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SK-84236 Bratislava, Slovakia

E-mail: jonas.amsler@kit.edu; bucko19@uniba.sk

Abstract

Adsorption processes are often governed by weak interactions for which the esti-

mate of entropy contributions by means of the harmonic approximation is prone to be

inaccurate. Thermodynamic integration (TI) from the harmonic to the fully interact-

ing system (λ-path integration) can be used to compute anharmonic corrections. Here

we combine TI with (curvilinear) internal coordinates in periodic systems to make the

formalism available in computational studies. Our implementation of ab initio molec-

ular dynamics in VASP is independent of the reaction path and can thus be applied to

study adsorption processes relative to the gas phase and does hence provide a useful
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tool for computational catalysis. We discuss the approach in three model systems for

which exact semi-analytical solutions exist and illustrate and quantify the importance

of anharmonic vibrations, hindered rotations and hindered translations (dissociation).

Eventually, we apply the method to study the adsorption of small particles in a zeolite

(H-SSZ-13).

1 Introduction

The free energy of a system has contributions from both its enthalpy and entropy. Hence

both contributions need to be considered in order to accurately calculate changes in free

energies. An accurate description of entropy changes is particularly important for adsorption

and desorption processes, as these often occur with a large loss (or gain) of entropy for an

adsorbate. Adsorption steps are key for many important processes, e.g., they are essential for

heterogeneous catalysis where the interaction of a solid catalyst with a gas-phase molecule

is at the core of its function.1 Unfortunately, the accurate treatment of entropy changes

during these processes is also very challenging and typically approximated by consideration

of harmonic potentials for the adsorbed system.

However, weakly interacting adsorbates often exhibit anharmonic degrees of freedom

such as dissociation (translation) and rotation which are extremely poorly described2–4 by

the most popular and conceptually simple harmonic approximation.5 Moreover, this sta-

tionary approach and its refinements on the global minimum (lattice gas, 2D ideal gas,6

as well as interpolations in between7–10 and descriptors based on confinement11) do nei-

ther consider adjacent local minima nor multiple adsorption sites.12 Little advances have

been achieved to properly account for adsorption entropy beyond the harmonic approxima-

tion although its necessity has been demonstrated for adsorption on metal surfaces and at

acidic centers of zeolites.13,14 In fact, recent computational studies indicate that there can be

large deviations in the prediction of adsorption free energies, as it has been shown, e.g., for

ethanol adsorption in zeolites.14,15 Several strategies have evolved over the past years to tackle
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these problems. Sauer and coworkers have developed an anharmonic approximation around

the stationary approach using multiple finite differences leading to anharmonic vibrational

partition functions.14,16–20 By identification and separate treatment of the most important

anharmonic degrees of freedom some approaches attempt to improve the accuracy of the

static approach, where the thermodynamics of the system are deduced from the properties

of the potential energy surface in vicinity to the stationary state of interest. For hindered

rotational motion, for instance, potential energy models of different complexity (ranging

from a single goniometric function up to explicitly sampled energy profiles) are used in clas-

sical,21–23 semi-classical,21–23 or quantum-mechanical24 treatment and similar models exist

also for hindered translations.22 Nonetheless, the reliability of these approaches depends

strongly on the particular thermodynamic conditions considered in the simulation. An el-

egant demonstration of this problem has been provided in a recent study of Jørgensen and

Grönbeck, where predictions of harmonic, hindered, and free translator approximations in

calculation of the entropy of CO and O adsorbed on Pt(111) have been tested against the

complete potential energy sampling approach and experiments.25 In the latter work, it was

clearly shown that none of the simple approximations provides reliable predictions over a

wide range of temperatures. Perhaps the most sophisticated correction to the static approach

has been developed by Sauer and coworkers in which anharmonic vibrational partition func-

tions have been determined by solving 1D Schrödinger equations defined for the potential

energies explicitly sampled along individual vibrational eigenmodes expressed in terms of

internal coordinates.14,16–20 According to Piccini and Sauer, anharmonic contributions sta-

bilize ethanol in H-MFI zeolite by 13 kJ mol−1 at 300 K (20 kJ mol−1 at 400 K).14 Using a

quasi-harmonic approximation (QHA) for ethanol adsorption in H-ZSM5 zeolite Alexopoulos

et al. claim the traditional harmonic approximation overestimates adsorption free energies

by 20 kJ mol−1 to 50 kJ mol−1.15 The QHA relies on a vibrational density of states from

molecular dynamics (MD), thereby taking into account raised temperature and the average

of adjacent local minima. To date, accurate theoretical (but also experimental) reports on
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adsorption free energies are rare mostly in lack of accurate accounts for entropy. Even simple

internal rotations in n-alkanes are incorrectly described by the harmonic approximation and

have therefore been subject to numerous investigations.26–28

MD simulations, typically based on density functional theory (DFT), in combination

with enhanced sampling techniques can be used to determine changes in entropy beyond

the harmonic approximation. Inherently, established methods like Blue Moon29,30 or Um-

brella31–33 sampling require the integration over a numerical descriptor for the reaction path

called collective variable (CV) or reaction coordinate ξ. The major attention of these tools

in heterogeneous catalysis3,4,34–38 has been paid to surface reaction steps rather than adsorp-

tion and desorption processes. This unilateral focus is unsurprising as the MD free energy

calculations are very revealing for chemical transformations but not quite suitable for des-

orption during which adsorbate and adsorbent must separate ideally infinitely along the CV.

Nevertheless, Li et al. demonstrated that the integration of the potential of mean force from

DFT-based MD can be used to estimate adsorption entropy.39 Obviously, the challenge is to

sample anharmonic contributions to the free energy independent of a CV.

In contrast to aforementioned MD techniques, thermodynamic integration40–42 (TI) can

be used to calculate free energies relative to a reference system over transformation paths

other than the reaction path.43–48 The method becomes increasingly popular among ab initio

practitioners with growing computational power available for calculations and with advances

of the machine learning (ML) approaches. Temperature and Hamiltonian-based λ-paths have

been exploited to compute the free energy of classical crystals49,50 and to study phase tran-

sitions.51–56 Very recently, Jinnouchi et al. proposed an effective combination of ML with

TI using the ideal gas reference allowing for accurate ab initio calculations of the chemical

potential of LiF dissolved in liquid water.57 TI can be used to obtain anharmonic contribu-

tions with respect to a harmonic reference system. This idea has been put into practice for

crystals by performing TI from Debye models to fully interacting systems.58,59 Its realization

for adsorption processes and catalysis in general is limited by certain obstacles to be tackled
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below. Its realization for adsorption processes and catalysis in general is limited by several

obstacles. Most importantly, conventional TI techniques use Cartesian coordinates which are

inherently unsuitable for systems with rotational and translational symmetries. An illustra-

tive presentation of this problem is given in Section S1 of the Supporting Information (SI).

While this difficulty can be overcome in simulations of simple systems by fixing the overall

translations and rotations, the solution for the more general cases with internal rotational

degrees of freedom (such as, e.g., a weakly interacting molecule adsorbed on a substrate) is

less straightforward. Furthermore, Cartesian coordinates fail to represent molecular vibra-

tional motions of large amplitudes17,18,60 potentially causing unnecessarily large differences

in energies between harmonic reference and fully interacting system in practical simulations.

This latter effect may then lead to a significant efficiency reduction of TI calculations even

for relatively simple molecular systems.

In this work we suggest a solution to some of the limitations of TI making it a practical

tool in computational studies on adsorption processes, i.e., catalysis. Using rotationally

and translationally invariant curvilinear coordinates our formalism allows to compute the

anharmonic contribution to the free energy for any system that can be described with the

harmonic approximation – independent of any reaction path. Our method allows for

the theoretically exact calculation of a classical anharmonic correction to the harmonic –

quantum or classical – approximation. In particular, all anharmonic quantum effects are

neglected while the quantum effects described by the quantum harmonic oscillator model

can be, if appropriate, directly taken into account. This is especially important, e.g., when

adsorption at a wide range of temperatures is considered. Quantum corrections will be

important at low temperatures where anharmonicity is small (and hence the error due to its

classical treatment is small as well) but with increasing temperature the system will gradually

shift to the classical regime for which our treatment is exact. This article is organized as

follows: We will first review TI and describe how it can be used to determine the anharmonic

contribution to the free energy starting from the harmonic reference system. We will then use
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our implementation in the VASP program package to study increasingly complex problems,

from diatomic molecules to the adsorption of small adsorbates in zeolites, which has been

thoroughly investigated experimentally61 as well as computationally13–17,19,62–71 since the

1970s.

