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Chapter 1.

Introduction

1.1. Motivation

The information age has brought with it a vast amount of possibilities, be it when
shopping online, finding movies to watch, or exploring new music. Often, users
are overwhelmed by the sheer amount of options which complicate decision making,
even for simple products. Advances in technology have made it possible to collect
and process increasing amounts of data, such as customer profiles, activities and
interests. Turning this data into actionable insights is not only key to acquiring and
retaining customers, but also to providing suitable purchasing recommendations for
up- and cross-selling items relevant to and appreciated by existing customers in order
to increase customer lifetime values.
Recommender systems (RS) are an integral part of today’s digital marketplaces

and are used in a wide range of areas, e.g. e-commerce, personalized search engines,
banner advertising, music and video streaming, job search, multi-sided matching
platforms, social networks, or news article recommendation (Zhang et al., 2011;
Malgonde et al., 2020). Some websites are even personalized based on the visitor,
not only in terms of content, but also design and user experience. The advantages
of using RSs as a decision aid have been shown extensively: For users, RSs are
important because they help explore the space of items in order to find new and
interesting products, reduce information overload by limiting the number of options,
and thus improve users’ decision quality (Xu et al., 2014). For companies, they help
increase sales, diversify sales by advancing long-tail items which would otherwise be
hard to find, and gain an understanding of their customers’ needs (Oestreicher-Singer
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4 Introduction

and Sundararajan, 2012). Increasing customer satisfaction by means of useful RSs
is beneficial for customer loyalty, either through renewing subscriptions or repeat-
ing sales. There is a variety of algorithms for generating recommendations, using
different paradigms and input data, each with individual strengths and weaknesses.

The quality of an RS can be measured by a number of different criteria. The most
important goals are (e.g. Adomavicius and Tuzhilin, 2005):

• Accuracy : The RS should recommend items the given user actually finds inter-
esting, i.e. the predicted rating should be as close as possible to the eventual
true rating, or the eventually purchased product should be as high on the
recommendation list as possible.

• Serendipity : A good RS should be able to positively surprise users, i.e. suggest
items which they were not aware of but are interested in.

• Diversity : The items in the recommendation list should not be too similar
to each other (e.g. the same smartphone in three different colors, or all three
movies of a trilogy). Instead, they should be able to reproduce different aspects
of the given user’s interest.

The focus of this thesis lies on the first criterion. Research has shown that the
predictive accuracy of recommendations, i.e. the perceived personalization, is of key
importance for customers to adopt an RS as a decision aid, and thus, to purchase
recommended items (Komiak and Benbasat, 2006). More accurate RSs increase
decision quality and also help companies retain customers (Zhang et al., 2011).

Increasing the predictive accuracy of an RS can be achieved in several ways. One
could (a) collect more input data or use additional data sources, (b) improve or
extend the algorithm which is applied in the system, (c) tune the hyper-parameters
of the algorithm, such as regularization parameters, or (d) use a different, more
accurate algorithm which might be computationally more expensive or less intuitive
and interpretable.

In addition to and independent of the former approaches, another frequently-used
means of increasing the accuracy and robustness of RSs, and the focus of this thesis,
is the combination of multiple different prediction algorithms. It has been shown
that the combination of two or more RS approaches into a hybrid RS (HRS) can
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improve predictive accuracy. This is well in line with findings when combining statis-
tical forecasts or human judges (social forecasts), where various studies have shown
that combining statistical forecasts can improve forecast accuracy (e.g. Bates and
Granger, 1969; Clemen, 1989; Makridakis and Hibon, 2000) or judgmental forecasts
(e.g. Hill, 1982; Gigone and Hastie, 1997; Mannes et al., 2014). HRSs have been
shown to increase decision quality and satisfaction with the system, compared to
using only single recommendation methods such as collaborative or content-based
approaches (Xiao and Benbasat, 2007).
Different approaches to combine RSs into a hybrid have been proposed. Burke

(2002) classifies them into weighted, switching, mixed, feature combination, cas-
cade, feature augmentation, and meta-level. This thesis concentrates on the first
mentioned hybridization technique, weighted HRSs (WHRS), where multiple differ-
ent RS algorithms are run independently and their predictions are combined using
a weighted average or other aggregation functions. While WHRSs have often been
shown to increase accuracy and robustness over their individual components, there
is little prior research on the selection of the weight vector for maximizing the com-
bination’s accuracy. Chapter 2 describes this research gap in more detail, based on
a review of the existing literature.
Based on the importance of maximizing an RS’s accuracy and the lack of research

on the selection of weights in HRSs, this thesis proposes and evaluates analytical
weighting strategies with the goal of maximizing the accuracy and robustness of
the WHRS, both for predicting ratings, such as in a movie streaming site, as well
as recommending products to purchase, such as in an e-commerce context. The
introduced weighting approaches build on as well as extend techniques from the
area of statistical forecast combination. The foundations of both HRSs and forecast
combination are reviewed in Chapter 2.
The following section formulates the research questions which are investigated in

this thesis.

1.2. Research Questions

The goal of this thesis is the development of robust analytical weighting schemes
for WHRSs, both for regression settings, e.g. rating predictions, and classification
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settings, e.g. purchase predictions. Therefore, three research questions are addressed
in the thesis. In this section, all research questions are formulated and motivated
based on existing approaches and their limitations. Note that a more detailed review
of prior research is provided in Chapter 2.

The combination of multiple RS algorithms by aggregating their predictions using
a weighted average has been shown to improve accuracy and robustness over the
individual methods. However, little research has been dedicated to the optimization
of the accuracy of a WHRS by selection of the weight vector. Existing research in
WHRSs mostly uses equal weights or compares a limited number of weights manually.

In the statistical forecasting literature, a large body of research exists on the
combination of forecasts and the estimation of OW. Methods have been developed
which can be shown to minimize the mean squared error (MSE) of a combined fore-
cast in-sample, given certain assumptions. The weights are calculated based on the
variance-covariance matrix of the individual forecasts’ error vectors. However, those
methods are often outperformed out-of-sample by more robust weighting strategies
such as a simple average (SA), where all forecasts are assigned equal weights. This
phenomenon is called the “forecast combination puzzle”. Apart from applying an SA,
the usage of a weighting scheme which ignores the error correlations between fore-
casts, i.e. assumes correlations of 0, has been reported to lead to lower out-of-sample
errors than estimating OW from the covariance matrix as-is.

The first research question, which is investigated in Chapter 3, therefore deals with
the development of a novel weighting scheme for WHRSs based on OW estimation
in statistical forecast combination:

RQ 1 Development of an analytical weighting scheme for the pairwise combination
of RS algorithms

(a) Given the assumptions of OW, does a weighting scheme for a WHRS with
two individual RSs based on OW estimation lead to lower errors than each
individual RS as well as an SA combination on an RS benchmark data set?

(b) Can the weighting scheme based on OW estimation lead to lower errors than
the more robust modified OW estimate ignoring error correlations on the bench-
mark data set?
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(c) Does the forecast combination puzzle, i.e. OW being outperformed by more
robust weighting schemes, occur in the combination of RSs on the benchmark
data set, and if so, for which number of ratings?

However, there are often more than two RS algorithms, each with its own ben-
efits and shortcomings, which can be combined. E.g., collaborative filtering (CF)
is a well-established RS paradigm which estimates future ratings by a given user
from past ratings by the same as well as other users. Still, a lot of times there is
more meaningful input data which can be used to generate recommendations, but
CF cannot trivially exploit that input data. Content-based filtering (CB) is able
to compute predictions based on the recommended items’ metadata and their sim-
ilarities, in combination with the user ratings. Demographic filtering (DF), on the
other hand, processes metadata about the users of the system, such as demographic
variables, and their similarities. Together with users’ past ratings, it generates rec-
ommendations for future interests. There are more RS paradigms, and for each of
them, there exist potentially multiple algorithms using different statistical models.
Therefore, the combination of more than two RS algorithms bears the potential
of boosting accuracy and robustness to a significantly higher level than a pairwise
combination.
In addition, conventional methods for learning OW usually split the available data

into a training and a holdout set or apply cross-validation in order to estimate out-
of-sample errors required for computing the error covariance matrix. After OW have
been estimated, all individual algorithms are re-fitted on the entire available data
set in order to maximize their performance. Their predictions on new, unseen data
are then combined using the OW estimated when the models had been fitted on a
subset of the data. Typically, an RS (or any statistical or machine learning model)
increases in accuracy with the number of training observations it is fitted on. Since
OW directly depends on the individual models’ errors and their correlations, which
change when switching from the subset to the entire data set, OW estimated this
way can be biased.
In Chapter 4, a novel weight projection approach is proposed which can be applied

to more than two RSs at a time and mitigates the aforementioned bias in estimating
OW by measuring error covariances and OW for increasing numbers of training
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observations and extrapolating them to the full size of the available data set. The
research question addressed in that chapter is the following:

RQ 2 Development of an extended weight learning approach for WHRSs using pro-
jection

(a) How does the accuracy of an OW combination on the benchmark data set de-
velop in relation to the individual RSs when the number of RSs in the WHRS
is increased from 2 to 4?

(b) Assuming perfect extrapolation, what is the performance improvement potential
of a weight projection approach over a conventional OW estimate?

(c) Does the projection of error covariances or OW lead to a lower error than the
conventional OW estimate on the benchmark data set?

The first two research questions focus on the combination of RSs in a regression
context. Typically, this is used in an explicit feedback setting when user ratings,
e.g. for unseen movies, are to be predicted and those items with the highest pre-
dicted ratings are recommended. However, another important RS task, especially
in e-commerce, is the prediction of purchase probabilities for recommending fitting
products when there is no explicit feedback, but only past purchases, i.e. implicit
feedback, available. Especially when the input data for a given user does not con-
tain past purchases for that same user, but only a user profile consisting of different
attributes such as demographic and behavioral variables, classification algorithms
from machine learning can be used to recommend to a user products which similar
users bought, i.e. the classifiers serve as DF algorithms.

While for regression settings, there exist, albeit few, approaches for selecting the
weight vector in a WHRS, there is even less prior research for the combination of
classifiers into a WHRS. Therefore, in Chapter 5, a weight learning method for clas-
sifiers based on OW is introduced. The approach combines the probability estimates
by the individual classifiers using a weighted average. It aims at minimizing the
Brier score, the classification equivalent of the MSE, in order to maximize the accu-
racy score of the WHRS. It is also investigated whether the calibration of probabilty
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estimates before the combination step improves the weighting approach. The re-
search question tackled in that chapter, and the third and final one of this thesis, is
therefore the following:

RQ 3 Development of a weight learning approach for WHRSs in a classification
setting

(a) Can the estimation of OW for the combination of regressors into a WHRS be
adapted to be used for the combination of classifiers?

(b) Does the minimization of the Brier score of a WHRS comprised of classifying
algorithms lead to an increase of the accuracy score over all individual classi-
fiers as well as an SA combination?

(c) Does the calibration of the classifiers’ probability estimates lead to an improve-
ment in estimating OW in a WHRS?

Based on the derived research questions, this thesis makes contributions to the
literature on the selection of weight vectors in WHRSs as well as the general literature
on the estimation of OW for the combination of models in both regression and
classification.

1.3. Structure of this Thesis

In order to introduce the developed weighting strategies for WHRSs and embed
them into the existing literature, this thesis is structured into three parts. The first
part motivates the need for the methods proposed in this thesis based on existing
approaches and their shortcomings. The current Chapter 1 discusses the importance
of accurate RSs and the role that WHRSs play in maximizing accuracy. Based on the
lack of prior work on the selection of weights in WHRSs, three research questions
are established which guide the thesis. Chapter 2 reviews related work and the
foundations of the weighting approaches proposed in this thesis. The literature
review provides background on the goals and challenges of RSs, prior work on HRSs,
and foundations of statistical forecast combination on which the proposed methods
are based.
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The second part of this thesis deals with the introduction of novel weighting
schemes for WHRSs and their evaluation on real-world data sets. In Chapter 3,
a method for selecting weights in a WHRS comprised of k = 2 individual RSs is
proposed. The approach is based on statistical forecast combination and adapts a
model by Bates and Granger (1969) to be used in a rating prediction RS. The novel
weighting scheme is evaluated on the MovieLens 1M data set (Harper and Konstan,
2015), where it is shown to outperform the individual RSs, an SA combination, as
well as a more robust weighting scheme which ignores the correlation of the indi-
vidual RSs’ error vectors. Results on subsets of the data using 50% and 10% of the
ratings, respectively, indicate that the forecast combination puzzle starts to appear
with a decreasing number of observations.

Chapter 4 introduces a weighting technique which extends the one from Chapter 3
in two aspects: (a) It is able to estimate OW for the combination of k > 2 individual
RSs, thus making it possible to combine e.g. CF, CB, and DF approaches, and
(b) more importantly, it mitigates the problem of biased OW estimates due to the
learning of OW on subsets of available data. For that purpose, error covariances
and OW are measured and stored for increasing numbers of training observations
and finally, the series is extrapolated to the full size of the available data set using
a supervised learning model. Like in Chapter 3, the MovieLens 1M data set is used
for empirical evaluation of a combination of k = 4 individual RSs, namely model-
based CF (MCF), neighborhood-based CF (NCF), CB, and DF. Results show that
(a) combining more than two individual RSs increases the performance boost of
the combination substantially, and even though the OW estimation now has higher
degrees of freedom, SA and all individual RSs are still outperformed significantly, and
(b) the weight projection leads to even smaller errors compared to the conventional
approach of estimating OW on a subset of the available data.

