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1. Introduction

The lithium-ion battery (LIB) is an impor-
tant electrochemical energy storage tech-
nology. Various theoretical models have
been developed to characterize them, from
the atomistic level to the electrotechnical
one, aiming at the prediction of a wide
range of properties, from the elementary
reaction potentials to the aging rates over
many cycles. Naturally, these models build
up a hierarchy of length and time scales,
each level dealing only with the scale-rele-
vant information.[1,2]

Porous medium is an important compo-
nent of the battery electrodes and of the
other chemical systems. Its presence
introduces an additional scale separation
between the processes inside the pores
and the dynamics of the electrodes as a
whole. The models suitable for the former
are based on the continuous medium
dynamics representation of the transport
phenomena and of the reactions; mathe-
matically, it is a set of partial differential
equations (PDEs) with boundary condi-
tions. We will use the term “microscopic”

for these models. On the level of the electrode as a whole, it can
be treated as a homogeneous composite material; here, the the-
oretical models are needed that describe the transport and the
reactions there on average, neglecting the fine details of the
porous microstructure. We call these models and the scale “mac-
roscopic.” Due to the omission of the microscopic details, they
are computationally more efficient than the microscopic models.
A class of models that have been widely used in electrochemical
engineering is originated by Doyle, Fuller, and Newman (DFN
model).[3–6] Its basic ideas are rooted in the porous electrode the-
ory by Newman and Tiedemann.[7] Over the years, the initial
model was supplemented by the features describing multiple bat-
tery phenomena as, e.g., heat generation, mechanical deforma-
tion, degradation reactions, and phase transitions.[8–15]

An accurate theoretical description of LIBs based on scale-
hierarchical models requires a rigorous definition of the rules
according to which the upscaled parameters are obtained from
the low-level solutions. In the derivation of DFN-type models, one
usually utilizes a formal mathematical volume averaging proce-
dure, whose examples for different electrochemistry modeling-
relevant PDEs can be found in the previous studies.[2,16–19]

The proper convergence of the quantities of interest to the ones
in the resulting volume-averaged PDEs is, however, not always
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Numerical simulations of microscopic transport processes in porous elec-
trodes of lithium-ion batteries demonstrate the presence of spatially localized
fluctuations of physical quantities on the microstructure scale. They can
influence themacroscopic battery characteristics (for example, the degradation
rates). These fluctuations cannot be captured in a straightforward manner by
the widely used porous electrode theory by Doyle, Fuller, and Newman (DFN
model). The latter treats the porous electrodes as macroscopically homoge-
neous composite materials; it reduces the computational costs of numerical
simulations. Herein, a modification of the DFN model that incorporates the
local fluctuations but preserves the computational efficiency is proposed.
Numerical simulation examples are presented that test the accuracy of the
reproduction of the local fluctuations. The main new feature lies in the
mathematical representation of the slow transport processes in the active
material and their influence on the macroscopic reaction rates. The model is
rooted in the rigorous mathematical analysis of the transition from a micro-
scopic, microstructure-resolving transport and reaction description to a
macroscopic, volume averaging-based one. The model construction method-
ology is open for further modifications for the applications in which some of the
assumptions should be dropped, or description of new processes, reactions,
phases, etc. should be incorporated.
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self-evident. To bridge this gap, a homogenization theory has
been applied to the transition from the microscopic LIB models
to the macroscopic ones, explaining how the solutions of the
former’s equations converge in some sense to the solution of the
volume-averaged equations.[20–22] It has been indicated, by
the means of numerical analysis, that homogenization cannot
be fully applied to LIBs. Physically, it is due to the fact that the
mass transport in the solid phase active material is usually very
slow. To properly account for the effects arising from the active
material transport, DFN models substitute the complex micro-
structure-induced diffusion patterns with the ones in primitive
geometrical domains, such as a sphere. It serves the goals of
maintaining computational efficiency and intuitive understand-
ing well, but, to the best of our knowledge, no rigorous mathe-
matical explanation of the spherical particle approximation has
been given. This ambiguity can potentially affect the internal con-
sistency of the hierarchical modeling approach to LIBs.

Indication of possible inconsistencies has been detected using
numerical simulation tools, and the microstructure models
either obtained with tomographic imaging techniques or gener-
ated artificially. It has been demonstrated that some local
physical quantities inside the electrodes may exhibit a complex
spatial variability.[2,23,24] In the previous study,[2] one of the
objectives was precisely the comparison of a non-equilibrium
thermodynamics-based microscopic LIB model with its macro-
scopic DFN counterpart. The authors demonstrated that, in
the microscopic model-based numerical simulations, spatially
localized fluctuations of the overpotential in the electrodes are
clearly present, and, consistent with the volume averaging idea,
DFN predictions hold on average. One might note that the fluc-
tuations of this kind cannot be derived in a straightforward man-
ner in the DFN framework; here, physical quantities are either
volume-averaged or ascribed to the positions inside the effective
spherical active material particle. For the quantities in the latter,
spherical symmetry holds; overpotential is a surface-related
variable and, therefore, is constant because of this symmetry.
To incorporate the spatially localized overpotential fluctuations
into the macroscopic description, one has to add new conceptual
features outside of DFN. From the application point of view, the
correct prediction of the range of overpotential or surface concen-
trations of lithium distributed over the surface of the particle will
be crucial for capturing the probability of degradation phenom-
ena. DFN calculates one single value for the overpotential at the
point of the spherical representative particle on macroscopic
scale. If this value is above or below a certain electrochemical
potential, where side reactions are initiated, they will not be pre-
dicted by DFN but can be captured by the microscopic transport
theory, which predicts a range of overpotentials being distributed
across the surface of a non-spherical representative particle. Also,
the degree of mechanical stress will depend on the predicted dis-
tribution of concentrations across the surface of the particle,
which is not captured by the single concentration value of
DFN. Therefore, the accurate microscopic model is able to
capture the finite probability of side reactions as, e.g., plating
and electrolyte degradation or mechanical deformations, where
DFN may completely miss them. If strongly localized
phenomena as side reactions cannot be accurately described
on the macroscopic scale, non-negligible deviations between
the microscopic and the macroscopic cell models predictions

arise as a consequence of the inconsistencies in internal upscal-
ing rules.

In this article, we present a modification of DFN that captures
precisely the local fluctuations in sense of the previous study.[2]

In the light of the fact that the fluctuations are seen in the micro-
structure-resolving calculations, there may be a connection
between the origins of this local variability and the general prob-
lem of the accurate transition between the microscopic and the
volume averaging-based macroscopic models. Building on this
insight, we use the results of our mathematical analysis of this
transition, whose technical details will be published separately.
We stress the mathematical rigorousness of our approach, and
all the necessary approximations are mentioned explicitly, mak-
ing it possible to later modify the model for the applications in
which the approximations do not hold. One of the cornerstones
of the derivation is the use of the Galerkin method to obtain a
reduced-order representation of the lithium diffusion equation.
One may say that this representation substitutes the spherical
particle primitives of the porous electrode theory as a way to
compress the model-relevant microstructure information.
The particular robustness of this compression is due to the prior
knowledge of the solution properties that can be extracted
using our mathematical framework. The resulting model’s
computational efficiency is on par with that of DFN. Special
attention is given to the reproducibility of the local fluctuation
characteristics.