2 Methods

In this section, we first briefly review the thermodynamic integration (TI) technique (Sec-

tion 2.1), which we adapt for the use with internal coordinates (Section 2.1.1). Our strategy

for the selection of internal coordinates is discussed in Section 2.1.3. Note that a canonical

(NVT) ensemble is assumed throughout this work although a generalization to other ensem-

bles is also possible. A complementary Table of abbreviations and symbols is contained in

the Supporting Information (SI).

2.1 Thermodynamic integration with a harmonic reference system

In the thermodynamic integration (TI) technique,40–42 the free energy of a system 1 is ex-

pressed as that of the reference system 0 as follows:

A1 = A0 + ∆A0→1 (1)

where ∆A0→1 designates the Helmholtz free energy difference between 1 and 0. Depend-

ing on the properties of the investigated system, a variety of reference systems is used in

literature.50,58,59,72–75 Motivated by the fact that the harmonic approximation is commonly

used for calculations of adsorption thermodynamics in solid sorbents14,17,18,20,76–80 we focus

on the harmonic reference system throughout this work. Classical and quantum harmonic

approximation deviate significantly at low temperatures where the free energy of matter is

dominated by quantum effects. For adsorption free energies however, this difference between

theories converges rapidly to zero with increasing temperature (see SI, Section S2). For the
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outlined anharmonic correction we are free to choose between the classical and quantum

harmonic reference system (and their difference is negligible). Since the anharmonic correc-

tion by DFT-based MD is always classical we decided to use the classical harmonic reference

system, for which the quasi-classical free energy expression writes81

A0,x = Ael(x0)− kBT
Nvib∑
i=1

ln
kBT

h̄ωi
(2)

with the electronic free energy for the configuration corresponding to the potential energy

minimum Ael(x0) and the atomic position vector x0. Nvib is the number of vibrational

degrees of freedom and ωi is the angular frequency of vibrational mode i. Note that a

harmonic dependence on Cartesian coordinates (x) is assumed for the harmonic potential

energy V V0,x in the derivation of this equation, i.e.,

((((
(((

((((
(((

((((
((((

V (x) = V (x0) +
1

2
(x− x0)

THx(x− x0)

V0,x(x) = V0,x(x0) +
1

2
(x− x0)

THx(x− x0) (3)

where Hx
i,j = ∂2V0,x(x)

∂xi∂xj

∣∣
x=x0

is the Hessian matrix evaluated for the structure x0 belonging to

the potential energy minimum. By definition,82 Ael(x0) = −kBT ln
[
g exp

(
−V0,x (x0) /kBT

)]
,

where g is the electronic multiplicity. Hence, the particularly simple relation Ael(x0) =

V0,q(x0) holds when the electronic state of the system of interest is a singlet, which is the

case for all systems discussed in this work. The correction term ∆A0→1≡ ∆A0,x→1 can be

computed using thermodynamic integration TI:40–42

���
���

���
���

���

∆A0→1 =

∫ 1

0

dλ〈H1 −H0〉λ
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∆A0,x→1 =

∫ 1

0

dλ〈H1 −H0,x〉λ (4)

where λ is the coupling strength between the systems 0 and 1 true physical system 1 whose

potential energy V1 is computed at the ab initio level and the harmonic reference system 0

with its potential energy defined in eq. 3., and 〈. . .〉λ represents the NVT ensemble average

of the system driven by the classical Hamiltonian

((((
((((

(((
((

Hλ = λH1 + (1− λ)H0.

Hλ = λH1 + (1− λ)H0,x. (5)

Since the Hamiltonians H0,x and H1 differ only in their respective potential energy contri-

butions V0.x and V1, eq. (4) can be cast into the form:

���
���

���
���

���

∆A0→1 =

∫ 1

0

dλ〈V1 − V0〉λ.

∆A0,x→1 =

∫ 1

0

dλ〈V1 − V0,x〉λ. (6)

In practice, the ensemble averages are computed using MD (in this work) or MC sim-

ulations. Typically, it is observed that the phase space volume effectively spanned by the

system at the given conditions increases as λ is increased. This increase is a consequence

of the transformation from harmonic to anharmonic vibrations or even to non-vibrational

degrees of freedom such as internal rotations or hindered translations (e.g., when adsorbates

start to diffuse through the substrate). For this reason, the integrand of eq. (4) often tends

to increase in absolute value as λ reaches its upper limit, which has to be taken into account
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when choosing the mesh of integration points for the evaluation of ∆A0,x→1.

2.1.1 TI in internal coordinates

One practical problem for the use of TI in chemistry is related to the fact that the commonly

used Cartesian coordinates x are not insensitive to the overall rotations and translations (or

any other symmetry operation) that must leave the total energy invariant. Hence, the

Cartesian coordinates are intrinsically unsuitable for the use in TI simulations of gas phase

molecules and weakly bound adsorption complexes.

Here we propose to overcome this problem by replacing the Cartesian coordinates by ro-

tationally and translationally invariant internal coordinates q = q(x), such as bond lengths,

angles, torsions, and their more complex combinations, e.g., weighted sums of coordination

number functions (eq. (20)). Since the force field which is harmonic in x is not necessarily

equivalently harmonic in q (and vice versa), we express eq. (1) in the following form:

A1 = A0,x + ∆A0,x→0,q + ∆A0,q→1 (7)

where ∆A0,x→0,q corresponds to the transformation from the system harmonic in x to the

system harmonic in q, while ∆A0,q→1 is the contribution by the transformation from the

system harmonic in q to the fully interacting system 1. We employ the same notation

throughout this work. In consequence of the fact that eq. (7) is a sum, the anharmonic

correction by TI extends the common workflow in which energy contributions are added to

the total energy of stationary points on the potential energy surface (PES), see Scheme 1.

For the special case of phase volume conserving coordinates (such as inter-atomic distances)

the term ∆A0,x→0,q is zero. In general, however, this contribution does not vanish (albeit

it often is very small) and its value should be taken into account. The term ∆A0,x→0,q

corresponds to work due to a force field to force field transformation and is computationally

inexpensive. For this reason, we determine this term numerically using eq. (4) combined
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geometry
relaxation

!el

anharmonic
corr. from TI

A1

harmonic
approx.
A0

0
0

1
1

Scheme 1: Standard workflow for the computation of free energies in the harmonic approx-
imation extended by the calculation of anharmonic contributions through thermodynamic
integration (TI) as a third step.

with the Hamiltonian

Hλ = λH0,q + (1− λ)H0,x. (8)

Since the kinetic energy is independent of the choice of coordinates, the Hamiltonians H0,x

and H0,q for the systems harmonic in x and q differ only in their respective potential energy

contributions��
�V (x) V0,x(x) and��

�V (q) V0,q(q) given by eqs. (3) and (9):

((((
(((

((((
(((

((((
(((

V (q) = V (q0) +
1

2
(q − q0)

THq(q − q0)

V0,q(q) = V0,q(q0) +
1

2
(q − q0)

THq(q − q0) (9)

where q0 are the internal coordinates of the potential energy minimum, and the Hessian

matrix Hq is related to Hx via

Hq = AT
x0
HxAx0

(10)

and

Hx = BT
x0
HqBx0

(11)

with A being the Moore-Penrose pseudo-inverse of the Wilson B-matrix:60,83

Bi,j =
∂qi
∂xj

. (12)
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We emphasize that all terms in eqs. (10) and (11) are evaluated for the stationary point

x = x0 whose structure can be described by the internal coordinates q = q0. The forces

needed in the evaluation of the equations of motion for the atoms in a TI calculation of the

term ∆A0,x→0,q write

−∂Hλ

∂x
= −λ∂H0,q

∂x
− (1− λ)

∂H0,x

∂x
. (13)

Making use of the transformation relations for the forces by any potential V :84–88

−∂V
∂x

= −BT
x

(
∂V

∂q

)
(14)

and

−∂V
∂q

= −Ax

(
∂V

∂x

)
, (15)

eq. (13) can be rearranged into the form:

−∂Hλ

∂x
= −λBT

xH
q(q − q0)− (1− λ)BT

x̃0
HqBx̃0

(x− x̃0) (16)

with matrix Bx and vector q being evaluated for the current geometry x. Importantly,

the position of the minimum structure expressed in Cartesian coordinates (x̃0) must be

rotated so as to match the orientation of the current x, which is realized iteratively by

discretization of the linear relation dx = A dq. Since the molecular systems might rotate

during the MD simulation, it is important to match the position of the minimum with the

orientation of the current position vector x, otherwise incorrect forces corresponding to the

harmonic model would be generated – see Section S1 in the SI for a simple illustration of this

problem. In fact, the term BT
x̃0
HqBx̃0

in eq. (11) corresponds to the Hessian matrix of the

unperturbed system expressed in rotated Cartesian coordinates. Such a rotated minimum

structure, which we label x̃0, is determined iteratively by discretization of the linear relation

dx = A dq. In this procedure, commonly used in the context of geometry optimization

in internal coordinates,84–88 we compute the rotated coordinates x̃0 self-consistently using
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eq. (17) with repeated evaluations of q̃i+1 corresponding to the trial Cartesian vector x̃i+1
0

as well as Ax̃i+1
0

corresponding to x̃i+1
0 and q̃i+1.

x̃i+1
0 = x̃i0 + Ax̃i0

(q0 − q̃i) (17)

Similarly, the term ∆A0,q→1 is computed using TI (eq. (4)) employing the Hamiltonian:

Hλ = λH1 + (1− λ)H0,q. (18)

The forces generated by the Hamiltonian in eq. (18) are used in the evaluation of the equa-

tions of motion for the atoms in the MD simulations. These forces can be written as follows:

Employing the transformation relation from eq. (14), these forces can be written as follows:

(((
((((

(((
((((

(((
((((

(((

−∂Hλ

∂x
= −λ∂V (x)

∂x
− (1− λ)BT

xH
q(q − q0)

−∂Hλ

∂x
= −λ∂V1(x)

∂x
− (1− λ)BT

xH
q(q − q0) (19)

where��
�V (x) V1(x) is the electronic energy computed using DFT.

2.1.2 Choice of the harmonic reference system

The free energy of the harmonic reference system A0,x can always be computed analytically

for any harmonic potential. Furthermore, TI determines ∆A0,x→0,q and ∆A0,q→1 with respect

to the given reference state so that the sum A0,x + ∆A0,x→0,q + ∆A0,q→1 equals the free

energy of the physical system A1. Therefore, the harmonic reference system can be chosen

arbitrarily with no consequence for A1. This choice can be used to improve the sampling

efficiency41 or to avoid numerical problems that occur at low λ when one or more harmonic

force constants of the system are too weak. Specifically, displacements along soft modes may

result in small changes in V0,q but possibly cause huge changes in V1, thus worsening the
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convergence of 〈V1− V0,q〉λ, or even leading to problems in the convergence of the electronic

structure calculations. In this work, we derive the harmonic reference system from the

Hessian matrix computed numerically via finite differences. The eigenvalue spectrum (i.e.,

the force constants) is then inspected and all values lower than a certain limit (typically

1 eV Å
−2

) are increased to that limit while preserving the original eigenvectors. Upon such a

modification, the individual contributions A0,x, ∆A0,x→0,q and ∆A0,q→1 are re-partitioned in

such a way that the resulting A1 remains unchanged, provided all integrals over 〈V0,q−V0,x〉λ

and 〈V1 − V0,q〉λ are converged. A demonstration of this property for the HF molecule is

presented in Section 3.1.1. We note on passing that anharmonicity is an intrinsic property of

the physical system. Just like A1, anharmonicity is independent of the choice of the reference

system used in the TI calculation. Therefore, anharmonicity must always be referred to the

harmonic free energy determined on the basis of the actual Hessian matrix of the physical

system, regardless of the choice of the harmonic reference system used in the TI calculations.

2.1.3 Choice of internal coordinates

Although well converged results of the TI should be independent of the coordinates used in

the simulations, the choice of coordinates still affects the sampling efficiency. Hence some

care should be taken when choosing the coordinates q for the problem at hand. In this work,

the following simple rules have been used to generate q: (i) bond lengths, bond angles, and

torsion angles are used for molecules and for special flexible sites of a substrate (such as

Brønsted sites in acid zeolites, see Section 3.2), (ii) inter-atomic distances with the atoms

from the first three coordination spheres are used for all other atoms of a substrate and

(iii) the position and orientation of a molecule adsorbed on the substrate is described using

a function representing the coordination number (CN) of an atom i of the adsorbate with
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respect to an atom j from the substrate defined as follows:89

CNi =

Nsub∑
j

∑
L

1− (rij,L/Rij)
9

1− (rij,L/Rij)14
(20)

where the summations are over all or selected substrate atoms Nsub contained in a single unit

cell and all translations of the unit cell L = {±l1,±l2,±l3}, rij,L is a distance between an

atom i and atom j shifted from the original unit cell (L = 0) by a translation l1a1+l2a2+l3a3

along lattice vectors ai, and Ri,j is a reference distance between the atoms i and j. Since

the function
��

��
�1−(r/R)9

1−(r/R)14
1−(rij,L/Rij)9
1−(rij,L/R14

ij
decays rapidly with increasing �r rij,L, the (infinite) lattice

sum in eq. (20) can be truncated when rij,L exceeds a certain cutoff radius (here 30 Å). Note

that the local symmetry can be imposed by replacing individual primitive coordinates by

their suitably chosen linear combinations. As is a common practice in atomic relaxation

using internal coordinates,90–96 the coordinate selection in point (i) is done automatically in

three steps: First, distances between all pairs of atoms are computed, out of which those

being shorter than a certain cutoff radius (usually based on the sum of scaled covalent radii)

are used to define bond lengths. Second, all bond lengths sharing one common atom are

used to define bond angles. In order to avoid numerical instability due to a singularity in

the derivative of angles close to 180◦, all straight angles (>165◦) are excluded. Third, bond

lengths and angles sharing one common atom are used to define dihedral angles. A similar

scheme is also used for point (ii) but bond angles and dihedrals are replaced by distances

linking the two terminal atoms. This strategy is used in order to avoid the above-mentioned

numerical problems with singularities in the derivatives of angles approaching 180◦ during the

MD. An illustration of our coordinate choice in the acidic aluminum-substituted zeolite with

the chabazite topology (H-CHA) is provided in Figure 1. We note that some modifications of

this strategy might be needed for different adsorption problems. In the future work, we plan

to explore the use of a potentially more universal set of coordinates based on the smooth

overlap of atomic positions97 (SOAP) or components of Ewald sum (Coulomb) matrices,98
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R α1
α2

τ

Figure 1: Definition of internal coordinates at the acidic center in H-CHA without adsorbate.
The other atoms of the substrate are defined by inter-atomic distances to the atoms of their
first three coordination spheres. Color code: Si: dark blue, Al: light blue, O: red, H: white.

which are successfully employed in machine learning applications in chemistry. 99

2.2 Simulation details

Periodic density functional theory (DFT) calculations have been performed using the VASP

code.100–103 The Kohn-Sham equations have been solved variationally in a plane-wave basis

set using the PAW method of Blöchl, as adapted by Kresse and Joubert with standard PAW

potentials.104,105 The PBE106 density functional with the D2 dispersion correction (zero

damping) of Grimme107 (PBE-D2) as implemented in VASP108 was applied for geometry

optimizations and molecular dynamics (MD) MD simulations using an energy cutoff of 400 eV

for all computations but the third case study with the default value of 266.408 eV for argon.

Convergence criteria of 10−7 eV and 0.005 eV Å
−1

were applied to SCF-cycles and geometry

optimizations, respectively. Constrained geometry relaxations have been performed using the

program GADGET.87,88 The Brillouin-zone sampling was restricted to the Γ-point.109 Full

Hessian matrices were computed for all systems using a centered finite differences scheme.

DFT-based molecular dynamics (MD) MD simulations in the NVT ensemble were performed

using the Andersen thermostat.110 Similar to previous studies,13 hydrogen atoms were treated

as tritium (mass = 3 u) because this allows to use larger time steps. Consistently, the

mass of tritium was also used for the computation of harmonic frequencies. Equilibration
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periods in MD were determined with the Mann-Kendall test for trend and variation.111

The individual specific settings, e.g., the length of MD trajectories or the integration step

size, are discussed for each test case separately. The numerical integration of eq. (4) has

been performed using the Simpson integration scheme adapted to irregularly spaced grid

points.112–114 The statistical error has been determined as described in section S3.2 of the

Supporting Information (SI) SI.115

3 Results and discussion

3.1 Simple model systems

In order to demonstrate the validity of our approach, we start our discussion by considering

three simple model systems representing one dimensional (1D) or quasi-1D problems for

which exact semi-analytical solutions for ���
�∆A0→1 ∆A0,q→1 can be derived from their 1D

potential energy profiles. Furthermore, the three cases discussed here also illustrate the

qualitative differences and importance of anharmonic effects for the free energy contribution

of vibrations (HF molecule), hindered translations (argon dimer), and hindered rotations

(ethane).

