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Abstract
Poisson processes in the space of (d − 1)-dimensional totally geodesic subspaces
(hyperplanes) in a d-dimensional hyperbolic space of constant curvature −1 are stud-
ied. The k-dimensional Hausdorff measure of their k-skeleton is considered. Explicit
formulas for first- and second-order quantities restricted to bounded observation win-
dows are obtained. The central limit problem for the k-dimensional Hausdorff measure
of the k-skeleton is approached in two different set-ups: (i) for a fixed window and
growing intensities, and (ii) for fixed intensity and growing spherical windows. While
in case (i) the central limit theorem is valid for all d ≥ 2, it is shown that in case (ii)
the central limit theorem holds for d ∈ {2, 3} and fails if d ≥ 4 and k = d − 1 or
if d ≥ 7 and for general k. Also rates of convergence are studied and multivariate
central limit theorems are obtained. Moreover, the situation in which the intensity and
the spherical window are growing simultaneously is discussed. In the background are
the Malliavin–Stein method for normal approximation and the combinatorial moment
structure of Poisson U-statistics as well as tools from hyperbolic integral geometry.
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1 Introduction

Random tessellations in Euclidean space R
d form a class of mathematical objects

that have been under intensive investigation in stochastic geometry during the last
decades. In addition to intrinsic mathematical curiosity, a major reason for continuing
interest in random tessellations is that they provide highly relevantmodels for practical
applications, for example, in telecommunication or materials science [19,48,49,57].
One of the principal random tessellation models in Euclidean space is induced by a
Poisson process of hyperplanes. In R

d with d ≥ 2 and in the stationary and isotropic
case, the construction of a Poisson hyperplane tessellation can be described as follows.
Fix a parameter t > 0 and consider a stationary Poisson point process on the real line
with intensity t . To each point pi of the Poisson process we attach independently
of each other and independently of the underlying Poisson process a random vector
ui which is uniformly distributed on the unit sphere S

d−1 of R
d . Then to each pair

(pi , ui ) ∈ R × S
d−1 we associate the hyperplane Hi which has ui as a (Euclidean)

unit normal vector and passes through the point piui with (signed) distance pi from
the origin. We call the random collection of all such hyperplanes a (stationary and
isotropic) Poisson hyperplane process in R

d with intensity t . The random hyperplanes
Hi almost surely divide the space R

d into countably many random convex polytopes.
The collection of all these polytopes is a (stationary and isotropic) Poisson hyperplane
tessellation in R

d with intensity t . We remark that the intensity parameter t , roughly
speaking, controls the expected surface content of the Poisson hyperplane tessellation
per unit volume. More precisely, t = EHd−1(Z ∩[0, 1]d), where Z =⋃∞

i=1 Hi is the
random union set induced by the Poisson hyperplane process andHd−1 stands for the
(d − 1)-dimensional Hausdorff measure.

For Poisson hyperplane tessellations many first- and second-order quantities are
explicitly available for a broad class of functionals and also a comprehensive central
limit theory has been developed over the last 15 years, cf. [21,23,36,58,66] and [64,
Chapter 10] as well as the many references cited therein. In the literature, central
limit theorems for functionals of Poisson hyperplanes have been considered in two
different set-ups. In a first setting the tessellation is restricted to a fixed (usually convex)
observation window and the asymptotic behaviour is explored when the intensity t of
the underlying Poisson process is increased. Alternatively, the intensity is kept fixed,
while the size of the observation window is increased. By a simple scaling relation
both set-ups are equivalent when homogeneous functionals (such as intrinsic volumes,
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positive powers of intrinsic volumes or integrals with respect to support measures) of
the tessellation are considered, see [36, Corollary 6.2].

While the spherical analogues of Poisson hyperplane tessellations, namely Pois-
son great hypersphere tessellations, were investigated, for example, in [2,24–26,44],
only few results seem to be available for such tessellations in standard spaces of con-
stant negative curvature, see [6,55,62,70]. The spherical space of constant positive
curvature is distinguished by its compactness, which in turn implies that Poisson great
hypersphere tessellations almost surely consist of only finitely many spherical random
polytopes. In contrast, Poisson hyperplane tessellations in a standard space of con-
stant negative curvature display a number of striking new phenomena that cannot be
observed in their Euclidean or spherical counterparts. It is the purpose of the present
paper to initiate a systematic study of intersection processes of Poisson hyperplane
tessellations in the d-dimensional hyperbolic space H

d and to uncover some of the
anticipated and remarkable new phenomena. We confine ourselves to the study of
the total volume (in the appropriate dimension) of the intersection processes induced
by Poisson hyperplanes in a (hyperbolic convex) test set. We explicitly identify the
expectation and the covariance structure of these functionals by making recourse to
general formulas for and structural properties of Poisson U-statistics and to Crofton-
type formulas fromhyperbolic integral geometry. In addition andmore importantly, we
study probabilistic limit theorems for these functionals in the two asymptotic regimes
described above for the Euclidean set-up.While the central limit theorems for growing
intensity and fixed observation window are a direct consequence of general central
limit theorems for Poisson U-statistics [36,58,66,67], it will turn out that the limit
theory in the other regime, that is, when the intensity is kept fixed and the size of the
observation window is increased, is fundamentally different. We will prove that here
a central limit theorem in fact holds in space dimensions d = 2 and d = 3. On the
other hand, we will show that a central limit theorem fails for all space dimensions
d ≥ 4 if the total (d − 1)-volume of the union of all hyperplanes is considered. For
the total volume of intersection processes of arbitrary order this will be proved for
technical reasons only for dimensions d ≥ 7. We emphasize that this remarkable and
surprising new feature is a consequence of the negative curvature of the underlying
space and has no counterpart in the Euclidean or spherical set-up. Another interesting
and unexpected feature is observed in this regime for the asymptotic covariance matrix
of the vector of k-volumes of the k-skeletons, k = 0, . . . , d − 1. This matrix turns out
to have full rank for d = 2, but it has rank one in dimension d ≥ 3. In addition, we
will study the situation in which the intensity and the size of the observation window
are increased simultaneously. In this case it will turn out that in all situations where
the central limit theorem fails for fixed intensity, the Gaussian fluctuations are in fact
preserved as soon as the intensity tends to infinity, independently of the behaviour of
the size of the observation window (as long as it is bounded from below).

As anticipated above, the proofs of our results concerning first- and second-order
properties of the total volume of intersection processes rely on general formulas for
U-statistics of Poisson point processes as presented in [35] and on tools from hyper-
bolic integral geometry as developed in [11,18,61,68]. The central limit theorems we
consider will be of quantitative nature, that is, we will provide explicit bounds on the
quality (speed) of normal approximation measured in terms of both the Wasserstein
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and the Kolmogorov distance. Their proofs are based on general normal approxima-
tion bounds that have been derived in [15,58,67] using the Malliavin–Stein technique
on Poisson spaces (see collection [51] for a representative overview concerning this
method). This directly implies the central limit theorem for fixedwindows and growing
intensities. On the other hand, for fixed intensity and when the window is a hyperbolic
ball Br of radius r around a fixed point in H

d , crucial building blocks of these bounds
are Crofton-type integrals of the form

∫

Ah(d,k)
Hk(H ∩ Br )

l μk(dH),

where Ah(d, k) denotes the space of k-dimensional totally geodesic subspaces of H
d

and μk is the suitably normalized invariant measure on Ah(d, k) (all terms will be
explained in detail below). While in the Euclidean case the asymptotic behaviour of
such integrals, as r → ∞, is quite straightforward, this is not the case in the hyperbolic
set-up. In contrast to the Euclidean case, it will turn out that their behaviour crucially
depends on whether l(k−1) is less than, greater than or equal to d−1 (see Lemma 8).
In essence, the latter is an effect of the negative curvature, which in turn causes an
exponential growth of volume of linearly expanding balls in H

d . To show that a
central limit theorem fails in higher space dimensions is arguably the most technical
part of this paper. We do this by showing that the fourth cumulant of the centred and
normalized total volume of the intersection processes does not converge to 0, which
in turn is the fourth cumulant of a standard Gaussian distribution. However, to bring
this in contradiction with a central limit theorem we need to argue that the fourth
power of the total volume is uniformly integrable, which in turn will be established by
consideration of their fifths moments. This requires a fine analysis of combinatorial
moment formulas for U-statistics of Poisson processes. In essence and in contrast to
the lower dimensional cases d = 2 and d = 3, the failure of the central limit theorem
for space dimensions d ≥ 4 is due to the fact that in these dimensions the contribution
of single hyperplanes is asymptotically not negligible anymore.

We emphasize that the present paper contributes to a recent and active line of cur-
rent mathematical research in stochastic geometry onmodels in non-Euclidean spaces.
As concrete examples we mention here the studies about spherical convex hulls and
convex hulls on half-spheres in [5,28,38]. Central limit theorems for the volume of
random convex hulls in spherical space, hyperbolic spaces and Minkowski geome-
tries were obtained in [7], asymptotic normality of very general so-called stabilizing
functionals of Poisson point processes on manifolds was considered in [54]. Again
more specifically, the papers [9,17,47,50] study various aspects of random geometric
graphs in hyperbolic spaces, including central limit theorems for a number of param-
eters. Random tessellations of the unit sphere by great hyperspheres are the content of
[2,24,25,44], while so-called random splitting tessellations in spherical spaces were
introduced and investigated in [14,26]. The paper [12] is concerned with properties of
Poisson-Voronoi tessellations on general Riemannian manifolds. Finally, the geom-
etry of random fields on the sphere is studied in the monograph [39] and invariant
random fields on spaces with a group action are described in [40]. In a similar vein, it
is pointed out in [37] that a systematic study of the invariance properties of probability
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distributions under a general group action is missing. The book [37] therefore explores
Markov processes whose distributions are invariant under the action of a Lie group.

The remainingparts of this paper are structured as follows. In the next sectionwe for-
mally define Poisson hyperplane tessellations in H

d and present our main results. We
start in Sect. 2.1 with expectations and continue in Sect. 2.2 with second-order charac-
teristics associatedwith the total volume of intersections processes. Our limit theorems
will be discussed in Sect. 2.3. The necessary backgroundmaterial on hyperbolic geom-
etry and hyperbolic integral geometry is collected in Sect. 3.1, the backgroundmaterial
on Poisson U-statistics is the content of Sects. 3.2 and 3.3. All remaining sections are
devoted to the proofs of our results. In Sect. 4 we present the proofs for first- and
second-order parameters and also carry out a detailed covariance analysis, which is
needed for our multivariate central limit theory. Our results on generalizations of the
K-function and the pair-correlation function are established in Sect. 5. All univariate
limit theorems are proved in Sect. 6, while the arguments for the multivariate central
limit theorems are provided in the final Sect. 7.

2 Main results

2.1 First-order quantities

Wedenote byH
d , for d ≥ 2, the d-dimensional hyperbolic space of constant curvature

−1, which is endowedwith the hyperbolic metric dh( · , · ).We refer to Sect. 3.1 below
for further background material on hyperbolic geometry and for a description of the
conformal ball model for H

d . Let p ∈ H
d be an arbitrary (fixed) point, also referred

to as the origin. For r ≥ 0 we denote by Br = {x ∈ H
d : dh(x, p) ≤ r} the closed

hyperbolic ball around p with radius r . A set K ⊂ H
d is called a hyperbolic convex

body, provided that K is non-empty, compact and if with each pair of points x, y ∈ K
the (unique) geodesic connecting x and y is contained in K . The space of hyperbolic
convex bodies is denoted byKd

h . Recall that for k ∈ {0, 1, . . . , d −1} a k-dimensional
totally geodesic subspace of H

d is called a k-plane and especially (d − 1)-planes
are called hyperplanes. The space of k-planes in H

d is denoted by Ah(d, k). The
space Ah(d, k) carries a measure μk , which is invariant under isometries of H

d (see
Sect. 3.1 for the present normalization of this measure). For s ≥ 0 we denote by Hs

the s-dimensional Hausdorff measure with respect to the intrinsic metric of H
d as a

Riemannian manifold. Finally, we write ωk = 2πk/2/Γ (k/2), k ∈ N, for the surface
area of the k-dimensional unit ball in the Euclidean space R

k .
For t > 0, let ηt be a Poisson process on the space Ah(d, d − 1) of hyperplanes in

H
d with intensity measure tμd−1. We refer to ηt as a (hyperbolic) Poisson hyperplane

process with intensity t . It induces a Poisson hyperplane tessellation in H
d , i.e., a

subdivision ofH
d into (possibly unbounded) hyperbolic cells (generalized polyhedra),

see Fig. 1. For i ∈ {0, . . . , d − 1} we consider the intersection process ξ
(i)
t of order
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Fig. 1 Two realizations of a Poisson hyperplane tessellation in H
2 of different intensities represented in the

conformal disc model

d − i of the Poisson hyperplane process ηt given by

ξ
(i)
t := 1

(d − i)!
∑

(H1,...,Hd−i )∈ηd−i
t, 	=

δH1∩...∩Hd−i 1{dim(H1 ∩ . . . ∩ Hd−i ) = i},

where ηd−i
t,	= is the set of (d − i)-tuples of different hyperplanes supported by ηt , δ( · )

denotes the Dirac measure and dim( · ) stands for the dimension of the set in the
argument. In this paper we are interested in random variables of the form

F (i)
W ,t :=

∫

Hi (E ∩ W ) ξ
(i)
t (dE)

= 1

(d − i)!
∑

(H1,...,Hd−i )∈ηd−i
t, 	=

Hi (H1 ∩ . . . ∩ Hd−i ∩ W )

× 1{dim(H1 ∩ . . . ∩ Hd−i ) = i}, (1)

where W ⊂ H
d is a (fixed) Borel set in H

d . In other words, F (i)
W ,t measures the total

i-volume (i.e., the i-dimensional Hausdorff measure) of the intersection process ξ
(i)
t

within W . For example,

F (d−1)
W ,t =

∑

H∈ηt

Hd−1(H ∩ W ) = Hd−1
( ⋃

H∈ηt

H ∩ W
)

is the total surface content of the union of all hyperplanes of η withinW . On the other
hand,

F (0)
W ,t = 1

d!
∑

(H1,...,Hd )∈ηdt, 	=

1{H1 ∩ . . . ∩ Hd ∩ W 	= ∅, dim(H1 ∩ . . . ∩ Hd) = 0}
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is the total number of vertices inW of the Poisson hyperplane tessellation, i.e., the total
number of intersection points induced by the hyperplanes of ηt . In the Euclidean case
these random variables have received particular attention in the literature, see e.g.
[20,21,27,29,30,36,42,58,64] and the references cited therein. As in the Euclidean
case, we will start by investigating the expectation of F (i)

W ,t .

Theorem 1 (Expectation) If W ⊂ H
d is a Borel set, t > 0 and i ∈ {0, 1, . . . , d − 1},

then

EF (i)
W ,t = ωi+1

ωd+1

(
ωd+1

ωd

)d−i td−i

(d − i)! H
d(W ).

Remark 1 In comparison with the Euclidean and spherical case we observe that pre-
cisely the same formula holds in these spaces. This is not surprising, since the proof of
Theorem 1 is based only on the multivariate Mecke formula for Poisson processes and
a recursive application of Crofton’s formula from integral geometry, see Sect. 4. Since
the latter holds for any standard space of constant curvature κ ∈ {−1, 0, 1} with the
same constant (cf. [11,61]), independently of the curvature κ , the result of Theorem 1
holds simultaneously for all standard spaces of constant curvature κ ∈ {−1, 0, 1}.
In other words this means that the expectation EF (i)

W ,t is not an appropriate quantity
to ‘feel’ or to ‘detect’ the curvature of the underlying space. For this we will use
second-order characteristics.

2.2 Second-order quantities

In a next step, we describe the covariance structure of the functionals F (i)
W ,t , i ∈

{0, 1, . . . , d − 1}, introduced in (1). The following explicit representation for the
covariances will be derived from the Fock space representation of Poisson U-statistics.

Theorem 2 (Covariances) Let W ⊂ H
d be a Borel set, let t > 0, and let i, j ∈

{0, 1, . . . , d − 1}. Then

Cov(F (i)
W ,t , F

( j)
W ,t )

=
min{d−i,d− j}∑

n=1

ci, j,n,d t
2d−i− j−n

∫

Ah(d,d−n)

Hd−n(E ∩ W )2 μd−n(dE)

with

ci, j,n,d = 1

n!
1

ωd+1 ωd−n+1

ωi+1

(d − i − n)!
ω j+1

(d − j − n)!
(

ωd+1

ωd

)2d−i− j−n

.

Remark 2 Since Theorem 2 follows from the general Fock space representation of
Poisson U-statistics, the formula for Cov(F (i)

W ,t , F
( j)
W ,t ) is formally the same for all
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spaces of constant curvature κ ∈ {−1, 0, 1}. However, the curvature properties of the
underlying space are hidden in the integral-geometric expression

Jk(W ) :=
∫

Ah(d,k)
Hk(E ∩ W )2 μk(dE),

for k ∈ {0, . . . , d−1}. In fact, if κ ∈ {−1, 0} and if we replaceW by a ball Br of radius
r around an arbitrary fixed point, we can consider the asymptotic behaviour of Jk(Br ),
as r → ∞, which is quite different in these two cases (note that in spherical spaces
with constant curvature κ = 1 the range of r is bounded). While in the Euclidean case
κ = 0, Jk(Br ) behaves like a constant multiple of rd+k for all choices of k, in the
hyperbolic case κ = −1 we will show that Jk(Br ) behaves like a constant multiple
of e(d−1)r if 2k − 1 < d, like a constant multiple of re(d−1)r if 2k − 1 = d and like
a constant multiple of e2(k−1)r if 2k − 1 > d, see Lemma 8 below. This also means
that only in the case where 2k − 1 < d, the value Jk(Br ) grows with r like a constant
multiple of the volume of Br . In this sense we can say that second-order properties of
the functionals F (i)

W ,t are sensitive to the curvature of the underlying space. In Euclidean
space, cross-sectional measures such as the Crofton-type integrals Jk(W ) have been
studied intensively, in particular since theynaturally arise in the context of stereological
problems or in the investigation of geometric inequalities (see [64, Section 8.6] for
further details). In the present study, it follows from Theorem 2 that the quantities
Jd−n(Br ), for n = 1, . . . , d − i , determine the asymptotic behaviour of the variances
Var(F (i)

Br ,t
), as r → ∞. We will show in Sect. 4.4 that the dominating contribution

comes from Jd−1(Br ). Since the distinction 2(d − 1) − 1 < d, 2(d − 1) − 1 = d,
2(d − 1) − 1 > d precisely corresponds to the cases d = 2, d = 3, d ≥ 4, we already
see one reason for the dependence of our results on the dimension of the hyperbolic
space. In order to establish the normal approximation bounds of Theorem 5, which
are based on the general bound provided in (14), we have to deal with further integrals
of Crofton-type, as described in Sect. 6.2.

Continuing the discussion of second-order properties of Poisson hyperplane tessel-
lations in H

d , we now introduce and describe the K-function and the pair-correlation
function of the i-dimensional Hausdorff measure restricted to the i-skeleton of the
tessellation. In the Euclidean case these two functions have turned out to be essential
tools in the second-order analysis of stationary random measures (see the original
paper [60] and the recent monograph [4] as well as the references cited therein). To
be precise, for i ∈ {0, 1, . . . , d − 1} and fixed t > 0, we first consider the i-skeleton
of the Poisson hyperplane tessellation in H

d with intensity t , which is defined as the
random closed set

skeli :=
⋃

(H1,...,Hd−i )∈ηd−i
t, 	=

dim(H1∩...∩Hd−i )=i

H1 ∩ . . . ∩ Hd−i .

The i-dimensional Hausdorff measure on skeli is denoted by Mi . It is a stationary
random measure on H

d , that is, its distribution is invariant under isometries of H
d .
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Its intensity is defined by λi = EF (i)
B,t , where B ⊂ H

d is an arbitrary Borel set with

Hd(B) = 1. It follows from Theorem 1 that

λi = ωi+1

ωd+1

(
ωd+1

ωd

)d−i td−i

(d − i)! . (2)

The K-function of the random measure Mi is defined by

Ki (r) := 1

λ2i
E

∫

Hd

∫

B
1{0 < dh(x, y) ≤ r}Mi (dy)Mi (dx), r > 0. (3)

Writing this definition in the form

λi Ki (r) = 1

λi
E

∫

B
Mi (B(y, r)\{y})Mi (dy),

where B(y, r) is a closed hyperbolic ball with centre y and radius r , justifies the
(common) interpretation of the K-function as the meanHi -measure of the i-skeleton
skeli within a ball of radius r centred at the typical point of Mi (see also [45, p. 316]
for a similar description in the point process case). In point process theory (which
concerns the case i = 0), the K-function is a popular device for the analysis and
distinction of spatial correlations in point patterns. Since it includes the radius as a
parameter, the K-function provides cumulative information across a range of spatial
scales (see [4]). Here we consider also correlations in mass distributions concentrated
on lower-dimensional structures.

The condition dh(x, y) > 0 is usually omitted in the definition of the K-function
of a diffuse stationary random measure, since in this case it has no effect. For i ∈
{1, . . . , d − 1}, the proof of the following more general Theorem 3 will show that
Ki (r) remains indeed unchanged if we drop the condition dh(x, y) > 0. For i = 0,
however, the random measure Mi is a stationary point process in H

d and then the
restriction dh(x, y) > 0 is common. The term which has to be added if this restriction
is removed is just λ−1

0 , see the comments below. The proof of Theorem 3 will also
show that the summands corresponding to indices n ∈ {0, . . . , d − 1} in (4) are not
affected by the restriction, but the summand with n = d will be zero.

If we define Ki (B, r) as in (3), but for a general measurable set B ⊂ H
d , it follows

from the stationarity of ηt that the measure Ki ( · , r) is isometry invariant and hence
a constant multiple of Hd( · ), provided it is locally finite. In Theorem 3, this will be
shown and the constantwill be determined by calculating Ki (B, r) for ameasurable set
B ⊂ H

d withHd(B) = 1. We will also see that the map r �→ Ki (r) is differentiable,
which allows us to consider the pair-correlation function

gi (r) := 1

ωd sinhd−1(r)

dKi

dr
(r), r > 0.

Roughly speaking it describes the probability of finding a point on the i-skeleton at
geodesic distance r from another point belonging to skeli . In contrast to the cumu-
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lative K-function, which contains contributions for all interpoint distances less than
or equal to some r , the pair-correlation function basically contains contributions only
from interpoint distances equal to some given r . In statistical physics, pair-correlation
functions are a common tool, for instance, in the analysis of the spatial distribution of
(random) heterogeneous materials, of disordered particle packings [3] or of hyperuni-
formity in point patterns and random measures [31,32,43,69].

More generally and in analogy to the covariances considered in Theorem 2, we
will consider the mixed K-function Ki j for i, j ∈ {0, . . . , d − 1}. For r > 0 and a
measurable set B ⊂ H

d withHd(B) = 1 it is defined by

Ki j (r) = 1

λiλ j
E

∫

Hd

∫

B
1{0 < dh(x, y) ≤ r}M j (dy)Mi (dx)

= 1

λiλ j
E

∫

skeli

∫

skel j∩B
1{0 < dh(x, y) ≤ r}H j (dy)Hi (dx).