The structure of this article is as follows. In Section 2, we start
with reviewing themicroscopic cell model and the corresponding
DFN version relevant for the reaming article’s text. Some meth-
odological comments about wider families of models and the use
of our approach beyond this article’s narrow topic are presented.
Then, we provide a summary covering the topic of the
electrode localized fluctuations, their origin, and possible role,
in Section 3. An argument in support of the association between
them and the particle anisotropy (first of all, the shape anisot-
ropy) is given. In Section 4, we review the mathematical analysis
of the transition between the microscopic cell models and the
volume averaging-based models, which imposes limitations on
the possible models that accurately capture the homogenization
limit solutions. Finally, in Section 5, we sum up the derivation of
the new reduced-order model using the Galerkin method and
compare it with the DFN model. The details of the new model’s
numerical implementation for realistic active material particles
are outlined, and the accuracy is tested.

2. The Microscopic and DFN Models of LIBs

In this section, we will review, for the feature references, two
main LIB models related to the subject of this article: the micro-
scopic model by Latz and Zausch[2] and a basic DFN model. A
class of models is generally referred to as the porous electrode
theory, DFN or P2D models, which may include description
of various cell phenomena besides the main cell reaction.
To be more specific, we outline here the porous electrode theory-
based model used in the previous study[2] as a macroscopic
counterpart to the microscopic model from this article. From
the electrochemistry perspective, these pair of models cover only
the intercalation of lithium in electrodes. A few remarks will be
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made at the end of this section regarding the applicability of this
article’s methodology to the LIB models that include side reac-
tions, etc.

In the basic microscopic model, two types of phases are pres-
ent: electrolyte and electrode active material (in the cathode and
in the anode), that are represented by the corresponding geomet-
ric domains. Four fields define the cell state: lithium ion concen-
tration ce and electrochemical potential ϕe in electrolyte, and
lithium ion concentration cs and electrical potential Φs in the
electrode active material. The fields are defined in the respective
domains and obey PDEs. Concentrations of other components
relevant for the electrochemistry (such as anions, neutral solvent
molecules, and electrons) are calculated algebraically through the
constraints imposed on the cell: mechanical equilibrium on the
relevant time and space scales (constant pressure for the liquid
electrolyte) and charge neutrality on the relevant time and space
scales (the double layers are assumed to be infinitesimally small).
The four equations for the four variables are

∂ce
∂t

¼ �~∇~Ne (1)

∂cs
∂t

¼ �~∇~Ns (2)

0 ¼ �~∇~je (3)

0 ¼ �~∇~js (4)

~Ne,s is the lithium ion fluxes, and~je,s is the electric current
densities. The first two equations are the ion mass transport
equations, and the remaining ones are the dynamic forms of
the charge neutrality conditions. The model stipulates the follow-
ing dependence of the currents and of the fluxes on the system
state fields

~je ¼ �κe~∇ϕe � κe
1� tþ
F

∂μe
∂ce

~∇ce (5)

~js ¼ �σs~∇Φs (6)

~Ne ¼ �De
~∇ce þ

tþ
F
~je (7)

~Ns ¼ �Ds
~∇cs (8)

where κe is the electrical conductivity of the electrolyte, σs is the
electrical conductivity of the active material, De,s denotes the lith-
ium ion diffusion coefficient in the respective phase, tþ is the
lithium ion electrolyte transference number, and μe is the lith-
ium ion chemical potential in the electrolyte.

As the fields and the corresponding equations are defined in
different domains, four boundary conditions should be added on
the boundaries between the domains to make the PDE problem
closed. These conditions are

~js ⋅~nse ¼ i0 (9)

~je ⋅~nse ¼ i0 (10)

~Ns ⋅~nse ¼
i0
F

(11)

~Ne ⋅~nse ¼
i0
F

(12)

where~nse is the normal unit vector on the boundary, and i0 is the
local density of the faradaic current corresponding to the lithium
oxidation/reduction in (de-)intercalation. i0 is defined by the
reaction kinetics and depends on the local ce, ϕe, cs, and Φs.
We generally assume the Butler–Volmer kinetics of the type used
in the previous study[2]

i0 ¼ 2i00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cecsðcmax

s � csÞ
p

sinh
�

F
2RT

η

�
(13)

but the applicability of the article’s results is not restricted only to
this functional form, except for the cases where we explicitly
mention it. The reaction overpotential η can be calculated
through the potentials on the interface and the open circuit
potential (OCV) U0 according to the formula

η ¼ Φs �U0ðcsÞ � ϕe (14)

when one measures the chemical potential of lithium ions in the
electrolyte relative to the metallic lithium.

For the mathematical completeness of the problem, additional
boundary conditions are needed to specify the cell interaction
with its environment, for example, the ones between the
domains and the current collector. They can include the condi-
tions specifying the charging protocols of the cells, such as CC
(constant current), CV (constant voltage), or more complex ones.
These conditions are not important for the understanding of the
paper material, and we do not write them down here. The main
features of the model important for the article’s topic are graphi-
cally summarized in Figure 1A.

Let us turn our attention to the DFN model. Here, the
electrode is treated as a microscopically homogeneous composite
material, and its phases are not distinguishable. Mathematically,
it means it is represented by a single domain. The cell state is
described by the volume-averaged fields cðavÞe , ϕðavÞ

e , and ΦðavÞ
s

defined on this domain on which PDEs are solved. The active
material is represented by an effective spherical particle
whose radius R is chosen to fit the specific surface area
and the porosity of the electrode. Because of this, ion
concentration in theactivematerial csðr,~xÞ is a functionofdistance
to the sphere center r and of the location inmacroscopic electrode
domain~x.