3.1.1 HF molecule

Due to its strongly anharmonic (ωeχe = 89.9 cm−1)116 bond, the HF molecule represents

a prototype system to study the anharmonicity effect on the free energy of vibration.

As this effect is relatively small, a high temperature (T = 2000 K) was chosen in order

to observe a significant deviation from the harmonic model. With the inter-atomic dis-

tance R being the only variable of the corresponding potential energy, this system rep-

resents a truly 1D problem. Since R is a phase volume conserving coordinate, the term

∆A0,x→0,q is zero in this case, i.e., A0,x = A0,q. The anharmonic potential energy pro-

file (Vfull(R) V1(R)) in Figure 2 was computed using DFT on a regular mesh of points
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defined on the interval between Rmin = 0.70 Å and Rmax = 1.40 Å with grid points sep-

arated by an increment ∆R = 0.01 Å. The harmonic potential energy takes the form

a)

b)

c)

F H

Figure 2: Case study 1 on anharmonic vibration of a covalent bond in the HF molecule.
(a) Potential of the interacting system (DFT) compared to its harmonic approximation.
(b) Semi-analytic probability densities emerging from the potentials. (c) TI: Comparison of
the exact semi-analytic solution to the result obtained by MD runs at 2000 K. Integration
leads to the anharmonic correction���

�∆A0→1 ∆A0,q→1 listed in Table 1.

Vharm(R) = Vharm,0 + 1
2
C(R−R0)

2 V0,q(R) = 1
2
C(R − R0)

2 + W whereby the equilibrium

bond length R0 = 0.938 Å was determined using structural relaxation, the force constant

C = 56.157 eV Å
−2

was identified using finite differences and the constant W is irrelevant

for our further discussion. With these prerequisites the exact value of ���
�∆Aref

0→1 ∆Aref
0,q→1 can

be determined as follows:

(((
((((

(((
((((

((((
(((

((

∆Aref
0→1 = − 1

β
ln

{ ∫ Rmax

Rmin
dRR2e−βλVfull(R)∫ Rmax

Rmin
dRR2e−βλVharm(R)

}
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∆Aref
0,q→1 = − 1

β
ln

{ ∫ Rmax

Rmin
dRR2e−βV1(R)∫ Rmax

Rmin
dRR2e−βV0,q(R)

}
. (21)

Note that the integration limits of eq. (21) were chosen so as to fully cover all values

generated in the MD simulation. Indeed, the contribution of values outside the interval

Rmin ≤ R ≤ Rmax to ���
�∆Aref

0→1 ∆Aref
0,q→1 is negligible at our target temperature (see Fig-

ure 2(b)). Furthermore, it follows from eq. (21) that the exact reference value of���
���〈V1 − V0〉λ

〈V1 − V0,q〉λ can be obtained from Vfull(R) V1(R) and Vharm(R) V0,q(R) as follows:

((((
(((

((((
(((

((((
(((

((((
(((

((((
(((

(((

〈V1 − V0〉refλ =

∫ Rmax

Rmin
dRR2 [Vfull(R)− Vharm(R)] e−β[λVfull(R)+(1−λ)Vharm(R)]∫ Rmax

Rmin
dRR2 e−β[λVfull(R)+(1−λ)Vharm(R)]

.

〈V1 − V0,q〉refλ =

∫ Rmax

Rmin
dRR2 [V1(R)− V0,q(R)] e−β[λV1(R)+(1−λ)V0.q(R)]∫ Rmax

Rmin
dRR2 e−β[λV1(R)+(1−λ)V0.q(R)]

. (22)

We have exploited the latter expression to evaluate the accuracy of���
���〈V1 − V0〉λ 〈V1 − V0,q〉λ

determined from MD in Figure 2(c). The energy differences needed for the TI (eq. (4)) were

obtained for five evenly spaced values of λ by MD simulations with the integration step of

0.25 fs and the lengths of production runs of at least 2.5 ps with an Andersen thermostat

probability of 0.05. In all simulations, a cubic unit cell with an edge length of 15 Å containing

one molecule was used. As evident from Figure 2(c), the MD results for���
���〈V1 − V0〉λ 〈V1−V0,q〉λ

are close to the semi-analytic solution of eq. (22). Using eq. (6), we find the anharmonic

correction to the vibrational free energy: ���
�∆A0→1∆A0,q→1 = (−8.1± 0.5) meV which is,

within the statistical error, identical to the reference value ���
�∆Aref

0→1∆A
ref
0,q→1 = −7.6 meV.

Moreover, this number is in excellent agreement with fully quantum mechanical treatment, as

shown in Section S2.2.1 of the SI. Combined with the harmonic free energy A0A0,x−Ael(x0) =

95.9 meV, our calculations yield the total free energy of A1 −Ael(x0) = 87.8 meV, while the

reference value is 88.3 meV (see also Table 1).

Harmonic approximation��A0 A0,x and anharmonic correction���
�∆A0→1 ∆A0→1 = ∆A0,x→0,q+
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Table 1: Results of case studies 1-3. The classical harmonic contribution (��A0A0,x−Ael) was
calculated using eq. (2). The anharmonic corrections (∆A0,q→1) determined by TI based on
MD are compared to the semi-analytic solutions calculated using eq. (21) for case studies 1
and 2, and eq. (26) for case study 3.

Case study T (K) ��A0A0,x − Ael(x0) ���
�∆A0→1∆A0,q→1 (meV)

(meV) TI of MD reference
HF moleculea 2000 95.9 −8.1± 0.5 −7.6
argon dimera 300 −39.2 −28.2± 2.5 −27.4
ethaneb 400 762.9 -41.2 -3.3 ± 2.2 -42.0 -4.1

a trivially ∆A0,x→0,q = 0, hence A0,x = A0,q���= A0. b
(((

(((A0,x ≈ A0,q ∆A0,x→0,q = (0.5± 0.4) meV.

∆A0,q→1 in the calculations presented above were based on the actual force constant of HF

(C = 56.157 eV Å
−2

) determined using a centered finite differences scheme on the DFT level

of theory. We are, however, not bound to this choice. In fact, As discussed in Section 2.1.2,

the parameters of the harmonic reference force field can be set arbitrarily without affecting

the resulting value of A1, provided all integrals���
���〈V1 − V0〉λ over 〈V0,q−V0,x〉λ and 〈V1−V0,q〉λ

are converged. A demonstration of this property for the HF molecule can be found in

section S2 of the SI where two harmonic potentials are compared. We close this section by

demonstrating this property. To this end, we define a new harmonic reference system with

a force constant of 28.785 eV Å
−2

which is half of the one in the original reference system.

While A0,x→0,q remains zero, the values of A0,x − Ael and ∆A0,q→1 computed with this new

reference are 36.1 meV and 52.8 meV, respectively. Despite this dramatic change in both

terms, the resulting value of A1 = 88.9 meV is virtually identical to the value obtained with

the original harmonic reference system (87.8 meV), as it should be.

The fact that the parameters of the harmonic force field can be adjusted without

affecting the result is further employed throughout this study (Section 3.2) to avoid numerical

problems that occur for soft modes where displacements generating only small changes in

V0 might lead to huge changes in V1. More generally, the parameters of Vharm V0 can be fine

tuned towards the smallest 〈V1 − V0〉λ for all values of λ. 117,118 This subject is, however,

beyond the scope of this work.
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3.1.2 Argon dimer (Ar2)

In analogy to the HF molecule discussed in Section 3.1.1, the potential energy of the argon

dimer (Ar2) discussed in this section is a one dimensional function of the inter-atomic dis-

tance R. In contrast to HF, however, the Ar atoms of the dimer are attracted by only a

weak dispersion interaction and hence the latter system collapses already at relatively low

temperatures well below 300 K considered here. Upon the collapse, the vibrational degree

of freedom is converted into hindered translations of the atoms which can not be reasonably

well described by a harmonic model. We therefore consider the argon dimer as a prototype

system to study the free energy change due to dissociation. This transformation of a bond

into two disjoint fragments occurs frequently in adsorption problems and chemical reactions.