Similarly as in the special case of the classical K-function, we can rewrite the definition
in the form

λi Ki j (r) = 1

λ j
E

∫

B
Mi (B(y, r) \ {y})M j (dy),

which suggests the interpretation of the mixed K-function as describing the random
measure Mi as seen from a typical point of M j , in the sense of Palm distributions.
We retrieve the ordinary K-function by the special choice j = i . The new mixed
K-function allows to explore correlations between mass distributions concentrated on
structures of different dimensions, including the interaction between a point process
(obtained for i = 0) and diffuse random measures (obtained for j > 0).

The mixed pair-correlation function gi j is then defined in the obvious way by
differentiation of Ki j , namely,

gi j (r) := 1

ωd sinhd−1(r)

dKi j

dr
(r), r > 0.

As in the case of the K-function, the condition that 0 < dh(x, y) can be omitted if
i ≥ 1 or j ≥ 1.

Theorem 3 (Mixed K-function and mixed pair-correlation function) If i, j ∈
{0, 1, . . . , d − 1}, t > 0 and r > 0, then

Ki j (r) =
m(d,i, j)∑

n=0

n!
(
d − i

n

)(
d − j

n

)
ωd+1ωd−n

ωd−n+1

(
ωd

ωd+1

1

t

)n ∫ r

0
sinhd−n−1(s) ds,

gi j (r) = 1 +
m(d,i, j)∑

n=1

n!
(
d − i

n

)(
d − j

n

)
ωd−n

ωd−n+1

(
ωd

ωd+1

)n−1 1

(t sinh(r))n
, (4)

where m(d, i, j) := min{d − i, d − j, d − 1}.
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In (4) we restrict the summation to n ≤ d − 1 in order to avoid an undefined
expression which arises for i = j = 0 and n = d. Alternatively, for n = d the
factor ωd−n = ω0 is ω0 = 2/Γ (0) = 0 and the product with the infinite integral can
be defined to be zero. However, if we remove the restriction dh(x, y) > 0, then for
i = j = 0 and an arbitrary Borel set B ⊂ H

d with Hd(B) = 1 we get the additional
contribution

K ∗
00(r) : = 1

λ20
E

∫

skel0

∫

skel0∩B
1{0 = dh(x, y) ≤ r}H0(dy)H0(dx)

= 1

λ20
E

[
H0(skel0 ∩ B)

]
= 1

λ20
E

[
F (0)
B,t

]
= λ−1

0 .

This is consistent with (4) if the summation is extended up to n = d and the product
ω0
∫ r
0 sinhd−d−1(s) ds is (properly) interpreted asHd−d(Bd−d

r ) = 1 (see the proof of
Theorem 3).

In the special case d = 2 and for i = j we thus obtain

g0(r) = 1 + 4

π t

1

sinh(r)
and g1(r) = 1 + 1

π t

1

sinh(r)
,

and for d = 3 and again i = j we get

g0(r) = 1 + 9

2 t

1

sinh(r)
+ 36

π2 t2
1

sinh2(r)
,

g1(r) = 1 + 2

t

1

sinh(r)
+ 4

π2 t2
1

sinh2(r)
,

g2(r) = 1 + 1

2 t

1

sinh(r)
,

see Fig. 2.
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Fig. 2 Left panel: The pair-correlation functions g0 (solid curve) and g1 (dashed curve) for d = 2 and
t = 1. Right panel: The pair-correlation functions g0 (solid curve), g1 (dashed curve) and g2 (dotted curve)
for d = 3 and t = 1
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Remark 3 An inspection of the proof shows that Theorem 3 is based only on Crofton’s
formula and Lemma 4, which in turn is also based on Crofton’s formula. However,
since the latter holds for any space of constant curvature κ ∈ {−1, 0, 1} with the same
constant (cf. [11,61]), independently of the curvature κ , Theorem 3 remains valid also
in spherical and Euclidean spaces of curvature κ = 1 and κ = 0, respectively. Namely,
defining the modified sine function

snκ(r) :=

⎧
⎪⎨

⎪⎩

sin(r) : κ = 1,

r : κ = 0,

sinh(r) : κ = −1,

we obtain

Ki j (r) =
m(d,i, j)∑

n=0

n!
(
d − i

n

)(
d − j

n

)
ωd+1ωd−n

ωd−n+1

(
ωd

ωd+1

1

t

)n ∫ r

0
snd−n−1

κ (s) ds

and

gi j (r) = 1 +
m(d,i, j)∑

n=1

n!
(
d − i

n

)(
d − j

n

)
ωd−n

ωd−n+1

(
ωd

ωd+1

)n−1 1

(t snκ(r))n

for r > 0 if κ ∈ {−1, 0} and 0 < r < π if κ = 1. For i = j = d − 1 and κ = 1 these
formulas have been proved in [26, Section 6.2] based on a different normalization.
Moreover, for κ = 0 the formula for g0(r) appears as the identity (3.15) in [22], while
gd−1(r) can be found in [65, Section 7]. As already explained in [23], for general
i ∈ {0, 1, . . . , d − 1} it can in principle be deduced from an explicit formula for the
second-order moments of the total volume of intersection processes, see [41, p. 164].

2.3 Limit theorems

Our next result is a central limit theorem for F (i)
W ,t , for a fixed hyperbolic convex body

W , when the intensity parameter t tends to infinity. We will measure the distance
between (the laws of) two random variables by the Wasserstein and the Kolmogorov
distance. For their definitions we refer to Sect. 3.2 below.

Theorem 4 (CLT, growing intensity) Let d ≥ 2, i ∈ {0, 1, . . . , d−1} and let W ∈ Kd
h

be a fixed hyperbolic convex body with non-empty interior. Let N be a standard Gaus-
sian random variable, and let d( · , · ) denote either theWasserstein or the Kolmogorov
distance. Then there exists a constant c ∈ (0,∞) such that

d

⎛

⎝
F (i)
W ,t − EF (i)

W ,t
√

VarF (i)
W ,t

, N

⎞

⎠ ≤ c t−1/2

for all t ≥ 1.
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As already explained in the introduction, the central limit problem for F (i)
W ,t can also

be approached in another set-up, which in the Euclidean case is equivalent to the one
just discussed, but turns out to be fundamentally different in hyperbolic space. More
precisely, we turn now to the case, where the intensity t is fixed, while the size of the
observation window is increased. We do this only in the case of spherical windows in
H

d . In other words, we choose forW the hyperbolic ball Br (around the origin p) and
write F (i)

r ,t instead of F (i)
Br ,t

in this case. Our next result is a central limit theorem for

F (i)
r ,t for dimension d = 2 in part (a) and for d = 3 in part (b). Moreover, it turns out

that a central limit theorem for F (i)
r ,t is no longer valid in any space dimension d ≥ 4,

see part (c). We emphasize that this surprising phenomenon is in sharp contrast to the
Euclidean case [21,36,58] and is an effect of the negative curvature.

In the following, it should be understood that whenever we impose an assumption
r ≥ 1, the lower bound 1 could be replaced by any other fixed positive number.

Theorem 5 (CLT, growing spherical window) Let t ≥ 1, let N be a standard Gaussian
random variable, and let d( · , · ) denote either the Wasserstein or the Kolmogorov
distance.

(a) If d = 2, then there is a constant c2 ∈ (0,∞) only depending on t such that

d

⎛

⎝
F (i)
r ,t − EF (i)

r ,t
√

VarF (i)
r ,t

, N

⎞

⎠ ≤ c2 r
1−i e−r/2

for i ∈ {0, 1} and r ≥ 1.
(b) If d = 3, then there is a constant c3 ∈ (0,∞) only depending on t such that

d

⎛

⎝
F (i)
r ,t − EF (i)

r ,t
√

VarF (i)
r ,t

, N

⎞

⎠ ≤
{
c3 r−1 : i = 2,

c3 r−1/2 : i ∈ {0, 1},

for r ≥ 1.
(c) If d ≥ 4 and i = d − 1 or if d ≥ 7 and i ∈ {0, 1, . . . , d − 1}, then the random

variable (F (i)
r ,t − EF (i)

r ,t )/

√
VarF (i)

r ,t does not satisfy a central limit theorem for
r → ∞.

Remark 4 (i) The restriction imposed on the parameters d, i in Theorem 5 (c) is the
result of a number of technical obstacles one needs to overcome in its proof. We
strongly believe that a central limit theorem in fact fails for all d ≥ 4 and all choices
of i ∈ {0, 1, . . . , d − 1}. However, we have to leave this as an open problem for
future work. For some remarks about the potential limiting distribution in Theorem
5 (c) we refer to Remark 12.
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(ii) It is instructive to rewrite the normal approximation bounds in Theorem 5 (a) and
(b) as follows. For d = 2 and i ∈ {0, 1} we have that

d

⎛

⎝
F (i)
r ,t − EF (i)

r ,t
√

VarF (i)
r ,t

, N

⎞

⎠ ≤ ĉ2
log1−i H2(Br )
√
H2(Br )

, r ≥ 1,

and for d = 3 we have, again for r ≥ 1,

d

⎛

⎝
F (i)
r ,t − EF (i)

r ,t
√

VarF (i)
r ,t

, N

⎞

⎠ ≤ ĉ3

⎧
⎨

⎩

1
logH3(Br )

: i = 2,
1√

logH3(Br )
: i ∈ {0, 1}.

Here ĉ2, ĉ3 ∈ (0,∞) are again constants only depending on t . This means that in
dimension d = 2 the speed of convergence is the same as in the Euclidean case (up
to the logarithmic factor for i = 0). Moreover, it shows that d = 3 is the critical
dimension for the central limit theorem, which only holds in this case with a rate
of convergence which is very much slowed down.

Theorem 4 shows that for fixed radius r and increasing intensity t a central limit
theorem for F (i)

r ,t with i ∈ {0, 1, . . . , d − 1} holds. On the other hand, according to
Theorem 5 (c) the central limit theorem breaks down for dimensions d ≥ 4 (if the total
surface area is considered) or d ≥ 7 (for general i ∈ {0, 1, . . . , d − 1}) if the intensity
t stays fixed and r → ∞. Against this background the question arises whether in these
cases the central limit behaviour can be preserved if the intensity t and the radius r
tend to infinity simultaneously. In fact, the following result states that this is indeed
the case. More precisely, it says that, independently of the behaviour of r , the central
limit theorem holds as soon as t → ∞ (and r is bounded from below by 1).

Theorem 6 (CLT for simultaneous growth of intensity and window) Let d ≥ 4 and
i = d − 1 or d ≥ 7 and i ∈ {0, 1, . . . , d − 1}. Also, let N be a standard Gaussian
random variable. Then there is a constant c ∈ (0,∞) such that

d

⎛

⎝
F (i)
r ,t − EF (i)

r ,t
√

VarF (i)
r ,t

, N

⎞

⎠ ≤ c√
t

for all r ≥ 1 and t ≥ 1, where d( · , · ) denotes either the Wasserstein or the Kol-
mogorov distance.

Remark 5 In dimensions d = 2 and d = 3 we also have normal approximation bounds
that simultaneously involve the two parameters t and r . In fact, for d = 2 the bounds
(36) and (40) below show that

d

⎛

⎝
F (i)
r ,t − EF (i)

r ,t
√

VarF (i)
r ,t

, N

⎞

⎠ ≤ c t−1/2 r1−i e−r/2
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holds for all t ≥ 1, r ≥ 1 and i ∈ {0, 1}. Similarly, for d = 3 the estimates (42), (46)
and (47) prove that

d

⎛

⎝
F (i)
r ,t − EF (i)

r ,t
√

VarF (i)
r ,t

, N

⎞

⎠ ≤ c ·
{
t−1/2r−1 : i = 2,

t−1/2r−1/2 : i ∈ {0, 1},

for all t ≥ 1 and r ≥ 1. In both cases, d( · , · ) stands for either the Wasserstein or the
Kolmogorov distance. This way we recover Theorem 4 for d = 2 and d = 3 in the
special case where W = Br with r fixed and we recover Theorem 5 (a) and (b) by
fixing t .

Finally, let us turn to the multivariate set-up. To compare the distance between the
distributions of (the laws of) two random vectors we use what is known as the d2-
and the d3-distance; for their definition we refer to Sect. 3.3 below. We approach the
multivariate central limit theorem by considering, as above, two different settings. To
handle the central limit problem for a fixed window W ∈ Kd

h and growing intensities
we define for t > 0 the d-dimensional random vector

FW ,t :=
(
F (0)
W ,t − EF (0)

W ,t

td−1/2 , . . . ,
F (i)
W ,t − EF (i)

W ,t

td−i−1/2 , . . . ,
F (d−1)
W ,t − EF (d−1)

W ,t

t1/2

)

.

Moreover, for i, j ∈ {0, 1, . . . , d − 1} we introduce the asymptotic covariances and
the asymptotic covariance matrix of the random vector FW ,t , as t → ∞, by

τ
i, j
W := lim

t→∞ Cov

(
F (i)
W ,t − EF (i)

W ,t

td−i−1/2 ,
F ( j)
W ,t − EF ( j)

W ,t

td− j−1/2

)

, TW :=
(
τ
i, j
W

)d−1

i, j=0
.

The existence of the limit and the precise value of τ
i, j
W follows from (18) below. It is

easy to see that TW has rank one, as in Euclidean space.
In view of Theorem 5, for fixed intensity t > 0 and a sequence of growing spherical

windows, taking W = Br for r > 0 we put

Fr ,t :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
F (0)
r ,t −EF (0)

r ,t

er/2
,
F (1)
r ,t −EF (1)

r ,t

er/2

)

: d = 2,
(

F (0)
r ,t −EF (0)

r ,t√
r er

,
F (1)
r ,t −EF (1)

r ,t√
r er

,
F (2)
r ,t −EF (2)

r ,t√
r er

)

: d = 3,
(

F (0)
r ,t −EF (0)

r ,t

er(d−2) , . . . ,
F (d−1)
r ,t −EF (d−1)

r ,t

er(d−2)

)

: d ≥ 4,
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and define the asymptotic covariance matrix Σd =
(
σ
i, j
d

)d−1

i, j=0
of the random vector

Fr ,t , as r → ∞, for d ≥ 2 by

σ
i, j
d :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

lim
r→∞ Cov

(
F (i)
r ,t −EF (i)

r ,t

er/2
,
F ( j)
r ,t −EF ( j)

r ,t

er/2

)

: d = 2,

lim
r→∞ Cov

(
F (i)
r ,t −EF (i)

r ,t√
r er

,
F ( j)
r ,t −EF ( j)

r ,t√
r er

)

: d = 3,

lim
r→∞ Cov

(
F (i)
r ,t −EF (i)

r ,t

er(d−2) ,
F ( j)
r ,t −EF ( j)

r ,t

er(d−2)

)

: d ≥ 4.

The covariance matrices Σd are explicitly given by (20) for d = 2, (28) for d = 3
and (29) for d ≥ 4 below. Moreover, in Sect. 4.5 we determine convergence rates.
In particular, we will show that Σ2 has full rank (is positive definite) and Σd has
rank one for d ≥ 3. We remark that this is in sharp contrast to the corresponding
result in Euclidean spaces, where the asymptotic covariance matrix has rank one for
all d ≥ 2, see [21, Theorem 5.1 (ii)]. Note that the dependence of these limits on
the fixed intensity t > 0 is not made explicit by our notation, but this dependence is
shown in Lemmas 20, 21 and 23.

In order to state the multivariate central limit theorem, we use the d2 and the d3
distance for random vectors (see Sect. 3.3 for explicit definitions).

Theorem 7 (Multivariate CLT)

(a) Let d ≥ 2 and W ∈ Kd
h . Let NTW be a d-dimensional centred Gaussian random

vector with covariance matrix TW . Then there exists a constant c ∈ (0,∞) such
that

d3(FW ,t , NTW ) ≤ c t−1/2

for all t ≥ 1.
(b) Fix t ≥ 1 and let d = 2. Let NΣ2 be a 2-dimensional centred Gaussian random

vector with covariance matrix Σ2. Then there exists a constant c2 ∈ (0,∞) such
that

d j (Fr ,t , NΣ2) ≤ c2 r e
−r/2

for all r ≥ 1 and j ∈ {2, 3}.
(c) Fix t ≥ 1 and let d = 3. Let NΣ3 be a 3-dimensional centred Gaussian random

vector with covariance matrix Σ3. Then there exists a constant c3 ∈ (0,∞) such
that

d3(Fr ,t , NΣ3) ≤ c3 r
−1/2

for all r ≥ 1.
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Remark 6 After having seen that in the univariate case the central limit theorem for
d ≥ 4 can be preserved by a simultaneous growth of the intensity t and the radius r ,
the question arises whether such a phenomenon also holds in the multivariate set-up.
This is in fact the case, but we decided not to present the details for brevity.

3 Backgroundmaterial and preparations

3.1 More hyperbolic geometry

Recall that by H
d we denote the hyperbolic space of dimension d. For concreteness

we may take as a specific model for H
d the d-dimensional open Euclidean open unit

ball Bd,◦
euc together with the Poincaré metric dh given by

cosh dh(x, y) := 1 + 2‖x − y‖2euc
(1 − ‖x‖2euc)(1 − ‖y‖2euc)

, x, y ∈ Bd,◦
euc ,

where ‖ · ‖euc stands for the usual Euclidean norm. This is known as the conformal
ball model for H

d , see [56, Chapter 4.5]. However, it should be emphasized that
our arguments are independent of the special choice of a model for a simply con-
nected, geodesically complete space of constant negative curvature κ = −1. We write
B(z, r) = {x ∈ H

d : dh(x, z) ≤ r} for the hyperbolic ball with centre z ∈ H
d and

radius r ≥ 0 and put Br = B(p, r), where p is a fixed reference point. In this paper
the s-dimensional Hausdorff measure Hs , s ≥ 0, is understood with respect to the
metric space (Hd , dh).

For later reference we need a formula for the surface area of a hyperbolic ball
B(z, r). It is given by

Hd−1(∂B(z, r)) = ωd sinh
d−1(r),

where ωd = dκd = 2πd/2/Γ (d/2) is the surface area of a d-dimensional unit ball in
the Euclidean space R

d and κd is its volume. Moreover, the volume of a hyperbolic
ball of radius r is given by

Hd(B(z, r)) = ωd

∫ r

0
sinhd−1(s) ds. (5)

We refer to Sections 3.3 and 3.4 and especially to formulas (3.25) and (3.26) in the
monograph [13]. For the special case d = 2, we getH2(B(z, r)) = 2π(cosh(r) − 1).
Here, cosh and sinh are the hyperbolic cosine and sine, which are given by

cosh(x) = ex + e−x

2
and sinh(x) = ex − e−x

2
, x ∈ R,

respectively. We will frequently make use of the fact that cosh(x), sinh(x) ∈ Θ(ex ),
as x → ∞, where Θ( · ) stands for the usual Landau symbol. Additionally we will
use the following inequalities.
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Lemma 1 The function sinh satisfies the inequalities

(a) sinh(x) ≥ ex−3 for x ≥ 0.1, (b) sinh(x) ≥ x for x ≥ 0.

Proof (a) By the definition of the hyperbolic sine function, we get

2 sinh(x)

ex−3 = e3 − e−2x+3 = e3(1 − e−2x ) ≥ 2 for x ≥ 0.1,

since exp(2x) ≥ (1 − 2 exp(−3))−1 for x ≥ 0.1.
(b) This follows from the definition of sinh by basic calculus.

��

Let I (Hd) denote the isometry group of H
d , and let I (Hd , p) denote the subgroup

of isometries which fix p. The isometry group acts transitively on H
d , that is, H

d

is a homogeneous space which additionally satisfies the axiom of free mobility (see
[63, III.6 and IV.1] for a discussion from the viewpoint of Riemannian geometry). A
detailed description of the isometry goup I (Hd) is provided in [56, Chapters 3–6].
In the hyperboloid model, isometries are obtained as restrictions of positive Lorentz
transformations [56, Theorem3.2.3], in the conformal ballmodel and in the upper half-
space model, isometries are described as Möbius transformations (see [56, Theorems
4.5.2 and 4.6.2]), and in the projective disc model (also Klein–Beltrami model) the
description is in terms of projective transformations (see [56, Theorems 6.1.2 and
6.1.3]). A classification of Möbius transformations is given in [56, Section 4.7], the
structure of the isometry group as a topological group is analyzed in [56, Section 5.2].
For an alternative approach to hyperbolic space and its isometry group, see also [8], a
more elementary treatment in the special case of the hyperbolic plane is provided in
the textbook [1].

We denote by Gh(d, k) the compact space of k-dimensional totally geodesic sub-
spaces containing the origin p. In the conformal ball model, all elements of Gh(d, k)
arise as follows. If p coincides with the centre o of Bd,◦

euc , then an element of Gh(d, k)
is the intersection of Bd,◦

euc with a k-dimensional Euclidean linear subspace of R
d . If

otherwise p 	= o, then an element of Gh(d, k) is the intersection of Bd,◦
euc with a k-

dimensional Euclidean sphere in R
d through p which is orthogonal to the boundary

of Bd,◦
euc , cf. [56, Theorem 4.5.3]. Up to a scaling factor, Gh(d, k) carries a regular

Borel measure νk which is invariant under I (Hd , p). Since Gh(d, k) is compact we
can normalize νk such that νk(Gh(d, k)) = 1. Recall that Ah(d, k) is the space of
k-dimensional (hyperbolic) planes in H

d . In the conformal ball model all elements
of Ah(d, k) can be represented as intersections with Bd,◦

euc of either k-dimensional
Euclidean linear subspace of R

d or k-dimensional Euclidean spheres in R
d that are

orthogonal to the boundary of Bd,◦
euc . Sometimes it is more convenient to use the pro-

jective disc model of hyperbolic space, in which hyperbolic k-planes are precisely the
non-empty intersections of the open Euclidean unit ball Bd,◦

euc with Euclidean k-planes
of R

d (see [56, Theorem 6.1.4]). On Ah(d, k) there exists a unique (up to scaling)
I (Hd)-invariant measure. In contrast to Gh(d, k), the larger space Ah(d, k) is not
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compact. Each k-plane H ∈ Ah(d, k) is uniquely determined by its orthogonal sub-
space Ld−k passing through the origin p and the intersection point {x} = H ∩ Ld−k .
Using these facts, Santaló [61, Equation (17.41)] (see also [68, Proposition 2.1.6],
[18, Equation (9)]) provides a useful representation of an isometry invariant mea-
sure on Ah(d, k), which we use here with a different normalization. For a Borel set
B ⊂ Ah(d, k), it is given by

μk(B) =
∫

Gh(d,d−k)

∫

L
coshk(dh(x, p))1{H(L, x) ∈ B}Hd−k(dx) νd−k(dL), (6)

where H(L, x) is the k-plane orthogonal to L passing through x .

Remark 7 The current normalization of the measureμk differs from the normalization
of the measure dLk used in [61] by the constant ωd · · · ωd−k+1/(ωk · · · ω1). This also
affects the constants in the formulas from hyperbolic integral geometry taken from
[61]. The reason for the present normalization is to simplify a comparison of our
results to corresponding results in Euclidean and spherical space.

