific stresses are obtained as a
function of the macroscopic strain in tensile direction. The material parameter fit, described in detail in Simon
et al. [24], is based on the Voigt-type approach, i.e., εξ = ε̄. Even though only one component of the effective
stress is nonzero for the uniaxial tensile test, due to the heterogenous material the measured phase-specific
stress component in loading direction is insufficient for a fit of the material parameters. To overcome this
shortcoming additional assumptions are required. It is assumed that the stress fluctuation field b has the same
direction as the effective plastic strain ε̄

p
ξ . Furthermore, it is assumed that the directions of the local plastic

strains do not change during the uniaxial tensile test. Under this assumption it follows from Eq. (8) that the
direction of the local plastic strain ε

p
ξ is equal to the direction of the deviatoric part of the local stress σ ′

ξ .
The material parameters used in the Taylor approach with the J2 formulation (TJ2), see Sect. 2.2, has been
obtained by a hand fitted least-squares approach, against the experimental data. These parameter were fitted
individually for each phase.

In Table 1 all material parameters for both model approaches are listed. Figure 1 shows the results of
uniaxial tensile simulations in comparison with the experimentally obtained results of Simon et al. [24]. The
difference of material parameters is obtained as the fitting of the constituent parameters was performed on
the homogenized two phase materials. The different homogenization approaches and assumptions, explain the
deviations.

4 Four-point-bending experiment

4.1 Experimental setup

For the experimental residual stress analysis a bending beam of dimensions 160mm length, 15mm depth and
10mm height was cut from a circular rod of X2CrNiMoN22-5-3 with a diameter of 30mm. The distance of
the supporting pins and the loading pins of the experimental setup was 50mm. Figure 2 shows the sample
geometry with indication of the sample dimension and the position of the support pins for four-point bending.

The sectioning of the bending beamwas carried out slightly off the rod axis, which causes an heterogeneous
distribution of the phase-specific crystallographic texture over the bending height. The texture distribution of
the ferrite and the austenite phase over the bending beam height was determined by means of X-ray diffraction
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(a) α-Fe, z = −4.9mm (b) α-Fe, z = +0.8mm (c) α-Fe, z = +4.9mm

(d) γ-Fe, z = −4.9mm (e) γ-Fe, z = −0.8mm (f) γ-Fe, z = +4.9mm

Fig. 3 ODF sections�2 = 45◦ for different positions of the bending beam for the ferrite phase (top) and austenite phase (bottom)

for a bending beam that was layer-wise sectioned using 10 layers in total. Phase-specific texture analysis was
carried out after electro-chemical polishing of the sectioned layers to prevent an effect of the cutting operation
on the diffraction results. Figure 3 shows selected sections of ODFs (Orientation Distribution Function) as
an example, determined for austenite and ferrite for different positions of the bending beam. The positions
z = −4.9mm and z = +4.9mm correspond to positions near to the outer layers of the surface that were
later loaded in compression and in tension, respectively. Furthermore, the mid layer position is considered.
Without going into detail to the ODF interpretation the selected graphs clearly indicate that the bending beam
exhibit phase-specific texture , which is typical for bcc (ferrite) and fcc (austenite) materials manufactured this
way. However, the ODF cuts furthermore indicate that in particular for the ferrite phase significantly varies
with position. The texture as well as the gradient in phase-specific crystallographic texture surely affects the
phase-specific elasto-plastic behavior.