In Chapter 5, a weighting scheme for WHRS in a classification context is proposed.
The approach is based on the one from Chapter 3, however it is used to combine the
probabilistic predictions of classification models used for next purchase predictions
from user profiles. The Brier score is used as a classification equivalent of the MSE
and OW are estimated which minimize the Brier score of a WHRS with k = 7 clas-
sifiers. The approach is evaluated on a real-world data set from a large European
telecommunications provider, where it significantly outperforms all individual clas-
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sifiers as well as an SA combination. The minimization of the Brier score is shown
to lead to substantial improvements in the accuracy score of the ensemble.
Finally, the third part concludes and summarizes the contributions of this thesis.

Possible directions for interesting future research to extend the methods proposed in
the thesis are named.
Extracts of this work have already been published or are currently under review.

Chapter 3 is based on Haubner and Setzer (2020) and contains insights, models,
evaluations, and textual paragraphs from that publication. Chapter 4 is based on
a manuscript currently under review at a scientific journal and contains insights,
models, evaluations and textual paragraphs from that manuscript. Chapter 5 is
based on Haubner and Setzer (2021) and contains insights, models, evaluations and
textual paragraphs from that publication. Parts I and III contain paragraphs from
all those publications or manuscripts. They are extended and discussed in more
detail.





Chapter 2.

Foundations

This chapter provides a selective introduction of concepts and topics underlying
this thesis. As the overall theme is the derivation of accurate and robust weighting
schemes for HRSs, the foundations are subdivided into two sections: While Sec-
tion 2.1 reviews the literature on RSs with a focus onWHRSs, Section 2.2 summarizes
statistical forecast combination and its connection to the bias-variance trade-off.

2.1. Recommender Systems

This section reviews the literature in the RS field most relevant to the methods
proposed in the thesis. We start by introducing the basics of RSs, i.e. the problem
formulation, input and output, and evaluation. Section 2.1.1 describes the most
prominent paradigms and algorithms used for deriving recommendations. Finally,
Section 2.1.2 delves into the different strategies for combining individual RSs into
an HRS, focusing on the main topic of this thesis, i.e. WHRSs.
RSs are software systems which estimate users’ interests for products based on

past transactions and other inputs, and recommend the items with the highest pre-
dicted interest. By limiting the number of options, pre-selecting a set of interesting
items, and displaying trade-offs between product properties, they can reduce infor-
mation overload and the effort of product search as well as improve users’ decision
quality (Xiao and Benbasat, 2007; Xu et al., 2014). For companies, RSs can increase
sales and help market long-tail items which would otherwise be hard to find. RSs
are nowadays used by, among others, e-commerce sites, digital marketing systems,
social networks, and streaming platforms, where their advantages have been shown

13
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extensively (Xiao and Benbasat, 2007; Zhang et al., 2011).
The input to every recommendation algorithm is a set of n users, a set of m items,

and a set of s interactions, or feedback, between users and items. There is a distinc-
tion between explicit and implicit feedback: Explicit feedback is the one which a user
consciously submits to the vendor, e.g. rating a product on a five-star Likert scale
or clicking thumbs-up or -down. Implicit feedback, on the other hand, is raised by
the vendor through user actions which are not primarily intended as an indication of
interest or feedback. Examples for implicit feedback are the purchase of a product, a
page view or click, a search query, or the percentage of a movie which a user watched
(e.g. Adomavicius and Tuzhilin, 2005).

The interactions between users and items are typically stored in a user-item matrix,
which is denoted by

Y =


y11 . . . y1m

. . . . . . . . .

yn1 . . . ynm

 ∈ {1, . . . , 5}(n×m)

in this thesis. In the matrix Y , each row represents one user, and each column repre-
sents one item. For a specific user u ∈ {1, . . . , n} and a specific item i ∈ {1, . . . ,m},
the matrix entry yui contains user u’s interaction with item i, if any interaction
has taken place. Throughout this thesis, unless explicitly stated otherwise, explicit
feedback in the form of five-star Likert scale ratings is assumed. Therefore, Y will
also be referred to as the rating matrix. Note that not all entries of the matrix
are specified, since users have not rated or interacted with all available items in the
system. Typically, the user-item matrix Y is very sparse in RS contexts (e.g. Ricci
et al., 2015). The missing entries are the ones an RS attempts to predict.

Figure 2.1 displays an example of such a rating matrix. It contains the first
ten users (rows) and items (columns) of the MovieLens 1M data set (Harper and
Konstan, 2015), a well-known RS benchmark data set which is used for evaluation
purposes in Chapters 3 and 4 and will be used throughout the thesis for demonstra-
tion purposes. The data set is described in more detail later. When referring to the
MovieLens data set, “item” and “movie” will be used synonymously, since the items
in this data set are movies.

This example already shows some of the challenges which have to be overcome
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Figure 2.1.: Example for the user-item rating matrix Y , containing the first ten users (rows)
and items (columns) of the MovieLens 1M data set.

when deploying RSs: First, there are far more unknown, i.e. missing, than known
ratings in the matrix. In the figure, they are displayed as empty matrix entries. This
is known as sparsity and can cause problems for certain RS algorithms, especially
those which use neighborhood-based approaches. Second, there are users and items
with no ratings. This is only a small sample of the data set. However, assuming that
this was the entire data set, those could be new users who just signed up to the system
and new movies which were just released, respectively. Many RS algorithms have
problems recommending new items or creating recommendations for new users. This
is called the cold-start problem. Those and some other challenges will be adressed
in more detail later.
Certain algorithms make use of additional input data apart from the rating ma-

trix. One such data source is metadata about users and items. E.g., a user can be
described by demographic or behavioral properties, and an item can be represented
by its price, product group, size, etc. This metadata is also stored in one matrix,
respectively. Since the metadata can contain mixed data types such as text, cat-
egorical, numerical, ordinal, or binary variables, it needs to be transformed into a
numerical representation in order to be used by the algorithms. It is assumed that
those transformations have been applied and that the metadata is stored in two ma-
trices containing real numbers: The user metadata is denoted by U ∈ Rn×pU , and
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the item metadata by I ∈ Rm×pI , where pU represents the number of variables in
the user metadata after transformation, and pI analogous for the items.
There are further possible dimensions of input — such as time, location, user-

generated tags, or connections between users in a social network — which can be
used by some RS algorithms, but those algorithms are not applied in this thesis and
therefore the focus lies on Y , U , and I as inputs to an RS.

The outputs of a recommendation algorithm are predictions ŷui ∈ R for a given
user u’s interest toward item i, where yui is unknown. For five-star ratings, the
predicted rating lies between 1 and 5, but does not have to be an integer. The goal of
the RS is not to predict the exact rating, but rather to compare the estimated utility
of different items in order to identify the most interesting items. For a given user,
unknown items can now be sorted decreasingly by the predicted ratings. Optionally,
further modifications can be applied, such as excluding or promoting certain items.
Finally, a recommendation list is created which contains e.g. the top one, five, or
ten most interesting items for the given user. This list can then be applied for
personalized advertisements, e.g. displayed to the user on a website, sent in an
e-mail, or used by a call-center agent (e.g. Aggarwal, 2016).

An RS’s quality relates to criteria such as serendipity, diversity, and accuracy.
Serendipity denotes the ability of an RS to suggest items that a given user was not
aware of, but finds interesting. Diversity refers to the composition of recommenda-
tions. Instead of suggesting several very similar items, a good RS should be able to
cater to the different interests of a given user. Finally, an accurate RS makes rec-
ommendations which fit user needs, such that the products are then taken by users
with high probability, e.g. a customer ultimately purchases suggested products or
watches suggested movies (e.g. Adomavicius and Tuzhilin, 2005). For regression
problems such as rating prediction, common quality metrics in RS research are the
root mean squared error (RMSE) and the mean absolute error (MAE). For classifica-
tion problems, such as next purchase prediction, the accuracy score, recall, precision,
or mean rank of the eventually purchased product can be used.

Several approaches exist to derive prediction scores from available data, each using
different types of input data and applying specific analytical algorithms. The most
common paradigms, along with their benefits and shortcomings, are reviewed in the
following.
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2.1.1. Recommender Systems Paradigms

To make utility predictions, various paradigms exist that use different analytical
methods or consider different input data. Amongst the most prominent paradigms
are CF, CB, and DF. CF can be further subdivided into NCF and MCF. For each
paradigm, there is again a multitude of different algorithms available. While there
are other methods like e.g. knowledge-based RSs or context-aware RSs, the focus
of the following review lies on the four paradigms mentioned, since those are the
ones combined in the HRSs in Chapters 3 and 4. RS challenges like the cold-start
problem or sparsity are discussed along the way.

Neighborhood-Based Collaborative Filtering (NCF)

NCF estimates utility by finding statistical neighbors of a user with respect to past
ratings, and then recommends items the neighbors also liked. The assumption is that
users who behaved in a similar way in the past will also behave in a similar way in
the future (e.g. Ning et al., 2015). The only input to the NCF algorithm is the rating
matrix Y ; no user or item metadata is used. Note that there is user- and item based
NCF, and both work in a very similar way. User-based NCF calculates pairwise
similarities between users (rows in Y ) and identifies a set of users as neighbors to
a given user. Item-based NCF, on the other hand, calculates pairwise similarities
between items (columns in Y ), and identifies neighboring items to a given item. Since
the two are analogous in their computations, just with rows and columns exchanged,
the review focuses on user-based NCF. For more information on item-based NCF,
see e.g. Sarwar et al. (2001).
The term “collaborative filtering” was coined by Goldberg et al. (1992). In their

paper, the authors present a mail filtering system called Tapestry which records users’
reactions while reading a mail, i.e. positive or negative explicit feedback. Users can
then set up personalized filters, in which they can specify, for instance, that they
only want to receive mails which were rated positively by certain known colleagues.
However, this system still relied on personal relationships in order to identify similar
users, and also did not aggregate ratings.
Those problems were addressed by Resnick et al. (1994), who proposed GroupLens,

a collaborative newsgroup RS. The system is based on newsgroup browsers with an
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integrated five-star rating functionality for explicit feedback. In contrast to Tapestry,
GroupLens is able to identify a neighborhood of similar users to a given user without
the requirement that the given user has to personally know those neighbors. Sta-
tistical similarities are calculated based on past ratings of the same items, and new
items recommended based on their aggregated ratings by a given user’s neighbors.
This basic NCF approach is still used in many settings today due to its effectiveness
and intuitive understandability. The research group which developed GroupLens
shortly afterwards deployed a movie recommendation site called MovieLens, which
is still running1. This system is where the above-mentioned MovieLens 1M data set
(Harper and Konstan, 2015) stems from.

As mentioned above, NCF applies a row-wise k-nearest-neighbors approach on
the user-item matrix Y . k is a hyper-parameter of the algorithm which needs to
be set in advance2. For each pair of users u and v in Y , their pairwise similarity
wuv is calculated based on their respective rating (row) vector, using a similarity
metric such as the cosine similarity. For a given user u, the k users with the highest
similarity to u form the set of neighbors Nk(u). For a given item i, the rating is then
estimated as an average of the ratings for i given by the neighbors (e.g. Ning et al.,
2015):

ŷui =
1

k

∑
v∈Nk(u)

yvi (2.1)

This is the simplest form of NCF and already quite effective. However, the simple
average over all neighbors’ ratings ignores the fact that the similarities between user
u and the neighbors Nk(u) are not all identical, i.e. even amongst the neighborhood,
there are users with more similar taste to u than others. Therefore, a more sophisti-
cated variant of NCF uses a weighted average over the neighbors’ ratings, weighted
by the respective similarity to the given user, instead of an equal weights average
(e.g. Ning et al., 2015):

1https://movielens.org/
2Please note that k denotes the number of neighbors in NCF only in this subsection. Throughout
the thesis, k denotes the number of RSs combined into an HRS unless specified otherwise.
Similarly, w denotes the similarity between two users in this subsection, but in the thesis in
general, w denotes the weight used in the WHRS.

https://movielens.org/
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ŷui =

∑
v∈Nk(u)

wuvyvi∑
v∈Nk(u)

wuv
(2.2)

The pairwise similarities now play a double role in estimating future ratings: They
are used (a) for selecting the neighborhood of a given user, containing the most
similar users, and (b) for weighting the average over the neighbors’ past ratings in
order to prioritize those users who behaved most similarly to the given user in the
past.
However, there is still a problem with this further developed form of NCF: When it

comes to assigning a rating to an item, often each user has an individual scale. E.g.,
for users who mostly give five stars, a four-star rating is relatively negative, while for
users who rate items with an average of three stars, a four-star rating is relatively
positive (e.g. Ning et al., 2015). The left side of Figure 2.2 shows an example of
this phenomenon: It contains a boxplot of each user’s arithmetic mean rating in the
MovieLens 1M data set, which was introduced earlier. The data set contains ratings
by 6, 040 users, and their scales are quite spread out, as the plot clearly shows, over
the entire range of possible ratings.
Therefore, calculating a weighted average over the neighbors’ absolute ratings can

introduce a bias in the estimated rating. An often-used solution is to instead use a
weighted average over the neighbors’ deviation from their average rating, i.e. their
centered ratings. This is called mean centering, and the rating is now estimated as
follows (e.g. Ning et al., 2015):

ŷui = yu +

∑
v∈Nk(u)

wuv(yvi − yv)∑
v∈Nk(u)

wuv
(2.3)