As in the case of HF, the term ∆A0,x→0,q equals zero and our MD results are compared

to analytical solutions represented by eqs. (21) and (22). If the dimer collapses, the value

of ���
�∆A0→1 ∆A0,q→1 will strongly depend on the volume available for the atoms to move. In

our calculations, we considered only the configurations where the mutual distance of two Ar

atoms did not exceed 6 Å (i.e., Rmax = 6.00 Å was used in eq. (21)). The harmonic potential

Vharm(R) V0,q(R) was built using C = 0.154 eV Å
−2

and R0 = 3.705 Å yielding a harmonic

contribution of��A0A0,x−Ael(x0) = −39.2 meV to the free energy. The anharmonic potential

energy profile (Vfull(R) V1(R)) was evaluated using DFT on a regular mesh of grid points

defined on the interval between Rmin = 2.50 Å and Rmax = 6.00 Å with grid points separated

by an increment ∆R = 0.10 Å. The λ-dependent morphing of the driving potential is shown

in Figure 3(a). The In excellent agreement with the quantum mechanical description in

Section S2.1.2 of the SI, the classical reference value of ���
�∆Aref

0→1 ∆Aref
0,q→1 evaluated using

eq. (21) is −27.4 meV resulting a in total free energy of A1 − Ael(x0) = −66.6 meV. For

this dissociation, the anharmonic correction is in the order of magnitude of the contribution

from the harmonic approximation. In comparison to the analogous HF system with a purely

vibrational degree of freedom (discussed in Section 3.1.1), the anharmonic contribution is,

despite the significantly lower temperature, much higher for the transformation of a vibration
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a)

b)

c)

Ar Ar

Figure 3: Case study 2 on hindered translation (dissociation) of the argon dimer. (a) Vi-
sualization of potential morphing due to the linear combination of Hamiltonians. (b) Semi-
analytic probability densities for harmonic (λ = 0) and fully interacting (λ = 1) system.
(c) TI: Comparison of exact semi-analytic solution to averaged energy differences obtained
by MD runs at 300 K. Integration leads to the anharmonic correction���

�∆A0→1 ∆A0,q→1.
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into translation.

Owing to the large atomic mass of Ar, the MD simulations have been conducted with an

integration step size of 5 fs and an Andersen thermostat probability of 0.1. The length of

the production period for each value of λ was at least 45 ps. A cubic box with an edge size

of 15 Å containing one Ar2 was used and the condition R ≤ Rmax was applied a posteriori

by expressing the average ���
���〈V1 − V0〉λ 〈V1 − V0,q〉λ on the subset of MD frames where the

condition was met as follows:

((((
(((

((((
(((

((((
(((

((((
(((

((((
(((

((

〈V1 − V0〉λ =

∫ Rmax

0
dR
∫
dp dq(V1(q)− V0(q))δ(R−R(q))e−Hλ(p,q)/kBT∫ Rmax

0
dR
∫
dp dqδ(R−R(q))e−Hλ(p,q)/kBT

(23)

〈V1 − V0,x〉λ =

∫ Rmax

0
dR
∫
dp dx(V1(q)− V0,q(x))δ(R−R(x))e−Hλ(p,x)/kBT∫ Rmax

0
dR
∫
dp dxδ(R−R(x))e−Hλ(p,x)/kBT

(24)

with �q x and p being the atomic positions and momenta respectively. A visual inspec-

tion of the configurations generated for λ = 1 (corresponding to MD driven by a full

DFT potential) confirmed that the argon dimer was indeed unstable and collapsed. As

shown in Figure 3, the average values ���
���〈V1 − V0〉λ 〈V1 − V0,q〉λ evaluated for five evenly

spaced values of λ are close to the reference results obtained from eq. (22). The value of

���
�∆A0→1∆A0,q→1 = (−28.2± 2.5) meV computed from MD is therefore in excellent agreement

with���
�∆Aref

0→1 ∆Aref
0,q→1 (see also Table 1).

3.1.3 Ethane molecule

Unlike the two systems discussed above, the ethane molecule possesses multiple vibrational

degrees of freedom, which can be seen in the vibrational density of states (VDOS) in Figure 4.

Importantly, however, it also contains one vibrational degree of freedom that can be converted

into an internal rotation corresponding to a mutual rotation of two CH3 groups upon a

thermal excitation at a modest temperature. Since the anharmonic contribution of vibrations

is by orders of magnitude smaller than that of rotations or translations, the former can
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be neglected at low temperatures and the term ���
�∆Aref

0→1 ∆Aref
0,q→1 can thus be effectively

determined from a 1D potential energy depending on a suitably chosen geometric parameter

driving the internal rotation. For this purpose, we choose a linear combination τ of torsional

angles τ1, τ2 and τ3 shown in Figure 5(c):

τ =
1

3
(τ1 + τ2 + τ3) . (25)

Clearly, the potential Vfull(τ) V1(τ) is invariant with internal rotation by 120◦, thus reflecting

the basic symmetry of ethane (see Figure 5). In fact, τ as defined above is nearly a perfect

representation of the vibrational eigenmode corresponding to a hindered rotation of the CH3

groups, which is evident from Figure 4 showing the vibrational density of states VDOS of

ethane before and after imposing a constraint on the value of τ . Obviously, fixing τ leads to

0 500 1000 1500 2000
 (cm 1)

V
D

O
S

full
fixed 

Figure 4: Vibrational density of states (VDOS) computed from the (un-)constrained Hessian
matrix for ethane without (full) and with (fixed τ) a constraint imposed on the parameter
τ defined by eq. (25). Consistently, the mass of tritium was used for H atoms.

a complete elimination of one vibrational mode while the remaining modes remain virtually

unaffected.

The analogue of eq. (21) representing our semi-analytic reference for the anharmonic
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contribution to the free energy writes:

(((
((((

(((
((((

(((
(((

∆Aref
0→1 = − 1

β
ln

{ ∫ π
−π dτe

−βλVfull(τ)∫ π
−π dτe

−βλVharm(τ)

}

∆Aref
0,q→1 = − 1

β
ln

{ ∫ π
−π dτe

−βV1(τ)∫ π
−π dτe

−βV0,q(τ)

}
− 1

β
ln

(
1

σ

)
(26)

where the first summand corresponds to the term ∆A′0,q→1 that is obtained by the TI

approach while the latter (− 1
β

ln
(
1
σ

)
) originates from the intrinsic permutational symme-

try (σ = 3) of ethane and needs to be considered in both reference calculation and TI

approach. with the The harmonic potential Vharm(τ) = Vharm,0 + 1
2
C(τ − τ0)2 is V0,q(τ) =

1
2
C(τ−τ0)2 +W whereby the equilibrium value τ0 = −1.047 rad was determined using struc-

tural relaxation, the force constant C = 0.508 eV rad−2 was identified using finite differences

at the DFT level of theory and the constant W is irrelevant for our further discussion. The

anharmonic potential (Vfull(τ) V1(τ)) has been evaluated using DFT on a grid defined in

the range −π ≤ τ ≤ π, with grid points separated by ∼0.15 rad. Specifically, the value of

Vfull V1 for each grid point was determined by means of constrained relaxations with fixed

τ . It can be seen in Figure 5(a) how the potential morphs with shifting values of λ so

that rotations become energetically feasible. Furthermore, Figure 5(b) shows the probabil-

ity density as a function of the torsion angle from which it is clear that only one out of

three minima is sampled in MD driven by the harmonic potential. Moreover, it becomes

clear that the discontinuity of the driving potential that emerges for λ < 1 is visited with

a very low likelihood during our simulations and hence it does not pose a practical prob-

lem in our simulations. The harmonic contribution to the free energy determined at 400 K

is ��A0A0,x − Ael(x0) = 762.9 meV. The free energy ∆A0,x→0,q corresponding to the force

field to force field transformation was computed as described in Section 2.1.1. The free

energy ∆A0,x→0,q representing the free energy difference between the system harmonic in

internal coordinates (i.e., driven by the Hessian matrix Hq) and the system harmonic in
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Figure 5: Case study 3 on the hindered internal rotation of ethane. (a) Visualization of poten-
tial morphing due to the linear combination of Hamiltonians. (b) Semi-analytic probability
densities for harmonic (λ = 0) and fully interacting (λ = 1) system. (c) TI: Comparison
of semi-analytic solution (solid line) to averaged energy differences obtained by MD runs
for seven values of λ at 400 K. Integration leads to ∆A′0,q→1 from which the anharmonic
correction���

�∆A0→1 ∆A0,q→1 is obtained under consideration of the permutational symmetry.
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Cartesian coordinates (i.e., driven by the Hessian matrix Hx) was computed as described in

Section 2.1.1. For this purpose, MD simulations for five different regularly spaced values of

λ have been performed with an integration step of 0.5 fs. The length of each simulation was

50 ps and an Andersen thermostat probability of 0.05 was used. The Hessian matrix Hx

has been computed for the relaxed geometry. The internal coordinates q used to define the

harmonic force field consisted of the geometric parameter τ from eq. (25), and the set of inter-

atomic distances and angles generated as described in Section 2.1.3. The computed value of

∆A0,x→0,q = (0.5± 0.4) meV is almost negligible not zero in contrast to the case studies with

truly 1D potentials. Combined with ∆Aref
0,q→1 = ((((

((−42.0 meV−4.1 meV (Table 1), the total

ionic free energy A1 − Ael(x0) is ((((
((

805.4 meV760.1 meV. Again, our classical reference value

is in excellent agreement with quantum mechanical treatment as shown in Section S2.1.3 of

the SI. Hence, as expected, in our study the anharmonic contribution of a hindered rotation

is comparable to that of a hindered translation (see Section 3.1.2), which are both orders

of magnitude greater than that of single vibration (see Section 3.1.1) noticeable already at

modest temperature but one order of magnitude smaller than that of a hindered translation.

DFT-based MD simulations were performed to determine the term ∆A0,q→1 for seven

different values of λ. DFT-based MD simulations were performed to determine ∆A0,q→1

representing the free energy difference between the fully interacting system (as described

by DFT) and the system harmonic in internal coordinates, using an integration mesh with

seven different values of λ. In addition to the five points of the regular grid used in the

∆A0,x→0,q calculations, two extra points (λ = 0.90 and 0.95) were added to improve the

sampling in the region with rapidly changing ���
���〈V1 − V0〉λ 〈V1 − V0,q〉λ (see Figure 5). The

equations of motion were integrated with a step size of 0.5 fs. Due to the slow and infrequent

internal rotations of CH3 occurring when the harmonic potential is replaced by the full

potential, the convergence of ���
���〈V1 − V0〉λ 〈V1 − V0,q〉λ slowed down with increasing λ. We

therefore used production periods of variable length which ranged between 15 ps (λ = 0.0)

to 150 ps (λ = 1.0). A cubic box with an edge size of 15 Å containing one molecule was
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used in the simulations. As shown in Figure 5(c), the ���
���〈V1 − V0〉λ 〈V1 − V0,q〉λ computed

from MD agree well with the reference data. The computed
((((

((((
((((

(((

∆A0→1 ((−41.2± 2.2) meV)

∆A′0,q→1 = (−41.2± 2.2) meV is therefore in excellent agreement with���
�∆Aref

0→1 the first term

(−42.0 meV) of the reference eq. (26). Under consideration of the permutational symmetry

(second term in eq. (26)) we obtain ∆A0,q→1 = ∆A′0,q→1 − 1
β

ln
(
1
σ

)
= (−3.3± 2.2) meV (see

also Table 1).

3.1.4 Summary of the case studies

The simple models discussed in this section can be considered a test for the correctness of

our implementation of TI with internal coordinates. To this end, we compared our numerical

data with the reference semi-analytical results and excellent agreement has been achieved.

Furthermore, the three case studies showed that different types of degrees of freedom con-

tribute to anharmonicity differently. From the study on the HF molecule it can be learned

that the anharmonic contribution of vibration in covalently bound systems is very small at

ambient temperatures and it can be neglected in most cases. Our results for the argon dimer

and ethane show that the harmonic approximation fails in the description of hindered trans-

lations and rotations (dissociation) and this failure is both qualitative and quantitative. For

this reason the anharmonic correction to the free energy is large in these cases this case. The

hindered internal rotation of ethane contributes noticeable anharmonicity already at 400 K

which is by one order of magnitude smaller than that of the hindered translation. Standard

errors of the TI are well below 5 meV. For the following adsorption study we keep in mind

that the harmonic Hessian matrix harmonic reference system can be chosen arbitrarily (see

Section 2.1.2).

3.2 Adsorption of Ar and N2 in acid chabazite

The relevance of anharmonicity for adsorption processes in heterogeneous catalysis is often

ignored or at best estimated by the more or less coarse techniques mentioned in the intro-
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duction. Our presented TI approach can be used to calculate anharmonic corrections for

adsorption processes on the DFT level of theory using MD. Here, we apply the concept

to study two adsorbates (N2, Ar) in the chabazite zeolite at 200 K. As we discuss below,

these two systems exhibit qualitatively different behavior with respect to the stability of

the complexes formed upon adsorption. The Gibbs free energies of adsorption (∆adsG) at

200 K deduced from the data reported in the experimental work of Barrer and Davies61

(see Section S4 in the SI) are −24 meV and −45 meV for Ar and N2, respectively. The

According to our calculations, the harmonic approximation evaluated at the PBE-D2 level

tends to overestimate these values with +26 meV and −24 meV for Ar and N2, respectively.

As shown in our analysis of the model system Ar2 (see Section 3.1.2), the harmonic ap-

proximation restricts the motion of atoms that are not bound by chemical bonds leading

to a significant overestimation of the free energy. Similarly, the harmonic approximation

restricts the adsorbate@substrate systems to configurations corresponding to the adsorption

complexes in which the adsorbate is attached to the proton of the Brønsted acid site (see

insets in Figure 6). Just as in the model Ar2 case, the shift from harmonic (V0,x) to full DFT

(V1) interaction causes significant changes in the behavior of the adsorbate. These qualita-

tive changes can be best seen from radial distribution functions (RDF) computed using MD

for the H−Ar and H−N pairs (see Figure 6). The peak of the RDF for Ar adsorption in

Figure 6(a) computed using the potential harmonic in Cartesian coordinates x (blue line)

is relatively narrow, approximately Gaussian-shaped, and centered at the distance found in

the relaxed structure (2.4 Å). The same peak computed from MD driven by the fully an-

harmonic potential (green line) is broadened, its maximum becomes less pronounced and is

shifted towards longer inter-atomic separation (2.7 Å). This broadening of the RDF and the

non-vanishing probability at long range clearly signify a higher entropy of the system driven

by the anharmonic model compared to its harmonic counterpart. The specific interaction

between N2 and the Brønsted site of the zeolite is more significant than in the case of Ar

adsorption (164.0 meV vs. 36.8 meV) JA: where do these two numbers come from? and the
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Figure 6: Partial radial distribution functions (RDF) versus inter-atomic distance (R) com-
puted for the pairs of proton and adsorbate atoms for (a) Ar in H-CHA and (b) N2 in
H-CHA. Results obtained using MD driven by harmonic and fully anharmonic potential are
presented. The results were obtained from MD driven by the full PBE-D2 (V1) potential,
by the potential harmonic in Cartesian coordinates (V0,x), and by the potential harmonic in
internal coordinates (V0,q). The depicted zeolite structure (color code similar to Figure 1)
was described by distance coordinates only except for the central adsorbate atoms (Ar, i.e.,
N2) and the framework atoms at the acidic center highlighted as spheres.

adsorption complex in Figure 6(b) similar to the potential energy minimum indeed exists

with a greater likelihood at our target temperature. Nevertheless, the complex is not stable

all the time – rather it collapses and is recreated frequently during the MD. The shift from

the potential harmonic in Cartesian coordinates to the potential harmonic in internal coor-

dinates and eventually to the full interaction potential is accompanied by a broadening of

the RDF peaks (Figure 6(b)) and a change in their shape from relatively narrow Gaussians

to broader asymmetric bands. Furthermore, in consequence of temporal collapses of the ad-

sorption complex and in contrast to the harmonic model, the RDF has non-vanishing values

in the region between the two maxima. Despite the distinctions, the structure of the RDF

and the positions of its maxima remain similar.