According to [61, Equation (14.69)] themeasureμk satisfies the followingCrofton-
type formula. In fact, the discussion in [11, Section 7] allows us to state the result
not only for sets bounded by smooth submanifolds (as in [61]), but for much more
general sets, which include arbitrary convex sets as a very special case. The following
lemma holds forHd+i−k-measurable sets W ⊂ H

d which are Hausdorff (d + i − k)-
rectifiable. Following [11, Definition 5.13], we say that a setW ⊂ H

d is �-rectifiable if
� is an integer with 0 < � ≤ d andW is the image of some bounded subset ofR

� under
a Lipschitz map from R

� to H
d . A set W ⊂ H

d is Hausdorff �-rectifiable provided
that H�(W ) < ∞ and if there exist �-rectifiable subsets B1, B2, . . . of H

d such that
H�(W\⋃i≥1 Bi ) = 0.Clearly, anyBorel setW which is contained in an �-dimensional
plane is Hausdorff �-rectifiable if it satisfies H�(W ) < ∞. Note that Hausdorff �-
rectifiability is an extremely general concept which describes sets having dimension �

and satisfying just some very mild regularity condition. In particular, finite unions of
�-dimensional C1-submanifolds are included as special cases (see [46, Chapter 3] for
a gentle introduction to rectifiability). Moreover, by Federer’s structure theorem every
set with finite �-dimensional Hausdorff measure can be decomposed into a Hausdorff
�-rectifiable part and apurely unrectifiable part. The latter is “invisible froman integral-
geometric point of view” (see FrankMorgan’s comment on the structure theorem) and
considered to be rather exotic.

Lemma 2 Let 0 ≤ i ≤ k ≤ d − 1, and let W ⊂ H
d be a Borel set which is Hausdorff

(d + i − k)-rectifiable. Then

∫

Ah(d,k)
Hi (W ∩ E) μk(dE) = ωd+1 ωi+1

ωk+1 ωd−k+i+1
Hd+i−k(W ). (7)

Remark 8 Strictly speaking the case k = i is not covered by [11]. Although the frame-
work in [11] should extend to this marginal case, we prefer to provide an elementary
direct argument for the case k = i . In this case, the left side of (7) defines an isometry
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invariant Borel measure on H
d . Therefore, in order to confirm (7) in this case, it is

sufficient to show that the equality holds for W = Br , r ≥ 0. Since equality holds for
r = 0 and in view of (5), it is sufficient to show that ωd sinhd−1(r) is the derivative
with respect to r of the function defined by

h(r) : =
∫

Ah(d,k)
Hk(Br ∩ E) μk(dE)

= ωkωd−k

∫ r

0
sinhd−k−1(t) coshk(t)

∫ arcosh
(
cosh(r)
cosh(t)

)

0
sinhk−1(s) ds dt,

where we used (6) and (19) for the equality. The differential of h can be determined
by basic rules of calculus. Using that arcosh(cosh(r)/ cosh(r)) = 0, we thus obtain

h′(r) = ωkωd−k

∫ r

0
sinhd−k−1(t) sinh(r)

(
cosh2(r) − cosh2(t)

) k−1
2 cosh(t) dt .

The substitution sinh(t) = sinh(r) · x leads to

h′(r) = ωkωd−k

∫ 1

0
xd−k−1(1 − x2

) k−2
2 dx sinhd−1(r) = ωd sinh

d−1(r).

The second equality is obtained by first transforming the integral into a Beta integral
(by the substitution x2 = s) and by expressing the Beta function in terms of a ratio of
Gamma function values.

Remark 9 Although both sides of (2) definemeasures with respect to their dependence
on a Borel set W ⊂ H

d , for k 	= i the equality in (2) in general does not extend from
(d + i − k)-rectifiable sets to general Borel sets. This is due to deep classical results
in the structure theory of geometric measure theory, see [16, p. 2] or [46, Chapter 3]
for an introduction and [16, Theorem 3.3.13] for the general treatment. In fact, in the
Euclidean setting, for i = 0, k ∈ {1, . . . , d − 1} and for a general Borel set W ⊂ R

d ,
the right side of (2) is always as large as the left side with equality if and only if W is
(d − k)-rectifiable.

In what follows we use the convention that dim(∅) = −1. The counterpart of the
following lemma in Euclidean space is well known and intuitively clear. In hyperbolic
space the lemma states that for almost all (with respect to the product measure μn

d−1)
n-tuples of hyperplanes (with n ∈ {1, . . . , d}) the intersection of these hyperplanes is
a (d − n)-plane or the empty set. Note that the latter cannot occur in Euclidean space.

Lemma 3 Fix d ≥ 2 and let n ∈ {1, . . . , d}. Then dim(H1 ∩ . . . ∩ Hn) ∈ {−1, d − n}
holds for μn

d−1-almost all (H1, . . . , Hn) ∈ Ah(d, d − 1)n.

Proof We apply induction over n ≥ 1. For n = 1 there is nothing to show. For
n ∈ {2, . . . , d} we have

μn−1
d−1({(H1, . . . , Hn−1)∈Ah(d, d−1)n−1 : dim(H1 ∩ . . . ∩ Hn−1) /∈ {−1, d−(n−1)}})=0
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by the induction hypothesis. Let us introduce the abbreviation Ld−k := H1 ∩ . . .∩ Hk

for H1, . . . , Hk ∈ Ah(d, d − 1) and k ∈ {1, . . . , d}. Using this notation, we have

μn
d−1({(H1, . . . , Hn) ∈ Ah(d, d − 1)n : dim(H1 ∩ . . . ∩ Hn) /∈ {−1, d − n}})
=
∫

Ah(d,d−1)n
1{dim(Ld−n) /∈ {−1, d − n}} μn

d−1(d(H1, . . . , Hn)).

Clearly,

1{dim(Ld−n) /∈ {−1, d − n}}
≤ 1{dim(Ld−n) /∈ {−1, d − n}, dim(Ld−(n−1)) = d − (n − 1)}

+ 1{dim(Ld−(n−1)) /∈ {−1, d − (n − 1)}}. (8)

By the induction hypothesis and Fubini’s theorem we get

∫

Ah(d,d−1)n
1{dim(Ld−(n−1)) /∈ {−1, d − (n − 1)}} μn

d−1(d(H1, . . . , Hn)) = 0,

which covers the case of the second indicator function on the right-hand side of (8).
To deal with the contribution from first indicator function on the right-hand side of
(8), we write c(H1, . . . , Hn−1) for an arbitrary point chosen on H1 ∩ . . . ∩ Hn−1 (in
a measurable way). Then, again by Fubini’s theorem,

μn
d−1({(H1, . . . , Hn) ∈ Ah(d, d − 1)n : dim(Ld−n) /∈ {−1, d − n},

dim(Ld−(n−1)) = d − (n − 1)})
≤
∫

Ah(d,d−1)n−1

∫

Ah(d,d−1)
1{H1 ∩ . . . ∩ Hn−1 ⊆ Hn, H1 ∩ . . . ∩ Hn−1 	= ∅}

× μd−1(dHn) μn−1
d−1(d(H1, . . . , Hn−1))

≤
∫

Ah(d,d−1)n−1

∫

Ah(d,d−1)
1{c(H1, . . . , Hn−1) ∈ Hn}

× μd−1(dHn) μn−1
d−1(d(H1, . . . , Hn−1))

=
∫

Ah(d,d−1)n−1
0 μn−1

d−1(d(H1, . . . , Hn−1)) = 0.

This completes the proof. ��
We will frequently make use of the following transformation formula. The corre-

sponding fact is well known in Euclidean integral geometry. The subsequent argument
follows the same strategy, but is based on the Crofton formula in hyperbolic space
and Lemma 3. In the following, we write Ah(d, d − 1)d−k∗ to denote the set of all
(H1, . . . , Hd−k) ∈ Ah(d, d − 1)d−k which have non-empty intersection.
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Lemma 4 Let k ∈ {0, . . . , d − 1}, and let f : Ah(d, k) → R be a non-negative
measurable function. Then

∫

Ah(d,d−1)d−k∗
f (H1 ∩ . . . ∩ Hd−k) μd−k

d−1(d(H1, . . . , Hd−k))

= c(d, k)
∫

Ah(d,k)
f (E) μk(dE) (9)

with

c(d, k) = ωk+1

ωd+1

(
ωd+1

ωd

)d−k

.

Proof Note that by Lemma 3, forμd−k
d−1-almost all (H1, . . . , Hd−k) ∈ Ah(d, d−1)d−k∗

we have H1 ∩ . . . ∩ Hd−k ∈ A(d, k), hence the integral on the left side of (9) is well
defined.

Let B be a (Borel) measurable subset of Ah(d, k). Then we define a locally finite
Borel measure on Ah(d, k) by

μk(B) := μd−k
d−1({(H1, . . . , Hd−k) ∈ Ah(d, d − 1)d−k∗ : H1 ∩ . . . ∩ Hd−k ∈ B}).

The isometry invariance of μd−1 implies that μk is isometry invariant and hence a
multiple of μk . To determine the constant, let W ∈ Kd

h be a fixed convex body. Then,
by a (d − k)-fold application of the Crofton formula (7) with the choice k = d − 1
and (successively) i = k, k + 1, . . . , d − 1 there, we get

∫

Ah(d,k)
Hk(E ∩ W ) μk(dE)

=
∫

Ah(d,d−1)d−k∗
Hk(H1 ∩ . . . ∩ Hd−k ∩ W ) μd−k

d−1(d(H1, . . . , Hd−k))

=
(
d−1∏

i=k

ωd+1

ωd

ωi+1

ωi+2

)

Hd(W ) = ωk+1

ωd+1

(
ωd+1

ωd

)d−k

Hd(W ).

On the other hand, applying directly the Crofton formula with i = k, we get

∫

Ah(d,k)
Hk(E ∩ W ) μk(dE) = Hd(W ).

A comparison shows that μk = c(d, k)μk which proves the assertion of the lemma. ��

3.2 Poisson U-statistics

Let (X,X ) be a measurable space, which is endowed with a σ -finite measure μ. Let
η be a Poisson process on X with intensity measure μ (we refer to [35] for a formal
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construction). Further, fix m ∈ N and let h : X
m → R be a non-negative, measurable

and symmetric function, which is integrable with respect to μm , the m-fold product
measure of μ. By a Poisson U-statistic (of order m and with kernel h) we understand
a random variable of the form

U =
∑

(x1,...,xm )∈ηm	=

h(x1, . . . , xm),

where ηm	= is the collection of allm-tuples of distinct points of η, see [35]. Functionals of
this type have received considerable attention in the literature, especially in connection
with applications in stochastic geometry, see, for example, [15,27,33,34,36,51,58,
66,67]. In the following, we will frequently use the following consequence of the
multivariate Mecke equation for Poisson functionals [35, Theorem 4.4]. Namely, the
expectation EU of the Poisson U-statistic U is given by

EU = E

∑

(x1,...,xm )∈ηm	=

h(x1, . . . , xm) =
∫

Xm
h(x1, . . . , xm) μm(d(x1, . . . , xm)).

(10)
In the present paper we need a formula for the centred moments of the Poisson

U-statistics U as well as a bound for the Wasserstein and the Kolmogorov distance
of a normalized version of U and a standard Gaussian random variable. To state
such results, we need some more notation. Following [35, Chapter 12], for an integer
n ∈ Nwe letΠn andΠ∗

n be the set of partitions and sub-partitions of [n] := {1, . . . , n},
respectively. We recall that by a sub-partition of {1, . . . , n} we understand a family
of non-empty disjoint subsets (called blocks) of {1, . . . , n} and that a sub-partition σ

is called a partition if
⋃

J∈σ J = {1, . . . , n}. For σ ∈ Π∗
n we let |σ | be the number

of blocks of σ and ‖σ‖ = ∣
∣
⋃

J∈σ J
∣
∣ be the number of elements of

⋃
J∈σ J . In

particular, a partition σ ∈ Πn satisfies ‖σ‖ = n. For � ∈ N and n1, . . . , n� ∈ N, let
n := n1 + . . . + n� and define

Ji := { j ∈ N : n1 + . . . + ni−1 < j ≤ n1 + . . . + ni }, i ∈ {1, . . . , �},

and π := {Ji : i ∈ {1, . . . , �}}. Next, we introduce two classes of sub-partitions of
[n] by

Π∗(n1, . . . , n�) := {σ ∈ Π∗
n : |J ∩ J ′| ≤ 1 for all J ∈ σ and J ′ ∈ π},

Π∗≥2(n1, . . . , n�) := {σ ∈ Π∗(n1, . . . , n�) : |J | ≥ 2 for all J ∈ σ }.

In the same way the two classes of partitions Π(n1, . . . , n�) and Π≥2(n1, . . . , n�) of
[n] are defined (just by omitting the upper index∗ in the above definition). From now on
we assume that n1 = . . . = n� = m ∈ N and define, for σ ∈ Π∗(m, . . . ,m) (where
here and below m appears � times),

[σ ] :={i ∈ [�] : there exists a block J ∈ σ such that J ∩ {m(i − 1) + 1, . . . ,mi} 	=∅}
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Fig. 3 Left panel: Sub-partition from Π∗∗≥2(4, 4, 4). Right panel: Example of a sub-partition not belonging
toΠ∗∗≥2(4, 4, 4). In fact, the block indicated by the dashed curve contradicts condition (i), the block indicated
by the dotted curve contradicts condition (ii) and since no element from the last row is contained in any
block also condition (iii) is violated

as well as

Π∗∗≥2(m, . . . ,m) := {σ ∈ Π∗≥2(m, . . . ,m) : [σ ] = [�]}.

The sub-partitions σ ∈ Π∗∗≥2(m, . . . ,m) of [m�] are easy to visualize as diagrams
(cf. [52, Chapter 4]). In such a diagram the m� elements of [m�] are arranged in an
array of � rows and m columns, where 1, . . . ,m form the first row, m + 1, . . . , 2m
the second etc. The blocks of σ are indicated by closed curves, where the elements
enclosed by a curve are meant to belong to the same block. Then the condition that
σ ∈ Π∗∗≥2(m, . . . ,m) can be expressed by the following three requirements:

(i) all blocks of σ have at least two elements,
(ii) each block of σ contains at most one element from each row,
(iii) in each row there is at least one element that belongs to some block of σ .

For an example and a counterexample we refer to Fig. 3.
For two functions g1 : X

�1 → R and g2 : X
�2 → R with �1, �2 ∈ N, we denote

by g1 ⊗ g2 : X
�1+�2 → R their usual tensor product. We are now in the position to

rephrase the following formula for the centred moments of the Poisson U-statistic U
(see [35, Proposition 12.13]):

E[(U − EU )�] =
∑

σ∈Π∗∗≥2(m,...,m)

∫

Xm�+|σ |−‖σ‖
(h⊗�)σ dμm�+|σ |−‖σ‖, (11)

where h⊗� is the �-fold tensor product of h with itself and (h⊗�)σ : X
m�+|σ |−‖σ‖ → R

stands for the function that arises from h⊗� by replacing all variables that are in the
same block of σ by a new, common variable. Here, we implicitly assume that the
function h is such that all integrals that appear on the right-hand side are well-defined.
This formula will turn out to be a crucial tool in the proof of Theorem 5(c).

3.3 Normal approximation bounds

In this section, we continue to use the notation and the set-up of the preceding section.
But since we turn to normal approximation bounds for Poisson U-statistics, some
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further notation is required. For u, v ∈ {1, . . . ,m} we let Πcon≥2 (u, u, v, v) be the class
of partitions inΠ≥2(u, u, v, v)whose diagram is connected,whichmeans that the rows
of the diagram cannot be divided into two subsets, each defining a separate diagram
(cf. [52, page 47]). More formally, there are no sets A, B ⊂ [4] with A ∪ B = [4],
A ∩ B = ∅ and such that each block either consists of elements from rows in A or
of elements from rows in B, see Fig. 4 for an example and a counterexample. We can
now introduce the quantities

Mu,v(h) :=
∑

σ∈Πcon≥2 (u,u,v,v)

∫

X|σ |
(hu ⊗ hu ⊗ hv ⊗ hv)σ dμ|σ |, (12)

where

hu(x1, . . . , xu) =
(
m

u

)∫

Xm−u
h(x1, . . . , xu, x̃1, . . . , x̃m−u) μm−u(d(x̃1, . . . , x̃m−u))

(13)

for u ∈ {1, . . . ,m} (again, we implicitly assume that h is such that the integrals
appearing in (12) are well-defined). To measure the distance between two real-valued
random variables X ,Y (or, more precisely, their laws), the Kolmogorov distance

dK (X ,Y ) := sup
s∈R

|P(X ≤ s) − P(Y ≤ s)|

and the Wasserstein distance

dW (X ,Y ) := sup
ϕ∈Lip(1)

|Eϕ(X) − Eϕ(Y )|

are used, where Lip(1) denotes the space of Lipschitz functions ϕ : R → R with
a Lipschitz constant less than or equal to one. It is well known that convergence
with respect to the Kolmogorov or the Wasserstein distance implies convergence in
distribution.We are now in the position to rephrase a quantitative central limit theorem
for Poisson U-statistics. Namely, [58, Theorem 4.7] and [67, Therorem 4.2] state that
there exists a constant cm ∈ (0,∞), depending only on m (the order of the Poisson
U-statistic), such that

d

(
U − EU√

Var(U )
, N

)

≤ cm

m∑

u,v=1

√
Mu,v(h)

Var(U )
, (14)

where d( · , · ) stands for either the Wasserstein or the Kolmogorov distance. Here,
one can choose cm = 2m7/2 for the Wasserstein distance and cm = 19m5 for the
Kolmogorov distance.
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Fig. 4 Left panel: Partition from Πcon≥2 (2, 2, 3, 3). Right panel: Example of a partition not belonging to
Πcon≥2 (2, 2, 3, 3). In fact, the diagram is not connected as indicated by the dashed line

Finally, we turn to a multivariate normal approximation for Poisson U-statistics.
For integers p ∈ N and m1, . . . ,mp ∈ N, and for each i ∈ {1, . . . , p}, let

Ui =
∑

(x1,...,xmi )∈η
mi	=

h(i)(x1, . . . , xmi )

be a Poisson U-statistic of order mi based on a kernel function h(i) : X
mi → R

satisfying the same assumptions as above. We form the p-dimensional random vector
U := (U1, . . . ,Up) and our goal is to compare U with a p-dimensional Gaussian
random vector N. To do this, we use the so-called d2- and d3-distance, which are
defined as

d2(U,N) := sup
h∈C2

∣
∣Eϕ(U) − Eϕ(N)

∣
∣

d3(U,N) := sup
h∈C3

∣
∣Eϕ(U) − Eϕ(N)

∣
∣,

respectively. Here, C2 is the space of functions ϕ : R
p → R which are twice partially

continuously differentiable and satisfy

sup
x 	=y

|ϕ(x) − ϕ(y)|
‖x − y‖ ≤ 1 and sup

x 	=y

‖∇ϕ(x) − ∇ϕ(y)‖op
‖x − y‖ ≤ 1,

where ‖ · ‖ denotes the Euclidean norm in R
p and ‖ · ‖op stands for the operator

norm. Moreover, C3 is the space of functions ϕ : R
p → R which are thrice partially

continuously differentiable and satisfy

max
1≤i≤ j≤p

sup
x∈Rp

∣
∣
∣
∂2ϕ(x)

∂xi∂x j

∣
∣
∣ ≤ 1 and max

1≤i≤ j≤k≤p
sup
x∈Rp

∣
∣
∣

∂3ϕ(x)

∂xi∂x j∂xk

∣
∣
∣ ≤ 1.
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Moreover, similarly to the quantitiesMu,v(h) introduced in (12), for i, j ∈ {1, . . . , p},
u ∈ {1, . . . ,mi } and v ∈ {1, . . . ,m j } we define

Mu,v(h
(i), h( j)) :=

∑

π∈Πcon≥2 (u,u,v,v)

∫

X|π |
(h(i)

u ⊗ h(i)
u ⊗ h( j)

v ⊗ h( j)
v )π dμ|π |,

where h(i)
u and h( j)

v are given by (13). This allows us to state the following multi-
variate normal approximation bound from [66, Theorem 6.3] (see also [59, Equation
(5.1)]). Namely, if N is a centred Gaussian random vector with covariance matrix
Σ = (σi, j )

p
i, j=1, then

d3(U − EU,N) ≤ 1

2

p∑

i, j=1

|σi, j − Cov(Ui ,U j )|

+ p

2

( p∑

n=1

√
Var(Un) + 1

) p∑

i, j=1

mi∑

u=1

m j∑

v=1

m7/2
i

×
√
Mu,v(h(i), h( j)). (15)

If the covariance matrix Σ is positive definite then also

d2(U − EU,N) ≤‖Σ−1‖op‖Σ‖1/2op

p∑

i, j=1

|σi, j − Cov(Ui ,U j )|

+ p
√
2π

4
‖Σ−1‖3/2op ‖Σ‖op

( p∑

i=1

√
Var(Ui ) + 1

)

×
p∑

i, j=1

mi∑

u=1

m j∑

v=1

m7/2
i

√
Mu,v(h(i), h( j)), (16)

where again ‖ · ‖op stands for the operator norm. We remark that although the bound
for d2(U − EU,N) is not explicitly stated in the literature, it directly follows from
[53, Theorem 3.3] together with the computations in [66, Chapters 5 and 6] for the
d3-distance.

4 Proofs I: Expectations and variances

4.1 Representation as a Poisson U-statistic

We recall that ηt , for t > 0, is a Poisson hyperplane process in H
d with intensity

measure tμd−1. Moreover, for a Borel set W ⊂ H
d and i ∈ {0, 1, . . . , d − 1} we
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recall from (1) the definition of the functional F (i)
W ,t . To shorten our notation we put

f (i)(H1, . . . , Hd−i )

:=
{

1
(d−i)!Hi (H1 ∩ . . . ∩ Hd−i ∩ W ) : dim(H1 ∩ . . . ∩ Hd−i ) = i,

0 : otherwise,

which allows us to rewrite F (i)
W ,t as

F (i)
W ,t =

∑

(H1,...,Hd−i )∈ηd−i
t, 	=

f (i)(H1, . . . , Hd−i ).

In other words, F (i)
W ,t is a Poisson U-statistic of order d − i and with kernel f (i). It is

well known (see [33–36,58]) that Poisson U-statistics admit a Fock space representa-
tion having only a finite number of terms. This leads to the variance and covariance
representations

Var(F (i)
W ,t ) =

d−i∑

n=1

t2(d−i)−nn!‖ f (i)
n ‖2n, (17)

where the functions f (i)
n : Ah(d, d − 1)n → [0,∞) are given by

f (i)
n (H1, . . . , Hn) :=

(
d − i

n

)∫

Ah(d,d−1)d−i−n
f (i)(H1, . . . , Hn, H̃1, . . . , H̃d−i−n)

× μd−i−n
d−1 (d(H̃1, . . . , H̃d−i−n)),

recall (13), and we write ‖ · ‖n for the norm in the L2-space L2(μn
d−1) with respect

to the n-fold product measure of μd−1. Similarly, for i, j ∈ {0, 1, . . . , d − 1} the
covariance Cov(F (i)

W ,t , F
( j)
W ,t ) can be represented as

Cov(F (i)
W ,t , F

( j)
W ,t ) =

min{d−i,d− j}∑

n=1

t2d−i− j−nn!〈 f (i)
n , f ( j)

n 〉n, (18)

where 〈 · , · 〉n denotes the standard scalar product in L2(μn
d−1).

