
Received: 15 July 2020 Accepted: 11 November 2020

DOI: 10.1002/pamm.202000234
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Resulting from their high stiffness and low weight, lightweight structures made from fiber reinforced polymers are usually
prone to vibrations. The inclusion of viscoelastic interlayers can provide a viable mean to passively damp these structures due
to constrained layer damping. For the modeling of such structures, a layerwise approach based on the Generalized Unified
Formulation has previously been proven suitable for static load cases.

This contribution presents an analytical procedure to determine the frequency response and vibration characteristics of such
heterogeneous laminates incorporating viscoelastic layers. Specifically, simply supported plates modeled by the Generalized
Unified Formulation are considered and solved using Navier type solutions. The approach is validated by comparison with
3D finite element models. Particular focus is put on the order of expansion in thickness direction needed to accurately predict
the frequency response of the laminate.
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1 Introduction

As lightweight structures can be prone to vibrations due to their usually high stiffness and low weight, intrinsic material
damping can be used to damp these unwanted oscillations. One of these intrinsic damping mechanisms is constrained-layer
damping where a viscoelastic and compliant layer is laminated in between two stiff constraining layers. The under bending
induced large transverse shear deformations in the constrained viscoelastic middle layer lead to the dissipation of vibration
energy. Knowledge of the transverse deformations in the constrained layer is crucial in the design of such damped laminates.
In a previous publication [1], the authors have introduced an analytical procedure based on a layerwise plate theory according
to the Generalized Unified Formulation (GUF) published by Demasi [2] for the static strain and stress analysis able to cope
with the highly heterogeneous stiffness distribution in such hybrid laminates.

In this work, the previously developed analytical procedure based on Navier type solutions is extended by incorporating the
viscoelastic material behavior of elastomer damping layers within the GUF framework and determine the damped frequency
response. A similar procedure has been developed by Alaimo et al. [3] for a different set of layerwise plate theories based
on the principle of virtual displacements (PVD). In this work, however, theories based on the Reissner’s mixed variational
theorem (RMVT) are considered as they provide better approximations of out-of-plane stresses.

2 Method

2.1 Variational formulation and plate kinematics

In this work, the RMVT shown in Eqn. (1) is considered due to its suitability in modeling the transverse stresses crucial in
constrained layer damping applications.

∫

Ω

(
δε>pGσpH + δε>nGσnM + δσ>nM (εnG − εnH)

)
dV = δLexternal +

∫

Ω

ρδuüdV (1)

Index n in Eqn. (1) denotes out-of-plane quantities, whereas p stands for in-plane. Quantities which are explicitly modeled
are denoted by M. The remaining components in Eqn. (1) are either calculated from the displacements by geometric relations
(index G) or calculated using the constitutive law (index H). Lexternal is the external virtual work. The last term in Eqn. (1)
containing the acceleration vector ü presents the contribution of inertia. In each laminate layer k, the three displacements ukx,
uky and ukz as well as the three out-of-plane stresses σkxz , σkyz and σkzz are modeled as

ukx (x, y, z) = Ukx,αuzFαuz (z)Φux(x, y), σkxz (x, y, z) = Skxz,ασxzFασxz (z)Φσxz (x, y),

uky (x, y, z) = Uky,αuyFαuy (z)Φuy (x, y), σkyz (x, y, z) = Skyz,ασyzFασyz (z)Φσyz (x, y),

ukz (x, y, z) = Ukz,αuzFαuz (z)Φuz (x, y), σkzz (x, y, z) = Skzz,ασzzFασzz (z)Φσzz (x, y)

(2)
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according to the GUF framework. The in-plane dependencies are summarized by the functions Φ(x, y) which will be provided
by the chosen solution method. For reasons of brevity, the reader is referred to the original publications by Demasi [2, 4] and
a previous work of the authors [1] for more details on the expansions of the thickness functions F (z) and the assembly of the
global system of equations.