In our MD calculations, the three systems, namely the clean substrate, the adsorbate in

the substrate and the free adsorbate in gas phase were treated separately. All simulations

were performed with the primitive unit cell of chabazite in Figure S6 of the SI. A consistent

29



simulation setting has been used in the simulations of all three systems. In particular, all

simulations were performed under periodic boundary conditions with the identical simulation

cell corresponding to the primitive unit cell of chabazite (see Figure S4 of the SI), and the

basis set was fixed by setting the plane wave cutoff to 400 eV. The ratio of Al/Si = 1/11

has been used in the structural model of chabazite and the proton occupied position O(1),119

which belongs to most populated H sittings in this zeolite.120 All TI MD calculations have

been performed for seven different values of λ (0.00, 0.25, 0.50, 0.75, 0.90, 0.95, 1.00) plus

several additional points defined if the 〈V1 − V0〉λ 〈V1 − V0,q〉λ term changed rapidly with

λ (vide infra). As we have shown in Section 3.1.1, the anharmonicity of a single bond is

very small even at temperatures as high as 2000 K. We therefore neglect this contribution

to the free energy of the N2 molecule in gas phase, i.e., the N−N vibration is treated fully

harmonically. Furthermore, rotational degrees of freedom of free N2 are treated using the

rigid rotor approximation.5 The translational degrees of freedom of free adsorbate particles

were treated using the ideal gas approximation,5 whereby a reference pressure of 101 325 kPa

has been considered. The computed total free energies (including total electronic energies)

of the adsorbate particles are −0.286 eV (Ar) and −16.873 eV (N2). The Gibbs free energy

of adsorption is computed as

∆adsG = A1,A@S − A1,S −G0,A (27)

with the anharmonic Helmholtz free energies of the adsorbate in the substrate (A1,A@S) and

the clean substrate (A1,S) as well as the Gibbs free energy of the gas phase adsorbate (G0,A)

determined using the harmonic oscillator, rigid rotor, and ideal gas approximations. We note

that the cancellation of the pV terms for the A@S and S systems is a reasonable assumption

in eq. (27) since the substrate is a crystalline material and the concentration of adsorbate in

the A@S system is relatively low – hence volume changes of the substrate due to adsorption

should be small.
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For our TI calculations the internal coordinates of the clean substrate were chosen as

described in Section 2.1.3, whereby the proton position was described by four special internal

coordinates: the OH bond length, the bond angles H−O−Al and H−O−Si, and the initially

smallest torsion H−O−Al−O (the atoms involved in definitions of these coordinates are

shown in Figure 1). In order to avoid numerical problems in simulations with λ = 0, all

eigenvalues of the Hessian matrix have been increased to 1 eV Å
−2

if they were lower than

this limit (see Section 2.1.2). The harmonic free energy contribution��A0 A0,x computed using

the modified Hessian matrix (Hx) is −286.968 eV, which is to be compared to −287.077 eV

determined for the unmodified Hx. The length of all MD simulations was 500 ps. The

integration step used in the inexpensive force field to force field calculations was 0.5 fs while

a larger step of 1 fs was used in the DFT calculations. As expected, the computed value

of ∆A0,x→0,q is very small ((−5± 0) meV), which can be attributed to the low temperature

(indeed, ∆A0,x→0,q tends to zero with decreasing temperature) and the limited structural

variation allowed by the framework structure with all atoms being connected by strong

covalent bonds. The term ���
�∆A0→1 ∆A0,q→1, on the other hand, takes a significantly greater

value of (−99± 0) meV. Plugging all free energy contributions into eq. (7), the computed

free energy of the substrate is A1 = −287.072 eV. Comparing this value with the harmonic

free energy determined using the original unmodified Hx (−287.077 eV) we recognize that

the anharmonicity of the substrate at our target temperature is essentially negligible.

For the interacting system of Ar and chabazite, the set of internal coordinates used for

the clean substrate (vide supra) was extended by the CN coordinate (eq. (20)) defined for

all Ar−Si and Ar−Al pairs. The eigenvalues of Hx for this system have been increased to

2 eV Å
−2

if they were lower than this limit (see Section 2.1.2). The harmonic free energy

contribution��A0 A0,x computed using the modified Hessian matrix Hx is −287.102 eV, which

is to be compared to −287.337 eV determined for the unmodified Hx. The setting of the MD

simulations for the interacting system was identical to that used for the clean substrate. An

extra integration point λ = 0.99 was used in the((((
((((

((
∆A0→1 calculation calculation of ∆A0,q→1.
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As in the case of the clean zeolite, the computed value of ∆A0,x→0,q is very small and

barely statistically significant ((−2± 0) meV), while the term���
�∆A0→1 ∆A0,q→1 is as large as

(−271± 1) meV. Combining the free energy contributions, eq. (7) yields A1 = −287.375 eV,

which is to be compared with the harmonic free energy of −287.337 eV determined using

the original unmodified Hx. Hence, in line with our expectation, the anharmonicity lowers

the free energy of the interacting system, which is given by the transformation of a part

of the vibrations involving Ar into hindered translations, thus increasing the entropy of Ar

adsorbed in the zeolite. Using eq. (27) with the free energies determined for the clean

substrate, free Ar in gas-phase and the interacting system (see Table 2), we arrive at

∆adsG = (((
((((

(
(−18± 2) meV(−17± 2) meV, which is ���

�
44 meV 43 meV lower compared to the

prediction made using the harmonic approximation (see Table 3). Remarkably, our result

predicted using TI is very close to the experimental value reported by Barrer and Davies61

(although we admit that this level of agreement is fortuitous to some extent).

The internal coordinates chosen for the interacting system of N2 and chabazite consisted

of those used for the clean substrate (vide supra) extended by the N−N distance and the CN

coordinates (eq. (20)) defined for all N−Si and N−Al pairs. All computed contributions to A1

are listed in Table 2. The Hessian matrix eigenspectrum has been modified so that no force

constant was lower than 2 eV Å
−2

(see Section 2.1.2). For this modified harmonic reference

model, a harmonic free energy contribution of −303.736 eV has been determined, while the

value of��A0 A0,x for the unmodified Hx is −303.974 eV. Owing to a relatively large variation

of the term ���
���〈V1 − V0〉λ 〈V1 − V0,q〉λ with λ, three extra integration points (λ = 0.990, 0.995

and 0.999) have been used in the ∆A0,x→0,q calculation. As evident from Figure 6(b), the

coordinate transformation in the harmonic model causes significant changes in the behav-

ior of adsorbed N2. Consequently, the computed ∆A0,x→0,q of (−22± 1) meV represents a

significant contribution to the anharmonic part of the adsorption free energy. Indeed, a trans-

formation to a suitable set of coordinates can allow to capture a part of anharmonicity even

within a harmonic model. Finally, the computed value of���
�∆A0→1 ∆A0,q→1 is (−245± 5) meV
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and the total free energy of the adsorbate is (−304.003± 5.000) eV. Comparing the latter re-

sult with the value of −303.974 eV predicted by the unmodified harmonic model it is obvious

that the temporary collapse of the adsorption complex observed in a fully interacting model

leads to a decrease (via increased entropy) of free energy by���
�

28 meV 29 meV. Consequently,

the Gibbs free energy of adsorption computed using TI (((((
(((((−59± 5) meV (−58± 5) meV) is

lower than that obtained using the harmonic approximation. The TI value is also slightly

closer to the experimental value of −45 meV although the improvement with respect to the

harmonic approximation is less significant than for the adsorption of Ar. Clearly, a careful

choice of the density functional approximation and dispersion correction method would be

needed in order to further improve the accuracy of adsorption free energy calculations.

Table 2: Contributions to the free energies A1 in eV at 200 K and a reference pressure of
101 325 kPa. As usual, in all calculations the mass of tritium was used for H atoms.

System A0,x + ∆A0,x→0,q + ∆A0,q→1 = A1

Ar ���
�

-0.2857 -0.286a + 0b + 0 = ���
�

-0.2857 -0.286
N2 ((((

(-16.8727 -16.873c + 0b + 0d = (((
((-16.8727 -16.873

chabazite −286.968 + −0.005± 0.000 + −0.099± 0.001 = −287.072± 0.004
Ar@chabazite −287.102 + −0.002± 0.000 + −0.271± 0.001 = −287.375± 0.002
N2@chabazite −303.736 + −0.022± 0.001 + −0.245± 0.005 = −304.003± 0.005

a ideal gas approximation. b A0,x = A0,q. c harmonic oscillator/ideal gas/linear rigid rotor
approximations. d negligible.

Table 3: Comparison of simulation results to experimental values for adsorption Gibbs free
energies at 200 K in meV. TI approach and harmonic approx. were computed on the DFT
level of theory.