Themicroscopic model Equation (1), (3), and (4) correspond to
DFN equations

∂cðavÞe

∂t
¼ �~∇~Ne

ðavÞ þ 1
F
ai0 (15)

0 ¼ �~∇~jeðavÞ þ ai0 (16)

0 ¼ �~∇~jsðavÞ � ai0 (17)

with constitutive relations (5)–(7) transforming into the ones for
the spatially averaged fluxes and current densities

~je
ðavÞ ¼ �κðeff Þe ~∇ϕðavÞ

e � κðeff Þe
1� tþ
F

∂μe
∂cðavÞe

~∇cðavÞe (18)
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~js
ðavÞ ¼ �σðeff Þs ~∇ΦðavÞ

s (19)

~Ne
ðavÞ ¼ �Dðeff Þ

e ~∇cðavÞe þ tþ
F
~je

ðavÞ (20)

Transport coefficients Dðeff Þ
e and κðeff Þe are the effective com-

posite material parameters and reflect the interaction between
the transport phenomena and the microstructure morphology,
and a is the specific interface area. Equation (2) and (8) preserve
their form but for spherically symmetrical solutions, with the
corresponding boundary condition

∂cs
∂t

¼ Ds

r2
∂
∂r

�
r2

∂cs
∂r

�

Ds
∂cs
∂r

����
r¼0

¼ 0
(21)

The boundary condition on the sphere interface is the DFN
equivalent of Equation (11)

Ds
∂cs
∂r

����
r¼R

¼ � i0
F

(22)

Due to the DFN treatment of the electrode as a single homog-
enized domain, the other interphase boundary conditions from

the microscopic theory are not needed. The matter and the
charge exchange between the electrolyte and the active material
are described instead by the source terms in Equation (18)–(20).
The faradaic current density i0 is assumed to depend on cðavÞe ,
ϕðavÞ
e , ΦðavÞ

s , and cs the same way it depends ce, ϕe, Φs, and cs
in the microscopic model. As with the microscopic counterpart,
additional boundary conditions are needed to make the model
mathematically closed, which represent the interaction of the
electrodes with the current collectors and with their environment
in general. They are not important for the article’s topic and are
omitted here. The graphical summary of the DFN model is given
in Figure 1B.

As was mentioned at the beginning of the section, the basic
microscopic model is quite simple in terms of the number of
reactions and processes included, and one can, in principle, con-
sider more sophisticated models by including side reactions, new
phases, etc. They can be upscaled to the corresponding DFN-type
models. In general, an algorithm for such upscaling can be sum-
marized in the following steps: 1) the transport in the electrolyte
on the microstructure scale is considered to be fast enough to
justify its homogenized description; 2) the same is done to
the electrical conduction in all the phases; 3) the reaction rates
are homogenized as well; and 4) the ion mass transport in the
solid active material microstructure is substituted by the mass
transport in the representative spherical particle. Point 4) is criti-
cal because the ion diffusion in the electrodes is usually one of
the slowest processes and a rate-limiting one. Its homogeniza-
tion would introduce big errors that would keep the models from
giving right predictions. We stress in this article that this step is
critical for the mathematical consistency of the hierarchical
modeling of LIBs. In the following, in this article’s new macro-
scopic model, we will propose to substitute step 4 with a different
approach. The assumptions behind steps 1–3 will still be
assumed to hold.

Keeping this in mind, we can state that the model we will
propose can be an alternative not only to the particular form
of DFN and of the microstructure-resolving model we wrote
down here but for a class of cell models that include a description
of the side reactions, chemistry-mechanics coupling, reactions
with additional chemical species, etc. One has to ensure, how-
ever, that steps 1 and 2 are valid. In step 3, the correctness of
the reaction description with only the volume-averaged rate
should be ensured only for the main lithium intercalation reac-
tion. As for the side reactions, the possibility of the strong depen-
dence of the rates on the local conditions prohibiting the use of
simple averaged expressions in homogenized models is, in fact,
the area where a new model extending DFN can be very instru-
mental for the battery research, as we emphasized in Section 1.

3. Local Fluctuations in Porous Electrodes

In this section, we summarize the important facts about the local
fluctuations in the porous electrodes that motivated the DFN
modification proposed in this article.

Latz and Zausch[2] investigated the cell thermal behavior pre-
dictions calculated with their microscopic cell model and with the
corresponding volume-averaging model. The comparison of
these models and the details that cannot be properly captured

A

B

C

Figure 1. Graphical representation of the cell models from the article’s
text, with the main features. A) The microscopic model, with domains rep-
resenting electrolyte and active material. B) DFN model, with a domain
representing homogeneous upscaled electrode and a spherical particle
domain for active material diffusion calculation. C) The reduced-order
model, with a domain representing homogeneous upscaled electrode
and the set of variables ci, a compressed representation of lithium distri-
bution in active material.
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by the volume-averaging procedure were in the focus, such as,
for example, the local hot spots. The microscopic model
is a slightly modified version of the one from Section 2,
with additional terms that represent the non-equilibrium ther-
modynamics-based coupling of the transport phenomena with
temperature gradients. However, the inclusion of these gradients
influenced the numerical predictions presented in the previous
study[2] very weakly due to the negligible temperature variation
on the cell scale, and the results relevant for this article are, thus,
true for the basic isothermal model of Equation (1)–(8) as well.

In that study, considerable spatial fluctuations of the overpo-
tential up to the order of 50mV were observed in the microscopic
model-based simulations. At the same time, the running average
agrees remarkably well with the overpotential profile from the
counterpart DFN-based simulation (Figure 7 in the previous
study[2]). The presence of such fluctuations (and, potentially,
of similar fluctuations of other physical quantities in the cell)
may have important consequences in the battery modeling.
Whenever there is a process whose dynamics is strongly influ-
enced by the local conditions on the microstructure scale,
making an accurate theory-based prediction about the rate of this
process on the macroscopic scale becomes a nontrivial task
requiring knowledge about the local fluctuation distribution,
especially when the dependence on the local conditions is
strongly sharp and non-linear. Examples of such processes
may include side reactions (such as SEI growth or lithium plat-
ing), mechanical deformations of the particles, etc. They may
contribute to the battery aging, and thus, their accurate analysis
is important for the field.

At the same time, note that the standard DFN model based on
Equation (15)–(22) cannot reproduce the desired local overpoten-
tial fluctuations. Indeed, the overpotential is an interface-related
quantity; any solution of the problem (21) and (22) is spherically
symmetric by construction; consequently, the overpotential is the
same on the whole representative particle surface. The only
spatial dependence appears on the volume-averaged scale.
The spatial variation in the previous study,[2] contrary to this,
happens on the microstructure scale. To capture it as computa-
tionally efficiently as calculation with DFN would do, a modifi-
cation of the model is, therefore, needed.