2.2 Solution method for frequency response

In order to account for frequency dependent viscoelastic material behavior, the constitutive relations are specified dependent
on the complex shear modulus G∗ = <(G∗) + i=(G∗) = G′ + iG′′, where i denotes the imaginary number. This leads to
consequent quantities also being complex. A simply supported plate problem as shown in Fig. 1 is considered in the following
and the solution is obtained using the Navier method, illustrated amongst others in Reddy [5], and extended to yield the plate’s
frequency response to forced vibration. First, a general harmonic load

q(x, y, t) = q̂(x, y)eiωt (3)

is applied to the topmost layer of the plate. An analytical solution is obtained using the Navier method by expanding the
pressure load q(x, y) as a double trigonometric series

q̂(x, y) =
∞∑

m=1

∞∑

n=1

Qmn sin
(mπ
a
x
)

cos
(nπ
b
y
)
≈

M∑

m=1

N∑

n=1

Qmn sin
(mπ
a
x
)

cos
(nπ
b
y
)

(4)

which is approximated by an expansion up to orders M and N . The load coefficient Qmn in Eqn. (4) for the concentrated
force shown in Fig. 1 is defined as

Qmn =
4Q0

ab
sin(

mπ

a
x0) sin(

nπ

b
y0) (5)

when applied at coordinates x0 and y0. Following the assumptions made for the load, the problem’s solution is also a super-
position of M respectively N closed solutions. Displacement and out-of-plane stress amplitudes are thus calculated as

ûkx (x, y, z) ≈
M∑

m=1

N∑

n=1

Uk,mnx,αux
Fαux (z) cos

(mπ
a
x
)

sin
(nπ
b
y
)
,

ûky (x, y, z) ≈
M∑

m=1

N∑

n=1

Uk,mny,αuy
Fαuy (z) sin

(mπ
a
x
)

cos
(nπ
b
y
)
,

ûkz (x, y, z) ≈
M∑

m=1

N∑

n=1

Uk,mnz,αuz
Fαuz (z) sin

(mπ
a
x
)

sin
(nπ
b
y
)
,

σ̂kxz (x, y, z) ≈
M∑

m=1

N∑

n=1

Sk,mnxz,ασxz
Fασxz (z) cos

(mπ
a
x
)

sin
(nπ
b
y
)
,

σ̂kyz (x, y, z) ≈
M∑

m=1

N∑

n=1

Sk,mnyz,ασyz
Fασyz (z) sin

(mπ
a
x
)

cos
(nπ
b
y
)
,

σ̂kzz (x, y, z) ≈
M∑

m=1

N∑

n=1

Sk,mnzz,ασzz
Fασzz (z) sin

(mπ
a
x
)

sin
(nπ
b
y
)

(6)

from the solution vectors Umn containing the layerwise displacements Uk,mni,αui
and transverse stresses Sk,mniz,ασiz

of the global
systems of equations

(
K∗ − ω2M

)
U∗

mn

= R. (7)

3 Application

3.1 Example problem

This method is illustrated by considering the simply supported laminated plate in Fig. 1 consisting of an elastomer layer
constrained by two aluminum sheets and subjected to a harmonic concentrated force in the center of the top layer. The plate’s
dimensions are listed in Tab. 1. The aluminum is modeled as linear elastic with the parameters in Tab. 2. The viscoelastic
elastomer is modeled using the complex modulus approach with interpolation of the experimental data shown in Fig. 2.
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Fig. 1: Simply supported plate problem subjected to a concentrated
force Q0. The gray layers are aluminum whereas yellow indicates the
elastomer layer.

Table 1: Parameters of plate problem corresponding to Fig. 1.

a b |Q0| tAluminum tElastomer

0.4 m 0.4 m 100 N 0.3 mm 0.5 mm

Table 2: Mechanical properties of constituents such as density ρ,
Young’s modulus E and Poisson’s ratio ν. No Young’s modulus is
listed for the elastomer material due to its frequency dependency. In
this study, the Young’s modulus at a given frequency is calculated
from the complex shear modulus shown in Fig. 2.