4.2 Expectations: Proof of Theorem 1

Theorem1 is a consequence of the transformation formula in Lemma 4 and theCrofton
formula in Lemma 2 with k = i there. Recall that the constant c(d, i) used below is
defined in Lemma 4. Since the intensity measure of ηt is tμd−1 and using (10) with
m = d − i and μd−i = td−iμd−i

d−1, we obtain

EF (i)
W ,t = td−i

∫

Ah(d,d−1)d−i
f (i)(H1, . . . , Hd−i ) μd−i

d−1(d(H1, . . . , Hd−i ))
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= td−i

(d − i)!
∫

Ah(d,d−1)d−i∗
Hi (H1 ∩ . . . ∩ Hd−i ∩ W ) μd−i

d−1(d(H1, . . . , Hd−i ))

= c(d, i)
td−i

(d − i)!
∫

Ah(d,i)
Hi (E ∩ W ) μi (dE)

= c(d, i)
td−i

(d − i)! H
d(W )

= ωi+1

ωd+1

(
ωd+1

ωd

)d−i td−i

(d − i)! H
d(W ),

and the proof is complete. ��
Remark 10 The measure W �→ EF (i)

W ,t is isometry invariant. One could argue that it

must be a constant multiple ofHd , if one knows that it is also locally finite. Theorem 1
shows that this is indeed the case and also yields the constant.

4.3 Variances: Proof of Theorem 2

To investigate the variance of F (i)
W ,t we use the representation as a Poisson U-statistic,

especially (17). We start by simplifying the kernel functions f (i)
n .

Lemma 5 Let n ∈ {1, . . . , d−i}. LetW ⊂ H
d be a boundedBorel set. If H1, . . . , Hn ∈

Ah(d, d − 1) are n hyperplanes satisfying dim(H1 ∩ . . . ∩ Hn) = d − n, then

f (i)
n (H1, . . . , Hn) = c(i, n, d)Hd−n(H1 ∩ . . . ∩ Hn ∩ W )

with

c(i, n, d) :=
(d−i

n

)

(d − i)!
ωi+1

ωd−n+1

(
ωd+1

ωd

)d−n−i

.

Proof We use the definition of f (i)
n , the transformation formula in Lemma 4 and the

Crofton formula (7) (in the general form indicated before the statement of Lemma 2).
Putting Ld−n := H1 ∩ . . . ∩ Hn , this gives

(
d − i

n

)−1

f (i)
n (H1, . . . , Hn)

= 1

(d − i)!
∫

Ah(d,d−1)d−i−n∗
Hi (Ld−n ∩ H̃1 ∩ . . . ∩ H̃d−i−n ∩ W )

× μd−i−n
d−1 (d(H̃1, . . . , H̃d−i−n))

= c(d, i + n)

(d − i)!
∫

Ah(d,i+n)

Hi (Ld−n ∩ W ∩ E) μi+n(dE)

= c(d, i + n)

(d − i)!
ωd+1 ωi+1

ωi+n+1 ωd−n+1
Hd−n(Ld−n ∩ W )
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= 1

(d − i)!
ωi+1

ωd−n+1

(
ωd+1

ωd

)d−n−i

Hd−n(H1 ∩ . . . ∩ Hn ∩ W ).

Here we used that since Ld−n is (d − n)-dimensional, the intersection Ld−n ∩ W is a
Hausdorff (d − n)-rectifiable set. ��

For the variances and covariances, we need the L2-norms and the scalar products
of these functions.

Corollary 1 Let W ⊂ H
d be a bounded Borel set. If n ∈ {1, . . . ,min{d − i, d − j}},

then

〈 f (i)
n , f ( j)

n 〉n = c(d, n, i, j)
∫

Ah(d,d−n)

Hd−n(E ∩ W )2 μd−n(dE).

Especially, the choice W = Br for some r > 0 yields

〈 f (i)
n , f ( j)

n 〉n = c(d, n, i, j) ωn

∫ r

0
coshd−n(s) sinhn−1(s)Hd−n(Ld−n(s) ∩ Br )

2 ds,

where c(d, n, i, j) := c(d, d − n) c(i, n, d) c( j, n, d) and Ld−n(s) for s ∈ [0, r ]
is an arbitrary (d − n)-dimensional totally geodesic subspace which satisfies
dh(Ld−n(s), p) = s.

Proof The first claim is a direct consequence of the previous lemma and the transfor-
mation formula from Lemma 4.

The second claim follows by combining the previous result with (6) and by an
application of [13, Proposition 3.1 and Equations (3.15), (3.22)] in an n-dimensional
plane Ln ∈ Gh(d, n) through the fixed origin p. ��
Proof of Theorem 2 This is now a direct consequence of (17) and Corollary 1. ��

4.4 Variance: asymptotic behaviour

In this section we look at the variance of F (i)
r ,t = F (i)

Br ,t
in the asymptotic regime, as

r → ∞. We divide our analysis into the three different cases d = 2, d = 3 and d ≥ 4.
Before, we start with a number of preprations.

4.4.1 Preliminaries

The following lemma will be repeatedly applied below.

Lemma 6 If r > 0 and 0 ≤ s ≤ r , then

0 ≤ arcosh

(
cosh(r)

cosh(s)

)

− (r − s) ≤ log(2).
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Proof We start by proving the lower bound which is equivalent to cosh(r) −
cosh(s) cosh(r − s) ≥ 0. By definition of cosh, sinh and since 0 ≤ s ≤ r we have

cosh(r) − cosh(s) cosh(r − s) = sinh(s) sinh(r − s) ≥ 0.

This yields the lower bound. Next, we turn to the upper bound. We use the logarithmic
representation arcosh(x) = log(x +√

x2 − 1) of the arcosh-function and the fact that
cosh(r)/ cosh(s) ≥ 1 for r ≥ s ≥ 0. Then we get

arcosh

(
cosh(r)

cosh(s)

)

− (r − s)

= log

⎛

⎝cosh(r)

cosh(s)
+
√
cosh2(r)

cosh2(s)
− 1

⎞

⎠− (r − s)

= log

⎛

⎝es cosh(r)

er cosh(s)
+
√
e2s cosh2(r)

e2r cosh2(s)
− e2s

e2r

⎞

⎠

= log

⎛

⎝es(er + e−r )

er (es + e−s)
+
√
e2s(er + e−r )2

e2r (es + e−s)2
− e2s

e2r

⎞

⎠

= log

⎛

⎝1 + e−2r

1 + e−2s +
√
e2s(e2r + 2 + e−2r − e2s − 2 − e−2s)

e2r (e2s + 2 + e−2s)

⎞

⎠

= log

⎛

⎝1 + e−2r

1 + e−2s +
√
1 + e−4r − e2s−2r − e−4s

1 + 2e−2s + e−2s−2r

⎞

⎠

≤ log(2),

where the last inequality holds because both terms in the argument of the log function
are bounded from above by 1 for s ∈ [0, r ]. ��

Moreover,we frequently apply the followingupper and lower bounds forHi (Li (s)∩
Br ). As before, let Li (s) denote an arbitrary measurable choice of an i-dimensional
totally geodesic subspace satisfying dh(Li (s), p) = s, i ∈ {1, . . . , d − 1}. The fol-
lowing lemma concerns the case i ∈ {2, . . . , d − 1}.
Lemma 7 If i ∈ {2, . . . , d − 1} and 0 ≤ s ≤ r , then

Hi (Li (s) ∩ Br ) ≤ ωi

i − 1
e(r−s)(i−1).

If, in addition, 0 ≤ s ≤ r − 1/2 then

ωi

e3(i−1)(i − 1)
e(r−s)(i−1) ≤ Hi (Li (s) ∩ Br ).
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Proof We start by noting that Li (s)∩ Br is an i-dimensional hyperbolic ball of radius
arcosh

( cosh(r)
cosh(s)

)
for i ∈ {1, . . . , d − 1}, see [56, Theorem 3.5.3]. Thus we get

Hi (Li (s) ∩ Br ) = ωi

∫ arcosh
(
cosh(r)
cosh(s)

)

0
sinhi−1(u) du (19)

for i ∈ {1, . . . , d − 1}. Hence, using Lemma 6 and for i ∈ {2, . . . , d − 1} we get

Hi (Li (s) ∩ Br ) ≤ ωi

∫ r−s+log(2)

0
sinhi−1(u) du

≤ ωi

2i−1

∫ r−s+log(2)

0
eu(i−1) du

≤ ωi

2i−1(i − 1)
2i−1e(r−s)(i−1)

= ωi

i − 1
e(r−s)(i−1).

On the other hand, Lemma 6 and Lemma 1 imply that

Hi (Li (s) ∩ Br ) ≥ ωi

∫ r−s

0
sinhi−1(u) du

= ωi

(∫ r−s

1/2
sinhi−1(u) du +

∫ 1/2

0
sinhi−1(u) du

)

≥ ωi

(∫ r−s

1/2

(
eu

e3

)i−1

du +
∫ 1/2

0
ui−1 du

)

= ωi

e3(i−1)(i − 1)

(
e(r−s)(i−1) − e(i−1)/2

)
+ 1

2i
ωi

i

≥ ωi

e3(i−1)(i − 1)
e(r−s)(i−1),

where we used that s ≤ r − 1/2 to obtain the equality in the third line. The last
inequality is due to

1

2i
ωi

i
− ωi

e(5/2)(i−1)(i − 1)
= ωi

(
1

i 2i
− 1

e(5/2)(i−1)(i − 1)

)

≥ 0.

The positivity of the last term holds for i ≥ 2, since 2i+1 ≤ e(5/2)(i−1) implies that

2i ≤ i − 1

i
e(5/2)(i−1),

which is equivalent to the desired inequality. ��
We will need later the following lemma.
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Lemma 8 Let r ≥ 1. For k ∈ {0, 1, . . . , d − 1} and 0 ≤ s ≤ r , let Lk(s) ∈ Ah(d, k)
be a k-dimensional totally geodesic subspace such that dh(Lk(s), p) = s. Then for
any l ∈ N there exist constants c,C > 0, depending only on k, l and d, such that

c g(k, l, d, r) ≤ ωd−k

∫ r

0
coshk(s) sinhd−1−k(s)Hk(Lk(s) ∩ Br )

l ds

=
∫

Ah(d,k)
Hk(H ∩ Br )

l μk(dH) ≤ C g(k, l, d, r)

with

g(k, l, d, r) =

⎧
⎪⎨

⎪⎩

exp(r(d − 1)) : l(k − 1) < d − 1,

r exp(r(d − 1)) : l(k − 1) = d − 1,

exp(r l(k − 1)) : l(k − 1) > d − 1.

Proof The asserted equality of the two integral expressions is clear from the argument
for the second claim in Corollary 1.

For k = 0 the integral is just the volume of a geodesic ball of radius r which can
be bounded from above and below by a positive constant times exp(r(d − 1)).

In the following, we repeatedly use that the intersection Lk(s) ∩ Br is a k-
dimensional hyperbolic ball of radius arcosh(cosh(r)/ cosh(s)). The constants c and
C used in the calculations below only depend on k, l, d and may vary from line to line.
Suppose that k ≥ 2. The substitution u = r − s and an application of Lemma 6 yield

∫ r

0
coshk(s) sinhd−1−k(s)Hk(Lk(s) ∩ Br )

l ds

=
∫ r

0
coshk(r − u) sinhd−1−k(r − u)Hk(Lk(r − u) ∩ Br )

l du

=
∫ r

0
coshk(r − u) sinhd−1−k(r − u)

⎛

⎝ωk

∫ arcosh
(

cosh(r)
cosh(r−u)

)

0
sinhk−1(s) ds

⎞

⎠

l

du

≤ C
∫ r

0
ek(r−u) e(d−1−k)(r−u)

(

2−(k−1)
∫ u+log(2)

0
e(k−1)s ds

)l

du

≤ C
∫ r

0
e(d−1)(r−u)

(
1

k − 1
e(u+log(2))(k−1)

)l
du

≤ Cer(d−1)
∫ r

0
eu(l(k−1)−(d−1)) du

≤ Cg(k, l, d, r).

To obtain the lower bound, we first show for u ≥ 0.2 that

∫ u

0
sinhk−1(s) ≥

∫ u

0.1
sinhk−1(s) ds ≥

∫ u

0.1
e(k−1)(s−3) ds
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≥ e−3(k−1)

k − 1

(
e(k−1)u − e0.1(k−1)

)

≥ e0.1(k−1)

k − 1
e−3(k−1)

(
e(k−1)(u−0.1) − 1

)

≥ e0.1(k−1)

k − 1
e−3(k−1) 1

20
e(k−1)(u−0.1).

Now we substitute again u = r − s. An application of Lemma 1 and the lower bound
from Lemma 6 then yield

∫ r

0
coshk(s) sinhd−1−k(s)Hk(Lk(s) ∩ Br )

l ds

=
∫ r

0
coshk(r − u) sinhd−1−k(r − u)Hk(Lk(r − u) ∩ Br )

l du

=
∫ r

0
coshk(r − u) sinhd−1−k(r − u)

⎛

⎝ωk

∫ arcosh
(

cosh(r)
cosh(r−u)

)

0
sinhk−1(s) ds

⎞

⎠

l

du

≥ c
∫ r−0.1

0
ek(r−u) e(d−1−k)(r−u−3)

(∫ u

0
sinhk−1(s) ds

)l
du

≥ cer(d−1)
∫ r−0.1

0.2
e−u(d−1) el(k−1)(u−0.1) du

= cer(d−1)
∫ r−0.1

0.2
eu(l(k−1)−(d−1)) du

≥ cg(k, l, d, r).

For k = 1, the proof is almost the same except that we simply use that∫ a
0 sinhk−1(s) ds = a for a ≥ 0. ��

4.4.2 The planar case d = 2

Although we present a very detailed covariance analysis in Sect. 4.5 wewill separately
investigate the asymptotic behaviour of the variances in Lemmas 9–11. In fact while
the results of Sect. 4.5 are necessary for the multivariate central limit theorems, the
variance analysis we carry out here is already sufficient for the unvariate cases. In this
and the following two sections, ci will denote a positive constant only depending on
the dimension and a counting parameter i ∈ N0. If it additionally depends on another
parameter n ∈ N0, we indicate this by writing, for instance, ci,n or ci (n). The value
of this constant may change from occasion to occasion.

Lemma 9 Let d = 2, i ∈ {0, 1} and t ≥ t0 > 0. Then there are constants
c(i)(2, t0),C (i)(2, t0) ∈ (0,∞) such that for all r ≥ 1,

c(i)(2, t0) t
3−2i er ≤ Var(F (i)

r ,t ) ≤ C (i)(2, t0) t
3−2i er .
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Proof For i ∈ {0, 1} and n = 1, Corollary 1 and Lemma 8 yield

ci e
r ≤ ‖ f (i)

1 ‖21 = ci

∫ r

0
cosh(s)H1(L1(s) ∩ Br )

2 ds ≤ Ci e
r .

Similarly, for i = 0 and n = 2 we obtain

‖ f (0)
2 ‖22 = c0

∫ r

0
sinh(s)H0(L1(s) ∩ Br )

2 ds = c0

∫ r

0
sinh(s)ds

= c0
(
cosh(r) − 1

)
.

From (17) we now deduce that

c(t2 + t3)er ≤ c1t
3er + c2t

2er ≤ Var(F (0)
r ,t ) ≤ c1t

3er + c2t
2er ≤ C(t2 + t3)er .

Using that t ≥ t0 > 0, the assertion follows for i = 0. The case i = 1 is obtained in
the same way, but requires bounds for only one summand in (17). ��

4.4.3 The spatial case d = 3

Lemma 10 Let d = 3, i ∈ {0, 1, 2} and t ≥ t0 > 0. Then there are constants
c(i)(3, t0),C (i)(3, t0) ∈ (0,∞) such that for all r ≥ 1,

c(i)(3, t0) t
5−2i re2r ≤ Var(F (i)

r ,t ) ≤ C (i)(3, t0) t
5−2i re2r .

Proof Corollary 1 and Lemma 8 imply the upper bound

Var(F (i)
r ,t ) −

3−i∑

n=2

t6−2i−nn!‖ f (i)
n ‖2n = t5−2i‖ f (i)

1 ‖21 ≤ ci t
5−2i re2r .

It remains to determine the asymptotic behaviour in r of the terms ‖ f (i)
2 ‖22 and ‖ f (i)

3 ‖23.
Corollary 1 and Lemma 8 yield

ci e
2r ≤ ‖ f (i)

2 ‖22 ≤ Ci e
2r and ci e

2r ≤ ‖ f (i)
3 ‖23 ≤ Ci e

2r .

To deduce the lower bound, it is sufficient to derive a lower bound for the term ‖ f (i)
1 ‖21.

But

Var(F (i)
r ,t ) ≥ t5−2i‖ f (i)

1 ‖21 ≥ ci t
5−2i re2r .

This completes the proof. ��
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4.4.4 The higher dimensional case d ≥ 4

Lemma 11 Let d ≥ 4, i ∈ {0, 1, . . . , d − 1}, and t ≥ t0 > 0. Then there are positive
constants c(i)(d, t0), C (i)(d, t0) ∈ (0,∞) such that for all r ≥ 1,

c(i)(d, t0) t
2(d−i)−1 e2r(d−2) ≤ Var(F (i)

r ,t ) ≤ C (i)(d, t0) t
2(d−i)−1 e2r(d−2).

Proof Combining Corollary 1 with Lemma 8, we obtain

Var(F(i)
r ,t ) −

d−i∑

n=d−1

t2(d−i)−nn!‖ f (i)
n ‖2n ≤

min{d−2, d−i}∑

n=1

ci,n t
2(d−i)−n g(d − n, 2, d, r).

For n = 1 ≤ min{d−2, d− i}, we have g(d−1, 2, d, r) ≤ Ci exp(r2(d−2)), since
2(d − 2) − (d − 1) = d − 3 > 0. If 2(d − n − 1) − (d − 1) = d − 1− 2n > 0, then
g(d−n, 2, d, r) ≤ g(d−1, 2, d, r). For the remaining cases, we use that exp(r(d−1))
is of lower than exp(2r(d − 2)) for d ≥ 4. Moreover, as in the case d = 3 it follows
that ‖ f (i)

d−1‖2d−1 and ‖ f (i)
d ‖2d are of order at most er(d−1). This yields the upper bound.

The lower bound is again derivedby just taking into account‖ f (i)
1 ‖21 and, in addition,

by applying the lower bound g(d − 1, 2, d, r) ≥ ci exp(r2(d − 2)) from Lemma 8.
��

4.5 Covariance analysis

In this section we prepare the proof of Theorem 7 by an asymptotic analysis of the
covariance structure of the random vector Fr ,t in dimensions d = 2 and d = 3.

4.5.1 The planar case d = 2

The following lemma describes the rate of convergence, as r → ∞, of the suitably
scaled covariances to the asymptotic covariance matrix Σd = (σ

i, j
d )d−1

i, j=0 for d = 2.

Lemma 12 Let d = 2 and t ≥ t0 > 0. There is a positive constant ccov(2, t0) ∈ (0,∞)

such that if r ≥ 1, then

∣
∣
∣
∣σ

i, j
2 − Cov

(
F (i)
r ,t − EF (i)

r ,t

er/2
,
F ( j)
r ,t − EF ( j)

r ,t

er/2

)∣
∣
∣
∣

≤ ccov(2, t0) t
3−i− j r2e−r , i, j ∈ {0, 1}.

Moreover,

Σ2 =
(
t2
(( 4

π

)2
ta + 1

π

)
8
π
t2a

8
π
t2a 4ta

)

(20)
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and a = 4 ·G with Catalan’s constantG ≈ 0.915965594. In particular,Σ2 is positive
definite with det(Σ2) = 4

π
t3a.

Proof Since Fr ,t is a vector of Poisson U-statistics the covariance representation (18)
shows that, for i, j ∈ {0, 1},

Cov

(
F (i)
r ,t − EF (i)

r ,t

er/2
,
F ( j)
r ,t − EF ( j)

r ,t

er/2

)

= e−r
min{2−i,2− j}∑

n=1

t4−i− j−nn!〈 f (i)
n , f ( j)

n 〉n

and it remains to compute the scalar products. Using (19) and Corollary 1 we get

〈 f (i)
1 , f ( j)

1 〉1 = c(2, 1, i, j) · 2 · 4
∫ r

0
cosh(s) arcosh2

(
cosh(r)

cosh(s)

)

ds

= c(2, 1, i, j) · 2 · 4
∫ r

0
cosh(r − s) arcosh2

(
cosh(r)

cosh(r − s)

)

ds

= c(i, j)
1

∫ r

0
(er−s + es−r ) arcosh2

(

es
(

1 + e−2r

1 + e2(s−r)

))

ds

with c(i, j)
1 = 4 · c(i, 1, 2)c( j, 1, 2). We have c(0, 1, 2) = 2/π and c(1, 1, 2) = 1, and

hence

c(0,0)
1 = 4

(
2

π

)2

=
(
4

π

)2

, c(1,1)
1 = 4, c(1,0)

1 = c(0,1)
1 = 4 · 2

π
= 8

π
.

Furthermore, again by Corollary 1

〈 f (i)
2 , f ( j)

2 〉2 = c(2, 2, i, j) · 2
∫ r

0
sinh(s) ds = c(i, j)

2 (er + e−r − 2)

with c(i, j)
2 = (2/π)c(i, 2, 2)c( j, 2, 2). In particular, c(0,0)

2 = 1/(2π).
In the following, we use that

arcosh

(

es
(

1 + e−2r

1 + e2(s−r)

))

≤ arcosh
(
es
) ≤ s + log(2). (21)

For (i, j) ∈ {(0, 1), (1, 0), (1, 1)} we then deduce from the dominated convergence
theorem that

σ
i, j
2 = lim

r→∞ c(i, j)
1 t3−i− j

∫ r

0
(e−s + e−2r+s) arcosh2

(

es
(

1 + e−2r

1 + e2(s−r)

))

ds

= c(i, j)
1 t3−i− j

∫ ∞

0
e−s arcosh2(es) ds =: c(i, j)

1 t3−i− j · a
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and, in addition we have

σ
0,0
2 = c(0,0)

1 t3 · a + 2t2 c(0,0)
2 .

Since a = 4 · G by the following Remark 11, we obtain the specific values of σ
i, j
2

for i, j ∈ {0, 1}, and hence the determinant of the asymptotic covariance matrix Σ2
given in (20).

Next we prove the asserted rates of convergence. For (i, j) ∈ {(0, 1), (1, 0), (1, 1)},
we get

∣
∣
∣
∣σ

i, j
2 − Cov

(
F (i)
r ,t − EF (i)

r ,t

er/2
,
F ( j)
r ,t − EF ( j)

r ,t

er/2

)∣
∣
∣
∣

=
∣
∣
∣
∣c

(i, j)
1 t3−i− j · a − c(i, j)

1 t3−i− j
∫ r

0
(e−s + e−2r+s) arcosh2

(

es
(

1 + e−2r

1 + e2(s−r)

))

ds

∣
∣
∣
∣

≤ c(i, j)
1 t3−i− j

∫ r

0
e−s

(

arcosh2(es) − arcosh2
(

es
(

1 + e−2r

1 + e2(s−r)

)))

ds (22)

+ c(i, j)
1 t3−i− j

∫ r

0
e−2r+s arcosh2

(

es
(

1 + e−2r

1 + e2(s−r)

))

ds (23)

+ c(i, j)
1 t3−i− j

∫ ∞

r
e−s arcosh2(es) ds. (24)

Applying (21) to the expression in (24) we get

∫ ∞

r
e−s arcosh2(es) ds ≤

∫ ∞

r
e−s(log(2) + s)2 ds ≤ c r2e−r . (25)

Using (21) for the expression in (23) we obtain

∫ r

0
e−2r+s arcosh2

(

es
(

1 + e−2r

1 + e2(s−r)

))

ds ≤
∫ r

0
e−2r+s arcosh2

(
es
)
ds

≤
∫ r

0
e−2r+s(s + log(2))2 ds

≤ c r2e−r . (26)

Finally, we treat the expression in (22). An application of the mean value theorem in
the first and (21) in the second to last step yields

∫ r

0
e−s

(

arcosh2(es) − arcosh2
(

es
(

1 + e−2r

1 + e2(s−r)

)))

ds

≤
∫ r

0
e−s

⎛

⎝
(

es − es
(

1 + e−2r

1 + e2(s−r)

))

max
z∈
[
es
(

1+e−2r

1+e2(s−r)

)
,es
]
d

dz
(arcosh2(z))

⎞

⎠ ds
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≤
∫ r

0

(
e2(s−r) − e−2r

1 + e2(s−r)

)
2 arcosh(es)

√(
es+e−2r+s

1+e2(s−r)

)2 − 1

ds

=
∫ r

0
e−2r

(
e2s − 1

) 2 arcosh(es)√
e2s − 1 + e2(s−2r) − e−4(r−s)

ds

≤ 1√
1 − e−2r

∫ r

0
e−2r

(
e2s − 1

) 2 arcosh(es)√
e2s − 1

ds

≤ ce−2r
∫ r

0

√
e2s − 1 arcosh(es) ds

≤ ce−2r
∫ r

0
es(s + log(2)) ds

≤ c re−r . (27)

Thus, a combination of (25), (26) and (27) yields the result for (i, j) ∈ {(0, 1), (1, 0),
(1, 1)}. Finally, if (i, j) = (0, 0) we obtain the result by additionally taking into
account that

|c(0,0)
2 (1 + e−2r − 2e−r ) − c(0,0)

2 | ≤ c e−r .