Before we proceed to describe a candidate for such modifica-
tion, we provide a qualitative explanation of the local overpoten-
tial fluctuations on an active material particle interface that will
make the understanding of the mathematical arguments easier
as follows. Let us consider the charging of one particle inserted
into a homogeneous electrolyte with constant electrical potential.
The electrolyte homogeneity may be due to high ion diffusivity
and electrical conductivity, and the exact mechanism is not
important here. We also assume that one can arbitrarily change
the potential difference between the particle and the electrolyte,
to control the faradaic reaction rate. The exact mechanism is not
important here as well, as long as it preserves the homogeneity of
the electrolyte and of the electrical potential. Under such condi-
tions, if one has a constant lithium stoichiometry when the
charging starts, the faradaic current i0 is the same along the inter-
face. If one neglects the lithium diffusion exchange between the
different regions near the surface for a while, the rate of change
of the average lithium concentration in one such region (denoted
by index a) can be written down as

∂c̄a
∂t

¼ Sa
Va

i0 (23)

where Va is the region’s volume, and Sa is the surface area of the
interface between the region and the electrolyte. When the par-
ticle is not spherical, the regions near the surface with different
local curvature likely have different local ratios Sa=Va, and a con-
centration difference between them will, thus, begin to emerge.
The local OCV will change, and, according to formula (13), the
overpotential will change too. Importantly, a difference between
the values of these two quantities in the different regions will
appear. This will, in turn, induce the local differences in i0 affect-
ing the rate ∂c̄a= ∂t. Finally, the diffusion will start to smooth out
the concentration difference. These three factors (surface curva-
ture variation, the lithium concentration feedback on i0, and the
diffusion) drive the amplitude of the concentration variation on
the interface in different directions until they reach a dynamics
equilibrium.

Importantly, this mechanism can explain the buildup of the
differences between different locations on the interface of such
physical quantities as OCV and overpotential. The fluctuations
of the latter were visible in the numerical simulations in the
previous study.[2] Note that for such effect to occur, only the
non-spherical shape of a single particle is sufficient, and no other
microstructure complexities are needed.

4. Mathematical Theory of the Local Fluctuations

To provide a more accurate estimate of the role of the particle
shape factor we introduced earlier, we have developed a mathe-
matical framework. It will help go beyond the purely qualitative
analysis and answer a number of questions. First, if the local
interfacial fluctuations due to the particle shape are big enough
to explain the results in the previous study.[2] Second, how the
strong spatial localization of the fluctuations allows for the appli-
cability of DFN model, which is based on volume averaging and
whose predictions have been generally proved to be correct. The
answers to these questions will shed light on the foundations of
the reduced-order model we are going to introduce.

Our method is rooted in the accurate analysis of the volume
averaging procedure in lithium-ion cell models. The homogeni-
zation theory is usually used to derive the equations of DFN
model (such as Equation (15)–(17)) from the microscopic
transport-reaction laws (such as Equation (1)–(4)).[20–22] The
homogenization theory is a formal mathematical ansatz that
demonstrates how PDE problems can be upscaled when there
is a length- and/or timescale separation and how the convergence
of the upscaled problem solutions can be proved. Its applicability
to the macroscopic LIB models construction has some limita-
tions: it cannot be applied to the mass transport in the active
material (thus justifying the introduction of the representative
spherical particle in DFN). It was shown in the previous study[22]

with numerical experiments; only a numerical model that
includes the homogenization for some equations and the exact
microscopic PDE problem for the slow mass transport gives the
solution to which the exact solution converges in the scale sepa-
ration limit. For our framework, we went beyond the standard
homogenization assumptions and introduced additional
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conditions on the system, to get more analytical results. We have
used the homogenization together with other perturbation tech-
niques. The mathematical details and the numerical tests will be
published separately; here, we will present the physical motiva-
tions and the main results of our theory.

We started the analysis with listing all the small parameters
that are related to the homogenization. The first

δ1 ¼
L
L0

(24)

is the ratio of the microstructure length scale L (for example, the
active material particle size) to the macroscopic length scale L0.
The latter is not the electrode thickness, but rather the length
scale on which the composition and the potentials in the electrode
vary significantly to affect the intercalation reaction rate. As such,
L0 is related to the volume-averaged gradients in the electrode and
depends on the cell operation conditions, such as C-rate, and not
only on the electrode geometry. One can demonstrate that, with
the physically realistic transport parameters of the cells, δ1 almost
always remains small. The second small parameter is the ratio of
the microscopic time scale to the macroscopic one

δ2 ¼
τmicro

τmacro
(25)

The definition of the time scales depends, again, on the whole
operation regime of the cell. It can be shown that it scales with
the averaged faradaic current density i0 such as

δ2 �
ji0j
icr

(26)

where icr is the critical current density above which the transport
limitations block charge or discharge of the active material
particle. The situations in which the current is relatively close
to icr are realistic, for example, in the fast charging protocols.
Therefore, assuming δ2 to be small may be not correct. From
the formal mathematical point of view, it is exactly the condition
that prevents the homogenization ansatz from being fully appli-
cable to LIBs. Physically, it means that the active material lithium
transport is slow and rate-limiting.

For our extensions of the standard DFN, two additional
approximations should be introduced. The first one can be asso-
ciated with the parameter

δ3 ¼
Sinterparticle

S
(27)

being small, where S is the particle surface area, and Sinterparticle
is the interparticle contact area at which a direct lithium
exchange between the particles not mediated by the electrolyte
is possible. The condition δ3 � 1 is a mathematical expression
of the fact that the microstructure can be reasonably good split
into separate particles.

The smallness of δ1 and δ3 allows to expand the solution of the
microscopic model into perturbation series

ϕe ¼ ϕð0Þ
e þ ϕð1Þ

e þ : : :

ce ¼ cð0Þe þ cð1Þe þ : : :

Φs ¼ Φð0Þ
s þΦð1Þ

s þ : : :

cs ¼ cð0Þs þ cð1Þs þ : : :

(28)

where the quantities with index 0 correspond to the zeroth-order
terms, the quantities with index 1 are linear with respect to δ1 and
δ3, and so on. Following our remarks mentioned earlier, we
stress that the zeroth-order terms are not the solutions of the
fully homogenized version of the microscopic cell model, but
rather of a partially homogenized one. Namely, ϕð0Þ

e , Φð0Þ
s , and

cð0Þe are the solution of the equations looking formally as
Equation (15)–(17) but with different source terms. Because of
the smallness of δ3, c

ð0Þ
s splits into the separate solutions of

the diffusion equations for the independent particles. These
equations are mathematically connected to each other only
through the common boundary condition parameters ϕð0Þ

e ,
Φð0Þ

s , and cð0Þe .
The latter representation of the solution is identical to the one

in the thought experiment charging we used in the previous sec-
tion to explain how the surface fluctuations can emerge in just
one active material particle. Combining that explanation with our
mathematical analysis, we come to the conclusion that, even in
the justifiable semi-homogenization limit (δ1, δ3 ! 0), the cell
microstructure can induce the localized fluctuations on the
particle interface.