In this equation, yu denotes user u’s arithmetic mean rating, and the weighted
average over u’s neighbors’ deviations from their respective mean ratings is added
to yu.
While mean centering mitigates the problem of different mean ratings for each

user, there is still the issue of the spread of ratings, i.e. the standard deviation.
Some users use the full range of possible rating values, i.e. 1 to 5 in this case, and
therefore have a higher rating standard deviation, but other users mostly assign the
same rating, e.g. 4, and only use 3 for movies they find very bad, and 5 for very
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Figure 2.2.: Boxplot of the mean rating (left) and the standard deviation of ratings (right)
per user in the MovieLens 1M data set.

good ones, therefore displaying a smaller spread. This is visible on the right side of
Figure 2.2, which shows a boxplot of the standard deviations of each user’s ratings
in the MovieLens 1M data set. Again, it is apparent that there are very different
types of users, with the standard deviations ranging from 0 to 2.
However, mean centering adds to a given user’s mean rating the weighted average

of that user’s neighbors’ absolute deviations from their respective mean ratings. This
again introduces a bias, since an absolute deviation of, e.g., 0.5 from the mean rating
can be relatively low for one user while it is a very significant deviation for another.
Therefore, z-score normalization is often used to mitigate this issue. This approach
(as well as mean centering) is also frequently used as a preprocessing step for variables
in machine learning algorithms. The idea is to not only subtract a user’s mean rating
from a given rating, but additionally divide the rating by the user’s rating standard
deviation, thus normalizing the deviation over all users. Using z-score normalization,
the rating is estimated as follows (e.g. Ning et al., 2015):



Recommender Systems 21

ŷui = yu + σu

∑
v∈Nk(u)

wuv
yvi−yv
σv∑

v∈Nk(u)
wuv

(2.4)

In this formula, the weighted average over user u’s neighbors’ normalized ratings,
i.e. relative deviations from their mean ratings, is multiplied with user u’s rating
standard deviation σu, and that term is again added to yu. While z-score normal-
ization can have certain unwanted effects, such as a possible division by 0 for users
who applied the same rating to all items, it has been shown to consistently improve
predictive accuracy in case the rating matrix is not overly sparse (e.g. Howe and
Forbes, 2008).
Table 2.1 summarizes the benefits and shortcomings of NCF (e.g. Ricci et al.,

2015). Disadvantages with an asterisk (*) are partially mitigated by using item-
based instead of user-based NCF.

Table 2.1.: Advantages and disadvantages of neighborhood-based collaborative filtering,
based on Ricci et al. (2015). Disadvantages with an asterisk (*) are partially
mitigated by using item-based instead of user-based NCF.

Pros Cons

• No inputs required except
rating matrix

• Serendipity : can identify
cross-genre niches

• Cold-start : no recommen-
dations for new users or
items

• Sparsity : not enough com-
mon ratings between users*

• Scalability : pairwise user
similarities*

On the pro side, NCF only requires the rating matrix Y and no further inputs in
order to estimate future ratings. Also, it is able to make serendipitous recommen-
dations, since they are not based on the items’ properties or content, but rather on
similar users’ tastes, which can be diverse.
On the other hand, NCF suffers from the cold-start problem. Both for new users

and new items (with little to no ratings), no recommendations can be made using
pure NCF. Very sparse rating matrices are a problem for NCF, since the probability
of two users having rated enough common items to compute a meaningful similarity
between their rating vectors decreases. Item-based NCF can mitigate this problem
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to a certain point: Since most real-world systems have far more users than items,
the column vectors in Y are longer than the row vectors, and there is a higher
chance of enough common ratings between items. This is also related to the point
of scalability: If a system has millions of users, which is not uncommon, calculating
pairwise user similarities becomes increasingly infeasible. Pairwise item similarities
are usually more efficient to calculate.

The important shortcomings of NCF, especially user-based, make its sole usage
in a productive environment difficult. Even the item-based variant still suffers from
a number of issues. This motivates the usage of MCF, which is reviewed in the
following section.

Model-Based Collaborative Filtering (MCF)

As described in the previous section, NCF is an intuitive and effective RS technique
which, however, has a few major drawbacks. While item-based NCF can mitigate
some of those, it also suffers from sparsity and scalability problems, especially when
there are a lot of products.

For those reasons, Sarwar et al. (2000) introduced a novel family of RS algorithms,
MCF, which are trained to learn a model that describes the user preferences. While in
general, many different statistical or machine learning models can be used for MCF,
the one introduced by the authors, and still heavily used today in different variants,
builds on dimensionality reduction through matrix factorization. By decomposing
the user-item matrix Y into lower-dimensional matrices, both the scalability and
the sparsity issue are addressed. MCF pre-computes recommendations for all user-
item combinations with unknown ratings. This is a key difference to NCF: While
NCF calculates recommendations on-demand (and is therefore also called memory-
based CF), MCF requires a — sometimes expensive — training stage, but afterwards,
recommendations can be made in milliseconds (e.g. Koren et al., 2009).

In matrix factorization MCF, the user-item matrix Y is decomposed into a matrix
of user factors and a matrix of item factors. Each user and each item are represented
by a certain number of latent factors. The number of factors is a hyper-parameter
of the algorithm which has to be set in advance. The factor matrices are learned e.g.
by using an alternating least squares procedure. The prediction matrix Ŷ is then
derived by multiplying the two factor matrices.
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Matrix factorization NCF has empirically been shown to be one of the most ac-
curate and also computationally efficient RS algorithms. It has been observed that
most of the time, a few latent factors suffice to reconstruct the rating matrix, thus
reducing the dimensionality drastically. In addition, it is often possible to interpret
the latent factors, which enables the RS operator to gain a better understanding of
users’ tastes (e.g. Koren and Bell, 2015).
Table 2.2 summarizes the advantages and disadvantages of MCF (e.g. Ricci et al.,

2015). The first two benefits are identical to NCF. Additionally, as mentioned above,
making recommendations to any given user is very fast after the model has been
trained. This training phase, however, can be computationally expensive, depending
on the data set and specific algorithm applied. At the same time, MCF tends to
require larger data sets than NCF in order to converge. The cold-start problem, like
with NCF, applies to both users and items. The sparsity and scalability issues which
NCF suffers from are mitigated by using MCF, due to the applied dimensionality
reduction.

Table 2.2.: Advantages and disadvantages of model-based collaborative filtering, based on
Ricci et al. (2015).

Pros Cons
• No inputs required except

rating matrix

• Serendipity

• Recommendation is fast af-
ter training phase

• Cold-start

• Expensive training phase

• Requires large data set

While one of the advantages of CF algorithms is the fact that they only require the
rating matrix Y as an input in order to generate suggestions, there is often additional
useful metadata which cannot trivially be processed by a CF system. Therefore, we
now review two RS paradigms which are able to take advantage of additional inputs,
CB and DF.
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Content-Based Filtering (CB)

The intuition of CB is to recommend to a given user those items most similar to the
ones he or she purchased or rated positively in the past (e.g. Pazzani and Billsus,
2007). In that respect, it is related to item-based NCF. However, the important
difference is that the pairwise similarities between items are not based on the items’
rating vectors, i.e. the column vectors in Y , but rather based on the item metadata I.

As mentioned above, the raw metadata often contains mixed data types. E.g.,
in the MovieLens 1M data set, the item metadata consists of the title (text), year
of release (integer), and one or more genres (categorical). In order to be able to
calculate cosine similarities between the movies, i.e. the rows in I, all metadata
must be transformed to a numerical format. This can be done in different ways,
e.g. using natural language processing, one-hot encoding, and normalization. In
addition, depending on the used similarity metric, it can be beneficial to normalize
or standardize the metadata, e.g. again using the z-score, because otherwise the
importance of variables with a broader value range might be overestimated.

Table 2.3 displays the benefits and shortcomings of CB (e.g. Ricci et al., 2015).
It allows integrating additional input data which CF does not consider. This leads
to the most important advantage, i.e. that the new-item cold-start problem is not
an issue for CB. This is because the similarity calculation does not rely on ratings,
but rather on feature vectors. Consequently, even new items which have not been
rated yet can be recommended to users. Finally, CB is mostly computationally
inexpensive, even more so than item-based NCF, since the metadata (row) vectors
are usually much shorter than the rating (column) vectors.

The new-user cold-start remains an issue, since recommendations are made based
on a user’s past ratings. If a new user without any prior ratings registers in the
system, CB is not able to calculate recommendations for that user. In addition, the
problem of over-specialization arises: The very nature of CB, i.e. recommending
items which are similar to liked items, leads to a lack of diversity in the recommen-
dation list. E.g., in a movie RS, CB might only recommend movies of one specific
genre to a user, and this effect reinforces itself over time. Apart from that, the
feature vectors can only go so far in representing the content of an item. Therefore,
two items which a human finds similar might not be recognized as such by the CB
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Table 2.3.: Advantages and disadvantages of content-based filtering, based on Ricci et al.
(2015).

Pros Cons

• No cold-start for new items

• Allows integration of item
metadata

• Computationally inexpen-
sive

• New-user cold-start

• Over-specialization: recom-
mended items are too simi-
lar to each other

• Limited content analysis

• No implicit quality assess-
ment

algorithm. This is called limited content analysis. Finally, other than CF, which
only recommends items rated positively by a number of other users, CB does not
have an implicit quality assessment. This can lead to scenarios where an item with
only bad ratings is recommended to a user solely based on its objective properties.
While this may be desired sometimes, mostly the “wisdom of the crowds” results in
an accurate assessment of quality.
Due to its significant shortcomings, CB is seldom used as a standalone RS in

production (e.g. Burke, 2002). However, it can be deployed as a valuable component
in an HRS, especially because of its ability to recommend new items. HRSs are
reviewed in Section 2.1.2.

Demographic Filtering (DF)

DF, like CB, exploits independent metadata in addition to Y . It is similar to user-
based NCF, but the similarities between users are computed based on the user
metadata U (e.g. age, gender, occupation). Users are recommended items which
are popular in their demographic neighborhood (e.g. Pazzani, 1999).
Table 2.4 compares the pros and cons of DF (e.g. Ricci et al., 2015). It can also

mitigate the cold-start problem. Other than CB, it is able to generate suggestions for
new users who have not rated any items yet, based on their user metadata and their
similarity to other users. However, DF is usually not very accurate as a stand-alone
RS. Also, it has scalability issues when the number of users increases, like user-based
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NCF (e.g. Ricci et al., 2015). Still, it can be an important component to an HRS.

Table 2.4.: Advantages and disadvantages of demographic filtering, based on Ricci et al.
(2015).

Pros Cons

• No cold-start for new users

• Allows integration of user
metadata

• Serendipity

• New-item cold-start

• Empirically not very accu-
rate

• Scalability

• Privacy: Personal data re-
quired

In summary, there are different techniques and algorithms to estimate ratings and
calculate recommendations, each with their benefits and shortcomings. HRSs, which
are reviewed in the following section, are a simple and established means to mitigate
those shortcomings and improve accuracy and robustness.

2.1.2. Weighted Hybrid Recommender Systems

In order for users to adopt RSs as a decision aid, the perceived personalization,
i.e. the accuracy of recommendations, is key (Komiak and Benbasat, 2006). Higher
quality RSs lead to better decision quality and increased repurchase intention (Zhang
et al., 2011). The combination of multiple RSs is a proven means of increasing accu-
racy over the best individual algorithm. This is in line with findings from statistical
forecast theory (e.g. Bates and Granger, 1969; Clemen, 1989; Makridakis and Hibon,
2000).

A combination of two or more RSs is called an HRS. HRSs combine multiple RSs
in order to alleviate the aforementioned drawbacks of the individual algorithms as
well as improve accuracy and robustness by reducing model variance. Each predictive
method uses a certain part of the overall information available to make the prediction,
and lacks other information with predictive value exploited by another method based
on different data. E.g., CF only uses the user-item rating matrix as an input, while
CB also exploits item metadata in order to compute similarities between items.
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In addition to improved accuracy and robustness, HRSs have been shown to lead
to higher decision quality, perceived usefulness, and satisfaction in comparison to
pure collaborative filtering or content-based methods (Xiao and Benbasat, 2007).
Different approaches to combine RSs have been proposed. Burke (2002) classifies
them into seven types of HRSs:

• weighted

• switching

• mixed

• feature combination

• cascade

• feature augmentation

• meta-level

The focus of this thesis lies on WHRSs, where several individual RSs calculate
predictions independently, and those predictions are then combined using an aggre-
gation function, for instance a linear combination for a regression task (Claypool
et al., 1999), or a majority vote for a classification problem (Pazzani, 1999).
With the user-item rating matrix Y as defined above,

y = (y11, . . . , y1m, . . . , yn1, . . . , ynm)′

denotes the column vector derived by flattening Y by row. With a set of k individual
RSs, ŷlui denotes RS l’s prediction of the rating of user u for item i, and

ŷl = (ŷl11, . . . , ŷl1m, . . . , ŷln1, . . . , ŷlnm)′

denotes the vector of RS l’s estimations for the ratings in y. A linear combination of
the k estimation vectors using the weight vectorw = (w1, . . . , wk)

′ ∈ Rk,
∑k

l=1wl = 1

can then be calculated as

ŷ = (ŷ1, . . . , ŷk)w.
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WHRSs are the most frequently applied hybridization technique in RS research
(Çano and Morisio, 2017) and it has often been shown that using a weighted average
of RSs’ predictions leads to increased accuracy due to reduced model variance. In
addition, the straightforward and intuitive way of adapting weights contributes to
its popularity.

