KIT | KIT-Bibliothek | Impressum | Datenschutz

Trustworthy machine learning for health care: scalable data valuation with the shapley value

Pandl, Konstantin D.; Feiland, Fabian; Thiebes, Scott; Sunyaev, Ali

Collecting data from many sources is an essential approach to generate large data sets required for the training of machine learning models. Trustworthy machine learning requires incentives, guarantees of data quality, and information privacy. Applying recent advancements in data valuation methods for machine learning can help to enable these. In this work, we analyze the suitability of three different data valuation methods for medical image classification tasks, specifically pleural effusion, on an extensive data set of chest X-ray scans. Our results reveal that a heuristic for calculating the Shapley valuation scheme based on a k-nearest neighbor classifier can successfully value large quantities of data instances. We also demonstrate possible applications for incentivizing data sharing, the efficient detection of mislabeled data, and summarizing data sets to exclude private information. Thereby, this work contributes to developing modern data infrastructures for trustworthy machine learning in health care.

DOI: 10.1145/3450439.3451861
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2021
Sprache Englisch
Identifikator ISBN: 978-1-4503-8359-2
KITopen-ID: 1000131207
Erschienen in CHIL '21: Proceedings of the Conference on Health, Inference, and Learning, April, 2021. Ed.: M. Ghassemi
Veranstaltung ACM Conference on Health, Inference, and Learning (CHIL 2021), Online, 08.04.2021 – 09.04.2021
Verlag Association for Computing Machinery (ACM)
Seiten 47–57
Vorab online veröffentlicht am 08.04.2021
Schlagwörter Computer Vision, Data Valuation, Machine Learning, Medical Imaging, Shapley Value
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page