The neutron strain analyses were performed at the SALSA instrument at the neutron research reactor ILL,
Grenoble (France) using a neutron wavelength of 1.6 Å. Figure 4 presents a detailed view of the applied setup
showing the bending device mounted on the Eulerian cradle of the SALSA instrument. In addition, the radial
collimators applied on the primary and on the secondary side of the beam paths are shown, respectively, which
defined a nominal gauge volume of 0.6× 0.6× 10mm3. The cross section 0.6× 0.6mm2 coincides with the
cross section of the bending beam, i.e., with the y-z plane. The lattice strain determinations were performed
non-destructively for all three principal directions x , y and z on the {211} and the {220} lattice planes of the
ferrite phase as well as on the {220}, {311} and {220} lattice planes of the austenite phase in a 2Θ—range
between about 75− 107◦ by shifting the bending beam stepwise through the nominal gauge volume (classical
neutron strain scanning experiment). The individual diffraction lines were fitted using a Gaussian function
by means of the software package LAMP [20]. For strain calculation the lattice parameters determined for
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Fig. 4 Experimental four-point-bending setup: The image shows the four-point-bending device mounted on the Eulerian cradle
of the SALSA instrument at the neutron research reactor ILL, Grenoble, for the measurements in radial direction of the bending
beam. On the left and on the right hand side the radial collimators used on the primary and the secondary neutron beam path,
respectively, are partly shown, which finally define the applied nominal gauge volume

the loaded states were referenced to the local lattice parameters determined for the initial (as received) state.
Hence, strain differences were determined in relation to the unloaded, initial state. Due to crystallographic
texture at some positions and/or somemeasuring direction unsatisfactory diffraction response occur, which not
least contribute to the error bars given for the experimental results. To provide more robust results the {hkl}
dependent phase-specific lattice strains were averaged according to the approach proposed in [7], considering
the multiplicity factors and the elastic constants calculated on basis of the single crystal parameters given in
Table 1. The texture factor was set to 1. Close to the surface during neutron strain scanning the nominal gauge
volume was only partially filled with material, which results in spurious strains. This so-called surface effect
was corrected numerically by means of the simulation tool SIMRES [21]. From the phase-specific strains
determined this way, stresses were calculated assuming that the axes x , y and z are the principal directions.
Here, the texture and the gradient of the texture over the bending height were considered. For stress calculation
the effective elastic constants were applied, which were calculated using the phase-specific crystal orientations
provided by the ODFs in combination with the single crystal constants C11, C12 and C44 as given in Table 1.
Since texture analysis was only carried out for a limited numbers of positions over the bending height, the
ODF information was interpolated accordingly.

The stress analysis was carried out for loading the bending beam to total strain in the outer layers of 1.54%
and after unloading the samples to monitor the resulting characteristic residual stresses after elasto-plastic
four-point-bending.

4.2 Numerical model

For the mean field model (MFT) simulation the commercial software Abaqus 2019 from Dassault Systèmes
was used. The mean field approach was implemented a user subroutine which is called at each integration point
of the beam. The beam is discretized with 25600 three-dimensional incompatible mode continuum elements
of linear geometric order (C3D8I), while the rollers are simulated as analytical rigid shells. The symmetries of
the beam, boundary conditions and material are utilized, which allows the simulation of a quarter model. The
beam is loaded by displacement controlled roller movement with hard and frictionless interaction properties
until the effective strain ε̄xx = 0.02 is obtained. To illustrate the discretization of the beam Fig. 5 shows the
longitudinal component of the effective Cauchy stress σ̄xx at stage of maximum load.

With the Taylor ansatz (TJ2), the process is modelled on a two dimensional approximation of an Euler–
Bernoulli beam. Thus an uniaxial stress state at each integration point is assumed. As finite element, the
geometrically exact Euler–Bernoulli beam element relies on the kinematics introduced in [5] while certain
modifications are made. The element provides a fully nonlinear kinematical framework, while obeying the
Bernoulli hypothesis of rigid cross sections and first-order shear rigidity. This results in excellent numerical
behavior with respect to modelling thin geometries undergoing large rotations and deformations. Additionally,
the element features Rodrigues parametrization of the rotations in an incremental update scheme for numer-
ical robustness and efficiency. Compatibility of Euler–Bernoulli assumptions to a sheet three point bending
experiment was shown before as in, e.g., [6].
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Fig. 5 Longitudinal component of the effective Cauchy stress σ̄xx at stage of maximum load based on mean field theory (MFT)

x
z

25 mm 25 mm 26 mm 4 mm

8 mm

10 mmroller 1

roller 2

ux = 0

u′
x = 0

CBA

uz,max

Fig. 6 Boundary value problem for four-point-bending

The element was modified to a point-wise formulation. By performing numerical integration over the
cross section and developing a local deformation gradient for each integration point, an interface to arbitrary
nonlinear material laws is provided. To ensure the aforementioned zero main lateral stress condition of beams,
each integration point provides a local iterative scheme to compute the associated lateral strains. This way
the longitudinal strains are obtained directly from the beam kinematics as the main lateral strain is computed
within the algorithmic scheme. This procedure was proposed in [12] and successfully applied to shell elements
in [25]. The element features 151 Gauss-Lobatto integration points over the cross section height to show the
lateral uniaxial stress distribution and to resolves also these quantities at the very top and bottom on the beam.