This completes the proof. ��
Remark 11 The relation a = 4G can be confirmed by Maple. It is not clear to us how
Maple verifies this relation. Since we could not find the current integral representation
of the Catalan constant in one of the lists available to us, we provide a short derivation.
We first use the substitution t = exp(− arcosh(es)) or es = 1

2 (t
−1 + t) and then

expand (1 + t2)−2 into a Taylor series under the integral sign. This leads to

a =
∫ ∞

0
e−s arcosh2(es) ds = 2

∫ 1

0

1 − t2

(1 + t2)2
(ln t)2 dt

= 2
∫ 1

0

∞∑

i=0

(−1)i (i + 1)t2i (1 − t2)(ln t)2 dt .

By the substitution t = ey we obtain

∫ 1

0
t2i (ln t)2 dt = 2

(2i + 1)3
.

Hence we can interchange summation and integration to get

a = 4

( ∞∑

i=0

(−1)i (i + 1)
1

(2i + 1)3
−

∞∑

i=0

(−1)i (i + 1)
1

(2i + 3)3

)

= 4

(
1

2
G + 1

2

∞∑

i=0

(−1)i
1

(2i + 1)3
− 1

2
(−G + 1) + 1

2

∞∑

i=0

(−1)i
1

(2i + 3)3

)
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= 4

(
1

2
G + 1

2
G + 1

2
− 1

2

)

= 4G.

4.5.2 The spatial case d = 3

Now we turn to the case d = 3 and again describes the rate of convergence, as
r → ∞, of the suitably scaled covariances to the asymptotic covariance matrix Σd =
(σ

i, j
d )d−1

i, j=0.

Lemma 13 Let d = 3 and t ≥ t0 > 0. There exists a positive constant ccov(3, t0) ∈
(0,∞) such that

∣
∣
∣
∣σ

i, j
3 − Cov

(
F (i)
r ,t − EF (i)

r ,t√
r er

,
F ( j)
r ,t − EF ( j)

r ,t√
r er

)∣
∣
∣
∣

≤ ccov(3, t0) t
5−i− j r−1, i, j ∈ {0, 1, 2},

for r ≥ 1. The matrix Σ3 has rank one and is explicitly given by

Σ3 = 2π2

⎛

⎜
⎝

π2

28
t5 π2

26
t4 π

24
t3

π2

26
t4 π2

24
t3 π

22
t2

π
24
t3 π

22
t2 t

⎞

⎟
⎠ . (28)

Proof For i, j ∈ {0, 1, 2}, the covariance formula for Poisson U-statistics yields that

Cov

(
F(i)
r ,t − EF(i)

r ,t√
r er

,
F( j)
r ,t − EF( j)

r ,t√
r er

)

= r−1e−2r
min{3−i,3− j}∑

n=1

t6−i− j−nn!〈 f (i)
n , f ( j)

n 〉n .

As in the planar case d = 2 we compute the scalar products. We let L2(s) be a 2-
dimensional subspace in H

3 having distance s ≥ 0 from the origin p. For n = 1
Corollary 1 and Equation (19) yield

〈 f (i)
1 , f ( j)

1 〉1 = ω1c(3, 1, i, j)
∫ r

0
cosh2(s)H2(L2(s) ∩ Br )

2 ds

= ω2
2ω1c(3, 1, i, j)

∫ r

0
cosh2(s)

⎛

⎝
∫ arcosh

(
cosh(r)
cosh(s)

)

0
sinh(u) du

⎞

⎠

2

ds

= ω2
2ω1c(3, 1, i, j)

∫ r

0
cosh2(s)

(
cosh(r)

cosh(s)
− 1

)2

ds

= ω2
2ω1c(3, 1, i, j)

∫ r

0
(cosh(r) − cosh(s))2 ds

= ω2
2ω1c(3, 1, i, j)

1

2

(
r + 2r cosh2(r) − 3 sinh(r) cosh(r)

)
.

123



Does a central limit theorem hold for the k-skeleton…

In addition, using Lemma 4 and Lemma 8, we obtain

〈 f (i)
2 , f ( j)

2 〉2 ≤ c e2r and 〈 f (i)
3 , f ( j)

3 〉3 ≤ c e2r .

Since c(3, 2) = 1, c(0, 1, 3) = π/16, c(1, 1, 3) = π/4 and c(2, 1, 3) = 1, we obtain
c(3, 1, 0, 0) = π2/28, c(3, 1, 0, 1) = π2/26, c(3, 1, 0, 2) = π/24, c(3, 1, 1, 1) =
π2/24, c(3, 1, 1, 2) = π/22 and c(3, 1, 2, 2) = 1. Moreover, we have

σ
i, j
3 = lim

r→∞ t5−i− j ω2
2ω1c(3, 1, i, j)

1

2
r−1e−2r (r + 2r cosh2(r) − 3 sinh(r) cosh(r)

)

= t5−i− j ω2
2ω1c(3, 1, i, j)

1

4
= t5−i− j 2π2c(3, 1, i, j).

Therefore we conclude that the asymptotic covariance matrix Σ3 is given by (28).
Clearly, Σ3 has rank one. Moreover, we obtain

∣
∣
∣
∣σ

i, j
3 − Cov

(
F (i)
r ,t − EF (i)

r ,t√
r er

,
F ( j)
r ,t − EF ( j)

r ,t√
r er

)∣
∣
∣
∣

≤ t5−i− j 4π2c(3, 1, i, j)
∣
∣
∣1/2 − r−1e−2r (r + 2r cosh2(r) − 3 sinh(r) cosh(r)

)∣∣
∣

+ r−1e−2r
min{3−i,3− j}∑

n=2

t6−i− j−n n!〈 f (i)
n , f ( j)

n 〉n

≤ ccov(3, t0) t
5−i− j r−1,

where we used that |1/2− r−1e−2r
(
r + 2r cosh2(r) − 3 sinh(r) cosh(r)

)| is bounded
from above by a constant multiple of r−1 as r → ∞. This completes the proof. ��

4.5.3 The case d ≥ 4

In order to describe explicitly the limit covariance matrix Σ(d) for d ≥ 4 we need the
following lemma.

Lemma 14 For α > 0,

∫ ∞

0
cosh−α(x) dx =

√
π

2

Γ (α
2 )

Γ (α+1
2 )

.

Proof Substituting first u = ex and then tan(z) = u, and using (tan2(x) + 1)−1 =
cos2(x), we get

∫ ∞

0
cosh−α(x) dx = 2α

∫ ∞

1

uα−1

(u2 + 1)α
du
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= 2α

∫ π/2

π/4
sinα−1(z) cosα−1(z) dz =: Iα.

The trigonometric identity 2 sin α cosα = sin(2α) and the substitution y = 2z yield

Iα = 2
∫ π/2

π/4
sinα−1(2z) dz =

∫ π/2

0
sinα−1(y) dy =

√
π

2

Γ (α
2 )

Γ (α+1
2 )

.

For the last equality we use the substitution sin(y) = t to transform the integral into a
Beta integral which can be expressed as a ratio of Gamma functions. This completes
the argument. ��

Depending on the dimension, we will bound the speed of convergence by means
of the function

h(d, r) =

⎧
⎪⎨

⎪⎩

e−r : d = 4,

re−2r : d = 5,

e−2r : d ≥ 6.

Lemma 15 Let d ≥ 4 and t ≥ t0 > 0. There exists a positive constant ccov(d, t0) ∈
(0,∞) such that

∣
∣
∣
∣σ

i, j
d − Cov

(
F (i)
r ,t − EF (i)

r ,t

er(d−2)
,
F ( j)
r ,t − EF ( j)

r ,t

er(d−2)

)∣
∣
∣
∣

≤ ccov(d, t0) t
2d−1−i− j h(d, r), i, j ∈ {0, . . . , d − 1},

for r ≥ 1. The matrix Σd has rank one and its entries are explicitly given by

σ
i, j
d = t2d−1−i− j c(i, 1, d) c( j, 1, d)

ωd−1ωd

4d−2(d − 3)(d − 2)
, i, j ∈ {0, . . . , d − 1},

(29)

where the constants c(i, 1, d), c( j, 1, d) are introduced in Lemma 5.

Proof Recall that

Cov

(
F (i)
r ,t − EF (i)

r ,t

e(d−2)r
,
F ( j)
r ,t − EF ( j)

r ,t

e(d−2)r

)

= e−2(d−2)r
min{d−i,d− j}∑

n=1

t2d−i− j−nn!〈 f (i)
n , f ( j)

n 〉n (30)

for r ≥ 1. In a first step,we bound fromabove the summandswith n ∈ {2, . . . ,min{d−
i, d − j}}. Lemma 8 implies that

e−2(d−2)r 〈 f (i)
n , f ( j)

n 〉n ≤ c e−2(d−2)r g(d − n, 2, d, r)
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with some constant c, not depending on r . For 2(d − n − 1) < d − 1 we obtain from
Lemma 8 that

c e−2(d−2)r g(d − n, 2, d, r) ≤ c er(−2d+4) er(d−1) ≤ c er(−d+3) ≤ c h(d, r).

Note that 2(d − n − 1) = d − 1 implies that d is odd, hence d ≥ 5, and therefore

c e−2(d−2)r g(d − n, 2, d, r) ≤ c er(−2d+4) r er(d−1) ≤ c r er(−d+3) ≤ c h(d, r).

For 2(d − n − 1) > d − 1 we get

c e−2(d−2)r g(d − n, 2, d, r) ≤ c er(−2d+4) e2r(d−n−1) ≤ c er(−2n+2) ≤ c h(d, r),

since n ≥ 2.
Nowwe examine the remaining term corresponding to n = 1 in (30). ByCorollary 1

and (19) we get

e−2(d−2)r 〈 f (i)
1 , f ( j)

1 〉1
= c(d, 1, i, j) ω1

e2(d−2)r

∫ r

0
coshd−1(s)Hd−1(Ld−1(s) ∩ Br )

2 ds

= c(d, 1, i, j) ω1

e2(d−2)r

∫ r

0
coshd−1(s)

⎛

⎝ωd−1

∫ arcosh
(
cosh(r)
cosh(s)

)

0
sinhd−2(u) du

⎞

⎠

2

ds

= c(d, 1, i, j) ω1 ω2
d−1

e2(d−2)r

∫ r

0
coshd−1(s)

×
⎛

⎝
∫ arcosh

(
cosh(r)
cosh(s)

)

0

d−2∑

k=0

(−1)k

2d−2

(
d − 2

k

)

eu(d−2−2k) du

⎞

⎠

2

ds

= c(d, 1, i, j) ω1 ω2
d−1

4d−2e2(d−2)r

∫ r

0
coshd−1(s)

×
⎛

⎝
d−2∑

k=0

(−1)k
(
d − 2

k

) ∫ arcosh
(
cosh(r)
cosh(s)

)

0
eu(d−2−2k) du

⎞

⎠

2

ds

(31)
The quadratic term in brackets in (31) is given by

∑

(k1,k2)∈{0,...,d−2}2
(−1)k1+k2

(
d − 2

k1

)(
d − 2

k2

) ∫ arcosh
(
cosh(r)
cosh(s)

)

0
eu1(d−2−2k1) du1

×
∫ arcosh

(
cosh(r)
cosh(s)

)

0
eu2(d−2−2k2) du2.
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Next, we provide and upper bound for the summands obtained for (k1, k2) ∈
{0, . . . , d − 2}2 \ {(0, 0)}. Without loss of generality we assume k2 ≥ 1. Then we get

e−2(d−2)r
∫ r

0
coshd−1(s)

∫ arcosh
(
cosh(r)
cosh(s)

)

0
eu1(d−2−2k1) du1

×
∫ arcosh

(
cosh(r)
cosh(s)

)

0
eu2(d−2−2k2) du2 ds

≤ c e−2r(d−2)
∫ r

0
es(d−1)

∫ r−s+log(2)

0
eu1(d−2−2k1) du1

×
∫ r−s+log(2)

0
eu2(d−2−2k2) du2 ds

≤ c e−2r(d−2)
∫ r

0
es(d−1) e(r−s)(d−2) e(r−s)(d−4) ds

≤ c e−2r
∫ r

0
es(−d+5) ds ≤ c h(d, r) (32)

for d ≥ 5. For d = 4 the third line is

c e−4r
∫ r

0
e3s e2(r−s)(r − s + log(2)) ds

= c e−2r
∫ r

0
(r − s + log(2)) es ds ≤ c h(4, r).

Therefore we can concentrate on the summand corresponding to k = 0 in (31). In the
following we will make use of the representation arcosh(x) = log(x + √

x2 − 1) of
the arcosh-function in order to evaluate the inner integral. Then we get

cosh−2(d−2)(r)
∫ r

0
coshd−1(s)

⎛

⎝
∫ arcosh

(
cosh(r)
cosh(s)

)

0
eu(d−2) du

⎞

⎠

2

ds

= cosh−2(d−2)(r)

(d − 2)2

∫ r

0
coshd−1(s)

⎛

⎜
⎝

⎛

⎝ cosh(r)

cosh(s)
+
√
cosh2(r)

cosh2(s)
− 1

⎞

⎠

d−2

− 1

⎞

⎟
⎠

2

ds

= (d − 2)−2
∫ r

0
cosh−(d−3)(s)

⎛

⎜
⎝

⎛

⎝1 +
√

1 − cosh2(s)

cosh2(r)

⎞

⎠

d−2

−
(
cosh(s)

cosh(r)

)d−2

⎞

⎟
⎠

2

ds. (33)

For r → ∞ this expression converges to a constant. To get the correct rate stated in
the lemma we observe that

∣
∣
∣
∣σ

i, j
d − Cov

(
F (i)
r ,t − EF (i)

r ,t

er(d−2)
,
F ( j)
r ,t − EF ( j)

r ,t

er(d−2)

)∣
∣
∣
∣
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≤
∣
∣
∣σ

i, j
d − e−2(d−2)r t2d−1−i− j 〈 f (i)

1 , f ( j)
1 〉1

∣
∣
∣

+ e−2(d−2)r
min{d−i,d− j}∑

n=2

t2d−i− j−nn!〈 f (i)
n , f ( j)

n 〉n .

We have already shown that the second summand satisfies the asserted upper bound.
It follows from (32) that it remains to consider
∣
∣
∣
∣
∣
∣
∣
σ
i, j
d − β

e2r(d−2)

∫ r

0
coshd−1(s)

⎛

⎝
∫ arcosh

(
cosh(r)
cosh(s)

)

0
eu(d−2) du

⎞

⎠

2

ds

∣
∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣
∣
σ
i, j
d − β

4d−2 cosh2(d−2)(r)

∫ r

0
coshd−1(s)

⎛

⎝
∫ arcosh

(
cosh(r)
cosh(s)

)

0
eu(d−2) du

⎞

⎠

2

ds

∣
∣
∣
∣
∣
∣
∣

+ β

∣
∣
∣
∣

1

4d−2 cosh2(d−2)(r)
− 1

e2r(d−2)

∣
∣
∣
∣

∫ r

0
coshd−1(s)

⎛

⎝
∫ arcosh

(
cosh(r)
cosh(s)

)

0
eu(d−2) du

⎞

⎠

2

ds,

(34)

where we set

β := t2d−1−i− j c(d, 1, i, j) ω1 ω2
d−1

4d−2 .

For the second summand, observe that

∣
∣
∣
∣

1

4d−2 cosh2(d−2)(r)
− 1

e2r(d−2)

∣
∣
∣
∣ ≤ e−2r(d−2)

(
1 − (1 + e−2r )−2(d−2)

)

≤ c e−2r(d−1).

Since by (33) the integral in the second summand of (34) is of the order e2r(d−2), the
second summand is at most of the order β e−2r .

It remains to show the decay of the first summand in (34). This is done by using
the same steps as in (33) and by splitting up the limit covariance σ

i, j
d . Lemma 14 and

basic calculus show that the asserted entries of the asymptotic covariance matrix can
be written in the form

σ
i, j
d = β

(d − 2)2

∫ ∞

0
cosh−(d−3)(s) ds.

Then we get

∣
∣
∣
∣
∣
∣
∣
σ
i, j
d − β

4d−2 cosh2(d−2)(r)

∫ r

0
coshd−1(s)

⎛

⎝
∫ arcosh

(
cosh(r)
cosh(s)

)

0
eu(d−2) du

⎞

⎠

2

ds

∣
∣
∣
∣
∣
∣
∣
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≤ I1 + I2,

where

I1 := β

(d − 2)2

∫ ∞

r
cosh−(d−3)(s) ds ≤ c β e−(d−3)r .

and

I2 : = β

(d − 2)2 4d−2

∫ r

0
cosh−(d−3)(s)

×

∣
∣
∣
∣
∣
∣
∣
22(d−2) −

⎛

⎜
⎝

⎛

⎝1 +
√

1 − cosh2(s)

cosh2(r)

⎞

⎠

d−2

−
(
cosh(s)

cosh(r)

)d−2

⎞

⎟
⎠

2∣∣
∣
∣
∣
∣
∣
ds.

It remains to provide an upper bound for I2. For this we expand the square and use
the triangle inequality to get I2 ≤ I3 + I4, where

I3 ≤ β

∫ r

0
cosh−(d−3)(s)

×
⎛

⎜
⎝2

⎛

⎝1 +
√

1 − cosh2(s)

cosh2(r)

⎞

⎠

d−2 (
cosh(s)

cosh(r)

)d−2

+
(
cosh(s)

cosh(r)

)2(d−2)

⎞

⎟
⎠ ds

≤ c β

∫ r

0
e−s(d−3)

(
e(s−r)(d−2) + e(s−r)(2d−4)

)
ds

≤ c β e−r(d−2)
∫ r

0
es ds + c β e−r(2d−4)

∫ r

0
es(d−1) ds ≤ c β h(d, r),

with some constant c. Here we also used that

cosh(s)

cosh(r)
= es + e−s

er + e−r
≤ 2 es

er
= 2 es−r , 0 ≤ s ≤ r . (35)

In order to provide an upper bound for I4, we use the mean value theorem and the
inequality 1 − √

1 − x ≤ x , for x ∈ [0, 1], to get
∣
∣
∣
∣2

2(d−2) −
(
1 + √

1 − x
)2(d−2)

∣
∣
∣
∣ ≤ 2(d − 2)22d−5x .

Hence we obtain

I4 ≤ β

∫ r

0
cosh−(d−3)(s)

∣
∣
∣
∣
∣
∣
∣
22(d−2) −

⎛

⎝1 +
√

1 − cosh2(s)

cosh2(r)

⎞

⎠

2(d−2)
∣
∣
∣
∣
∣
∣
∣
ds
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≤ c β

∫ r

0
cosh−(d−3)(s)

cosh2(s)

cosh2(r)
ds ≤ c βe−2r

∫ r

0
es(−d+5) ds ≤ c β h(d, r),

where also (35) was used. This concludes the proof. ��

5 Proofs II: Mixed K-function andmixed pair-correlation function

Let r > 0, i, j ∈ {0, . . . , d − 1} and let B ⊂ H
d be measurable with Hd(B) = 1.

Then

Ki j (r) = 1

λiλ j
E

∫

skeli

∫

skel j∩B
1{0 < dh(x, y) ≤ r}H j (dy)Hi (dx).

Already at this point we see that the condition 0 < dh(x, y) can be omitted if i ≥ 1
or j ≥ 1. Requiring that x ∈ skeli and y ∈ skel j means that there exist

(H1, . . . , Hd−i ) ∈ ηd−i
t,	= and (G1, . . . ,Gd− j ) ∈ η

d− j
t,	=

such that x ∈ H1 ∩ . . . ∩ Hd−i and y ∈ G1 ∩ . . . ∩ Gd− j . However, some of the
hyperplanes of the first (d − i)-tuple may coincide with some of the hyperplanes of
the second (d − j)-tuple. Let n ∈ {0, 1, . . . ,min{d − i, d − j}} denote the number of
common hyperplanes. Then we obtain the representation

Ki j (r) = 1

λiλ j

min{d−i,d− j}∑

n=0

α(d, i, j, n) E

∑

(H1,...,Hd−i ,G1,...,Gd− j−n )∈η
2d−i− j−n
t, 	=

∫

H1∩...∩Hd−i

×
∫

H1∩...∩Hn∩G1∩...Gd− j−n∩B
1{0 < dh(x, y) ≤ r}H j (dy)Hi (dx)

with the combinatorial coefficient given by

α(d, i, j, n) = 1

n!(d − i − n)!(d − j − n)! .

Note that if n = 0 we interpret the second integral as an integral over the setG1∩ . . .∩
Gd− j∩B and if n = d− j weunderstand that the integral ranges over H1∩. . .∩Hd− j∩
B. Moreover, if i = j = 0, then the summand obtained for n = d is zero, since almost
surely x, y ∈ H1 ∩ . . . ∩ Hd and dh(x, y) > 0 cannot be satisfied simultaneously.
Hence the summation can be restricted to n ≤ m(d, i, j) in the following.