However, published work on the selection of combination weights is scarce. Mostly,
uniform weights or manually selected weight vectors are used. Claypool et al. (1999)
calculate weights per user or per item based on the “strength” of predictions, e.g. the
number of ratings for a CF component. Pazzani (1999) combines the predictions of
different RS algorithms based on their ranked recommendation lists, i.e. items which
are higher in the list receive more points, and the points are summed up. Ghazanfar
and Prugel-Bennett (2010) combine CB with a rule-based model to recommend e-
learning materials. Similarly to Claypool et al. (1999), weights are set on a per-
user base by the individual RS models based on their confidence in the respective
prediction. De Campos et al. (2010) apply Bayesian networks for the combination
of CB and CF. Jahrer et al. (2010) compare different supervised models like ridge
regression, neural networks, or gradient boosted decision trees for learning weights.

In this thesis, we propose several analytical linear weighting schemes for HRSs
which are based on statistical forecast combination. Therefore, the following section
reviews literature from that area.

2.2. Robust Combination of Forecasts

This section introduces the foundations of statistical forecast combination which
lay the groundwork for the methods developed in this thesis. Section 2.2.1 reviews
the literature on combining predictions made by different prediction models, and
Section 2.2.2 discusses the bias-variance trade-off and its connections to forecast
combination.

2.2.1. Statistical Forecast Combination

In statistical forecasting, the combination of two or more prediction models in order
to improve accuracy and robustness of forecasts has been subject to a large body
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of research. In their seminal paper, Bates and Granger (1969) introduce a weight-
ing strategy which, for two combined models, can be shown to minimize the MSE
in-sample, given the individual forecasts are unbiased, i.e. they do not consistently
over- or underestimate the true values, and the performance of the individual fore-
casts is time-invariant. This weighting strategy is coined OW. The weight vector for
k forecasts is denoted by w = (w1, . . . , wk)

′, and it must sum to 1, i.e.
∑k

l=1wl = 1.
For k = 2 forecasts, we write w = (w1, w2)

′ =: (w, 1 − w), and focus on the opti-
mization of w1 = w, since w2 = 1− w is determined by it. The OW is calculated as
follows3:

wOW =
σ2
2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2
(2.5)

In Equation (2.5), σl is the standard deviation of past errors of forecast l, and ρ is
the correlation between the past errors of the two forecasts. The better forecast, i.e.
the one with the lower MSE, receives a higher weight. If the forecasts are biased,
they must be corrected by subtracting the mean bias from each prediction.
OW can generally be calculated for k prediction models: Let y be the vector of

actual outcomes and ŷl model l’s predictions for the entries in y. Assuming error
vectors el = y − ŷl, l ∈ {1, . . . , k} of the individual models are multivariate normal
with mean zero, OW can be learned that minimize the MSE over available ratings
in y. With ΣE denoting the covariance matrix of the error matrix E = (e1, . . . , ek),
and ~1 as a k-dimensional column vector with all ones, the OW vector is given by
(e.g. Timmermann, 2006)

wOW =
Σ−1E ~1

~1′Σ−1E ~1
. (2.6)

Note that Equation (2.6) minimizes the sum of squared deviations from zero (as
of the unbiasedness assumption) subject to the constraint that the weights sum up
to one, i.e. a weighted average.

3In Bates and Granger’s original article, there is a sign error (− instead of +) in the denominator.
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2.2.2. The Bias-Variance Trade-Off in Forecast Combination

After Bates and Granger’s initial article, much research was conducted on the com-
bination of forecasts. Interestingly, OW and other learned weighting strategies have
often been reported to be outperformed on unseen data by more robust weighting
strategies such as giving equal weights to all forecasts, i.e. an SA (e.g. Clemen, 1989;
Smith and Wallis, 2009). This observation has been coined “forecast combination
puzzle” and has been subject to research for decades.

Smith and Wallis (2009) provide a theoretical explanation for the puzzle: For more
sophisticated weighting schemes like OW, the weights must be estimated from past
errors of the individual forecasts. While OW is guaranteed to yield minimal MSE
in-sample, it does not necessarily deliver an estimate which is optimal out-of-sample,
i.e. on unseen test data.

Empirical research in forecast combination typically uses rather small data sets
such as time series of economic indicators with only a few dozens or hundreds of
observations. The smaller the training sample on which the weights are learned, the
higher the estimation uncertainty and the more learned weighting schemes like OW
are adjusted to randomness in the training sample rather than to persistent structure
in the data. Hence, OW can overfit the training data due to high model variance.
Static weights such as SA, on the other hand, are not learned on training data and
are therefore not subject to wrong fitting to randomness. Therefore, they do not
overfit the training data; they have a sampling-variance-related error of 0.
On the other hand, SA does not exploit any structure from the training data, and

therefore SA is subject to an underfitting error: It produces higher in-sample MSE
than OW, which produces the lowest in-sample MSE of all linear weight combina-
tions. The difference is, in statistical learning theory, called the model bias. Hence,
for which of both combination models, OW versus SA, the aggregate of model bias
and model variance is lower, produces the lower MSE out-of-sample. In the literature
on statistical forecasting, this is coined the bias-variance trade-off (e.g. Smith and
Wallis, 2009).

The forecast combination puzzle therefore results from the fact that model vari-
ance typically exceeds model bias, especially if there is a rather small number of
observations, and therefore the SA is hard to beat in empirical settings. This is
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especially the case if the true, unknown out-of-sample optimal weight is close to
the SA. However, if the true optimal weight is farther away from the SA, empirical
results (e.g. Smith and Wallis, 2009) still show that the OW estimate is mostly out-
performed by a strategy which is more sophisticated than SA but more robust than
OW. This weighting scheme, which was also suggested by Bates and Granger (1969),
ignores the error correlation between the individual forecasts (assumes ρ = 0, even
if the true ρ is different) and only uses the inverse ratio of error variances. This
strategy, which will be called “modified OW” or “OW ignoring error correlation” in
the following, always yields a weight in between wSA = 0.5 and wOW , given p > 0,
and is, for two forecasts, calculated as

wMOW =
σ2
2

σ2
1 + σ2

2

. (2.7)

The modified OW is more sophisticated than SA since it gives more weight to the
better forecast, but is more robust than OW because OW can lead to extreme and
instable values of w, especially if σ1 and σ2 are similar and ρ is close to 1, leading
to the denominator of Equation (2.5) approaching 0. Another common practice to
prevent overfitting in the selection of weights is the shrinkage of OW towards equal
weights, i.e. a linear combination of OW and SA (e.g. Clemen, 1989; Blanc and
Setzer, 2016).
In the following part, three studies are presented. In each of those chapters, a novel

weighting method for WHRSs based on statistical forecast combination is proposed.





Part II.

Weighting Schemes for Hybrid

Recommender Systems





Chapter 3.

Applying Optimal Weight

Combination in Hybrid

Recommender Systems

In this chapter, we propose a method for learning weighting schemes in WHRSs that
is based on the ideas of statistical forecast combination as introduced in Section 2.2.
To determine the weighting of individual RSs, we learn OW from the covariance
matrix of available error data of individual RSs that minimize the error of an HRS
comprised of respectively two RSs. We test the method on the well-known MovieLens
1M data set, and, contrary to the forecast combination puzzle, as introduced in
Section 2.2.2, the out-of-sample results show that the learned weights consistently
outperform the individually best RS as well as an SA combination.
The chapter is organized as follows: Section 3.1 motivates the contribution of a

novel weighting scheme for WHRSs, based on existing approaches and their short-
comings. Section 3.2 introduces the proposed weighting approach as well as its as-
sumptions. Section 3.3 describes the experimental design for evaluating the weight-
ing method on the MovieLens 1M data set. Section 3.4 reports and discusses the
empirical results, and Section 3.5 concludes.

3.1. Motivation and Related Work

As described in Chapter 2.1.2, not a lot of research has been published on the se-
lection of combination weights in WHRSs. The most similar study to this one is by

35
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Jahrer et al. (2010), who compare different weighting strategies like ridge regression,
neural networks, or gradient boosted decision trees. Their ridge regression combina-
tion is similar to OW, but some differences exist: They solve a ridge regression with
a regularization parameter λ in order to avoid overfitting. This approach can lead to
weight vectors which do not sum to 1, especially in the case of systematically biased
predictors, which are not checked for or preprocessed. Our OW approach, which is
described in detail in the following, instead checks the predictors for mean biases,
corrects them if necessary, and then solves a constrained least squares problem with
the condition that the resulting weight vector must sum to 1. Furthermore, instead
of learning the weight vector on the whole training set using cross-validation, they
train the individual methods on the training set and learn the combination weights
on a holdout set which is rather small in relation to the training set and might not
properly represent the whole data set. This way, the resulting weight vector might
overfit to the holdout set.

We show how OW can be derived from a large user-item rating matrix and demon-
strate that, in contrast to the usual findings in the realm of the forecast combination
puzzle, OW are beneficial to combine individual RSs given the large sets of train-
ing data which are mostly available in the RS context. We propose a simple and
computationally efficient combination strategy for HRSs that can be expected to
outperform other weighting schemes given sufficient training sample size. In addi-
tion, we analyze the bias-variance trade-off along the dimension st, i.e. how the
performance of OW develops in relation to SA and the more robust modified OW
when the number of available training observations decreases.

3.2. Methodology

This section explains the method of estimating OW for two RS algorithms, based
on the errors made by those algorithms.

As introduced earlier, Y denotes the user-item rating matrix with s ratings, made
by n users, represented by the rows of the matrix, for m items, represented by the
columns. Note that in general, s << nm, i.e. each user on average has only rated
a small fraction of available items, and vice versa. Therefore, most of the entries
in the matrix are unknown. As for the known ratings, user u’s rating for item i is
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denoted by yui ∈ {1, . . . , 5}.
A five-fold cross-validation is run on the available ratings in Y . Each rating is

randomly assigned to one of five folds. In each of the five iterations, Y is subdivided
into two matrices: The training set Yt, which contains four of the five folds, i.e.
st = 4s

5
, and the holdout set Yh, containing the remaining fold, i.e. sh = s

5
. This is

done in such a way that each fold constitutes the holdout set exactly once.
In each iteration of the cross-validation, the two individual RSs are fitted on

the training matrix Yt. The holdout matrix Yh is flattened into a column vector
yh ∈ {1, . . . , 5}sh which contains all known ratings in Yh, indexed by user and item.
This is necessary for the next step: Both RS methods now make predictions for the
ratings in yh. The prediction vectors are denoted by ŷhl ∈ Rsh , l ∈ {1, 2}.
The prediction vectors and the holdout vector are then compared, which yields an

error vector ehl = yh− ŷhl, l ∈ {1, 2} for each of the two RSs. Finally, the covariance
matrix Σh of the two error vectors is calculated.
After finishing all five iterations, the estimate Σ̂E of the out-of-sample error co-

variance matrix is calculated as the arithmetic mean of the five matrices derived in
the cross-validation. This approach is taken because, as described above, OW is only
guaranteed to be the optimal combination strategy in-sample, i.e. on the training
set. Using cross-validation to compute an estimate of the out-of-sample error covari-
ance matrix allows to derive a more robust weighting strategy which does not suffer
as much from overfitting as in-sample OW.
The OW estimate ŵ can then be computed by inserting Σ̂E into Equation (2.6).

Since we combine respectively k = 2 RSs in this chapter, we introduce w as
w = (w, 1−w)′. For the remainder of this chapter, we only focus on the estimation
of wOW , as it contains all information of the weight vector due to the constraint that
the vector must sum to 1.
Finally, both individual RS algorithms are re-fitted on all available ratings in Y in

order to take advantage of the additional ratings which were used to estimate out-
of-sample errors in the previous step and maximize the RSs’ accuracy. The trained
RSs as well as the OW estimate ŵOW are the output of this method and can be used
to make predictions for new, unknown ratings. This is described in more detail in
the following.



38 Applying Optimal Weight Combination in Hybrid Recommender Systems

3.3. Experimental Design

We now describe the design of the experiments we conduct to analyze the out-
of-sample accuracy using the OW estimation method as described in Section 3.2
compared to SA and the individual models, respectively. Section 3.3.1 characterizes
the MovieLens 1M data set used in the experiments. Section 3.3.2 describes the
individual RS methods which are applied and combined. Finally, Section 3.3.3 details
the procedure of evaluating the OW estimation method.

3.3.1. Data Set

For the experiments, the MovieLens 1M data set (Harper and Konstan, 2015) was
used. It consists of approximately one million ratings of 3, 706 movies made by 6, 040

users. This amounts to a sparsity, i.e. ratio of missing ratings in the user-item matrix
Y , of around 96%. The ratings are based on a five-star Likert scale, i.e., they have
integer values from 1 (worst) to 5 (best). In addition to the ratings, the data set
contains metadata for users and items: Each user is described by his or her gender,
age (seven intervals), occupation, and US ZIP code; each movie is represented by its
title, genre(s), and year of release. We denote the user (item) metadata as a matrix
U (I), where each row vector represents a user (item).
Figure 3.1 displays the distribution of ratings in the data set. The most frequent

rating value is 4, followed by 3 and 5. The arithmetic mean rating lies at 3.58, and
the standard deviation at 1.1171. Hence, a naive model which simply predicts the
mean rating would lead to an RMSE of 1.1171, which can be regarded as an upper
bound for more sophisticated prediction methods.