The second approximation outside of the traditional homoge-
nization conditions we use in the analysis is the linear approxi-
mation for the intercalation reaction rate dependence on the
lithium concentration in the active material

i0 ¼ ið0Þ0 þ βðcs � c̃Þ (29)

Mathematically, such linear rate function can be obtained by
resolving the exact one (such as formula (13)) into its Taylor
series and dropping all the terms after the linear one. The result-
ing PDE problem is

∂cs
∂t

¼ ~∇ðDs
~∇csÞ

Ds
∂cs
∂n

����
∂G

¼ � 1
F

�
ið0Þ0 þ βðcs � c̃Þ

� (30)

c̃ is the reference concentration that can be chosen in multiple
ways, to ensure that the overall reaction rate is predicted accu-
rately. In the following, we will give an example of one such
choice. It is worth noticing that the accuracy of the linearization
can be associated with another smallness of another parameter
and, through this, with the overall cell dynamics, similarly to δ1
and δ2. The PDE problem in form (30) allows one to proceed
much further in theoretical estimation how big the fluctuations
are than the general dynamic laws (2), (8), and (11) would. Also, it
provides valuable insights into the local reaction-diffusion
dynamics. When ið0Þ0 and β do not depend on time, the solution
of Equation (30) converges to a stationary gradient profile after a
transient relaxation period. Two important dimensionless
parameters emerge
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γ ¼ ji0j
icr

(31)

ρ ¼ βL=FDs (32)

They control the fluctuation scale in the stationary cs profile,
together with the particle’s shape. In real life cell dynamics, the
parameters of system (30) can change with time, and the same is
true for γ and ρ. We, however, assume that the dynamic solution
tends to be close and gravitates to the stationary one. It is possible
to derive approximate formulas to estimate how big the variation
of the concentration in the stationary profile is. Here, we will con-
centrate on the aspects of this dependence that are relevant for
the topic of this article.

First, we concentrate on the important, physically feasible case
ρ! 0, in which the standard deviation of lithium concentration
on the particle surface behaves like

δcsjS ≡
�Z

dS
S
ðcs � csjSÞ2

�
1=2

� cmγ

csjS ≡
Z

dS
S
cs

(33)

cm is the maximum possible concentration of lithium in the
active material, and the exact proportionality coefficient depends
on the particle shape and, naturally, becomes small when the par-
ticle is chosen to be close to sphere in shape. Recalling the argu-
ment about the ratio of the reaction current to the critical current
from the discussion about the parameter δ2 above and the defi-
nition of γ, one can see that the variation of cs is not generally
bound to be small relative to cm. Even if, after a certain amplitude
of δcsjS, the linearization assumption in problem (30) stops being
accurate, our analysis provides strong mathematical argument
for the conjecture that the particle shape-induced local fluctua-
tion in the electrodes is not negligible, thus answering one of
the questions we posed at the beginning of this section.

The second important aspect of the behavior of the solution of
problem (30) is its dependence on parameter ρ. It can be shown
that, when ρ!∞, δcsjS ! 0; more precisely, δcsjS � 1=ρ. The
numerical results presented in the following indicate that an
inverse (although not necessary an inversely proportional) rela-
tion between δcsjS and ρ holds for spheroid-like particle shapes
inside a wide window of parameter ρ values, not only in the
asymptotic case.

In the numerical section, we will also look at the dependence
of δcsjS on γ. It should be noted that, in the simulation of the cell
with the parameters close to the realistic ones, it is hard to track
the γ dependence separately from the ρ dependence in general.
At first, looking at definition (31), one may expect the γ depen-
dence to be identical to the current dependence. But, in reality,
γ and ρ both dynamically depend on the current: ρ is effectively a
slope of the reaction kinetics versus cs; in the case of the
Butler–Volmer formula (13), for example, it depends on the over-
potential, which, in turn, is conditioned on the current. The
above-mentioned case ρ!0 is the one in which the role of ρ
can be neglected, and one can simply state that δcsjS grows
with ji0j. In the numerical simulation experiments, we will inves-
tigate exactly this case.

The answer to the second question from the beginning of this
section, about the influence of our findings to the applicability of
DFN models, can be stated as follows. The mathematical form
and the physical meaning of the effective parameters of the
volume-averaging equations of DFN (15)-(17) are accurate within
physically reasonable assumptions (δ1, δ3 ! 0). The volume
source terms, however, do not necessary evolve according to
the DFN predictions. Our theory predicts only that, for arbitrary
particle shapes, the discrepancy between the volume averaged
sources in the DFN and the microscopic model should generally
grow with parameter γ, which is not generally small.
Interestingly, the results in the previous study[2] and the numer-
ical simulations presented in the following in this article indi-
rectly support the conjecture about the closeness between the
DFN source terms and the ones due to the exact solution, by
demonstrating the good agreement among the volume-averaged
overpotentials, OCV, surface lithium concentrations, and the
corresponding DFN values.

5. Reduced-Order Model

5.1. Motivation for the Model Choice

To propose a DFNmodification, we first make a list of the impor-
tant requirements that the model in question should desirably
meet, based on the analysis in the previous sections. 1) The
method should preserve the homogenized equations of DFN
for the processes for which the homogenization is accurate.
2) The active material lithium dynamics should be represented
as the one of an ensemble of isolated active material particles
interacting with the homogeneous electrolyte and electric poten-
tial. 3) The predicted volume-averaged faradaic current dynamics
should be close to the ones obtained in the microscopic model
calculations. 4) The lithium concentration profiles in the models
should generally be close to the stationary solutions of PDE prob-
lem (30). 5) The model should predict the interfacial variations of
the physical quantities of interest, at least in a statistical sense
(such as the spatial standard deviations, other statistical
moments, etc.). 6) The model should be comparable with
DFN in terms of computational efficiency.

The effective spherical particle microstructure representation
in DFN is exactly the component that reduces the computational
intensity of modeling diffusion in more complex domains.
One can treat it not as a physical object but as a mathematical
abstraction, a reduced-order representation of the diffusion equa-
tion PDE problem that captures some basic characteristics of the
solution at the expense of the others. We can choose another
such representation that meets the requirements listed earlier.
A good candidate is the discrete approximation of PDEs obtained
with the Galerkin method. The method is widely used in the
numerical mathematics, in particular in finite-element method
(FEM) applications. One can learn about the details in the
FEM literature (for example, in the previous study[25]).

In essence, the Galerkin method substitutes a differential
equation over the set of continuous functions with a system
of equations over a finite set of variables. The functions them-
selves are approximated by superpositions of a number of basis
functions. In this sense, Galerkin’s ansatz is a problem order
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reduction. When one has a prior information about the solution,
one can choose a small basis set that gives an accurate solution
representation at a small computational cost.

As we know that what we need to reproduce well are the sta-
tionary solutions of problem (30), we can choose the basis func-
tions that capture the cs profiles in these solutions in typical active
material particles. Important notes should be done here. In FEM
applications of the Galerkin method, a set of basis functions
(finite elements) is usually chosen that accurately reproduces
the complete function with necessary numerical resolution,
the elements being usually localized on the numerical grid cells.
Contrary to this, we are satisfied with the set that only captures
the necessary integral characteristics of the solution. A good set
will be proposed and tested in the numerical section as follows.