Material ρ E ν
Elastomer 1.18× 103 kg m−3 - 0.48
Aluminum 2.78× 103 kg m−3 73.1× 103 MPa 0.3
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Fig. 2: Complex shear modulus of elastomer material
taken from Sessner et al. [6].

First, a convergence study is conducted in order to determine how many terms in the Fourier series in Eqn. (4) need to be
expanded for acceptable accuracy. Since the plate is quadratic and isotropic, only expansions with M = N are considered.
The results are then compared with the solution provided by a 3D Finite Element Method (FEM) steady-state analysis in
Abaqus using the same material parameters and boundary conditions. The absolute deflection amplitude in the center of the
plate |û∗z(x = a

2 , y = b
2 , z = h

2 )| is investigated as well as the phase angle δ calculated as the counterclockwise angle between
the real and imaginary part of the deflection û∗z(x = a

2 , y = b
2 , z = h

2 ). For the circular frequency ω a range of 1 to 3000 s−1

is considered. Furthermore, different layerwise theories are investigated, namely theories LW333
111, LW333

113 and LW555
333. The

theories are compared using a series expansion of M = N = 32 and validated against the aforementioned 3D FEM results.

3.2 Results

The results of the convergence study can be seen in in Fig. 3. An expansion up to order M = N = 64 is shown as higher
orders of expansions have yielded identical results. In the left graph showing the transverse displacement magnitude |û∗z|, the
FEM solution is plotted and the four resonance frequencies in the given frequency spectrum can be identified by their high
amplitudes. It can be seen, that an series expansion of order M = N = 1 depicts well the first resonance frequency but is
unable to reproduce the higher modes. An expansion of order M = N = 4 captures the first three resonance frequencies
whereas all subsequent higher expansions depict all four modes, however with varying accuracy between resonances. The
graph on the left in Fig. 3 displays the phase angle δ with which the structural response lags behind the excitation. Again,
resonances are depicted well by expansions higher thanM = N = 4 in the given frequency range. Furthermore, the increased
damping of higher modes is visible by the sloped phase angle curve when passing 90°. The comparison of different layerwise
theories in Fig. 4 shows that the results of all theories considered coincide save some minor discrepancies. It can be seen that
the analytical solutions differ from the FEM results by an increasing horizontal shift for higher frequencies. The amplitudes in
the resonance peaks, however, correspond well with the FEM results. These observations are true for both, the displacement
magnitude |û∗z| and the phase angle δ.

3.3 Discussion

The results outlined above show that the developed analytical procedure is well capable of predicting the frequency response
of simply supported plates. The order of expansion of the trigonometric series, however, needs to be high enough to depict
the kinematics of the respective vibration modes in the analyzed frequency range. For the given test case, an expansion of
M = N = 64 has been identified as a convergence limit with lower expansion orders of M = N = 32 leading to neglectable
deviations. This also agrees with the findings of Alaimo et al. [3] who also studied the influence of plates’ aspect ratios on
the convergence. The investigation of different layerwise theories has shown that theory LW333

111 with a linear approach for
displacements and a cubic expansion for out-of-plane stresses yields the results as close to the FEM solution as the higher
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Fig. 3: Convergence study on order N of Fourier series expansion with regard to the absolute magnitude of transverse deflection |û∗
z| in

transverse direction (left) and the corresponding phase angle δ (right).
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Fig. 4: Transverse displacement magnitudes and phase angles for different layerwise theories.

order theories also investigated. The deviations of the analytical solution with respect to the FEM reference solution could be
attributed to using a different variational theorem or the difference in the kinematic approach.

4 Conclusion

In this work, an analytical solution method has been developed for the analysis of the damped frequency response of simply
supported plates including viscoelastic layers based on the RMVT by using the GUF framework. Very good agreement
with a FEM reference solution is achieved. This method provides a valuable tool in evaluating the damping capabilities of
constrained layer laminates and, due to its minimal computation effort, allows for rapid design and optimization of specific
laminate layups.
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