Figure 3.2 shows a histogram of the number of ratings per user, using equal-width
bins with a width of 50. The bin between 0 and 50 movies rated contains the largest
group of users amongst all bins, and the higher the number of ratings, the lower the
number of users with that number of ratings. Still, there are some users with a very
high number of ratings, some over 1000. The user with the highest number of ratings
in the data set rated 2, 314 movies. The minimum number is 20, which is due to
the fact that users with less than 20 movies rated were removed from the data set
(Harper and Konstan, 2015). On average, each user rated 166 movies. However, the
median is substantially lower at 96 and the standard deviation is very high at 193.
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Figure 3.1.: Distribution of ratings in the MovieLens 1M data set.

Due to this skewedness, the arithmetic mean is not very meaningful here.
Figure 3.3 contains the same plot, but this time the ratings per movie are displayed

instead of per user. The plot looks similar to the user plot, with most movies by far
having been rated 50 times or less. In contrast to the users, movies with less than
20 ratings were not removed from the data set. In fact, 114 movies, and thus the
largest group, were only rated once.

3.3.2. Individual Recommender Systems

In order to evaluate the proposed weighting method, we use the four RS algorithms
which were introduced in Section 2.1.1, namely NCF, MCF, CB, and DF. They are
chosen in such a way that each method either uses different input data or makes
different assumptions about the underlying preference model. While NCF and MCF
both use only the user-item rating matrix Y as an input, they work in different
ways: NCF derives neighborhoods of users or items based on the rating similarities
and calculates rating predictions as a weighted average of neighbors’ ratings. MCF,
on the other hand, uses matrix factorization to reduce dimensionality and extract



40 Applying Optimal Weight Combination in Hybrid Recommender Systems

0 500 1000 1500 2000
Number of ratings per user

0

250

500

750

1000

1250

1500

1750

N
um

be
r o

f u
se

rs

Figure 3.2.: Histogram of the number of ratings per user in the MovieLens 1M data set.
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Figure 3.3.: Histogram of the number of ratings per movie in the MovieLens 1M data set.
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relevant information out of the sparse user-item matrix. The remaining two methods
utilize further input data for their predictions: CB calculates similarities between
items based on their metadata I, while DF does so analogously for users based on
their metadata U . For a more detailed description of all four algorithms, refer to
Section 2.1.1. The reason why RSs with different input data or different analytical
methods were chosen for this experiment is that the higher the diversity of predic-
tions, i.e. the lower the pairwise error correlation, the more accuracy an HRS can
gain over the individual components.
As mentioned above, in this chapter, all HRSs are comprised of two individual RSs.

Since four algorithms were used, this amounts to six pairwise combinations which
are evaluated against their individual components as well as an SA combination.

3.3.3. Evaluation and Benchmarks

This section explains the process how the proposed OW estimation method is evalu-
ated. In a first step, it is checked whether the assumptions under which OW lead to
an in-sample minimal MSE, namely that the individual RSs are unbiased, are met.
In case these assumptions are violated, we preprocess and transform the data aimed
at meeting the presumptions.
Second, the data set is split into a training set, containing 75% of ratings, and

a test set which contains the remaining 25%. Please note that the training set
as referred to here constitutes the whole input to the OW method as described in
Section 3.2 and is therefore denoted by Y . The cross-validation procedure further
splits Y into five folds for estimating OW. The test set, denoted by Yp, is not fed into
any training algorithm. Instead, it is solely used for evaluating the OW estimation
method on unseen data and comparing it to the benchmarks.
In order to obtain robust and reliable results and to verify that the performance

comparison between methods is not based on randomness, the experiment is run ten
times, splitting the MovieLens data set randomly into training and test set in each
run. The evaluation metric used in this experiment is the RMSE, a widely used
quality criterion in RS research. The RMSE of each RS or HRS is averaged over
the ten runs, and the standard deviation is also reported. The following prediction
methods are fitted on the training set and their performances are compared on the
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test set:

• Individual RSs: MCF, NCF, CB, DF

• SA: all pairwise combinations of individual RSs using equal weights ŵSA = 0.5

• Modified OW estimate: all pairwise combinations using the more robust
weighting strategy from Equation (2.7)

• OW estimate: all pairwise combinations using the weighting method pro-
posed in this chapter

The forecast combination puzzle, which states that simpler and more robust
weighting strategies such as SA are often more accurate in practice than learned
weighting schemes such as OW, has often been shown on rather small forecasting
data sets. The fewer training observations are available, the higher the model vari-
ance and therefore the potential to learn non-optimal weights. In order to analyze
this effect in an RS setting, we also conduct the experiments with two subsets of
the data, where we use random samples consisting of 50% and 10% of the available
ratings, respectively.

3.4. Results and Discussion

This section reports and discusses the empirical results from the experimental eval-
uation of the proposed OW estimation method. First, the assumptions and require-
ments of OW are checked in Section 3.4.1. Second, the results of the comparison
on the MovieLens 1M data set are reported and discussed in detail in Section 3.4.2.
Finally, the experiment is run with only 50% and 10% of the ratings, respectively,
and those results are described in Section 3.4.3.

3.4.1. Data Preparation

As mentioned in Section 2.2.1, for the OW model to derive the (at least in-sample)
best weight vector, errors per RS should have mean zero and the errors are expected
to be multivariate normal. Table 3.1 displays the mean errors of the individual RS
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methods as well as the standard error of the mean4. Figure 3.4 shows the histogram
of errors per RS.

Table 3.1.: Mean errors of the individual recommender systems, together with the standard
error of the mean. The mean errors deviate slightly from zero.

Mean error Standard error of mean

Model-based CF 0.000027 0.000671
Neighborhood-based CF -0.015527 0.000680
Demographic filtering 0.013650 0.000889
Content-based filtering -0.009644 0.000847

Although the distributions exhibit mean errors close to zero, they deviate from
zero and a Jarque-Bera test with a p-value approaching zero reveals that the null
hypothesis of a multivariate normal distribution is not met. Therefore, the four
individual RSs are combined using OW learned on a training set (a) without any
transformation and (b) with a multivariate Box-Cox transformation in which the
data is corrected to conform to the requirements. The predictions are evaluated in
terms of RMSE on the independent test set Yp. The comparison is run ten times
with random training-test splits.
Table 3.2 displays the mean, median, standard deviation, minimum, and maximum

values of the RMSEs for both treatments. Correcting the data for a multivariate
normal distribution does not lead to significant improvement in the accuracy of the
HRS. That is because the deviation from a normal distribution can be considered too
marginal to disturb the weight estimation. For this reason, it is chosen not to include
any transformation steps in further experiments using these four RS algorithms on
the MovieLens 1M data set.

4Note that the assumption checks described in this subsection were conducted during the study
described in Chapter 4, i.e. later than the study described in this chapter. Therefore, in this
subsection only, the OW combination is shown for k = 4 RSs at once, instead of the pairwise
combinations applied in the rest of this chapter. Also, sp = 200, 000 observations are used as a
test set for the assumption checks, instead of 250, 000 as in the rest of this chapter. However,
the assumption checks are already reported in this chapter, since the same data set and the
same four RS methods were used in both studies.
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Figure 3.4.: Histograms of the individual recommender systems’ errors.

Table 3.2.: Comparison of the root mean squared error of a hybrid recommender system
using an optimal weight estimate with and without a Box-Cox transformation.
The transformation does not lead to a smaller error.

Box-Cox transformation No transformation

mean 0.8685 0.8685
median 0.8686 0.8684
std 0.0012 0.0013
min 0.8667 0.8660
max 0.8703 0.8710
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3.4.2. Experimental Results

Table 3.3 displays the aggregated experimental outcomes with the complete Movie-
Lens 1M data set. The first column denotes the weighting scheme used, i.e., whether
the individual RS methods (rows 1-4), SA over mutual combinations of the methods
(rows 5-11), the modified OW scheme ignoring error correlation (rows 12-18), or the
OW combination scheme proposed in this chapter (rows 19-25) has been applied.
The second column displays the individual methods used or combined. For better
comparison, there is one additional row (“Total”) for SA, modified OW, and OW,
respectively, which reports the arithmetic mean over all pairs. The third column re-
ports the out-of-sample RMSE of the respective RS method or weighting scheme. As
described above, the RMSE is averaged over ten experimental runs. The respective
standard deviation of the RMSE over those ten runs is reported in parentheses.
In order to make the results more accessible, in the fourth column, we additionally

display the percentage difference in RMSE of the OW estimation and the modified
OW estimation to the respective SA combination of the same two RS methods. For
instance, a value of −5% means that the learned weights resulted in an RMSE 5%

lower than the one obtained when using SA, i.e. a negative value represents a better
performance in comparison to the SA combination.
Finally, the two outer-right columns display the estimated weight ŵ (i.e., the first

element of the weight vector, which is the weight given to the first mentioned RS
algorithm, while the other one is assigned a weight of 1− ŵ), and the estimated error
correlation ρ̂ of the two combined methods. Analogously to the third column, all
reported values are the averages over ten experimental runs with random training-
test split, and the standard deviation of the respective value is given in parentheses.
We now discuss the experimental results on the full MovieLens 1M data set, be-

ginning with the individual RS methods, i.e. rows 1-4 in Table 3.3. The table clearly
shows that MCF using matrix factorization performs the best out of the four algo-
rithms, with an RMSE of 0.8780. The second-best individual RS is NCF with an
RMSE of 0.8964, around 2% worse than MCF. This difference is to be expected
since, as described in Section 3.3.2, matrix factorization techniques are known to
be among the most accurate RS algorithms, especially in the case of a sparse user-
item matrix Y . As described in Section 3.3.1, the sparsity of the MovieLens 1M
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data set amounts to 96%, which explains the higher accuracy of the model-based
over the neighborhood-based CF approach — or vice versa, the difficulties of the
neighborhood-based model to compute robust pairwise similarities based on very
few common ratings between two users, respectively.
The DF and CB models have significantly higher RMSEs than the two CF models,

with 0.9768 and 1.0224, respectively. This is probably due to the lack of higher-
quality metadata in the MovieLens 1M data set: As described in Section 3.3.1, the
user metadata consists of gender, age group, occupation, and US ZIP code. The item
(movie) metadata is even less meaningful, containing the movie title, genre(s), and
year of release. The extent of metadata is probably the explanation that CB performs
worse than DF, while both perform significantly worse than the CF approaches.
However, the higher errors of CB and DF in comparison to the two CF approaches

do not imply that those algorithms should be dropped entirely. They can still con-
tribute valuable information into an HRS by utilizing input data which the CF
approaches do not, i.e. the user and item metadata. In general, a combination of
prediction algorithms, RS or not, yields a higher improvement, the lower the error
correlation between the individual approaches is. Additional independent input data
is one way to lower this error correlation. The rightmost column in Table 3.3 shows
that the error correlations of combinations containing CB or DF are significantly
lower than the combination of the two CF approaches. The combination of MCF
and NCF has the highest estimated error correlation of all pairwise combinations
with ρ̂MCF,NCF = 0.95. On the other hand, the combination of DF and CB has the
lowest estimated error correlation of all pairwise combinations with ρ̂DF,CB = 0.80.
The other four combinations, all with one CF model and one of CB or DF, respec-
tively, have error correlations which lie somewhere between those two extremes. For
those reasons, it is still beneficial to include CB and DF in the combinations, despite
their inferior individual accuracy in comparison to the two CF methods.
Rows 5-11 in Table 3.3 display the results obtained using an SA combination

for each pair of RS methods. Since two algorithms are combined, respectively, the
weight is always ŵSA = 0.5. The numbers show that an SA combination of the two
best individual RSs, i.e. MCF and NCF, leads to an RMSE of 0.8738 which is lower
than any of the RMSEs with the individual RSs. This amounts to an improvement
of 0.5% over pure MCF. The fact that combining two strong prediction algorithms
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using SA leads to an improvement over both individual methods is in line with the
literature on forecast combination.

Another insight is the strong improvement when combining the two relatively
weak individual methods CB and DF. The RMSE of this combination is 0.9488, an
improvement of 2.9% over the stronger individual RS which is DF. This relatively
high improvement can be explained by the low error correlation, in comparison to
all other pairs, of those two.

For the other four pairs, i.e. the combinations with one CF method and either DF
or CB, respectively, the RMSE is higher than that of the more accurate individual
algorithm (which is the respective CF method). In this case, the combination us-
ing equal weights leads to a performance deterioration in comparison to the better
method. This result is to be expected, since (a) the error correlations between the
respective two RSs are all quite high, and (b) assigning equal weights to two algo-
rithms with such a disparity in performance results in the fact that the weaker of
the two has too much of an influence on the final prediction.

For this reason, learned weighting strategies such as OW assign higher weights
to prediction methods with lower errors. As mentioned earlier, OW has often been
reported to overfit the training data in the literature on forecast combination. There,
a more robust weighting strategy is recommended which assigns a higher weight to
the more accurate forecast, yet does not derive as “extreme” weights as OW. This
weighting strategy, which we call modified OW here, ignores the error correlation
between the two forecasts and just calculates the weight as the ratio of MSEs, as
displayed in Equation (2.7).