An important argument for the method’s choice is that, in
principal, Galerkin’s approach is supported by the mathematical
theorems about the solution convergence and stability, the details
to be found in the literature. It ensures that, if the solution’s accu-
racy is not satisfactory, one can always fix it by adding additional
basis functions. In our investigation of the transition from the
microscopic cell models to the homogenization-based ones,
we try to follow the rigorous derivation whenever it is possible,
listing all the mathematical approximations we make, and the
transition from the exact diffusion equation to Galerkin’s equa-
tions is controlled by the known error estimates.

5.2. Particle Ion Transport Equations in the Reduced-Order
Model

Here, we are going to outline the formal derivation of the model
representation of PDE problem (30) using the Galerkin method,
without giving the mathematical explanation of the steps. One
has to rewrite the problem in the so-called weak formulation.
First, the equation is multiplied by an arbitrary function ψð~xÞ,
then integrated over the problem domain G (which in this con-
text is the space occupied by one particle, not the electrode or the
whole cell), and transformed using Gauss’s divergence theorem
Z
G
dxψ

∂cs
∂t

¼ �
Z
G
dxDs

~∇cs ⋅ ~∇ψ þ
Z
∂G

~dSψDs
~∇cs (34)

Substituting the boundary condition from Equation (30) into
Equation (34), one obtains the weak formulation
Z
G
dxψ

∂cs
∂t

¼ �
Z
G
dxDsð~∇cs ⋅ ~∇ψÞ �

Z
∂G

dSψ
1
F
βðcs � c̃Þ

�
Z
∂G

dSψ
1
F
ið0Þ0

(35)

At this point, to write down the final equations in the closed
form, one has to specify the reference concentration c̃. We set it
to be an average surface concentration

c̃ ¼
Z
∂Gr

dS
S
cs (36)

S is the part of the particle surface area exposed to the faradaic
reaction with the electrolyte, and the integration over ∂Gr means

the integration over this part of the interface. This choice will
make it easy to analytically express the galvanostatic particle
charge constraint in the numerical simulation section and will
ensure an accurate total current representation, but it is not
the only possible choice. Let us assume that, in this section,
ið0Þ0 and β on the passive interface are equal to 0. Note that it
means, some surface integrals in the following are equal when
taken both over ∂G and over ∂Gr. In the next step, one has to
choose a set of basis functions ψ ið~xÞ, 1≤ i≤ n. The representa-
tion of the lithium density as a linear combination of these
functions cs ¼

P
i ciψ i is formally substituted into the weak formu-

lation, with the arbitrary function ψð~xÞ changing to one of ψi.

X
i

Z
G
dxψ jψ i

∂ci
∂t

þ
X
i

Z
G
dxψ j

∂ψ i

∂t
ci

¼ �
X
i

Z
G
dxDs

�
~∇ψ j ⋅ ~∇ψ i

�
ci�

� 1
F

X
i

�Z
∂G

dSψ jβψ i �
Z
∂G

dSψ jβ

Z
∂Gr

dS
S
ψ i

�
ci

� 1
F

Z
∂G

dSψ j i
ð0Þ
0

(37)

Let us introduce typical diffusivity D̃s, typical length scale L,
typical β as β̃, typical current density ĩ, and particle volume V;
a set of matrices

Aji ¼
Z
G

dx
V

ψ jψ i (38)

Bji ¼
Z
G

dx
V

ψ j
∂ψ i

∂t
(39)

Mji ¼
Z
G

dx
V

Ds

D̃s
L2ð~∇ψ j ⋅ ~∇ψ iÞ (40)

AðSÞ
ji ¼

Z
∂G

dS
S
β

β̃
ψ jψ i �

Z
∂G

dS
S
β

β̃
ψ j

Z
∂Gr

dS
S
ψ i (41)

and a tuple

aðSÞj ¼
Z
∂G

dS
S
β

β̃
ψ j

ið0Þ0

ĩ
(42)

With these notations, one can rewrite the set of
Equation (37) as

X
i

Aji
dci
dt

¼ �
X
i

Bjici �
D̃s

L2
X
i

Mjici �
Sβ̃
FV

X
i

AðSÞ
ji ci �

Sĩ
FV

aðSÞj

(43)

There is a certain freedom in the choice of the basis functions.
In general case, using functions explicitly depending on time
( ∂ψ i= ∂t 6¼ 0) may be beneficial to accurate representations of
transient processes in the active material particles. Here, we
neglect the time dependence of ψi; hence, everywhere Bji ¼ 0.
The choice of ψi that helps build an accurate yet efficient cell
model will be discussed in the numerical simulation section.
In this theoretical section, we will demonstrate how imposing
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certain restrictions on ψi allows rewriting Equation (43) in a form
more suitable for understanding of the physical meaning of the
terms and of the way the equations encode or compress the infor-
mation about the local fluctuations. To this end, we chose the
basis functions to be dimensionless, to make the matrices and
the tuple dimensionless. Then, we fix the particle length scale
according to the rule L ¼ V=S and the basis functions depen-
dence on L

ψ ið~xÞ ≡ ψ ð0Þ
i ð~x=LÞ (44)

where functions ψ ð0Þ
i do not depend on L explicitly. After this, the

following is true, when β and Ds are constant and equal to β̃ and
D̃s, respectively: quantities Aij,Mji, A

ðSÞ
ji , and aðSÞj are defined only

by the particle’s shape. More precisely, they are either equal for
the geometrically similar particles or can be made equal by the
coordinate system axes rotation. In particular, they do not depend
on L or on any physical parameters of the cell or of the charging
process. As an example, for matrix Aij, introducing new coordi-
nates ~x ¼ L~y and the particle volume in the new coordinate
system V ð0Þ ¼ V=L3, one obtains

Aji ¼
Z
G

dx
V

ψ jð~xÞψ ið~xÞ ¼
Z
Gð0Þ

dy
V ð0Þ ψ

ð0Þ
j ð~yÞψ ð0Þ

i ð~yÞ (45)

Domain Gð0Þ occupied by the particle in the coordinate system
~y is the same for all geometrically similar particles or can be
made the same through rotation, hence the invariance of Aij.
In summary, one can say that the matrices and tuples (38)-(43)
encode only the information about the particle’s shape.
When possible inhomogeneity of β and Ds is accounted for,
they encode the microscopic electrode anisotropy in general.
On the other hand, the coefficients in front of the matrices
and the tuples in Equation (43) reflect the main physics of the
active material particle interaction with the environment
(electrochemistry kinetics, electric current, and diffusion).
Using the notation of the previous section, setting Bji ¼ 0,
one rewrites Equation (43) as

X
i

Aji
dci
dt

¼ � D̃s

ðV=SÞ2
�X

i

Mjici þ ρ
X
i

AðSÞ
ji ci þ cmγa

ðSÞ
j

�
(46)

The parameters γ and ρ from Section 4 enter the equations
explicitly. In this formulation, different terms are clearly associ-
ated with the different driving forces mentioned earlier, whose
equilibrium defines the stationary concentration gradient profile
in the particle encoded in values ci. The ρ value being big or small
indicates which of these forces is dominant.