An application of (10) leads to

Ki j (r) = 1

λiλ j

m(d,i, j)∑

n=0

α(d, i, j, n)t2d−i− j−n

×
∫

Ah (d,d−1)2d−i− j−n∗

∫

H1∩...∩Hd−i

∫

H1∩...∩Hn∩G1∩...Gd− j−n∩B
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× 1{0 < dh(x, y) ≤ r}H j (dy)Hi (dx) μ
2d−i− j−n
d−1 (d(H1, . . . , Hd−i ,G1, . . . ,Gd− j−n))

= 1

λiλ j

m(d,i, j)∑

n=0

α(d, i, j, n)t2d−i− j−n
∫

Ah (d,d−1)n∗

∫

Ah (d,d−1)d−i−n∗

∫

Ah (d,d−1)d− j−n∗

×
∫

H1∩...∩Hd−i

∫

H1∩...∩Hn∩G1∩...Gd− j−n∩B
1{0 < dh(x, y) ≤ r}H j (dy)Hi (dx)

× μ
d− j−n
d−1 (d(G1, . . . ,Gd− j−n)) μd−i−n

d−1 (d(Hn+1, . . . , Hd−i )) μn
d−1(d(H1, . . . , Hn)),

wherewehaveusedFubini’s theorem to split the integration over Ah(d, d−1)2d−i− j−n∗
into four groups of the form Ah(d, d−1)n∗ × Ah(d, d−1)d−i−n∗ × Ah(d, d−1)d− j−n∗ .
The first group of hyperplanes comprises the n common hyperplanes H1, . . . , Hn ,
while the second and the third group is associated with the (d − i − n)-tuple
Hn+1, . . . , Hd−i and the (d − j − n)-tuple G1, . . . ,Gd− j−n , respectively. We now
apply Lemma 4 successively to each of the three outer integrals. Togetherwith Fubini’s
theorem this gives

Ki j (r) = 1

λiλ j

m(d,i, j)∑

n=0

α(d, i, j, n)β(d, i, j, n)t2d−i− j−n
∫

Ah (d,d−n)

∫

Ah (d,i+n)

∫

Ah (d, j+n)

×
∫

E∩F

∫

B∩E∩G
1{0 < dh(x, y) ≤ r}H j (dy)Hi (dx) μ j+n(dG) μi+n(dF) μd−n(dE)

= 1

λiλ j

m(d,i, j)∑

n=0

α(d, i, j, n)β(d, i, j, n)t2d−i− j−n
∫

Ah (d,d−n)

∫

Ah (d, j+n)

∫

B∩E∩G

×
∫

Ah (d,i+n)

∫

E∩F
1{0 < dh(x, y) ≤ r}Hi (dx) μi+n(dF)H j (dy) μ j+n(dG) μd−n(dE),

where β(d, i, j, n) := c(d, d − n)c(d, i + n)c(d, j + n).
For the two innermost integrals we get

∫

Ah(d,i+n)

∫

E∩F
1{0 < dh(x, y) ≤ r}Hi (dx) μi+n(dF)

=
∫

Ah(d,i+n)

Hi ({x ∈ E ∩ F : 0 < dh(x, y) ≤ r}) μi+n(dF)

=
∫

Ah(d,i+n)

Hi (E ∩ (B(y, r)\{y}) ∩ F) μi+n(dF).

Since y ∈ E , the intersection E ∩ (B(y, r)\{y}) has dimension d − n and we can
apply Crofton’s formula to conclude that

∫

Ah(d,i+n)

∫

E∩F
1{0 < dh(x, y) ≤ r}Hi (dx) μi+n(dF)

= ωd+1ωi+1

ωi+n+1ωd−n+1
Hd−n(E ∩ B(y, r)).

123



Does a central limit theorem hold for the k-skeleton…

Herewe also used thatHd−n(E∩(B(y, r)\{y})) = Hd−n(E∩B(y, r)), since d−n ≥
1.Moreover, since y ∈ E the value ofHd−n(E∩B(y, r)) is independent of the choice
of E and y, and is given by the (d − n)-dimensional Hausdorff measure

Hd−n(Bd−n
r ) = ωd−n

∫ r

0
sinhd−n−1(s) ds

of a (d − n)-dimensional geodesic ball Bd−n
r of radius r . We thus arrive at

Ki j (r) = 1

λiλ j

m(d,i, j)∑

n=0

α(d, i, j, n)β(d, i, j, n)
ωd+1ωi+1

ωi+n+1ωd−n+1
Hd−n(Bd−n

r )t2d−i− j−n

×
∫

Ah(d,d−n)

∫

Ah(d, j+n)

∫

B∩E∩G
1 H j (dy) μ j+n(dG) μd−n(dE)

= 1

λiλ j

m(d,i, j)∑

n=0

α(d, i, j, n)β(d, i, j, n)
ωd+1ωi+1

ωi+n+1ωd−n+1
Hd−n(Bd−n

r )t2d−i− j−n

×
∫

Ah(d,d−n)

∫

Ah(d, j+n)
H j (B ∩ E ∩ G) μ j+n(dG) μd−n(dE).

The two remaining integrals can be evaluated by using twice the Crofton formula.
Indeed, noting that for μd−n-almost all E ∈ Ah(d, d − n) the set B ∩ E is either
empty or has dimension d − n we find that

∫

Ah(d,d−n)

∫

Ah(d, j+n)

H j (B ∩ E ∩ G) μ j+n(dG) μd−n(dE)

= ωd+1ω j+1

ω j+n+1ωd−n+1

∫

Ah(d,d−n)

Hd−n(B ∩ E) μd−n(dE)

= ωd+1ω j+1

ω j+n+1ωd−n+1
Hd(B).

Since Hd(B) = 1 we finally conclude that

Ki j (r) = 1

λiλ j

m(d,i, j)∑

n=0

α(d, i, j, n)β(d, i, j, n)

× ω2
d+1ωi+1ω j+1

ω2
d−n+1ωi+n+1ω j+n+1

t2d−i− j−nHd−n(Bd−n
r )

= 1

λiλ j

m(d,i, j)∑

n=0

α(d, i, j, n)β(d, i, j, n)

× ω2
d+1ωi+1ω j+1

ω2
d−n+1ωi+n+1ω j+n+1

ωd−nt
2d−i− j−n

∫ r

0
sinhd−n−1(s) ds.
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Simplification of the constant by means of the constants given in (2) and Lemma 4
completes the proof for the mixed K-function Ki j . The formula for the mixed pair-
correlation function follows by differentiation. This completes the proof of Theorem 3.

��

6 Proofs III: Univariate limit theorems

6.1 The case of growing intensity: Proof of Theorem 4

The central limit theorem is in this case a direct consequence of the central limit
theorem for general Poisson U-statistics stated as Corollary 4.3 in [67] (see also [15]).

�

6.2 The case of growing windows: Proof of Theorem 5

Our strategy in the proof of Theorem 5 (a) and (b) can be summarized as follows.
The normal approximation bound (14) for general U-statistics of Poisson processes is
given by a sum involving terms of the type Mu,v , which are defined in (12) and (13)
and which in turn are given as sums of integrals over partitions σ ∈ Πcon≥2 (u, u, v, v).
In applying these normal approximation bounds to the Euclidean counterparts of the
functionals F (i)

r ,t it was possible to extract a common scaling factor from each of the
integrals in Mu,v and to treat the number of terms, that is, the number of elements of
Πcon≥2 (u, u, v, v) as a constant, see [36,58]. In the hyperbolic set-up this is no longer
possible and each integral in the definition of Mu,v needs a separate treatment. In fact,
it will turn out that these integrals exhibit different asymptotic behaviours as functions
of r , as r → ∞. For the analysis, we have to determine explicitly the partitions
in Πcon≥2 (u, u, v, v) and for each such partition we have to provide a bound for the
resulting integral. Since μ = tμd−1, we can bound the dependence with respect to the
intensity t ≥ 1 by ta with a ≤ 4(d− i)−2(u+v)+|σ | for each σ ∈ Πcon≥2 (u, u, v, v).

To show that a central limit theorem fails in higher space dimensions d ≥ 4 is the
most technical part in the proof of Theorem 5. We do this by showing that the fourth
cumulant of the centred and normalized total volume F (i)

r ,t is bounded away from 0 by
an absolute and strictly positive constant and hence does not converge to 0. The latter
in turn is the fourth cumulant of a standard Gaussian random variable. However, in
view of the well known expression of the fourth cumulant in terms of the first four
centred moments this approach can only work if we can ensure that the sequence of
random variables

(
F (i)
r ,t − EF (i)

r ,t
√

Var(F (i)
r ,t )

)4

is uniformly integrable. We will prove that this is indeed the case by showing that
their fifths moments are uniformly bounded. This requires a very careful analysis of
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σ1 σ1 σ2 σ3 σ1 σ2 σ3 σ4

Fig. 5 Left panel: Illustration of the partition inΠcon≥2 (1, 1, 1, 1). Middle panel: Illustration of the partitions
in Πcon≥2 (1, 1, 2, 2). Right panel: Illustration of the partitions in Πcon≥2 (2, 2, 2, 2)

the combinatorial formula (11) for the centred moments of U-statistics of Poisson
processes.

The representation of a U-statistic will be as in Sect. 4.1. In the following computa-
tions, c will be a positive constant only depending on the dimension and whose value
may change from occasion to occasion.

6.2.1 The planar case d = 2: Proof of Theorem 5 (a)

As indicated above, we will use the bound (14) in combination with (12) and (13). We
distinguish the cases i = 0 and i = 1. In the following, we can assume that r , t ≥ 1.

For i = 1, which corresponds to the total edge length in Br , it is enough to bound
M1,1( f (1)). For this we note that Πcon≥2 (1, 1, 1, 1) only consists of the trivial partition
σ1 = {1, 2, 3, 4}, see Fig. 5 (left panel). Thus, using Lemma 8, we have that

M1,1( f
(1)) = c t

∫

Ah(2,1)
H1(H ∩ Br )

4 μ1(dH) ≤ c t er .

Together with the lower variance bound from Lemma 9 this yields

d

⎛

⎝
F (1)
r ,t − EF (1)

r ,t
√

Var(F (1)
r ,t )

, N

⎞

⎠ ≤ c

√
ter

tc(1)(2, 1) er
≤ c t−1/2 e−r/2. (36)

Here we used that the exponent of t is given by 4(2 − 1) − 2(1 + 1) + 1 = 1.
Next, we deal with the case i = 0, which corresponds to the total vertex count in

Br . In this situation, we need to bound the terms M1,1( f (0)), M1,2( f (0)), M2,2( f (0)).
For M1,1( f (0)) we can argue as in the case i = 1, since Πcon≥2 (1, 1, 1, 1) only consists
of the single partition σ1, see Fig. 5 (left panel). This allows us to conclude that

M1,1( f
(0)) = c t5

∫

Ah(2,1)
H1(H ∩ Br )

4 μ1(dH) ≤ c t5 er ,

where we used that the exponent of t is given by 4(2 − 0) − 2(1 + 1) + 1 = 5.
To deal with M1,2( f (0)) we observe that, up to renumbering of the elements,

Πcon≥2 (1, 1, 2, 2) consists of precisely three partitions σ1, σ2 and σ3, which are illus-
trated in Fig. 5 (middle panel). Forσ1 weobtain, usingCrofton’s formula andLemma8,
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∫

Ah(2,1)2
H1(H1 ∩ Br )

2 H0(H1 ∩ H2 ∩ Br )
2 μ2

1(d(H1, H2))

=
∫

Ah(2,1)2
H1(H1 ∩ Br )

2H0(H1 ∩ H2 ∩ Br ) μ2
1(d(H1, H2))

= c
∫

Ah(2,1)
H1(H1 ∩ Br )

3 μ1(dH1) ≤ c er . (37)

Moreover, for the partition σ2 we compute, using twice that H1(H ∩ Br ) ≤ 2r for
each H ∈ Ah(2, 1) and again Crofton’s formula,

∫

Ah(2,1)2
H1(H1 ∩ Br )H1(H2 ∩ Br )H0(H1 ∩ H2 ∩ Br )

2 μ2
1(d(H1, H2))

≤ 4r2
∫

Ah(2,1)2
H0(H1 ∩ H2 ∩ Br ) μ2

1(d(H1, H2)) ≤ c r2 er , (38)

and for partition σ3 we get

∫

Ah(2,1)3
H1(H1 ∩ Br )H1(H2 ∩ Br )H0(H1 ∩ H3 ∩ Br )

× H0(H2 ∩ H3 ∩ Br ) μ3
1(d(H1, H2, H3))

≤ 2r
∫

Ah(2,1)2
H1(H2 ∩ Br )H1(H3 ∩ Br )H0(H2 ∩ H3 ∩ Br ) μ2

1(d(H2, H3))

≤ 4r2
∫

Ah(2,1)
H1(H3 ∩ Br )

2 μ1(dH3) ≤ c r2 er . (39)

This yields that M1,2( f (0)) ≤ c t5 (er +2r2er ) ≤ c t5 r2er (recall that r , t ≥ 1). Here
we used that the exponent of t is given by 4(2 − 0) − 2(2 + 1) + max{2, 3} = 5.

Nowwe deal with the term M2,2( f (0)), which involves a summation over partitions
in Πcon≥2 (2, 2, 2, 2). Up to renumbering of the elements, there are precisely four such
partitions σ1, σ2, σ3 and σ4, which are illustrated in Fig. 5 (right panel). For σ1 we
compute

∫

Ah(2,1)2
H0(H1 ∩ H2 ∩ Br )

4 μ2
1(d(H1, H2))

=
∫

Ah(2,1)2
H0(H1 ∩ H2 ∩ Br ) μ2

1(d(H1, H2))

= c
∫

Ah(2,1)
H1(H1 ∩ Br ) μ1(dH1) ≤ c er ,

where we used Crofton’s formula and Lemma 8. Similarly, for σ2 and σ3 we get

∫

Ah(2,1)3
H0(H1 ∩ H2 ∩ Br )

2H0(H1 ∩ H3 ∩ Br )
2 μ3

1(d(H1, H2, H3))
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=
∫

Ah(2,1)3
H0(H1 ∩ H2 ∩ Br )H0(H1 ∩ H3 ∩ Br ) μ3

1(d(H1, H2, H3))

= c
∫

Ah(2,1)
H1(H1 ∩ Br )

2 μ1(dH1) ≤ c er ,

and, additionally using that H0(H1 ∩ H2 ∩ Br ) ≤ 1 for μ2
1-almost all (H1, H2) ∈

Ah(2, 1)2,
∫

Ah(2,1)3
H0(H1 ∩ H2 ∩ Br )

2 H0(H1 ∩ H3 ∩ Br )H0(H2 ∩ H3 ∩ Br )

× μ3
1(d(H1, H2, H3))

≤
∫

Ah(2,1)3
H0(H1 ∩ H3 ∩ Br )H0(H2 ∩ H3 ∩ Br ) μ3

1(d(H1, H2, H3))

= c
∫

Ah(2,1)
H1(H3 ∩ Br )

2 μ1(dH3) ≤ c er .

Finally, we deal with σ4. Using once more thatH0(H1 ∩ H2 ∩ Br ) ≤ 1 for μ2
1-almost

all (H1, H2) ∈ Ah(2, 1)2 and also thatH1(H ∩ Br ) ≤ 2r for each H ∈ Ah(2, 1), and
again Crofton’s formula together with Lemma 8, we obtain

∫

Ah(2,1)4
H0(H1 ∩ H2 ∩ Br )H0(H1 ∩ H3 ∩ Br )H0(H3 ∩ H4 ∩ Br )

× H0(H2 ∩ H4 ∩ Br ) μ4
1(d(H1, H2, H3, H4))

≤ c
∫

Ah(2,1)2
H1(H3 ∩ Br )H0(H3 ∩ H4 ∩ Br )H1(H4 ∩ Br ) μ2

1(d(H3, H4))

≤ c r
∫

Ah(2,1)
H1(H4 ∩ Br )

2 μ1(dH4) ≤ c r er .

Altogether, this yields that M2,2( f (0)) ≤ c t4 (er + er + er + rer ) ≤ c t4 rer , where
the exponent of t follows from 4 · 2 − 2 · 4 + max{2, 3, 4} = 4.

Combining the bounds for M1,1( f (0)), M1,2( f (0)) and M2,2( f (0)) with the lower
variance bound provided by Lemma 9 we deduce from (14) that

d

⎛

⎝
F (0)
r ,t − EF (0)

r ,t
√

Var(F (0)
r ,t )

, N

⎞

⎠ ≤ c

√
t5er + √

t5r2er + √
t4rer

t3c(0)(2, 1)er
≤ c t−1/2 re−r/2. (40)

This completes the proof of Theorem 5(a). ��
6.2.2 The spatial case d = 3: Proof of Theorem 5(b)

The following lemma will be used repeatedly in deriving upper bounds for integrals.
For H ∈ Ah(3, 2) we write L1(H) for an arbitrary 1-dimensional subspace in H
which satisfies dh(H , p) = dh(L1(H), p).
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Lemma 16 Let d = 3 and a, b ≥ 0. If r ≥ 1, then

I (a, b) :=
∫

Ah(3,2)
H2(H ∩ Br )

a H1(L1(H) ∩ Br )
b μ2(dH)

≤ c

⎧
⎪⎨

⎪⎩

exp(2r) : 0 ≤ a < 2,

rb+1 exp(2r) : a = 2,

rb exp(ar) : a > 2,

where c = c(a, b) is a constant depending only on a and b.

Proof We use the definition (6) of the measure μ2, Lemma 7 and the argument in the
proof of Lemma 8 to get

I (a, b) ≤ c
∫ r

0
e2se(r−s)a(r − s + log 2)b ds.

If 0 ≤ a < 2, then

I (a, b) ≤ c e2r
∫ r

0
es(a−2)(s + log 2)b ds ≤ c e2r .

This also shows that I (2, b) ≤ ce2r rb+1. For a > 2, we get

I (a, b) ≤ c ear
∫ r

0
es(2−a)(r − s + log 2)b ds ≤ c rbear ,

which completes the argument. ��
For d = 3 we need to distinguish the cases i = 2, i = 1 and i = 0. If i = 2 there

is only one partition σ1 (compare with the left panel of Fig. 5) and we obtain

∫

Ah(3,2)
H2(H ∩ Br )

4 μ2(dH) ≤ c g(2, 4, 3, r) ≤ c e4r . (41)

This proves that M1,1( f (2)) ≤ c t e4r and together with the lower variance bound from
Lemma 10 and (14) this yields

d

⎛

⎝
F (2)
r ,t − EF (2)

r ,t
√

Var(F (2)
r ,t )

, N

⎞

⎠ ≤ c

√
te4r

tc(2)(3, 1)e2r r
≤ c t−1/2 r−1. (42)

To deal with the case i = 1, we need to bound M1,1( f (1)), M1,2( f (1)) and M2,2( f (1)).
As in the case d = 2, to bound M1,1( f (1)) we can argue as for i = 2 to obtain
M1,1( f (1)) ≤ c t5 e4r . Next, we consider M1,2( f (1)), which requires an analysis of
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the integrals resulting from the three partitions σ1, σ2 and σ3 shown in the middle
panel of Fig. 5. For σ1 we compute

∫

Ah(3,2)2
H2(H1 ∩ Br )

2H1(H1 ∩ H2 ∩ Br )
2 μ2

2(d(H1, H2))

≤
∫

Ah(3,2)2
H2(H1 ∩ Br )

2 H1(L1(H1) ∩ Br )H1(H1 ∩ H2 ∩ Br ) μ2
2(d(H1, H2))

≤ c I (3, 1) ≤ c re3r , (43)

where we used the Crofton formula and Lemma 16. Arguing similarly for the partition
σ2 from the middle panel of Fig. 5 we obtain

∫

Ah(3,2)2
H2(H1 ∩ Br )H2(H2 ∩ Br )H1(H1 ∩ H2 ∩ Br )

2 μ2
2(d(H1, H2))

≤ c
∫

Ah(3,2)2
H2(H1 ∩ Br )H2(H2 ∩ Br )H1(L1(H1) ∩ Br )

× H1(L1(H2) ∩ Br ) μ2
2(d(H1, H2))

≤ c I (1, 1)2 ≤ c e4r , (44)

and for σ3 we get

∫

Ah(3,2)3
H2(H1 ∩ Br )H2(H2 ∩ Br )H1(H1 ∩ H3 ∩ Br )

× H1(H2 ∩ H3 ∩ Br ) μ3
2(d(H1, H2, H3))

≤
∫

Ah(3,2)3
H2(H1 ∩ Br )H2(H2 ∩ Br )H1(L1(H1) ∩ Br )

× H1(H2 ∩ H3 ∩ Br ) μ3
2(d(H1, H2, H3))

≤ c
∫

Ah(3,2)2
H2(H1 ∩ Br )H2(H2 ∩ Br )

2 H1(L1(H1) ∩ Br ) μ2
2(d(H1, H2))

≤ c I (1, 2) g(2, 2, 3, r) ≤ c r e4r . (45)

We thus conclude that M1,2( f (1)) ≤ c t5 (re3r + e4r + re4r ) ≤ c t5 re4r .
Finally, we deal with M2,2( f (1)) for which an analysis of the four partitions σ1, σ2,

σ3 and σ4 shown in the right panel of Fig. 5 is necessary. For σ1 we have

∫

Ah(3,2)2
H1(H1 ∩ H2 ∩ Br )

4 μ2
2(d(H1, H2))

≤
∫

Ah(3,2)2
H1(H1 ∩ H2 ∩ Br )H1(L1(H1) ∩ Br )

3 μ2
2(d(H1, H2)) ≤ c I (1, 3) ≤ c e2r ,
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where we also used Crofton’s formula. We continue with σ2 and get, by similar argu-
ments,

∫

Ah(3,2)3
H1(H1 ∩ H2 ∩ Br )

2 H1(H1 ∩ H3 ∩ Br )
2 μ3

2(d(H1, H2, H3))

≤
∫

Ah(3,2)3
H1(L1(H1) ∩ Br )

2H1(H1 ∩ H2 ∩ Br )

× H1(H1 ∩ H3 ∩ Br ) μ3
2(d(H1, H2, H3))

= c
∫

Ah(3,2)
H1(L1(H1) ∩ Br )

2 H2(H1 ∩ Br )
2 μ2(dH1)

≤ c I (2, 2) ≤ c r3 e2r .

Moreover, for σ3 and σ4 we have the bounds

∫

Ah(3,2)3
H1(H1 ∩ H2 ∩ Br )

2H1(H1 ∩ H3 ∩ Br )H1(H2 ∩ H3 ∩ Br )

× μ3
2(d(H1, H2, H3))

≤ c
∫

Ah(3,2)3
H1(L1(H1) ∩ Br )

3H1(H2 ∩ H3 ∩ Br ) μ3
2(d(H1, H2, H3))

≤ cH3(Br ) I (0, 3) ≤ c e4r

and

∫

Ah(3,2)4
H1(H1 ∩ H2 ∩ Br )H1(H1 ∩ H3 ∩ Br )H1(H3 ∩ H4 ∩ Br )

× H1(H2 ∩ H4 ∩ Br ) μ4
2(d(H1, H2, H3, H4))

≤
∫

Ah(3,2)4
H1(L1(H1) ∩ Br )

2 H1(H2 ∩ H4 ∩ Br )

× H1(H3 ∩ H4 ∩ Br ) μ4
2(d(H1, H2, H3, H4))

= c
∫

Ah(2,3)2
H1(L1(H1) ∩ Br )

2 H2(H4 ∩ Br )
2 μ2

2(d(H1, H4))

≤ c I (0, 2) g(2, 2, 3, r) ≤ c r e4r .