Adsorbate Experiment61 TI approach harmonic approx.
Ar −24 ���

��−18± 2 −17± 2 +26
N2 −45 ���

��−59± 5 −58± 5 −24

4 Summary and conclusion

We presented thermodynamic integration (TI) as a tool to compute anharmonic corrections

to the free energies of molecular and periodically extended systems. Using translationally
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and rotationally invariant internal (curvilinear) coordinates we overcame the significant lim-

itation of the TI approach traditionally formulated in Cartesian coordinates. Our variant

of the method was demonstrated in three case studies and then applied to study adsorption

energies of N2 and Ar in the acidic chabazite zeolite. Hindered rotations and translations

(dissociation) which are poorly described by the harmonic approximation were identified to

cause significant anharmonic contributions to the free energy (translation more than rota-

tion) while the anharmonic contributions of vibrations of covalent bonds are rather negligi-

ble. In comparison with experimental data from literature we observed that the anharmonic

correction improves the accuracy of predicted adsorption free energies.

In principle, other popular simulation methods, such as the Blue Moon ensemble ap-

proach29,30 or Umbrella sampling31–33 could be employed to determine the adsorption free

energy. These methods, however, require the sampling of the configuration space over a

continuous reaction coordinate, which is extremely impractical for adsorption problems. In

particular, the structural model of the substrate would have to be large with a wide vacuum

gap so as to allow both the simulation of the sorbate adsorbed in bulk (unperturbed by

surface effects) and the simulation of the desorbed sorbate unperturbed by interactions with

the substrate. Hence, the presented TI method requiring simulations of only initial and final

states without the necessity to sample over the corresponding transformation path in space,

is perfectly suited to study adsorption free energies or individual rate determining steps in

multi-step reaction cascades and could thus become a very useful tool for computational

catalysis.

Another MD based method that is used in the literature to access the free energy of

molecules and extended systems is the quasi-harmonic approximation (QHA).121 In QHA

the harmonic oscillator model is used with renormalized vibrational frequencies determined

from MD via Fourier transformation of the velocity autocorrelation function (VAF). Such an

approach, for instance, recently used to study ethanol adsorption in H-ZSM5,15 solves a part

but not all problems associated with the harmonic approximation. The frequency renor-
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malization allows to consider thermal effects related to the thermal expansion of bonds.

Furthermore, the frequencies emerging from MD are anharmonic and hence their use can

account for a part of the vibrational anharmonicity. Nevertheless, we note that the latter

are used in connection with the expressions derived for the harmonic oscillator, which is not

rigorously correct for a general anharmonic case. Even worse, the QHA method cannot ac-

count for non-vibrational aperiodic degrees of freedom like hindered translations with no or

negligible contribution to the VAF. Finally, the need for accurate accounting of the time cor-

relation imposes a serious constraint on the simulation setting. The stochastic thermostats

such as Andersen110 or Langevin122,123 cannot be used since the stochastic collisions quickly

destroy any time correlations between atomic positions. The deterministic thermostats such

as Nosé-Hoover124,125 or Nosé-Hoover chains126 must be adjusted with great care because

the contributions from fictitious degrees of freedom of the thermostat can bias the computed

VDOS. The VAF is therefore often computed in the microcanonical regime, which however,

imposes a limitation on the length of the trajectory because the temperature can drift away

from the desired value. Also, the need for an accurate VDOS implies that a relatively small

integration step must be used in a QHA calculation, which in turn leads to less efficient ex-

ploration of remote parts of the accessible configurational space. The TI technique presented

in this article is free of all these limitations.

5 Outlook

Considering the focus of recent studies on adsorption12,13,127 and on the degree of anhar-

monicity in solid materials,128 our contribution advances the field of computational catalysis

tremendously: the necessity of accurate free energy calculations beyond the static approach

has already been well documented for reaction energetics3,34,36,129 and our simulation method

will enable to achieve a similar level of accuracy also for adsorption problems, which are al-

most always important parts of catalytic cycles. Several strategies potentially improving the
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quality and effectiveness of sampling or accuracy of calculations will be addressed in our

future work. First, a more sophisticated choice of the reference Hessian matrix renormalized

so as to effectively describe as large part of the anharmonicity of the system as possible

would allow to minimize the ���
�∆A0→1 ∆A0,q→1 term computed via the TI approach, which

would consequently result in faster convergence of the ���
���〈V1 − V0〉λ 〈V1 − V0,q〉λ term. In this

respect, the ideas beyond the quasi-harmonic approach117 appear to be very promising. Sec-

ond, the performance of the TI method could benefit from the use of sophisticated universal

coordinates such as descriptors commonly used in the machine learning (ML) community

(SOAP,97 components of Ewald sum (Coulomb) matrices98). The use of such coordinates

should be explored with regard to their applicability and sampling efficiency. Third, the sim-

ulation times necessary to obtain well converged integrands 〈V1 − V0〉λ 〈V1 − V0,q〉λ are very

long even for the relatively simple adsorption problems discussed in this work. This prob-

lem can be alleviated by combining the MD simulations with ML algorithms. Among the

most promising approaches in this regard is the seamless ML method of Jinnouchi et al.130

available in the 6th version of VASP, which is able to learn the underlying model on-the-fly

during a DFT-based MD run whereby the model gradually takes control over the simulation

while maintaining a controllable error estimation of the ML model. Such a treatment has

been shown to accelerate the MD by a factor 300-1000. Finally, the TI method can, in

principle, be extended to determine activation free energies via constrained MD without the

necessity to sample whole transformation paths (reaction coordinates). Such an approach,

if successful, would largely eliminate the problems with various reactions that occur when

ionic degrees of freedom are excited.34,36
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6 Appendix

6.1 VASP keywords and files related to the TI method

The method presented in this work is available in version 6 of VASP. Apart from the usual

NVT MD setting, the following parameters and files have to be defined.

TILAMBDA: INCAR flag used to define λ from eq. 4.

HESSEMAT : file defining the Hessian matrix.

ICONST : file defining the coordinates q used in TI calculations.

REPORT : output file that contains the values V0 V0,q and V1 needed in eq. 6.
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(13) Réocreux, R.; Michel, C.; Fleurat-Lessard, P.; Sautet, P.; Steinmann, S. N. Evaluating

Thermal Corrections for Adsorption Processes at the Metal/Gas Interface. J. Phys.

Chem. C 2019, 123, 28828–28835.

(14) Piccini, G.; Alessio, M.; Sauer, J. Ab Initio Study of Methanol and Ethanol Adsorption

on Brønsted Sites in Zeolite H-MFI. Phys. Chem. Chem. Phys. 2018, 20, 19964–19970.

(15) Alexopoulos, K.; Lee, M.-S.; Liu, Y.; Zhi, Y.; Liu, Y.; Reyniers, M.-F.; Marin, G. B.;

Glezakou, V.-A.; Rousseau, R.; Lercher, J. A. Anharmonicity and Confinement in

Zeolites: Structure, Spectroscopy, and Adsorption Free Energy of Ethanol in H-ZSM-

5. J. Phys. Chem. C 2016, 120, 7172–7182.

(16) Piccini, G.; Sauer, J. Quantum Chemical Free Energies: Structure Optimization and

Vibrational Frequencies in Normal Modes. J. Chem. Theory Comput. 2013, 9, 5038–

5045.

(17) Piccini, G.; Sauer, J. Effect of Anharmonicity on Adsorption Thermodynamics. J.

Chem. Theory Comput. 2014, 10, 2479–2487.

39



(18) Piccini, G.; Alessio, M.; Sauer, J.; Zhi, Y.; Liu, Y.; Kolvenbach, R.; Jentys, A.;

Lercher, J. A. Accurate Adsorption Thermodynamics of Small Alkanes in Zeolites.

Ab Initio Theory and Experiment for H-Chabazite. J. Phys. Chem. C 2015, 119,

6128–6137.

(19) Piccini, G.; Alessio, M.; Sauer, J. Ab Initio Calculation of Rate Constants for Molecule-

Surface Reactions with Chemical Accuracy. Angew. Chem. Int. Ed. 2016, 55, 5235–

5237.

(20) Kundu, A.; Piccini, G.; Sillar, K.; Sauer, J. Ab Initio Prediction of Adsorption

Isotherms for Small Molecules in Metal–Organic Frameworks. J. Am. Chem. Soc.

2016, 138, 14047–14056.

(21) Pitzer, K. S.; Gwinn, W. D. Energy Levels and Thermodynamic Functions for

Molecules with Internal Rotation I. Rigid Frame with Attached Tops. J. Chem. Phys.

1942, 10, 428–440.

(22) McClurg, R. B.; Flagan, R. C.; Goddard III, W. A. The Hindered Rotor Density-of-

States Interpolation Function. J. Chem. Phys. 1997, 106, 6675–6680.
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