As model for the contact between the sheet represented by the beam elements and the rollers that introduce
the bending a penalty force contact is chosen. The geometry approximation obtained by the beam elements
features geometrical C1-continuity due to the second Bernoulli hypothesis. In the numerical model we use this
property for a very robust algorithm, solving the minimum distance problem. The geometry of the rollers are
approximated as rigid disks.Using an implicit representation of the geometrical surface for contact formulations
was proposed in [18]. In this contribution we use the concept in conjunction with the C1-continuum geometry
of the beam elements but in 2D only. The resulting consistent contact contributions to the numerical residual
and tangent are only projected to displacement degrees of freedom, respectively.

The simulation setup is illustrated in Fig. 6. The beam elements use a geometrical representation for the
contact formulation as given in Fig. 6. The contact between the pins and the bending sample was chosen
as a hard contact in normal direction and frictionless in transverse direction. Due to the symmetry of the
simulation setup only half of the sheet is modelled, using appropriate boundary conditions as depicted in
Fig. 6. Additionally, the rollers are illustrated, initially just in contact with the sheet.

The sheet is loaded throughout the simulation by a movement of the rigid roller 1, downwards. After
reaching the maximum vertical displacement uz,max of roller 1, it is guided back to its original position.
Figure 7 shows graphical representations of the beam simulation at critical deformation states throughout the
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(b)(a)

Fig. 7 Bernoulli beam simulation at maximum bending state a and completely unloaded state b

simulation. The maximum loading uz,max is chosen to result in a maximum boundary an effective strain of
ε̄xx = 0.02. This way the unloaded configuration of the sheet and the residual stress distribution after unloading
can be investigated.

4.3 Comparative analysis of in silico and experimental results

In the following the results of the micro-mechanical finite element simulation are compared to the experimen-
tally obtained results. Experimentally, phase-specific residual stresses were determined by means of neutron
diffraction residual stress analysis at ILL@SALSA, Grenoble. For further details on the neutron strain scan-
ning and the experimental setup, it is referred to Sect. 4.1 and to [19]. The stress-strain-distribution for the
principal directions will be analyzed over the cross section height of the bending beam. Hereby, we chose the
cross section in the geometric center. For both numerical models, this is the cross section at the symmetric
support.

In Fig. 8a the longitudinal elastic strain component εexx over the height of the bending beam z is shown for
the austenite (γ -Fe) and ferrite (α-Fe) phase at maximal loading. The elastic strain is chosen for the comparison
due to the least amount of assumptions in the experimental analysis. Generally, good agreement between all
data sources can be observed. Themain difference in the numerical results is that the phase-specific longitudinal
strains of the mean field model (MFT) are slightly higher than for its counterpart, computed from the Taylor
approach (TJ2). The experimental data indicate a shift of the zero crossing in these strains, individually for
each of the phases. None of the numerical models show this effect.

More visibly, the experimental data show non-symmetry of the longitudinal strains over the cross section
height. The austenite phase shows significantly more compressing strains near the upper beam surface, than
tensile strains near the bottom. This effect is less significant for the ferrite phase in the same loading state.
Figure 8b shows the corresponding elastic strain distribution for the unloaded state. Considering the exper-
imental data as a reference point, the non-symmetry observed in the austenite strains in the loaded case has
now expanded. In the compression zone the measurements near the surface are not taken into account, due
to aforementioned technical restrictions (compare Sect. 4.1). Nevertheless, it is a clear observation that the
occurring residual strains exceed higher amplitude in the lower half of the beam, i.e., in the positive z-regime.
Both numerical models give very close results, continuing the same trend as in the loading case. While qual-
itatively the numerical results align with the experimental data, a deviation in magnitude can be observed in



Numerical characterization of residual stresses

(a) (b)

Fig. 8 Elastic strains εexx , for the loaded and unloaded state. The results of the finite element simulation (depicted as lines) are
shown in comparison to the experimental data obtained by means of neutron diffraction analysis (depicted as points including
standard error)

particular for the ferrite phase. This is especially the case as the experimentally measured non-symmetry of
the residual strains is not captured by the numerical models.