Rows 12-18 in Table 3.3 contain the results using this modified OW weighting. The
weights which were estimated using this strategy are reported in the fifth column.
They are all in the interval between 0.5 and 0.6, confirming that while higher weights
are assigned to the better methods, they are still fairly close to the SA weight of 0.5.
The fourth column shows that the RMSEs of all pairwise combinations are improved
using the modified OW weighting as opposed to an SA combination. On average,
the HRSs using this weighting strategy have a 0.47% lower RMSE than the ones
using SA. The improvement is smaller for some combinations and larger for others.
Intuitively, the higher the disparity in performance between the individual methods,
the further away ŵMOW , the weight estimated using the modified OW approach, is
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from ŵSA = 0.5, and the higher the performance gain using the more sophisticated
weighting strategy. The highest improvement when using modified OW instead of SA
is achieved for the combination of MCF and CB, i.e. the best and worst individual
RS, respectively. On the other hand, the performance for the combination of the two
CF methods is virtually unchanged. This is also due to the fact that in this case,
the weight ŵMOW = 0.51 is almost the same as for SA.
As with the SA weighting, the combination is only better than the best individual

method for one of the six pairs, which is the pair of CF algorithms. For the other
five pairings, the HRS leads to a higher RMSE than the better of the two RSs alone.
This does not come as a surprise since, as mentioned above, the calculated weights
using the modified OW estimate are close to an SA weighting, which is sub-optimal
for two algorithms with a high disparity in performance.
Finally, rows 19-25 in Table 3.3 report the results when using the OW estimate

including error correlation, where the covariance matrix is estimated using five-fold
cross-validation on the training set, i.e. the approach proposed in this chapter. The
results clearly show that the OW estimate including error correlation leads to a
significantly lower RMSE than both the SA and the modified OW. As displayed in
the last row of the table, the OW estimate results in an RMSE on average 1.97%

lower than an SA combination.
As with the modified OW strategy, the estimated weight ŵOW is reported in the

fifth column. By definition, it is further away from the SA (0.5) than the modified
OW for all pairings. However, this difference is much higher for some combinations
than for others. For the respective combination of the two weakest (DF and CB)
and the two strongest (MCF and NCF) individual algorithms, the weights estimated
using OW are rather close to equal weights (0.61 and 0.60, respectively). For the
two CF methods, this can be explained by their similarly good individual accuracies.
For the pairing of DF and CB, the weight ŵDF,CB = 0.61 results, in addition to
their similarly low individual accuracies, from their relatively low error correlation
of ρ̂DF,CB = 0.80. Although one learner is significantly weaker than the other, the
diversity it brings into the combination adds to the HRS’s accuracy. Due to ŵOW
being relatively close to equal weights, the performance improvement of OW over
SA is rather small for those two combinations (0.29% and 0.15%, respectively).
For the remaining four pairs, again each consisting of one CF algorithm and one
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of CB or DF, the weight ŵOW calculated using the OW estimate is very high and
closer to 1 (pure CF) than to 0.5 (equal weights). Therefore, the improvement
over SA is also much greater for those combinations, ranging from 2.06% to 3.66%.
Interestingly, ŵOW is higher when combining NCF with CB (0.96) or DF (0.95) than
when combining MCF with those two, respectively (0.92 and 0.86), even though
MCF is more accurate individually than NCF. This difference is might be explained
by the fact that NCF uses a more similar approach to CB and DF than MCF and
therefore also has higher error correlations to these two methods. This also leads to
another effect: The combination of NCF with CB or DF does not lead to a smaller
RMSE than using pure NCF; the RMSE is virtually unchanged. For MCF, on the
other hand, even the combination with an individually significantly weaker algorithm
like CB or DF leads to a slight improvement over the pure CF.

Finally, the overall lowest RMSE of 0.8725 is obtained with an OW combination
of MCF and NCF. However, the improvement over the individually most accurate
algorithm (0.6%) is not much higher than when using SA. This is also caused by the
fact that both CF methods have a very high error correlation in 0.95, as mentioned
above.

At a first glance, the results contradict empirical findings in forecast combination
research, indicating that SA is hard to beat out-of-sample, and if so, then rather by
the modified OW which ignores ρ than by OW. Looking at the table in more detail,
we observe that OW is the dominant combination strategy for each pair of RSs.
However, for some combinations, the difference to SA is small and the difference
to the individual methods is comparably large, while for other combinations, the
difference to SA is large and the difference to the individual methods is smaller.

The forecast combination puzzle states that typically, the estimated OW are too
unstable to improve the RMSE over SA out-of-sample. Specifically, the puzzle states
that when OW is close to SA, SA will outperform OW, and when OW is further away
from SA, the modified OW is to be preferred. Our results contradict this advice:
OW is the best weighting strategy for all cases, and the further ŵOW is away from
SA, the larger the performance improvement by using OW over SA.

Figure 3.5 provides more insight on the findings displayed in Table 3.3. Each
subplot represents a combination of one pair of prediction methods. For each com-
bination, the out-of-sample RMSE is plotted as a function of the chosen weighting
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parameter ŵ; hence, the curves show which RMSE would have been observed with a
particular ŵ, again averaged over ten runs. The vertical lines mark the values of ŵ
which result from using the estimated OW (dashed line), the modified OW (dotted
line), and the true out-of-sample optimal value of wOW (dash-dotted line), which is
unknown upfront. SA (ŵ = 0.5) is marked on the horizontal axis.
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Figure 3.5.: Comparison of optimal weight (OW) estimate, simple average (SA), individual
recommender systems, and modified OW ignoring error correlation for pairwise
combinations of recommender systems on the MovieLens 1M data set.

In each subplot, a characteristic U-shape can be observed, which shows that an
HRS comprised of the two methods yields a smaller RMSE than each of the individual
methods. The graphs show that the OW estimate is close to the out-of-sample
optimal weight. This is especially the case for those combinations where the error
correlation ρ̂ is relatively low (ρ̂DF,CB = 0.8, ρ̂MCF,CB = 0.84). For the combinations
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with higher correlation, especially ρ̂MCF,NCF = 0.95, the OW estimate is farther off
the real out-of-sample optimal weights. This is to be expected, since the higher the
error correlation, the more volatile the OW estimate.

3.4.3. Results with Fewer Observations

As aforementioned, the same experiments were also conducted on random samples of
50% as well as 10% of the available data. This was done in order to analyze whether
the OW estimate is more likely to overfit the training data or estimate instable or
biased weights when there are fewer training observations to learn from.

The results for 50% of the data are reported in Table 3.4. The structure of the
table is the same as in Table 3.3. We also observe similar results to the ones with
the full data set; in particular, SA improves over the best individual method, OW
estimates ignoring error correlation improve over SA, while the lowest RMSEs are
achieved with the OW combinations, as before. However, the error difference is
smaller than on the full data set. The OW estimate is similarly accurate as with
the full data set, but the true, out-of-sample optimal weight is closer to SA for all
pairings except the combination of CB and DF.

This can be seen in Figure 3.6, again depicting the RMSE as a function of ŵ, but
this time for the 50% sample. The graphs show relationships similar to the ones
observed on the full data set presented in Figure 3.5, but the actual, out-of-sample
best weight is closer to the middle and thus closer to ŵSA = 0.5 for almost all
subplots. Therefore, the difference in performance is smaller than on the full data
set.

Finally, the results for 10% of the data are reported in Table 3.5. The table shows
that even when using only 1

10
of the available data, the OW estimate is still the

combination strategy that results in the lowest RMSE and outperforms SA as well
as the modified OW. However, as expected, the error difference is smaller than for
50% and 100% of the data, since for the decreased number of observations the model
variance and thus the level of overfitting of the OW estimates is stronger. The OW
estimate is only the best weighting strategy for five of the six pairs of RSs, while
for the combination of NCF and DF, SA outperforms the estimated OW. For this
combination, the OW estimate is also outperformed by the more robust OW estimate
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ŵ
(std.)

ρ̂
(std.)

W
eighting

M
ethod(s)

Individual
recom

m
ender

system
s

C
ontent-based

filtering
(C

B
)

1.0649
(0.0040)

D
em

ographic
filtering

(D
F
)

1.0062
(0.0041)

N
eighborhood-based

C
F
(N

C
F
)

0.9869
(0.0033)

M
odel-based

C
F
(M

C
F
)

0.9534
(0.0031)

Sim
ple

average
(ŵ
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Figure 3.6.: Display analogous to Figure 3.5 for 50% of the training data. Results are similar
to the full data set, but the ex-post out-of-sample best weights are closer to
the simple average (SA).

ignoring error correlation.
The increasing instability of the OW estimates can also be seen in Figure 3.7. We

observe that the distance between the true out-of-sample optimal weight and the
OW estimate increased as compared to the full data set as well as the 50% sample.
For instance, for the combination of NCF and CB, the OW estimate is off by 0.07

(0.68−0.61) on the 10% data set, whereas for the whole data set, it is only off by 0.02

(0.98 − 0.96). Similarly, for the combination of NCF and DF, the OW estimate is
off by 0.12 (0.59− 0.47) on the 10% sample, in comparison to only 0.01 (0.96− 0.95)
on the full data set. This is also the one combination where the OW estimate is
outperformed on the 10% sample by both SA and OW ignoring error correlation, as
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Figure 3.7.: Display analogous to Figure 3.5 for 10% of the ratings. The smaller number
of observations increases estimation uncertainty for the optimal weight (OW)
estimate.

described above.
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3.5. Conclusion

Our experimental findings show that OW estimates can be learned in the realm of
RSs that significantly outperform the individually best RS as well as the SA of RS
algorithms. While this finding contradicts the forecast combination puzzle, stating
that most likely SA will outperform learned weights, this outcome is explained by the
fact that (a) the presumptions of OW optimality on training data are approximately
met, and (b) that a comparably large set of training observations is available, which
is typically not available in business forecast scenarios usually considered in the
forecasting literature.
As large sets of observations are often available for RS, e.g. in the area of media

platforms or e-commerce stores, OW are likely to be a beneficial choice for WHRS
in many practical settings. This result is of importance due to the key role of RSs in
today’s digital world, and as OW estimates can be computed efficiently. Applying
OW is a viable strategy in WHRSs, where, surprisingly, today there is very little
research on strategies for choosing the weight.
It is worthwhile to mention that, considering decreasing benefits of using OW

with decreasing training sample size, OW will not be the optimal choice for sample
sizes below a certain threshold, e.g. for small enterprises or platforms with few error
observations, where one would then face the forecast combination puzzle. Our results
indicate that we started to experience the puzzle when reducing the data set size
to 10% of available ratings. In such cases, the model variance with OW increases
and regularization is required, for instance by shrinking OW towards SA by a degree
that can be learned using cross-validation. Shrinkage has been shown in the realm
of business forecasting to be a beneficial strategy in case the number of observations
decreases or the number of forecasts increases (e.g. Blanc and Setzer, 2016).
In the following chapter, we extend the weighting approach presented in this chap-

ter in two ways: First, we propose a weight projection method which mitigates the
bias introduced by the fact that weights change with more observations, and second,
we combine all four RS algorithms instead of pairwise combinations. Both of those
extensions lead to a further increase in accuracy.





Chapter 4.

Projection of Optimal Weights in

Hybrid Recommender Systems

In Chapter 3, we proposed a weight estimation approach for WHRSs with k = 2

individual RS algorithms based on statistical forecast combination. While already
effective, it still has a few shortcomings. In this chapter, we extend the method
into a weight projection approach. In addition to being able to combine more than
two RS algorithms, this novel technique measures the error covariance and OW for
increasing numbers of training observations and extrapolates them to the full size
of the available data set. Therefore, it leads to an increase in accuracy over the
approach from Chapter 3.
This chapter is organized as follows. Section 4.1 motivates why the weighting

scheme from Chapter 3 should be extended, and how. Section 4.2 introduces the
procedure to project the development of the OW, as well as error covariances used
to derive OW, over different sizes of training observations, and shows its theoreti-
cal improvement potential as a function of different properties of the data set and
the individual RSs. In Section 4.3, we describe the experimental design and bench-
marks for evaluating the proposed method. Experimental results are presented in
Section 4.4 and discussed in Section 4.5. Finally, in Section 4.6, we conclude and
discuss the impact and limitations of this work.
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4.1. Motivation and Related Work

As described in Section 2.1, accurate RSs are vital in order for customers to accept
them as a decision aid and to take their recommendations. WHRSs are an estab-
lished means to improve RSs’ accuracy and robustness over the individual algorithms.
There are, albeit few, methods for estimating optimal combination weights in HRSs.
However, they are only guaranteed to be optimal in-sample, i.e. on the training set.
Hence, to learn weights in practice, usually a subset of available data is used to train
individual RSs, while portions of the data are held out to derive (out-of-sample)
error structures for the individual RSs, determine weighting schemes, evaluate the
out-of-sample performance with a weighting scheme, and estimate and tune further
parameters such as regularization factors. In order to predict new and unknown
ratings, the individual models are then trained on the entire available data set to
maximize their individual performance. In Chapter 3, we proposed a method to
estimate optimal combination weights for k = 2 RS algorithms, respectively, and
found that it leads to accuracy improvements over the best individual RS as well as
the SA and a modified OW estimate. That method, too, uses a holdout set in the
form of cross-validation to estimate out-of-sample errors and thus OW.

Typically, an RS’s accuracy increases with the number of training observations
and is therefore underestimated when using data subsets. However, the strength of
decrease (or the slope of the MSE curve over the training set size) is not generally the
same for all RS algorithms. Some methods rapidly improve with more data, while
others flatten out as they have already converged and do not profit as much from the
additional data. Since OW directly depends on the ratio and correlations of errors
of the individual methods, which may change with more data, weights learned on
subsets of available data can be biased.