5.3. The Complete Set of Model Equations

In this section, we put together all the equations for the complete
reduced-order cell model. We will compare them with two
models presented in Section 2, especially with DFN. To avoid
overgeneralization, to provide general understanding and to keep
all the formulas compatible with the variant we used for the
numerical simulations in the following, we look at the case when
the kinetic law defining the dependence of faradaic reaction rate
on potentials and concentrations i0ðce,ϕe, cs,ΦsÞ does not

explicitly depend on the coordinates on the interface of a single
particle. It is worth noting that such dependence can potentially
be a part of the model and, in fact, is a valid source of the local
surface fluctuations we aim to capture. In the Butler–Volmer
kinetics (13), it would mean that i00 is different for different
interface parts. Physically, such differences can be induced by
different crystalline surfaces exposed to the electrolyte.

The model is structured as follows. As in DFN, the electrode
is a microscopically homogeneous composite material and is rep-
resented by a single geometrical domain, and the volume-aver-
aged fields cðavÞe ð~xÞ, ϕðavÞ

e ð~xÞ, and ΦðavÞ
s ð~xÞ are defined on it. The

active material lithium concentration is represented by a tuple of
numbers cikð~xÞ. Index i denotes different basis functions ψi, and
index k denotes different types of particles (shape,
material, etc.). When one resolves i0 into the power series of cs
around c̃ defined according to Equation (36), to get the
linearized kinetics of problem (30), the absence of the explicit
coordinate dependence in i0ðce,ϕe, cs,ΦsÞ means the absence
of such dependence in ið0Þ0 ðce,ϕe, c̃,ΦsÞ and βðce,ϕe, c̃,ΦsÞ too.

Given these remarks, the equations of the type of
Equation (43) for the variables cik in which the dependence
on the other model variables and on the particle type k is
shown explicitly are

X
i

Ajik
dcik
dt

¼ � D̃sk

L2k

X
i

Mjikcik �
Skβk

�
cðavÞe ,ϕðavÞ

e , c̃k,Φ
ðavÞ
s

�
FVk

�
X
i

AðSÞ
jik cik �

Ski
ð0Þ
0k

�
cðavÞe ,ϕðavÞ

e , c̃k,Φ
ðavÞ
s

�
FVk

aðSÞjk

(47)

c̃k ¼
X
i

aðSÞik cik (48)

The remaining equations of the cell model have the same
form as the corresponding DFN equations, with the same
physical meaning of the parameters, but with slightly different
source terms

∂cðavÞe

∂t
¼ �~∇~Ne

ðavÞ þ 1
F

X
k

aki
ð0Þ
0k

�
cðavÞe ,ϕðavÞ

e , c̃k,Φ
ðavÞ
s

�
(49)

0 ¼ �~∇~jeðavÞ þ
X
k

aki
ð0Þ
0k

�
cðavÞe ,ϕðavÞ

e , c̃k,Φ
ðavÞ
s

�
(50)

0 ¼ �~∇~jsðavÞ �
X
k

aki
ð0Þ
0k

�
cðavÞe ,ϕðavÞ

e , c̃k,Φ
ðavÞ
s

�
(51)

Numbers ak are the partial specific surface areas of the particle
type k. The fluxes and the currents depend on the cell state
according to formulas (18)-(20). Figure 1C gives a graphical
representation of the reduced-order model. A comparison
with Figure 1B emphasizes that the crucial differences with
the traditional DFN are the active material diffusion representa-
tion and its mathematical binding to the remaining transport
phenomena.

It is important to stress again that the presented model
describes the same transport and chemical processes as the
microscopic model and the DFN model there. More generally,
by adding additional side reactions into every one of them, three
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families of models may be generated. For a model from DFN
class to be applicable, the conditions outlined in Section 2 should
be fulfilled. For the models of the family similar to the one pre-
sented in Equation (47)–(51), additionally, the conditions of the
perturbation theory applicability from Section 4 should hold. The
main advantage is the accurate account of the local interface
fluctuations.

6. Implementation and Numerical Results

The objective of this section is to propose a minimal set of basis
functions for the reduced-order method that reproduces the nec-
essary characteristics of the local shape-induced concentration
fluctuations and to assess the accuracy.

The proposed basis set fψ ig consists of the polynomials up to
power 2

f1, x, y, z, x2, xy, : : : g (52)

ten functions in total. The following heuristic arguments can be
provided in the support of this choice. When one considers a
spherical particle, the stationary spherically symmetrical solution
of problem (30) is

cs � r2 þ const ¼ x2 þ y2 þ z2 þ const (53)

One can expect that when we gradually change the shape from
spherical to slightly elongated, the parabolic function is still a
good representation, but it becomes slightly squeezed. Also,
from the perspective of angular dependence, a stationary solution
with the polynomials up to power 2 with a properly chosen coor-
dinate system contains only the spherical harmonics Ym

l ðθ,ϕÞ up
to l¼ 2. It means, the basis captures only the solution anisotropy
on big angles of the order π/2, not the small angular variations.
It agrees with our goal to build an economical model capturing
the averaged, coarse surface fluctuation characteristics, not the
fine details. Borrowing the terminology from the theoretical elec-
trodynamics, one can say that a choice of the basis functions
including only the spherical harmonics with l≤ 2 reflects only
the dipole and the quadrupole components of the angle-sensitive
solution variation.

As the accuracy of the reduced-order model in capturing the
local fluctuations is in the focus of this article, we chose an
example for the numerical analysis, which allows to estimate this
particular accuracy separately. Such system is a one-particle
system, similar to the one we used in Section 3 argument. In
the multiple-particle simulation, the precision of one-particle
modeling would be hidden in the complexity. The active material
and electrolyte material parameters are chosen that are close to
the ones of the real cells. The particle shape is spheroid with an
aspect ratio of 0.5 and the main axis 10�3 cm. The physical
parameters are listed in Table 1, with the notations from the
article’s text. OCV as a state of charge (SOC) function is

U0ðVÞ ¼ 0.6379þ 0.5416 ⋅ expð�305.5309 ⋅ SOCÞþ
þ 0.044 ⋅ tanhð�ðSOC� 0.1958Þ=0.1088Þ�
� 0.1978 ⋅ tanhððSOC� 1.0571Þ=0.0854Þ�
� 0.6875 ⋅ tanhððSOCþ 0.0117Þ=0.0529Þ�
� 0.0175 ⋅ tanhððSOC� 0.5692Þ=0.0875Þ

(54)

The SOC definition is physical: SOC ¼ cs=cm. The particle is
subjected to the galvanostatic charge with average current density
10�4 A cm�2. It roughly corresponds to C-rate 3C. We do not
control voltage cutoffs explicitly and instead start the charge from
initial homogeneous state cs ¼ cðinitialÞs and stop at an arbitrary
time of 1200 s, when the local SOC on the surface is close to
100%. Note our comment mentioned earlier that some approxi-
mation errors tend to grow with current/C-rate; this observation
ensures that, when our model is accurate for the high C-rates, it
tends to be accurate for the low C-rates as well. In this section’s
simulations, we assume full homogenization (δ1 ¼ 0), in line
with Section 3 example. It means, variables ce, ϕe, and Φs are
constant on the particle scale, and Equation (43) is fully
decoupled from the other equations.