Altogether this gives M2,2( f (1)) ≤ c t4 (e2r + r3e2r + e4r + re4r ) ≤ c t4 re4r . The
estimates for M1,1( f (1)), M1,2( f (1)) and M2,2( f (1)) together with Lemma 10 and
(14) show that

d

⎛

⎝
F (1)
r ,t − EF (1)

r ,t
√

Var(F (1)
r ,t )

, N

⎞

⎠ ≤ c

√
t5e4r + √

t5re4r + √
t4re4r

t3c(1)(3, 1)e2r r
≤ c t−1/2 r−1/2. (46)
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Fig. 6 Illustration of the
partition in Πcon≥2 (1, 1, 3, 3)

σ1 σ2 σ3

Finally, we need to treat the case of F (0)
r ,t , which requires to find upper bounds

for the terms Mu,v( f (0))with (u, v) ∈ {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}. We
have M1,1( f (0)) ≤ c t9 e4r from (41). To treat M1,2( f (0)) we need to consider the
partitions σ1, σ2 and σ3 shown in themiddle panel of Fig. 5 and to obtain upper bounds
for the three integrals which are already treated in (43), (44) and (45). This implies
that M1,2( f (0)) ≤ c t9 re4r . Next, we deal with M1,3( f (0)), which can be expressed
as a sum over the three partitions σ1, σ2 and σ3 shown in Fig. 6. For σ1, using that
H0(H1 ∩ H2 ∩ H3 ∩ Br ) ≤ 1 for μ3

2-almost all (H1, H2, H3) ∈ Ah(3, 2)3, we have
that

∫

Ah(3,2)3
H2(H1 ∩ Br )

2 H0(H1 ∩ H2 ∩ H3 ∩ Br )
2 μ3

2(d(H1, H2, H3))

=
∫

Ah(3,2)3
H2(H1 ∩ Br )

2H0(H1 ∩ H2 ∩ H3 ∩ Br ) μ3
2(d(H1, H2, H3))

= c
∫

Ah(3,2)
H2(H1 ∩ Br )

3 μ2(dH1) ≤ c g(2, 3, 3, r) ≤ c e3r ,

where we also used Crofton’s formula and Lemma 8. Similarly, for σ2 we obtain

∫

Ah(3,2)3
H2(H1 ∩ Br )H2(H2 ∩ Br )H0(H1 ∩ H2 ∩ H3 ∩ Br )

2 μ3
2(d(H1, H2, H3))

=
∫

Ah(3,2)3
H2(H1 ∩ Br )H2(H2 ∩ Br )H0(H1 ∩ H2 ∩ H3 ∩ Br )

× μ3
2(d(H1, H2, H3))

≤ cH3(Br ) I (1, 1) ≤ c e4r ,

and for σ3 we have that

∫

Ah(3,2)4
H2(H1 ∩ Br )H2(H2 ∩ Br )H0(H1 ∩ H3 ∩ H4 ∩ Br )

× H0(H2 ∩ H3 ∩ H4 ∩ Br ) μ4
2(d(H1, H2, H3, H4))

≤
∫

Ah(3,2)4
H2(H1 ∩ Br )H2(H2 ∩ Br )H0(H1 ∩ H3 ∩ H4 ∩ Br )

× μ4
2(d(H1, H2, H3, H4))
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σ1 σ2 σ3 σ4 σ5 σ6

σ7 σ8 σ9 σ10 σ11 σ12

Fig. 7 Illustration of the partition in Πcon≥2 (2, 2, 3, 3)

= cH3(Br )
∫

Ah(3,2)
H2(H1 ∩ Br )

2 μ2(dH1) ≤ c e2r g(2, 2, 3, r) ≤ c re4r .

This proves that M1,3( f (0)) ≤ c t8 (e3r + e4r + re4r ) ≤ c t8 re4r .
The next term is M2,2( f (0)). However, up to a constant, this term is the same as

M2,2( f (1)), whichwas already bounded above. This yields thatM2,2( f (0)) ≤ c t8 re4r

and it remains to consider M2,3( f (0)) and M3,3( f (0)).
In order to deal with M2,3( f (0)), up to renumbering of the elements precisely the

12 partitions σ1, . . . , σ12 in Πcon≥2 (2, 2, 3, 3) have to be considered, see Fig. 7. Using
thatH0(H1 ∩ H2 ∩ H3 ∩ Br ) ≤ 1 for μ3

2-almost all (H1, H2, H3) ∈ Ah(3, 2)3 we find
for σ1 that

∫

Ah(3,2)3
H1(H1 ∩ H2 ∩ Br )

2H0(H1 ∩ H2 ∩ H3 ∩ Br )
2 μ3

2(d(H1, H2, H3))

=
∫

Ah(3,2)3
H1(H1 ∩ H2 ∩ Br )

2 H0(H1 ∩ H2 ∩ H3 ∩ Br ) μ3
2(d(H1, H2, H3)).

Applying now Crofton’s formula, we obtain the upper bound

c
∫

Ah(3,2)2
H1(H1 ∩ H2 ∩ Br )

3 μ3
2(d(H1, H2)) ≤ c I (1, 2) ≤ c e2r .

The same arguments also lead to bounds for the remaining partitions σ2, . . . , σ12. As
for σ1, the first step is always to bound the 0-dimensional Hausdorff measure H0( · )
of the intersection of the three planes corresponding to the last row of the partition
by 1, which is a valid estimate for μ3

2-almost all triples of planes. For this reason we
systematically skip this first step in our following computations and only show how
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to deal with the integral of the three remaining terms

H1(intersection of the 2 planes corresponding to the first row)

× H1(intersection of the 2 planes corresponding to the second row)

× H0(intersection of the 3 planes corresponding to the third row).

For σ2 we get

∫

Ah(3,2)3
H1(H1 ∩ H2 ∩ Br )H1(H1 ∩ H3 ∩ Br )H0(H1 ∩ H2 ∩ H3 ∩ Br )

× μ3
2(d(H1, H2, H3))

≤ c
∫

Ah(3,2)3
H1(L1(H1) ∩ Br )

2 H0(H1 ∩ H2 ∩ H3 ∩ Br ) μ3
2(d(H1, H2, H3))

≤ c I (1, 2) ≤ c e2r ,

for σ3 we get

∫

Ah(3,2)4
H1(H1 ∩ H2 ∩ Br )H1(H1 ∩ H3 ∩ Br )

× H0(H1 ∩ H3 ∩ H4 ∩ Br ) μ4
2(d(H1, H2, H3, H4))

≤ c
∫

Ah(3,2)3
H1(H1 ∩ H2 ∩ Br )H1(L1(H1) ∩ Br )H1(L1(H3) ∩ Br )

× μ3
2(d(H1, H2, H3))

≤ c I (1, 1) I (0, 1) ≤ c e4r ,

for σ4 we get

∫

Ah(3,2)4
H1(H1 ∩ H2 ∩ Br )

2H0(H1 ∩ H3 ∩ H4 ∩ Br ) μ4
2(d(H1, H2, H3, H4))

≤ c
∫

Ah(3,2)2
H1(L1(H1) ∩ Br )H1(L1(H2) ∩ Br )H2(H1 ∩ Br ) μ2

2(d(H1, H2))

≤ c I (1, 1) I (0, 1) ≤ c e4r ,

for σ5 we get

∫

Ah(3,2)4
H1(H1 ∩ H2 ∩ Br )H1(H1 ∩ H3 ∩ Br )H0(H2 ∩ H3 ∩ H4 ∩ Br )

× μ4
2(d(H1, H2, H3, H4))

≤ c
∫

Ah(3,2)3
H1(H1 ∩ H2 ∩ Br )H1(L1(H3) ∩ Br )

2 μ3
2(d(H1, H2, H3))

≤ cH3(Br ) I (0, 2) ≤ c e4r ,
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for σ6 we get

∫

Ah(3,2)4
H1(H1 ∩ H2 ∩ Br )H1(H2 ∩ H3 ∩ Br )H0(H2 ∩ H3 ∩ H4 ∩ Br )

× μ4
2(d(H1, H2, H3, H4))

≤ c
∫

Ah(3,2)3
H1(H1 ∩ H2 ∩ Br )H1(L1(H3) ∩ Br )

2 μ3
2(d(H1, H2, H3)),

which is the same as for σ5 and thus bounded by e4r . For σ7 we have

∫

Ah(3,2)4
H1(H1 ∩ H2 ∩ Br )

2H0(H1 ∩ H3 ∩ H4 ∩ Br ) μ4
2(d(H1, H2, H3, H4))

≤ c
∫

Ah(3,2)2
H1(L1(H1) ∩ Br )H1(L1(H2) ∩ Br )H2(H1 ∩ Br ) μ2

2(d(H1, H2))

≤ c I (1, 1) I (0, 1) ≤ c e4r ,

for σ8 we have

∫

Ah(3,2)4
H1(H1 ∩ H2 ∩ Br )H1(H3 ∩ H4 ∩ Br )H0(H2 ∩ H3 ∩ H4 ∩ Br )

× μ4
2(d(H1, H2, H3, H4))

≤
∫

Ah(3,2)4
H1(H1 ∩ H2 ∩ Br )H1(H3 ∩ H4 ∩ Br ) μ4

2(d(H1, H2, H3, H4))

= cH3(Br )
2 ≤ c e4r ,

for σ9 we have

∫

Ah(3,2)4
H1(H1 ∩ H2 ∩ Br )H1(H3 ∩ H4 ∩ Br )H0(H1 ∩ H2 ∩ H3 ∩ Br )

× μ4
2(d(H1, H2, H3, H4))

≤
∫

Ah(3,2)4
H1(H1 ∩ H2 ∩ Br )H1(H3 ∩ H4 ∩ Br ) μ4

2(d(H1, H2, H3, H4))

= cH3(Br )
2 ≤ c e4r .

Next, for σ10 we get

∫

Ah(3,2)5
H1(H1 ∩ H2 ∩ Br )H1(H1 ∩ H3 ∩ Br )H0(H3 ∩ H4 ∩ H5 ∩ Br )

× μ5
2(d(H1, H2, H3, H4, H5))

≤ c
∫

Ah(3,2)3
H1(H1 ∩ H2 ∩ Br )H1(L1(H3) ∩ Br )H2(H3 ∩ Br )

123



Does a central limit theorem hold for the k-skeleton…

× μ3
2(d(H1, H2, H3))

≤ cH3(Br ) I (1, 1) ≤ c e4r ,

for σ11 we get

∫

Ah(3,2)5
H1(H1 ∩ H2 ∩ Br )H1(H3 ∩ H4 ∩ Br )

× H0(H3 ∩ H4 ∩ H5 ∩ Br ) μ5
2(d(H1, H2, H3, H4, H5))

= c
∫

Ah(3,2)4
H1(H1 ∩ H2 ∩ Br )H1(H3 ∩ H4 ∩ Br )

2 μ4
2(d(H1, H2, H3, H4))

≤ cH3(Br )
∫

Ah(3,2)2
H1(L1(H3) ∩ Br )H1(H3 ∩ H4 ∩ Br ) μ2

2(d(H3, H4))

= cH3(Br )
∫

Ah(3,2)
H1(L1(H3) ∩ Br )H2(H3 ∩ Br ) μ2(dH3)

≤ cH3(Br ) I (1, 1) ≤ c e4r

and for σ12 we get

∫

Ah(3,2)5
H1(H1 ∩ H2 ∩ Br )H1(H3 ∩ H4 ∩ Br )

× H0(H2 ∩ H3 ∩ H5 ∩ Br ) μ5
2(d(H1, H2, H3, H4, H5))

≤ cH3(Br )
∫

Ah(3,2)
H2(H3 ∩ Br )H1(L1(H3) ∩ Br ) μ2(dH3)

≤ c e2r I (1, 1) ≤ c e4r .

Altogether this yields that M2,3( f (0)) ≤ c t7 (2 e2r + 10 e4r ) ≤ c t7 e4r .
Finally, we deal with the term M3,3( f (0)). This requires to consider the partitions in

Πcon≥2 (3, 3, 3, 3). Up to renumbering of the elements there are precisely 11 partitions
σ1, . . . , σ11 of this type and they are shown in Fig. 8. The analysis of the resulting
integrals works the same way as above. Especially, we use once again systematically
that H0(H1 ∩ H2 ∩ H3 ∩ Br ) ≤ 1 for μ3

2-almost all (H1, H2, H3) ∈ Ah(3, 2)3 and
apply this to the term corresponding to the last row of each of the partitions. This
leaves us with integrals over

H0(intersection of the 3 planes corresponding to the first row)

× H0(intersection of the 3 planes corresponding to the second row)

× H0(intersection of the 3 planes corresponding to the third row),
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σ1 σ2 σ3 σ4 σ5 σ6

σ7 σ8 σ9 σ10 σ11

Fig. 8 Illustration of the partition in Πcon≥2 (3, 3, 3, 3)

which in turn can be bounded using Crofton’s formula, Lemma 8 and Lemma 16. For
σ1 this yields

∫

Ah(3,2)3
H0(H1 ∩ H2 ∩ H3 ∩ Br )

3 μ3
2(d(H1, H2, H3))

=
∫

Ah(3,2)3
H0(H1 ∩ H2 ∩ H3 ∩ Br ) μ3

2(d(H1, H2, H3)) = cH3(Br ) ≤ c e2r ,

for σ2 and σ3 we obtain

∫

Ah(3,2)4
H0(H1 ∩ H2 ∩ H3 ∩ Br )

2H0(H1 ∩ H2 ∩ H4 ∩ Br )

× μ4
2(d(H1, H2, H3, H4))

=
∫

Ah(3,2)4
H0(H1 ∩ H2 ∩ H3 ∩ Br )H0(H1 ∩ H2 ∩ H4 ∩ Br )

× μ4
2(d(H1, H2, H3, H4))

= c
∫

Ah(3,2)2
H1(H1 ∩ H2 ∩ Br )

2 μ2
2(d(H1, H2)) ≤ c I (1, 1) ≤ c e2r ,

for σ4 we obtain

∫

Ah(3,2)5
H0(H1 ∩ H2 ∩ H3 ∩ Br )

2H0(H1 ∩ H4 ∩ H5 ∩ Br )

× μ5
2(d(H1, H2, H3, H4, H5))

=
∫

Ah(3,2)5
H0(H1 ∩ H2 ∩ H3 ∩ Br )H0(H1 ∩ H4 ∩ H5 ∩ Br )
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× μ5
2(d(H1, H2, H3, H4, H5))

= c
∫

Ah(3,2)
H2(H1 ∩ Br )

2 μ2(dH1) ≤ c g(2, 2, 3, r) ≤ c re2r ,

for σ5 we have

∫

Ah(3,2)5
H0(H1 ∩ H2 ∩ H3 ∩ Br )H0(H1 ∩ H2 ∩ H4 ∩ Br )

× H0(H1 ∩ H3 ∩ H5 ∩ Br ) μ5
2(d(H1, H2, H3, H4, H5))

≤ c
∫

Ah(3,2)
H2(H1 ∩ Br )H1(L1(H1) ∩ Br )

2 μ2(dH1) ≤ c I (1, 2) ≤ c e2r ,

for σ6 we have

∫

Ah(3,2)4
H0(H1 ∩ H2 ∩ H3 ∩ Br )H0(H1 ∩ H2 ∩ H4 ∩ Br )

× H0(H1 ∩ H3 ∩ H4 ∩ Br ) μ4
2(d(H1, H2, H3, H4))

≤
∫

Ah(3,2)4
H0(H1 ∩ H2 ∩ H3 ∩ Br )H0(H1 ∩ H2 ∩ H4 ∩ Br ) μ4

2(d(H1, H2, H3, H4))

= c
∫

Ah(3,2)2
H1(H1 ∩ H2 ∩ Br )

2 μ2
2(d(H1, H2)) ≤ c e2r

by the same argument as for σ2 and σ3. For σ7 we have

∫

Ah(3,2)5
H0(H1 ∩ H2 ∩ H3 ∩ Br )H0(H1 ∩ H2 ∩ H4 ∩ Br )

× H0(H1 ∩ H2 ∩ H5 ∩ Br ) μ5
2(d(H1, H2, H3, H4, H5))

= c
∫

Ah(3,2)2
H1(H1 ∩ H2 ∩ Br )

3 μ2(d(H1, H2))

≤ c
∫

Ah(3,2)2
H1(H1 ∩ H2 ∩ Br )H1(L1(H1) ∩ Br )

2 μ2
2(d(H1, H2))

≤ c I (1, 2) ≤ c e2r ,

for σ8 we obtain

∫

Ah (3,2)5
H0(H1 ∩ H2 ∩ H3 ∩ Br )

2 H0(H1 ∩ H4 ∩ H5 ∩ Br ) μ5
2(d(H1, H2, H3, H4, H5))

=
∫

Ah (3,2)5
H0(H1 ∩ H2 ∩ H3 ∩ Br )H0(H1 ∩ H4 ∩ H5 ∩ Br ) μ5

2(d(H1, H2, H3, H4, H5))

= c
∫

Ah (3,2)
H2(H1 ∩ Br )

2 μ2(dH1) ≤ c g(2, 2, 3, r) ≤ c re2r ,
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for σ9 we get

∫

Ah(3,2)5
H0(H1 ∩ H2 ∩ H3 ∩ Br )H0(H1 ∩ H2 ∩ H4 ∩ Br )

× H0(H1 ∩ H3 ∩ H5 ∩ Br ) μ5
2(d(H1, H2, H3, H4, H5))

≤ c
∫

Ah(3,2)3
H1(H1 ∩ H2 ∩ Br )H1(H1 ∩ H3 ∩ Br ) μ3

2(d(H1, H2, H3))

= c
∫

Ah(3,2)
H2(H1 ∩ Br )

2 μ2(dH1) ≤ c g(2, 2, 3, r) ≤ c re2r ,

for σ10 we obtain

∫

Ah(3,2)6
H0(H1 ∩ H2 ∩ H3 ∩ Br )H0(H1 ∩ H2 ∩ H4 ∩ Br )

× H0(H4 ∩ H5 ∩ H6 ∩ Br ) μ6
2(d(H1, . . . , H6))

≤ c
∫

Ah(3,2)4
H0(H1 ∩ H2 ∩ H3 ∩ Br )H2(H4 ∩ Br ) μ4

2(d(H1, H2, H3, H4))

= cH3(Br )
2 ≤ c e4r

and, finally, for σ11 we have

∫

Ah(3,2)6
H0(H1 ∩ H2 ∩ H3 ∩ Br )H0(H1 ∩ H4 ∩ H5 ∩ Br )

× H0(H3 ∩ H4 ∩ H6 ∩ Br ) μ6
2(d(H1, . . . , H6))

= c
∫

Ah(3,2)3
H1(H1 ∩ H3 ∩ Br )H1(H1 ∩ H4 ∩ Br )H1(H3 ∩ H4 ∩ Br )

× μ3
2 (d(H1, H3, H4))

≤ c
∫

Ah(3,2)3
H1(L1(H1) ∩ Br )

2 H1(H3 ∩ H4 ∩ Br ) μ3
2(d(H1, H3, H4))

= cH3(Br ) I (0, 2) ≤ c e4r .

We thus conclude that M3,3( f (0)) ≤ c t6 (6e2r + 3 re2r + 2e4r ) ≤ c t6 e4r . An appli-
cation of the upper bounds for Mu,v( f (0)) with (u, v) ∈ {(1, 1), (1, 2), (1, 3), (2, 2),
(2, 3), (3, 3)} and the lower bound for the variance from Lemma 10 in (14) shows that

d

⎛

⎝
F (0)
r ,t − EF (0)

r ,t
√

Var(F (0)
r ,t )

, N

⎞

⎠ ≤ c
3
√
t9e4r + 3

√
t9re4r

t5c(1)(3, 1)e2r r
≤ c t−1/2 r−1/2 (47)

and the proof of Theorem 5 (b) is complete. ��
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b( · )
1

1

2

1

0

c( · )
2

2

1

3

4

Fig. 9 Left panel: The two types of (sub-)partitions in Π∗∗≥2(1, 1, 1, 1, 1). Right panel: Example of a sub-
partition σ from Π∗∗≥2(4, 4, 4, 4, 4) with m(σ ) = 3

6.2.3 The higher dimensional cases d ≥ 4: Proof of Theorem 5 (c)

In order to show that for d ≥ 4 and i = d−1 and for d ≥ 7 and i ∈ {0, . . . , d−1} non
of the centred and normalized functionals F (i)

r ,t converges in distribution to a Gaussian
random variable, as r → ∞, we will argue that the fourth cumulant

cum4 := E

(
˜
F (i)
r ,t

)4

− 3,
˜
F (i)
r ,t := F (i)

r ,t − EF (i)
r ,t

√
Var(F (i)

r ,t )

does not converge to zero, which is the value of the fourth cumulant of a standard
Gaussian random variable. We start with the following crucial, but rather technical
result, which is based on the formula (11) for the centred moments of a Poisson
U-statistic.

Lemma 17 Let d ≥ 4, i ∈ {0, 1, . . . , d − 1} and t ≥ t0 > 0. If d ∈ {4, 5, 6} and
i = d − 1 or if d ≥ 7, then

sup
r≥1

E

(
˜
F (i)
r ,t

)5

< ∞.

Proof We start by explaining our method by considering the case i = d − 1. In this
situation

E

(
˜
F (d−1)
r ,t

)5

= E
(
F (d−1)
r ,t − EF (d−1)

r ,t
)5

(Var(F (d−1)
r ,t ))5/2

≤ c
E
(
F (d−1)
r ,t − EF (d−1)

r ,t
)5

e5r(d−2)
,

where we used the variance bound from Lemma 11, which is available since t ≥ t0
and r ≥ 1. For the centred fifth moment, (11) implies that

E
(
F (d−1)
r ,t − EF (d−1)

r ,t
)5

=
∑

σ∈Π∗∗≥2(1,1,1,1,1)

t5−|σ |+‖σ‖
∫

Ah(d,d−1)5−|σ |−‖σ‖

(
( f (d−1))⊗5)

σ
dμ

5−|σ |+‖σ‖
d−1 .
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The setΠ∗∗≥2(1, 1, 1, 1, 1) consists only of two types of sub-partitions of {1, 2, 3, 4, 5},
which are actually partitions, see Fig. 9. The first type only consists of one partition,
namely the trivial partition, only containing the single block {1, 2, 3, 4, 5}. The second
type contains

(5
2

) = 10 partitions having precisely two blocks, one of size 2 and the
other of type 3. Since the integrals corresponding to these partitions all yield the same
contribution, we can restrict our computations to {{1, 2, 3}, {4, 5}}, for example. Thus,

E
(
F (d−1)
r ,t − EF (d−1)

r ,t
)5 = t9

∫

Ah(d,d−1)
Hd−1(H ∩ Br )

5 μd−1(dH)

+ 10t8
∫

Ah(d,d−1)2
Hd−1(H1 ∩ Br )

3Hd−1(H2 ∩ Br )
2 μ2

d−1(d(H1, H2)).

By Lemma 8 we have

∫

Ah(d,d−1)
Hd−1(H ∩ Br )

5 μd−1(dH) ≤ c g(d − 1, 5, d, r) ≤ c e5r(d−2),

since 5(d − 2) − (d − 1) = 4d − 9 > 0. Again by Lemma 8 we obtain

∫

Ah(d,d−1)2
Hd−1(H1 ∩ Br )

3Hd−1(H2 ∩ Br )
2 μ2

d−1(d(H1, H2))

≤ c g(d − 1, 3, d, r) g(d − 1, 2, d, r) ≤ c e3r(d−2)e2r(d−2) ≤ c e5r(d−2),

since d > 3. Thus we get

sup
r≥1

E

(
˜
F (i)
r ,t

)5

≤ c sup
r≥1

e5r(d−2) + e5r(d−2)

e5r(d−2)
= c < ∞.