This problem is apparent with sampling techniques such as a simple holdout of
ratings but also with re-sampling techniques such as bootstrapping procedures or
cross-validation. Unfortunately, re-sampling that uses almost the whole training
data available, such as leave-one-out cross-validation, are not recommended since
those have a high variance in estimating out-of-sample errors. There is a bias–
variance trade-off in the size of the holdout set: A larger holdout set leads to a
bias since the individual models are trained on fewer observations and their errors
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are overestimated, and a smaller holdout leads to higher variance in estimating the
errors (James et al., 2013).
To mitigate this problem, we propose a novel weight projection approach in this

chapter. The approach measures and stores the out-of-sample errors of the individual
RSs as well as the OW vector on the holdout set for increasing numbers of training
observations and then extrapolates the error development to the full size of the
available data set using a supervised learning model. This projection can be done
in two ways: Either the error covariance of the individual RSs is projected and
the OW estimate is calculated from it (referred to as covariance projection), or the
development of OW itself is projected (referred to as direct projection). The aim is
to estimate weights that would be learned with the full set of available data, while
holding a part of the training data out for evaluation and further parameter tuning.
As a result, the bias in estimating combination weights introduced by fitting the
components of the HRS on a subset of the available data is mitigated, given certain
assumptions, and the accuracy of the HRS is increased. Portions of data can still
be used for evaluation and tuning, while individual RSs can finally be fitted on all
observations without data leakage.
A simulation study is presented that illustrates benefits with this approach de-

pending on the predictability of covariances and weights. Experimental results when
applying the approach to the MovieLens 1M data set are then provided, exhibit-
ing decreasing error levels with the proposed projection approach compared to the
individual approaches, an equal weights combination, and OW estimated without
projection.

4.2. Methodology

In this section, we introduce the methodology to project OW from a subset of rating
data to the full set of available data. Section 4.2.1 lists the assumptions and re-
quirements of the proposed approach. Section 4.2.2 describes the projection method
in detail. Finally, Section 4.2.3 discusses asymptotic potentials with the method
assuming zero projection error, i.e. perfect extrapolation of the out-of-sample OW,
together with its sensitivities using a simulation study.
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4.2.1. Model Assumptions

The method proposed in this chapter assumes a few requirements to be (roughly)
met. We list them here and check whether they are met later in Section 4.4.1.

Since the projection method builds on the OW estimation approach proposed in
Chapter 3, the requirements for OW must be met. In contrast to Chapter 3, we
combine k = 4 RSs into one HRS instead of applying pairwise combinations of
k = 2 methods, respectively. The assumption, however, is the same: Assuming error
vectors el = y − ŷl, l ∈ {1, . . . , k} of the RSs are multivariate normal with mean
zero, OW minimizes the MSE over available ratings in y.

Additionally, for the projection approach to provide benefits, the RMSE must
change (presumably decrease) with increasing numbers of training observations, and
the development must, at least to some extent, exhibit predictable patterns. This
is because the idea of the projection approach is to extrapolate the development of
error variance and error correlation, which is described in more detail in the following
section.

4.2.2. Projection Methodology

Figure 4.1 describes in pseudocode the method of projecting OW learned on smaller
training samples to the full available training data set. We will explain the algorithm
in detail in the following. Note that the method outlined in the following paragraphs
describes the direct projection. The small adjustments which have to be made for
the covariance projection are explained afterwards.

Input to the algorithm is a set of s ratings in rating data y, k individual RS
models, and a supervised learning model f , such as a regression model or a time
series model. The following hyper-parameters have to be set:

• the cardinality sh of the holdout set yh

• the initial training sample size s0t

• the number of observations o in the projection series (number of iterations of
the algorithm)
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Input: Rating data y with s entries; k RS models; supervised learning model f
Parameters: Holdout set size sh, initial training sample size s0t , number of training

sample sizes (i.e. algorithm iterations) o
Output: Projected OW estimate ŵ

1 Initialize ordered sets s← ∅,W ← ∅;
2 Define maximum training set size smaxt := s− sh;
3 Define step size snewt := (smaxt − s0t )/(o− 1);
4 Randomly draw sh ratings from y into holdout set yh;
5 Randomly draw s0t ratings from y \ yh into training set yt;

// take o measurements and store them in s and W
6 for c← 1 to o do
7 Training set size sct = |yt|;
8 Train all k models on yt;
9 Get predictions by all models ŷhl(sct), l ∈ {1, . . . , k} for ratings in yh;

10 Calculate error vectors ehl(sct) = yh − ŷhl(s
c
t), l ∈ {1, . . . , k};

11 Calculate error covariance matrix Σh(sct) from error vectors;
12 Calculate out-of-sample OW w(sct) = (Σh(sct)

−1~1)/(~1′Σh(sct)
−1~1);

13 Store training set size: s← s ∪ {sct};
14 Store OW: W ←W ∪ {w(sct)};
15 if c < o then
16 Randomly draw snewt ratings from y \ (yh ∪ yt) into ynewt ;
17 Append new ratings to training set: yt ← yt ∪ ynewt ;
18 end
19 end

// fit the prediction model and project to s observations
20 Fit prediction model: W = f̂(s) + ε;
21 Predict OW for s ratings: ŵ = f̂(s);
22 return ŵ

Figure 4.1.: Pseudocode for projection of optimal weights.

In each iteration c, snewt = (smaxt − s0t )/(o − 1) ratings are randomly drawn and
appended to the training set yt, causing the training set to increase in equidistant
steps per iteration. Each individual RS is then fitted to the respective training
sample with sct observations, and all RSs predict ratings in the holdout set of size sh,
yielding error vectors ehl(sct), l ∈ {1, . . . , k}, where then the error covariance Σh(s

c
t)

is estimated and out-of-sample OW w(sct) are derived on the holdout set.
This procedure is repeated for increasing values of st up to a defined maximum

value smaxt = s − sh, where for each st considered the obtained OW are captured.
With the records containing st (stored in s ∈ No) and OW (stored in W ∈ Ro×k),
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developments of OW over st are fed into a supervised model extrapolating the devel-
opment of w when using the s samples as training data. Finally, individual RSs are
re-fitted on all s observations and their estimates are combined using the projected
weight estimate ŵ to predict unseen ratings.
For the covariance projection, a few adjustments are made: Instead of the OW,

the error covariance Σh(s
c
t) is flattened and stored in each step (line 12 in the pseu-

docode). The supervised model then delivers the projected error covariance Σ̂E(s),
which is used to calculate the projected OW (line 21 in the pseudocode).
Figure 4.2 illustrates the methodology for sh = s

4
, s0t = s

4
, and o = 3. Both the

derivation of OW from the projected covariance and the direct projection of OW
are displayed. The training set size is increased step-wise, while the holdout set of
size sh is kept constant for the calculation of the error covariance. For each of the
three values of st, error covariance matrices and OW are determined on the holdout
sample. The development of the covariance (or OW) is then projected to the whole
set of s observations, and the OW estimated by projection is applied to the RS
predictions for new test data, where the RSs are fitted on all s data points.
As the advantages with the proposed projection clearly depend on the change in

OW over training sample sizes as well as the predictability of these changes, we
will now discuss how much improvement the projection approach can yield over the
conventional method of learning OW, and the sensitivity of potential improvements.

4.2.3. Improvement Potential

For demonstration, we consider the simple case of two RSs (k = 2) in this subsection
only. We assume bi-variate normal distributed errors with mean zero to meet the
assumptions of the OW model. For brevity, we write w = (w, 1− w)′ and focus on
the optimization of w, since the second element of the weight vector is determined
by the first one and the restriction that the vector must sum to 1. We also assume
that the error correlation ρ between the two models is constant over all st, and that
the development of the RMSE over st is extrapolated perfectly to s for both models
(i.e. zero forecasting error).
Since both models are unbiased, their error standard deviation σl, l ∈ {1, 2} is

equivalent to their RMSE, decreasing with st. Let α(st) := σ1(st)/σ2(st) be the
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ratio of the two models’ error standard deviations when trained on st observations.
Inserting α into Equation (2.6), the OW is then given by

wOW (st) =
1− ρα(st)

1 + α(st)2 − 2ρα(st)
. (4.1)

Now, with st as the cardinality of the training subset used for fitting the RSs,
sh > 0 as the size of the holdout set used for calculating the error covariance matrix
and deriving OW, and s = st + sh, we define β(st, s) := α(s)/α(st). For brevity, we
will use α := α(st) and β := β(st, s). The change in the OW from st to s training
observations is given by

∆w = wOW (s)− wOW (st) =
1− ραβ

1 + α2β2 − 2ραβ
− 1− ρα

1 + α2 − 2ρα
. (4.2)

The absolute value |∆w| of this change is the maximum improvement in estimating
the OW when using the weight projection method rather than just applying wOW (st)

to s. Figure 4.3 illustrates the improvement potential in estimating the OW as a
function of β for three different values of α (0.5, 0.8, and 1) and three different
values of ρ (0, 0.5, and 0.9). The plot illustrates sensitivities of the OW change on
combinations of α, β and ρ values.
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Figure 4.3.: Sensitivity of the optimal weight to changes (β) in the root mean squared
errors of the individual recommender systems, depending on the initial ratio of
RMSEs (α) and the error correlation ρ.
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The figure shows that the (absolute) change of wOW between st and s training
observations increases with ρ. In addition, for values of α closer to 1 (i.e. similar
initial RMSEs of the two RSs), the change in the OW is more sensitive than when
the initial RMSEs are very different5.
What can also be seen in the figure is that, depending on the initial ratio of

error standard deviations (RMSEs), the change in the ratio of RMSEs, and the
error correlation, the absolute difference in wOW from the training subset to the
whole training set can be very high (up to a value of 2). For instance, a value
of ∆w = 0.5 could mean that the out-of-sample OW for the whole training set
is wOW (s) = (0.8, 0.2), but the OW estimate learned on the training subset is
ŵ(s) = wOW (st) = (0.3, 0.7). Consequently, this weight estimate can be quite far
off the out-of-sample OW, motivating a projection of the weights in such settings.
In order to analyze the practical relevance of the projection approach, we now

test sensitivities of the RMSE of the HRS regarding the change in OW. Figure 4.4
displays the increase in RMSE depending on the error in estimating wOW for the
same three values of ρ as above and (σ1, σ2) = (0.9, 0.95). Values of the RMSE are
shown for a test set containing sp = 200, 000 observations.
The lower the error correlation between the individual methods, the more the

RMSE increases with the absolute error in estimating w. This again means that the
lower ρ, the higher the potential for the weight projection approach to improve the
RMSE of the combination over learning weights on the smaller training set.
As an example, we assume that ∆w = −0.25, i.e. the real wOW (s) is 0.25

lower than wOW (st) and therefore the conventional method of weight estimation
ŵ(s) = wOW (st) has an absolute error of 0.25 in estimating wOW (s). For ρ = 0,
a perfect projection (i.e. an error of 0 in estimating OW on the full data set) leads
to an RMSE improvement of 0.093, more than 10% of the better individual RS’s
RMSE. For ρ = 0.5, the improvement is 0.046, still quite high. However, for ρ = 0.9,
the RMSE improvement is only 0.019.
The reason that the RMSE improvement potential using a projection approach

over a conventional weight estimation procedure decreases with an increasing ρ is
that a higher error correlation means more similar predictions by the RSs. The more
similar the predictions, the lower the impact of a non-optimal weighting scheme on

5α = 2 is equivalent to α = 0.5, but with the individual model variances interchanged.
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Figure 4.4.: Improvement of the root mean squared error (RMSE) of a hybrid recommender
system with perfect extrapolation of the optimal weight (OW), depending on
the error correlation ρ and the deviation ∆w of OW between the training set
and the entire data set.

the RMSE.
In summary, depending on the difference between OW estimated on a training

subset and the unknown OW on all available data, and given that the projection
of OW to the complete data set is accurate, the weight projection approach can
yield accuracy improvements over the conventional method of learning OW without
projecting. Clearly, the magnitude of improvement depends on different parameters
of the data set as well as the RS methods, such as their error correlation and their
relative performance improvement when given new data. Furthermore, the model
assumes multivariate normal errors with mean zero, which might be violated in RS
tasks in practice.

The following section describes the experimental design to evaluate the proposed
projection method on a real-world data set and compare it to different benchmarks.
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4.3. Experimental Design

This section describes the experiments and benchmarks used to evaluate the projec-
tion approach introduced in this chapter. Like in Chapter 3, all methods were tested
on the MovieLens 1M data set (Harper and Konstan, 2015). For details about the
data, refer to Section 3.3.1.
In a first step, we check whether the model assumptions listed in Section 4.2.1 are

met. In case these assumptions are violated, we preprocess and transform the data
aimed at meeting the presumptions.
Second, the data set is split into a training and a test set. In order to evaluate

the HRSs as well as the individual RS models, we keep an independent test set yp
with sp ratings which are not used for training. 20% of the available ratings are
used as yp for evaluating and comparing the different weighting strategies out-of-
sample, which leaves 80% of the ratings for y. The holdout set yh, used to record
the development of the error covariance and OW over different training set sizes,
also contains 20% of all ratings. Using 20% of the ratings for deriving OW (sh) and
compare the weighting strategies (sp), respectively, ensures that the out-of-sample
error estimates are robust and do not exhibit a high variance.
This leaves a maximum of smaxt = s−sh ≈ 600, 000 observations for fitting the RS

models to derive OW. The number of levels of st is set to o = 10, i.e. ten iterations
with increasing st are conducted. This value proved high enough to capture the
complexity of the error development in preliminary experiments. st is initialized as
s0t ≈ 150, 000 and increased in steps of snewt = (smaxt − s0t ) / (o − 1) ≈ 50, 000

up to smaxt ≈ 600, 000, where the c-th value of st is denoted by sct .
The following prediction methods are fitted on the training set and their perfor-

mances are compared on the test set:

• Individual RSs: We use the four RS approaches described in Section 2.1,
namely MCF, NCF, DF, and CB. They are chosen in such a way that each
method either uses different input data or makes different assumptions about
the underlying preference model: While MCF and NCF both use only the
user-item rating matrix Y as an input, they apply different statistical models.
DF and CB utilize further input data for their predictions, namely the user
and item metadata, respectively.
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• SA: An HRS assigning equal weights to all individual RSs. In this case, with
k = 4, each RS is assigned a weight of 0.25.