Before reviewing the residual stresses obtained by the considered models, the lateral strain components are
reviewed, see Fig. 9. The error bars that can be assigned to the determined lattice strains and as a consequence
also to the calculated stresses are based on statistics that differ with position. The worsening in diffraction
statistics leads to an enlargement of the error bars and can be explained by the texture and its distribution
over the cross sectional area. Depending on local texture the measured diffraction intensity can be strongly
decreased. For some {hkl} diffraction lines it became almost impossible to determine diffraction peaks that
are sufficient for a meaningful calculation of the peak position, which is needed for lattice strain calculation.
For stress calculation this applies accordingly. This effect of decreased statistics and hence of enlarged error
bars is largest at the outer layers, where by means of the texture analysis the sharpest texture exist in particular
for the ferrite phase.

Generally, the trend between simulation data and experimental measures continues, as such that overall
satisfying agreement can be concluded. Nevertheless, it can be observed that the lateral strains εeyy for the
unloaded case shows the highest shift with respect to the geometrical center of the beam height. It appears that
this is one point, both numerical approaches are not able to account for this phenomenon. The lateral strain
distributions on the other hand show a crucial difference in the numerical models. This difference can directly
be observed as the thicker depth direction of the beam shows stiffer behavior in that direction (y), as expected.
For the lateral z direction, the opposite is the case. The beam element enforces a uniaxial stress condition
in each integration point, which benefits numerical performance. Contrary, the solid simulation resolves the
Poisson effects directly, which technically is more accurate. Both numerical schemes are also affected by their
discretization, i.e., number and positions of integration points. When comparing the numerically approximated
strain responses to the measured data, sufficient coverage is observed. When accounting for the actual magni-
tude of these components compared to εexx , it is also clear that their influence on the macroscopic deformations
and hence residual stress state is minor. For this reason, we will only focus on the longitudinal stress compo-
nents for the analysis of residual eigenstresses. However, all discussed data sources use a three dimensional
constitutive model, including the residual stress computation from the experimentally measured strains.

Finally, in Fig. 10 the longitudinal stress component over the height of the beam σxx is shown, for the
loaded and unloaded state, respectively.
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(a) (b)

Fig. 9 Residual elastic strains εeyy and εezz . The results of the finite element simulation (depicted as lines) are shown in comparison
to the experimental data obtained by means of neutron diffraction analysis (depicted as points including standard error)

(a) (b)

Fig. 10 Stress σxx of the loaded beam (left) and unloaded beam (right). The results of the finite element simulation (depicted as
lines) are shown in comparison to the experimental data obtained by means of neutron diffraction analysis (depicted as points
including standard error)
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The stress σxx distribution shows similar behavior as observed for the longitudinal strains εexx . This under-
lines theminor influence of the lateral strain components, whichwere lesswell approximated by both numerical
schemes. Consequently, good agreement between the experimental data an both numerical approaches can be
concluded. Also the magnitudes of stresses are in close proximity, despite the different constitutive models.
Both investigated loading states however also show the same weaknesses of the numerical schemes as already
observed on the longitudinal strains. The lack of resolving a phase-specific non-symmetry, also in the stresses
lead to deviations between numerical stresses, and those determined from experimental data.

5 Discussion

In the previous sections we went for a detailed look on the distribution of elasto-plastic stresses and elastic
strains for the centre cross section of a beam subjected to four-point-bending. From amacroscopic point of view
the simulations following the mean field approach (MFT) and the Taylor ansatz (TJ2) agree very well with the
experimentally observed strains and stresses. Nevertheless, some deviations were observed and emphasized
in the previous chapter. These were phase-specific shifts of the zero crossing in stresses as well as crucial
non-symmetry in these properties. Here, both simulation approaches were not able to predict these, leading to
diverging results in some regions compared to the experiment.