This proves the claim for i = d − 1.
Now we fix i ∈ {0, 1, . . . , d − 2} arbitrarily and assume that d ≥ 7. Furthermore,

we fix an arbitrary partition σ ∈ Π∗∗≥2(d − i, d − i, d − i, d − i, d − i). We denote by
m(σ ) ∈ {2, 3, 4, 5} the size of the maximal block of σ and represent σ as a diagram.
The elements of this diagram are labelled ap,q . Here, p ∈ {1, . . . , 5} represents the
row number and q ∈ {1, . . . , d − i} stands for the column number. Without loss of
generality we can and will assume that the maximal block of σ sits in the left upper
corner of the diagram of σ , that is, themaximal block is of the form {a1,1, . . . , am(σ ),1}.
To each row p ∈ {1, . . . , 5} we associate two numbers b(p) and c(p) in the following
way. By b(p) we denote the number of elements of row p in position

(p, q) ∈ ({1, . . . ,m(σ )} × {2, . . . , d − i}) ∪ ({m(σ ) + 1, . . . , 5} × {1, . . . , d − i})

which are contained in a block of σ that has at least one element in a row below p, and
we let c(p) be the number of elements in position (p, q) (with the same restrictions as
above) in row p not contained in any block of σ that has at least one element in a row
below p, see Fig. 9 for an example. Note that b(5) = 0, c(5) = d− i ifm(σ ) < 5, and
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c(p) = d − i − b(p) − 1 if p ∈ {1, . . . ,m(σ )}. Our task is to show that the integral
(in symbolic notation)

I : =
∫

· · ·
∫ ((

f (i))⊗5
)

σ

=
∫

· · ·
∫

f (i)(H1,G1, . . . ,Gb(1), K1, . . . , Kc(1))

× f (i)(. . .) f (i)(. . .) f (i)(. . .) f (i)(. . .) μd−1(dH1) . . .

is bounded by a constant multiple of e5(d−2)r , which is the order of (Var(F (i)
r ,t ))

5/2.We
first integrate with respect to the hyperplanes K1, . . . , Kc(1), which do not appear in
any of the arguments of the other four functions f (i)(. . .). By Crofton’s formula this
gives cHd−1−b(1)(Br∩H1∩G1∩. . .∩Gb(1)). Nowwe replace H1∩G1∩. . .∩Gb(1) by
a (d−1−b(1))-dimensional subspace Ld−1−b(1)(s1) having distance s1 = dh(H1, p)
from p. This leads to

Hd−1−b(1)(Br ∩ H1 ∩ G1 ∩ . . . ∩ Gb(1)) ≤ Hd−1−b(1)(Br ∩ Ld−1−b(1)(s1)). (48)

Then G1, . . . ,Gb(1) are active integration variables for rows below the first row.
Repeating the same argument for p = 2, . . . ,m(σ ), we arrive at (again in symbolic
notation)

I ≤ c
∫

· · ·
∫

Hd−1−b(1)(Br ∩ Ld−1−b(1)(s1)) · · ·
× Hd−1−b(m(σ ))(Br ∩ Ld−1−b(m(σ ))(s1))

× f (i)(. . .) · · · f (i)(. . .) μd−1(dH1) . . . ,

where f (i)(. . .) appears 5 − m(σ ) times. From now on we distinguish the following
two cases:

(a) there is no block that contains precisely two elements from the rows below m(σ ),
(b) there exists a block that contains precisely two elements from the rows below

m(σ ).

We start by treating case (a). If m(σ ) = 2, then all blocks of σ have two elements.
In particular, no element of row p ≥ 3 can be in a (2-element) block with another
element in a block below. Hence, we have c(p) = d − i for p ≥ 3. If m(σ ) = 3,
then an element of row p = 4 cannot be in a common block with an element of row
5 due to assumption (a). Hence c(4) = c(5) = d − i . This shows that c(p) = d − i
for p ∈ {m(σ ) + 1, . . . , 5}. We can thus carry out the 5 − m(σ ) integrals involving
the functions f (i)(. . .), which by Crofton’s formula and Lemma 8 leads to the upper
bound

Hd(Br )
5−m(σ ) ≤ c e(5−m(σ ))(d−1)r . (49)
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The only remaining integral in I is

J :=
∫ r

0
coshd−1(s)Hd−1−b(1)(Br ∩ Ld−1−b(1)(s)) · · ·Hd−1−b(m(σ ))(Br ∩ Ld−1−b(m(σ ))(s)) ds.

To proceed, we define for p ∈ {1, . . . ,m(σ )} the function

gp(s) : = e−r(d−2) ·

⎧
⎪⎨

⎪⎩

e(r−s)(d−2−b(p)) : d − 1 − b(p) ≥ 2,

r − s + log(2) : d − 1 − b(p) = 1,

1 : d − 1 − b(p) = 0.

Then, Lemma 6, (19) and Lemma 7 imply that

J ≤ c em(σ )(d−2)r K with K :=
∫ r

0
coshd−1(s) g1(s) · · · gm(σ )(s) ds.

(50)

We let

Z01 := {p ∈ {1, . . . ,m(σ )} : d − 1 − b(p) ∈ {0, 1}},
Z1 := {p ∈ {1, . . . ,m(σ )} : d − 1 − b(p) = 1}.

Then

K ≤ c e
−r(d−2)|Z01|−r

∑m(σ )
p=1,p/∈Z01 b(p)

∫ r

0
(r − s + log(2))|Z1| esE ds, (51)

where the exponent E is given by

E := (d − 1) − (d − 2)(m(σ ) − |Z01|) +
m(σ )∑

p=1,p/∈Z01

b(p).

If E < 0 the integral in (51) is bounded by a constant times r |Z1|. In view of (49) and
(50) we conclude that

I ≤ c e(5−m(σ ))(d−1)r em(σ )(d−2)r e
−(d−2)|Z01|r−r

∑m(σ )
p=1,p/∈Z01 b(p)r |Z1|. (52)

In order to boundI fromabove by a constant times e5(d−2)r , we use the decomposition

e5(d−2)r = e(5−m(σ ))(d−1)r em(σ )(d−2)r e−(5−m(σ ))r . (53)
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Acomparison of the exponents in (52) and (53) shows that if E < 0, then it is sufficient
to prove that

(d − 2)|Z01| +
m(σ )∑

p=1,p/∈Z01

b(p)

{
≥ 5 − m(σ ) : if |Z1| = 0,

> 5 − m(σ ) : if |Z1| > 0.

If |Z01| > 0, then (d − 2)|Z01| ≥ 4 > 5 − m(σ ) for d ≥ 6. If |Z01| = 0, then
also |Z1| = 0, and in this case it is sufficient to show that

∑m(σ )
p=1 b(p) ≥ 5 − m(σ ).

To see this, note that, for any m(σ ) ∈ {2, . . . , 5}, under condition (a) we know that
for 5 − m(σ ) of the positions (p, q) ∈ {1, . . . ,m(σ )} × {2, . . . , d − i} there has
to be a block containing the element at (p, q) and exactly one element at (p′, q ′) ∈
{m(σ ) + 1, . . . , 5} × {1, . . . , d − i}, since each row has to be visited by some block.
But this implies the required inequality.

Next, suppose that E = 0. Then the integral in (51) is bounded by a polynomial in
r of degree at most |Z1| + 1 and another comparison of exponents in (52) and (53)
implies that in this case we need to prove that

(d − 2)|Z01| +
m(σ )∑

p=1,p/∈Z01

b(p) > 5 − m(σ ). (54)

Using the assumption that E = 0, we see that in this case

(d − 2)|Z01| +
m(σ )∑

p=1,p/∈Z01

b(p) = m(σ )(d − 2) − (d − 1).

This shows that the inequality in (54) is equivalent to (d − 1)(m(σ ) − 1) > 5, which
is always satisfied for d ≥ 7.

Finally, we suppose that E > 0 in which case a comparison of the exponents in
(52) and (53) shows that we have to verify that

(d − 2)|Z01| +
m(σ )∑

p=1,p/∈Z01

b(p) − (d − 1) + (d − 2)(m(σ ) − |Z01|)

−
m(σ )∑

p=1,p/∈Z01

b(p) ≥ 5 − m(σ ).

After simplification, this is equivalent to (d − 1)(m(σ ) − 1) ≥ 5, which holds for
d ≥ 6. This completes the argument in case (a) for d ≥ 7.

We turn now to case (b), where we have to distinguish the sub-cases m(σ ) = 2 and
m(σ ) = 3. We start with the case m(σ ) = 2. Then, arguing as at the beginning of the
proof for case (a), we have

I ≤ cI1I2Hd(Br )
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with

J j :=
∫ r

0
coshd−1(s)Hd−1−b̄(2 j−1)(Br ∩ Ld−1−b̄(2 j−1)(s))Hd−1−b̄(2 j)(Br ∩ Ld−1−b̄(2 j)(s)) ds

for j ∈ {1, 2}, where b̄(i) = b(i) for i ∈ {1, 2, 4} and b̄(3) = b(3) − 1 ≥ 0.
Moreover, without loss of generality, we can assume that b(1) ≥ 1. Similarly to (50),
for j ∈ {1, 2} we get

J j ≤ e2(d−2)r K j with K j :=
∫ r

0
coshd−1(s) g2 j−1(s) g2 j (s) ds.

For j ∈ {1, 2} we let

Z j
01 := {p ∈ {2 j − 1, 2 j} : d − 1 − b̄(p) ∈ {0, 1}},
Z j
1 := {p ∈ {2 j − 1, 2 j} : d − 1 − b̄(p) = 1}.

Then

K j ≤ c e
−r(d−2)|Z j

01|−r
∑2 j

p=2 j−1,p/∈Z j
01

b̄(p) ∫ r

0
(r − s + log(2))|Z

j
1 | esE j ds, (55)

where the exponents E j , j ∈ {1, 2}, are given by

E j :=(d − 1) − (d − 2)(2 − |Z j
01|) +

2 j∑

p=2 j−1,p/∈Z j
01

b̄(p).

We will show thatK1 is bounded by a constant multiple of e−r andK2 by a constant.
Then we can conclude that

I ≤ c e(d−1)rI1I2 ≤ c e(d−1)r e4(d−2)r e−r ≤ e5(d−2)r .

Wefirst considerK1. For E1 < 0 the integral in (55) is bounded by a constant multiple
of r |Z1

1 |. Therefore it is sufficient to compare the exponents and to show that

(d − 2)|Z1
01| +

2∑

p=1,p/∈Z1
01

b(p)

{
≥ 1 : |Z1

1 | = 0,

> 1 : |Z1
1 | > 0.

Since b(1) ≥ 1 and d ≥ 4, this is satisfied.
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Next, suppose that E1 = 0. In this case, the integral in (55) is bounded by a
polynomial in r and we have to show the inequality

(d − 2)|Z1
01| +

2∑

p=1,p/∈Z1
01

b(p) > 1. (56)

Using the assumption that E1 = 0, we get

(d − 2)|Z1
01| +

2∑

p=1,p/∈Z1
01

b(p) = −(d − 1) + 2(d − 2) = d − 3.

Hence (56) is true for d ≥ 5.
Finally, we suppose that E1 > 0. Then we have to show that

(d − 2)|Z1
01| +

2∑

p=1,p/∈Z1
01

b(p) − (d − 1) + (d − 2)(2 − |Z01| j )

−
2∑

p=1,p/∈Z1
01

b(p) ≥ 1.

After simplifications this is equivalent to d ≥ 4.
Now we prove thatK2 is bounded by a constant. For E2 < 0, a comparison of the

exponents in (55) shows that we need that

(d − 2)|Z2
01| +

4∑

p=3,p/∈Z2
01

b̄(p)

{
≥ 0 : |Z2

1 | = 0,

> 0 : |Z2
1 | > 0,

which is trivially satisfied.
For E2 = 0 the required inequality is

(d − 2)|Z2
01| +

4∑

p=3,p/∈Z2
01

b̄(p) > 0,

which is equivalent to −(d − 1) + 2(d − 2) > 0, that is, to d ≥ 4.
Finally, if E2 > 0 then we have to verify that

(d − 2)|Z2
01| +

4∑

p=3,p/∈Z2
01

b̄(p) − (d − 1) + (d − 2)(2 − |Z01|2)
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−
4∑

p=3,p/∈Z2
01

b̄(p) ≥ 0.

Again simplification yields that this is equivalent to d ≥ 3.

Now we turn to the case m(σ ) = 3. Then we have

I ≤ cI3I4

with

I3 :=
∫ r

0
coshd−1(s)

3∏

i=1

Hd−1−b(i)(Br ∩ Ld−1−b(i)(s)) ds,

I4 :=
∫ r

0
coshd−1(s)

5∏

i=4

Hd−1−b̄(i)(Br ∩ Ld−1−b̄(i)(s)) ds,

where 0 ≤ b̄(4) := b(4) − 1 ≤ d − i − 1 ≤ d − 1 and b̄(5) = 0. We will prove that
I3 ≤ c e3(d−2)r and I4 ≤ c e2(d−2)r , which in turn proves that I ≤ c e5(d−2)r .

As in the proof of case (a) (and for m(σ ) = 3 there), we obtain

I3 ≤ c e3(d−2)rK3 with K3 :=
∫ r

0
coshd−1(s)g1(s)g2(s)g3(s) ds.

We show that K3 ≤ c. For this, we proceed as before and obtain

K3 ≤ c e
−r(d−2)|Z3

01|−r
∑3

p=1,p/∈Z301
b(p)

∫ r

0
(r − s + log(2))|Z3

1 | esE3 ds,

where

Z3
01 := {p ∈ {1, . . . , 3} : d − 1 − b(p) ∈ {0, 1}},
Z3
1 := {p ∈ {1, . . . , 3 : d − 1 − b(p) = 1}

and

E3 := (d − 1) − (d − 2)(3 − |Z3
01|) +

3∑

p=1,p/∈Z3
01

b(p).

If E3 ≤ 0, then

r |Z3
01|e−r(d−2)|Z3

01|e
−r
∑3

p=1,p/∈Z301
b(p) ≤ c
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provided that

(d − 2)|Z3
01| +

3∑

p=1,p/∈Z3
01

b(p)

{
≥ 0 : |Z3

1 | = 0,

> 0 : |Z3
1 | > 0.

This is obviously true, since |Z3
01| ≥ |Z3

1 | and d ≥ 4. Hence, if E3 ≤ 0, thenK3 ≤ c.
If E3 > 0, then K3 ≤ c follows provided that

(d − 2)|Z3
01| +

3∑

p=1,p/∈Z3
01

b(p) − E3 ≥ 0.

The latter is equivalent to (d − 2)3 − (d − 1) ≥ 0, that is, to 2d ≥ 5. Thus we have
shown that I3 ≤ c e3(d−2). In order to show that I4 ≤ c e2(d−2), we distinguish
several cases.

If b̄(4) < d − 3, then

I4 ≤ c
∫ r

0
es(d−1)e(r−s)(d−2−b̄(4))e(r−s)(d−2) ds

≤ c e(2(d−2)−b̄(4))r
∫ r

0
es(−d+3+b̄(4)) ds ≤ c e2(d−2)r .

If b̄(4) = d − 3, then

I4 ≤ c e(2(d−2)−d+3)r r = c rer(d−1) ≤ c e2(d−2)r ,

since d − 1 < 2(d − 2) for d ≥ 4.
If b̄(4) = d − 2, then

I4 ≤ c
∫ r

0
es(d−1)(r − s + log(2))e(r−s)(d−2) ds ≤ c er(d−1).

If b̄(4) = d − 1, then

I4 ≤ c
∫ r

0
es(d−1)e(r−s)(d−2) ds ≤ c er(d−1).

Thus in all cases we have I4 ≤ c e2(d−2)r , which completes the proof. ��

Proof of Theorem 5 (c) Let d and i be as in the statement of Theorem 5 (c), and suppose

to the contrary that
˜
F (i)
r ,t converges in distribution, as r → ∞, to a standard Gaussian

random variable N . As a consequence of Lemma 17, the family of random variables
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(
(
˜
F (i)
r ,t )

4
)
r≥1 is uniformly integrable, which implies that E(

˜
F (i)
r ,t )

4 → EN 4 = 3, as
r → ∞. Thus, we would also have that

cum4 = E

(
˜
F (i)
r ,t

)4

− 3 → EN 4 − 3 = 0, (57)

as r → ∞. On the other hand, from [67, page 112] we know that

M1,1( f (i))

(Var(F (i)
r ,t ))

2
≤ cum4 .

In addition, we have the following lower bound for M1,1( f (i)):

M1,1( f
(i)) = ct4(d−1−i)+1

∫

Ah(d,d−1)
Hd−1(H̃1 ∩ Br )

4 μd−1(d H̃1)

≥ c g(d − 1, 4, d, r) ≥ c e4r(d−2),

since 4(d − 2) − (d − 1) > 0, which follows from our assumption that d ≥ 4, and
since i ≤ d − 1 and t ≥ 1. In combination with Lemma 11 we thus find that

cum4 ≥ M1,1( f (i))

(Var(F (i)
r ,t ))

2
≥ c

c(i)(d, 1)

e4r(d−2)

e4r(d−2)
= c > 0,

which is a contradiction to (57). Consequently, the family of random variables
(̃
F (i)
r ,t
)
r≥1 cannot satisfy a central limit theorem as r → ∞. ��

Remark 12 Let d ≥ 4 and i = d−1 or d ≥ 7 and i ∈ {0, 1, . . . , d−1}. For such d and
i the proof of Theorem 5 (c) in combination with [10, Corollary 4.7.19], a corollary of

the Eberlein-S̆mulian theorem, shows that there exists a subsequence
˜
F (i)
rk ,t such that

˜
F (i)
rk ,t converges in distribution and in L4 to some limiting random variable X , say.

Especially this implies that EX = 0, EX2 = 1 and EXm < ∞ for m ∈ {3, 4}. In
particular, this rules out for X the classical α-stable distributions for any 0 < α < 2
and, since we have shown that cum4(X) > 0, also a Gaussian distribution. We leave
the determination of the distribution of the limiting random variable X as a challenging
open problem for future research.

6.3 The case of simultaneous growth of intensity and window: Proof of Theorem 6

According to Lemma 17 we have that, for any fixed t ≥ 1,

sup
r≥1

E

(
˜
F (i)
r ,t

)5

< ∞, where
˜
F (i)
r ,t = F (i)

r ,t − EF (i)
r ,t

√
Var(F (i)

r ,t )
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and where d and i are as in the statement of Theorem 6. Then, taking t = 1, by
Hölder’s inequality it follows that

sup
r≥1

E

(
˜
F (i)
r ,1

)4

≤ sup
r≥1

(

E

(
˜
F (i)
r ,1

)5
)4/5

< ∞. (58)

Next, we recall the definition of the integrals Mu,v(h), u, v ∈ {1, . . . ,m}, from
(12) that are associated with a general Poisson U-statistic of order m ∈ N with kernel
function h. In order to emphasize the role of the measure these integrals are taken with,
we will write Mu,v(h ; μ) in what follows. By definition of the integrated kernels in
(13) we have that

Mu,v( f
(i) ; tμd−1) ≤ t4(d−i−1)+1Mu,v( f

(i) ; μd−1) (59)

for any t ≥ 1 and any fixed r ≥ 1. In fact, f (i)
u and f (i)

v contribute twice the factor
td−i−u and twice the factor td−i−v by (13), respectively, and the integral in (12) leads
to an additional factor t |σ |. By the choice u = v = 1 we maximize the resulting
exponent and see that their product is bounded by t4(d−i−1)+1. Indeed, if u = v = 1
we necessarily have that |σ | = 1 since σ has to be connected. On the other hand, if
u + v ≥ 3 then |σ | ≤ u + v and hence

2(d − i − u) + 2(d − i − v) + |σ | ≤ 2(d − i − u) + 2(d − i − v) + u + v

= 4(d − i − 1) − (u + v) + 4

≤ 4(d − i − 1) + 1.

Now, we apply the normal approximation bound (14) to the Poisson U-statistic
F (i)
r ,t . Together with (59) and the lower and the upper variance bound from Lemma 11

this yields

d

⎛

⎝
F (i)
r ,t − EF (i)

r ,t
√

VarF (i)
r ,t

, N

⎞

⎠ ≤ c
d−i∑

u,v=1

√
Mu,v( f (i); tμd−1)

Var(F (i)
r ,t )

≤ c
d−i∑

u,v=1

t2(d−i−1)+1/2

t2(d−i)−1

√
Mu,v( f (i) ; μd−1)

Var(F (i)
r ,1)

= c√
t

d−i∑

u,v=1

√
Mu,v( f (i) ; μd−1)

Var(F (i)
r ,1)

for any t ≥ 1 and r ≥ 1. Note that the expression in the sum has now become a
function of the parameter r only. We can now apply for any u, v ∈ {1, . . . , d − i} the
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estimate

√
Mu,v( f (i) ; μd−1)

Var(F (i)
r ,1)

≤
√

E

(
˜
F (i)
r ,1

)4

− 3

from the discussion after [67, Corollary 4.3] (see also [34, Proposition 3.8]). This
leads to the bound

d

⎛

⎝
F (i)
r ,t − EF (i)

r ,t
√

VarF (i)
r ,t

, N

⎞

⎠ ≤ c√
t

√

E

(
˜
F (i)
r ,1

)4

− 3 ≤ c√
t

√

E

(
˜
F (i)
r ,1

)4

.

However, in view of (58) the last expression is bounded by c/
√
t for all t ≥ 1 and

r ≥ 1. This completes the proof of Theorem 6. ��

7 Proofs IV: Multivariate limit theorems

7.1 The case of growing intensity: Proof of Theorem 7 (a)

This is a direct consequence of [36, Theorem 5.2]. ��

7.2 The case of growing windows: Proof of Theorem 7 (b) and (c)

7.2.1 The planar case d = 2: Proof of Theorem 7 (b)

Our goal is to use (15). The first term in (15) is bounded by a constant multiple of
r2e−r by Lemma 12. To evaluate the second term we have to combine the lower
variance bound from Lemma 9 with upper bounds for the terms M1,1, M1,2 and M2,2.
In the proof of Theorem 5 (a) we have already shown that M1,1( f (i), f (i)) ≤ cer for
i ∈ {0, 1} and M2,2( f (0), f (0)) ≤ crer , which implies that

M1,1(e
−r/2 f (i), e−r/2 f (i)) ≤ c e−2r er = c e−r ,

M2,2(e
−r/2 f (0), e−r/2 f (0)) ≤ c r e−2r er = c r e−r .

Finally, up to a constant factor an upper bound for M1,2(e−r/2 f (i), e−r/2 f (0)), for
i ∈ {0, 1}, is given by
M1,2(e−r/2 f (0), e−r/2 f (0)), which is equal to

e−2r M1,2( f
(0)) ≤ c e−2r (er + 2r2 er ) ≤ c r2 e−r .

Thus we conclude from (15) that

d3(Fr ,t , NΣ2) ≤ c (r2 e−r + e−r/2 + r1/2 e−r/2 + r e−r/2) ≤ c r e−r/2.
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Since the covariancematrixΣ2 is invertible,‖Σ−1
2 ‖op‖Σ2‖1/2op and‖Σ−1

2 ‖op‖3/2Σ2‖op
are positive and finite constants only depending on t . Together with (16) this also
implies that

d2(Fr ,t , NΣ2) ≤ c r e−r/2.

and completes the proof of Theorem 7 (b). ��

7.2.2 The spatial case d = 3: Proof of Theorem 7 (c)

Our goal is again to use the normal approximation bound (15). By Lemma 13 the first
term in (15) is bounded from above by a constant multiple of r−1. Next, it remains to
provide upper bounds for the terms

Mu,v for (u, v) ∈ {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}.

As in the planar case d = 2 all integrals which are involved have already been treated
in the proof of the univariate limit theorem. Thus, using the bounds derived in the
proof of Theorem 5 (b) we can complete the proof in dimension d = 3. ��
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