The reference solution to which we compared the results of
our reduced-order model is the finite volume method (FVM)
implementation on a cubic mesh with 60 control volumes per
main spheroid axis, with explicit time integration. The current
version of the reduced-order model is an ordinary differential
equation system with ten variables; its full charge simulation
using an implementation in Python package Scipy takes less than
1 s and is, therefore, very robust computationally. The data from
the simulation results have been analyzed. The time evolution of
the standard deviation of two physical quantities on the surface is
plotted: lithium concentration (Figure 2) and local OCV
(Figure 3). The comparison with the same quantities in the ref-
erence solution is remarkable for such seemingly simple model.

Figure 2 additionally contains the dynamics of parameter ρ
introduced in the mathematical theory of the fluctuations.
We mentioned that there exists an inverse relation between the
surface concentration variation and ρ, at least for big values of ρ.
One can notice that in the plot, they almost always move in the
opposite directions. It indicates that for the spheroid geometry,
the inverse relation holds for finite values of ρ too: indeed, it
varies between 0 and 3, which cannot be considered big.

Figure 4 and 5 demonstrate how the dynamics of the surface
fluctuations changes when one changes the C-rate/current den-
sity. First, one notices that, with the decreasing C-rate, ρ becomes

Table 1. Physical parameters for the article’s numerical simulation
examples.

Parameters Value Units

cðinitialÞs 2.639� 10�3 mol cm�3

cm 2.4681� 10�2 mol cm�3

Ds 10�10 cm2 s�1

ce 1.2� 10�3 mol cm�3

i00 0.002 A cm�2.5 mol�1.5
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closer to zero. With this, we end up with the case ρ! 0 presented
in the introduction of the mathematical theory of the fluctua-
tions. As we noticed there, in this case, the dependence of the

surface concentration variation on current/C-rate/parameter γ
is effectively dynamically decoupled from the dependence on
ρ and is governed by estimate (33). Indeed, it is exactly what
we see in Figure 5: first, the fluctuations decrease with decreas-
ing current; second, after a short transient equilibration, they
become almost constant in the smallest C-rate case, not sensitive
to the peaks and valleys of the ρ dynamics. Note that, although
the discrepancy between the FVM predictions and the ones of the
reduced-order model grows with C-rate, the relative error stays
roughly the same.

To emphasize the model accuracy not only on the integral
quantities level, Figure 6 gives a screenshot of the volume
concentration distributions together with the point-by-point dif-
ference between the model and the FVM. We compared the fluc-
tuation scale to their respective averages (Figure 7 and 8), to give
a reader the understanding of the respective scales. Note that the
discrepancy between the average values of the model and of the
reference solution is far smaller than the fluctuation measures. It
reminds the results of the previous study,[2] where the averaged
overpotentials for the microscopic model and for DFN are much

Figure 3. Time evolution of the OCV standard deviation on the active
material particle surface in FVM and in the reduced-order model numerical
simulations for the 3C charge rate case.

Figure 4. Comparison of the evaluation of parameter ρ introduced in the
mathematical theory for different CC charge FVM simulations. The charge
is characterized by the averaged current density through the particle
surface. Here, SOC is the averaged surface SOC.

Figure 5. Comparison of the evaluation of lithium concentration standard
deviation on the active material particle surface for different CC charge
simulations. The charge is characterized by the averaged current density
through the particle surface. Here, SOC is the averaged surface SOC. FVM
simulation results are plotted with solid lines, and the reduced-order
model results with dashed lines.

Figure 6. Snapshot of the lithium concentration in active material particle
in FVM and in the reduced-order model numerical simulations at t¼ 514.3
s for the 3C charge rate case. The concentration profile is projected onto
the axis X along the main axis of the spheroid particle.

Figure 2. Time evolution of the lithium concentration standard deviation
on the active material particle surface in FVM and in the reduced-order
model numerical simulations for the 3C charge rate case.
Simultaneous evolution of parameter ρ introduced in the mathematical
theory is plotted.
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closer to each other than the scale of their local fluctuations. At the
moment, our theoretical analysis does not provide a general expla-
nation for such property. It is, however, an interesting feature that
replicates itself in two different numerical experiments, and an
additional research may be needed.

7. Conclusion

This article introduces a new LIB model that is computationally
effective and able to capture the microscopic spatial variation in
the cell-relevant physical quantities on the microstructure level.

The model development was motivated by a number of inves-
tigations indicating the presence of such local fluctuations, their
potential connection with the macroscopic cell characteristics,
and their relation to the microstructure complexity.[2,23,24,26]

We demonstrated that additions should be made to the widely
used cell models based on porous electrode theory by
Newman and co-workers (DFN models), to incorporate the
effects due to these fluctuations. In proposing these additions,
we strongly relied on the results of the mathematical analysis
aimed at the classification of possible sources of the local
fluctuations in the microstructure. As a byproduct of this

analysis, the limitations of the mathematical homogenization
ansatz to the transport equations in the cells have been listed.
As the homogenization of the equations plays an important role
in the foundations of DFN equations, our analysis provides a the-
oretical filter for the assumptions that we make in the derivation.

The resulting model is as computationally robust as DFN.
The numerical example is chosen, which emphasized the poten-
tial in the local fluctuation reproducibility. The Galerkin method
is chosen as a main model order-reducing instrument, mainly
due to its rigorous mathematical foundations and the available
options to further improve the model’s accuracy if needed.

Overall, the instruments and the approximations behind the
model were chosen due to the combination of the mathematical
analysis and of the heuristic solutions partially relevant to the
particular lithium ion cell model in this article. Yet, the method-
ology can potentially be used to assist in accurate derivation of
macroscopic models for more complex cell models, also for
diffusion–reaction (electro-)chemistry systems in general.
We emphasized the potential for such generalization in the
article’s text and related it to accurate tracking of the time and
space scales of various chemical and physical processes.
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