The differences can be explained by various effects. Large deviations from smooth stress gradients over
the bending height might stem from simplified assumptions in the stress evaluation. Due to the manufacturing
process of the rod, from which the bending sample is cut, an inhomogeneous local crystallographic texture
occurred as clearly shown by means of cuts through the experimentally determined phase-specific ODFs.
However, this local crystallographic texture is not considered in the experimental analysis, nor in the micro-
mechanical framework.

An additional effect might stem from the material parameters used for the micro-mechanical model, listed
in Table 1. For the simulation of the forming behavior of coarse two-phase sheet metal materials as close to
reality as possible, the determination of the phase-specific material parameters is decisive. In this work the
phase-specificmaterial parameterswere chosen based on tensile tests combinedwithX-ray stressmeasurement.
This is a well-justified and meaningful approach. However, since for data evaluation also specific assumptions
were made for future work, complementary nano-indentation tests will be performed on the investigated
material to support the diffraction data. This attempt failed in the first approach due to the relative small grain
size of the two phases and the lower load limitations of the instrumented micro-indentation system at hand.
Finally, this allows the determination of more accurate phase-specific hardening behavior and, consequently,
a more precise simulation.

Furthermore, the effects of kinematic hardening are not considered in the present work. In the future,
experiments under cyclic loading conditions will provide the foundation for determining the necessarymaterial
parameters which will be used in the numerical models to account for these phenomena.

The biggest impact is suspected to be found in neglecting the texture of the here investigated duplex steel.
When considering Fig. 10b the ferrite phase shows a significant non-symmetric residual stress distribution.
A comparison with the ODF scans (see Fig. 3) gives context to this, as especially the ferrite phase exposes a
strong non-symmetric texture over the beam height z. This inhomogeneous phase-specific texture distribution
determined experimentally by means of diffraction analysis, might be the reason for the obvious shift of the
neutral fibre in case of the ferrite phase. At the moment we are unfortunately not able to take this, the texture
and its inhomogeneous distribution into account during strain and stress evaluation on basis of the diffraction
data. This step is part of ongoing work and require the analysis of phase-specific strain pole figures. Regarding
the numerical simulation, for higher accuracy in the prediction of residual stresses, a localization scheme
must include this phase-specific texture information that was experimentally determined for the real structure.
Consideration of the phase-specific local texture in the simulations is essential in order to obtain a realistic
numerical prediction of the residual stresses. In Simon et al. [24] an approach is presented, which accounts
for an anisotropic material behavior in the mean field homogenization scheme. A correlation of plastic and
elastic anisotropies is constructed based on the work of Böhlke et al. [1]. The fourth-order texture coefficient,
computed based on the ODF and the crystallographic basis, is assumed to be homogeneous in the specimen.
With the ODF sections for different positions of the bending beam, presented in Fig. 3, and the resulting
phase-specific residual stress distributions a valuable set of input and validation data is provided for further
investigations.
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6 Conclusion

A four-point-bending experiment was performed and simulated, considering a beam of the corrosion-resistant
duplex steel X2CrNiMoN22-5-3 (1.4462). In aiming to predict the residual stresses in the material after
unloading, two different numerical approaches were utilized. For comparison, the simulations were carried
out using a numerically efficient mean field approach (MFT) as part of a three dimensional finite element
analysis and with a simpler Taylor ansatz (TJ2), on a geometrically exact beam element. Although the mean
field theory clearly has more depth and is superior over the Taylor localization, the simulation results are very
similar and show good agreement to the experimental data. Nevertheless, some deviations of simulation and
experimental data were found and discussed. The investigation clearly shows the influence of texture to the
material response. Hence, if more accurate residual stress predictions are required, this texture effect must be
included. In this regard the here utilized Taylor ansatz does not offer this capabilities, but the mean field theory
will be elaborated to include texture information for future works.
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