• Naive forecast: The OW estimation method introduced in Chapter 3 is used
as a benchmark. The difference to that study is that here we use a simple
holdout instead of cross-validation for better comparability to the projection
approaches. It will also be referred to as “naive forecast” in the following
since it assumes that OW with s training observations equals OW with smaxt

observations, similar to a naive time series forecast which predicts the current
value as the value for the next point in time.

• Covariance and direct projection: Those are the two variants of the pro-
jection method proposed in this chapter (see Section 4.2 for details). In the
experiment, Holt’s exponential smoothing (Holt, 2004) is used to project error
covariances and OW at sct ≤ smaxt , c ∈ {1, . . . , o} to s ≈ 800, 000. Exponen-
tial smoothing is chosen because of its simplicity and its ability to extrapolate
linear as well as nonlinear developments.

All weighting approaches are additionally compared to the ex-post out-of-sample
OW, derived by fitting all RS methods to the full y (80% of ratings), calculating the
error covariance on the test set yp, and inserting it into Equation (2.6). To obtain
reliable results, the procedure is repeated ten times with random allocation of ratings
to yt, yh, and yp.

The following section reports the experimental results of comparing projected
weights to the benchmarks.

4.4. Empirical Evaluation

This section reports the results of the experimental evaluation. In Section 4.4.1, the
requirements of OW and the projection method are checked. Section 4.4.2 presents
experimental outcomes.
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4.4.1. Data Preparation

As mentioned above, the proposed projection method requires OW assumptions to
be fulfilled. In Section 3.4.1, we checked whether the individual RSs’ errors were
multivariate random with mean 0. The test results showed that those assumptions
were violated, however a mutivariate Box-Cox transformation as an intermediate
step before calculating OW did not lead to an increase in accuracy. Since the same
individual RSs and the same data set are used in this chapter, no additional trans-
formations are performed.
In addition, the projection approach requires the development of the RMSE (error

standard deviation) of the individual RSs over st to display a predictable pattern, i.e.
not fluctuate randomly. Figure 4.5 displays that development with sp ≈ 200, 000 and
increasing st, again averaged over ten runs with random training-test splits. For DF,
CB, and NCF, the development curves are very similar, steeper at the beginning and
flattening towards the end. The curve for MCF differs in that it decreases almost in
a linear fashion, indicating that it can still gain significant performance benefits from
being fed more training data. The curves exhibit structure that should be partly
predictable.

4.4.2. Experimental Results

Table 4.1 displays overall comparative results with the projection approach. The first
column reports which individual or hybrid RS was used. The first four rows contain
the individual RSs. The fifth row contains results for an SA combination. The sixth
row displays results for the conventional OW estimation method as introduced in
Chapter 3. Finally, the seventh and eighth row of the table show results for the
two variants of the projection method introduced in this chapter, the covariance
projection and the direct projection. The mean RMSE as well as the standard
deviation over ten runs is reported in the second column. The third column reports,
for all methods, the relative difference to the ex-post OW, i.e. the best possible
RMSE using a linear weight vector.
Please note that the CB and DF algorithms used in this study are further de-

veloped versions of the ones used in Chapter 3. Among other changes, they use
debiasing techniques. That is why their individual RMSEs in this table are signif-
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Figure 4.5.: Development of the root mean squared error (RMSE) of the individual recom-
mender systems depending on the number of training observations st (average
over ten runs with random allocation of smaxt ≈ 800, 000 observations for train-
ing and sp ≈ 200, 000 for evaluation).

Table 4.1.: Comparison between root mean squared errors (RMSE) of weighted hybrid rec-
ommender systems (RS) using the weighting strategies simple average, naive
forecast (weights learned on a training subset), projection of the error covari-
ance, and direct projection of optimal weights. For reference, the RMSEs of the
individual RSs are also included.

RMSE (std.) ∆(best RMSE)

Model-based CF 0.8736 (0.0012) 1.126%
Neighborhood-based CF 0.8951 (0.0012) 3.615%
Demographic filtering 0.9331 (0.0010) 8.014%
Content-based filtering 0.8925 (0.0009) 3.310%
Simple average 0.8765 (0.0010) 1.453%
Naive forecast 0.8646 (0.0010) 0.087%
Covariance projection 0.8639 (0.0010) 0.005%
Direct projection 0.8640 (0.0010) 0.015%
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icantly lower than in Table 3.3. For the other two methods, MCF and NCF, their
performances are similar to Table 3.3. For both, the RMSE is slightly lower, which
can be explained by the fact that in this study, 80% instead of 75% of the rat-
ings were used as training data. Interestingly, the error of MCF decreases slightly
stronger than that of NCF, which confirms the insight from Figure 4.5.
Looking at the HRSs, the table shows that a learned weighting strategy clearly

outperformed an SA in this instance, also confirming results from Chapter 3. The
worst-performing learned weighting strategy, which is the naive forecast (0.8646),
had an RMSE which was 1.3% lower than the one when using an SA combination
(0.8765). Since the difference between the best (MCF with 0.8736) and the worst
individual RS (DF with 0.9331) was relatively large here, an SA combination was
even slightly outperformed by using pure MCF. Possibly, an SA combination of the
three best RSs, excluding DF, might have led to a lower RMSE than MCF alone.
The table also reveals that both projection strategies outperformed the naive fore-

cast. Interestingly, calculating the OW estimate from the projected error covariance
led to a slightly better result than direct projections of the OW. Both projection
weighting strategies came very close to the best possible RMSE using a linear weight
vector, with an RMSE only 0.005% and 0.015% higher, respectively. This is illus-
trated in Figure 4.6, comparing the difference to the best possible RMSE for the
naive forecast and the two projection methods. The direct projection outperformed
the naive forecast by a factor of about 6 in terms of the difference to the best RMSE,
while for the projection of the error covariance the factor is about 17.
In order to understand why the projection approach leads to an improved perfor-

mance over the conventional OW estimate, we now analyze how well the projection
approach was able to extrapolate the different parameters, i.e. error standard devi-
ations, error correlations, and the elements of the OW vector. Table 4.2 reports the
MAE in estimating the error covariance and OW of the two projection approaches
and compares them to the naive forecast, i.e. just using the parameters learned on
the training set for the entire data set.
The first column of the table displays for which parameter the results are. They

are divided into three blocks: the error standard deviation σl for each RS l, the
error correlation ρlq for each pair (l, q) of RSs, and the weight wl assigned to each
RS l. E.g., if the MAE for wMCF is 0, this means that the component of the OW
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Figure 4.6.: Comparison of the weight estimation approaches in terms of their difference
in root mean squared error (RMSE) to the ex-post optimal weight (OW). The
values are displayed as a percentage of the difference between the RMSE of the
naive forecast (RMSEnaive) and the ex-post OW (RMSEbest).

vector for MCF was estimated perfectly. In addition, there is one “Total” row for
each of those blocks, reporting the arithmetic mean over all entries in the respective
block, in order to ease the comparison between the two projection methods and the
benchmark.

The second column contains the results when applying the naive forecast, i.e.
just using the values measured at smaxt training observations for the whole data
set. This is equivalent to the absolute change of the respective parameter from
smaxt to s observations. The third and fourth columns display the results with the
covariance projection and the direct projection, respectively. Note that in the direct
projection column, there are no values for the parameters σ and ρ. That is because
this variant of the projection method directly extrapolates the development of OW
without considering the error covariance.

As described above, the experiment was run ten times with random allocations
of training, holdout, and test set, in order to derive robust results and enhance
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Table 4.2.: Comparison between mean absolute error (MAE) of the naive forecast, the
covariance projection, and the direct projection in estimating the error standard
deviations σ (where applicable), the error correlations ρ (where applicable), and
the optimal weights w assigned to each individual recommender system. The
experiment was run ten times with random training-holdout-test splits, and all
values are averages over those runs, while the standard deviations are displayed
in parentheses.

Naive forecast Covariance projection Direct projection

σMCF 0.0187 (0.0017) 0.0026 (0.0025)
σNCF 0.0068 (0.0018) 0.0017 (0.0011)
σDF 0.0021 (0.0010) 0.0017 (0.0012)
σCB 0.0049 (0.0013) 0.0020 (0.0012)
Total 0.0081 (0.0015) 0.0020 (0.0015)

ρMCF,NCF 0.0089 (0.0004) 0.0024 (0.0008)
ρMCF,DF 0.0128 (0.0005) 0.0027 (0.0013)
ρMCF,CB 0.0083 (0.0004) 0.0017 (0.0009)
ρNCF,DF 0.0017 (0.0003) 0.0003 (0.0001)
ρNCF,CB 0.0008 (0.0003) 0.0006 (0.0003)
ρDF,CB 0.0016 (0.0005) 0.0005 (0.0003)
Total 0.0057 (0.0004) 0.0014 (0.0006)

wMCF 0.1139 (0.0074) 0.0191 (0.0147) 0.0393 (0.0258)
wNCF 0.0290 (0.0118) 0.0239 (0.0173) 0.0359 (0.0237)
wDF 0.0240 (0.0078) 0.0110 (0.0062) 0.0076 (0.0055)
wCB 0.0609 (0.0118) 0.0113 (0.0084) 0.0129 (0.0077)
Total 0.0569 (0.0097) 0.0163 (0.0116) 0.0239 (0.0157)

comparability. The values reported in the table are therefore averages over those ten
runs, with the respective standard deviation in parentheses.
The table shows that the projection approach leads to higher accuracy than the

naive forecast for all parameters. For the assigned weights wl, the mean MAE of
the direct projection (0.0239) is less than 50% that of the naive approach (0.0569).
Calculating OW via the extrapolated error covariance performs even better. Here,
the mean MAE (0.0163) is about 3.5 times smaller compared to the naive forecast.
Extrapolating the error standard deviation σ results in an MAE (0.0020) which is,
on average, around four times smaller compared to the usage of a naive forecast
(0.0081). For the error correlation ρ, the extrapolation (0.0014) also outperforms
the naive forecast (0.0057) by a factor of around 4.
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Figure 4.7.: Results for the projection of the optimal weights (OW) estimated for each
recommender system. The black curves represent actual OW, the gray curves
show the predictions. The vertical dashed line displays smaxt , i.e. predictions
beyond this point are out-of-sample.

Figure 4.7 shows the performance of the direct OW extrapolation, where wMCF is,
for instance, the weight assigned to MCF. The black curves display the actual values
collected in the stepwise approach, while the gray curves show the predictions using
the exponential smoothing model. A vertical dashed line is plotted at smaxt , i.e. all
predictions beyond this point are the out-of-sample extrapolations.

Figure 4.8 displays the extrapolation performance for the error standard deviation
σ, or the RMSE development for the four individual RSs. Again, the black lines
represent the actual values, while the gray curves show the predictions, and the
vertical dashed line is set at smaxt .
Finally, Figure 4.9 presents the performance for extrapolating the error correlation

ρ of the pairwise combinations of RSs. The lines are equivalent to Figure 4.7 and 4.8.
Those three figures indicate that the exponential smoothing model was quite ac-
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Figure 4.8.: Results for the projection of the error standard deviation of each recommender
system. The lines are analogous to Figure 4.7.

curate in extrapolating both OW and error covariance (comprised of error standard
deviations and error correlations). This is shown by the fact that the gray lines
(predictions) are close to the black lines (actuals) beyond the light-gray dashed line,
i.e. out-of-sample. Since the parameters were predicted accurately, both the di-
rect projection and the covariance projection led to a smaller RMSE than the naive
forecast.
In the following section, we discuss and interpret the results obtained in the ex-

perimental evaluation.
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Figure 4.9.: Results for the projection of the error correlation of each pairwise combination
of recommender systems. The lines are analogous to Figure 4.7.

4.5. Discussion

Results on the MovieLens 1M data set show that using the naive approach of esti-
mating OW on the training set and then applying it to the whole data set improves
accuracy. On average, the RMSE using the naive forecast only exceeds the low-
est possible RMSE with linear models, i.e. the RMSE with out-of-sample OW, by
7.84 × 10−4. This is because OW learned with 600, 000 observations are already
rather stable and change only slightly with additional 200, 000 observations.
However, results show that projected weights consistently improve the accuracy of

the naive approach. On average, the direct weight projection leads to a decrease in
the difference to the best possible RMSE with a linear combination approach by 83%

(from 7.8× 10−4 to 1.3× 10−5). The projection of the pairwise error covariances led
to an even higher decrease in RMSE of 94% (from 7.8× 10−4 to 4.4× 10−5). The



Conclusion 79

improvement is consistent over all individual runs, making the projection of weights
a promising approach, given sufficient predictability of error patterns with increasing
training sample size.
This is generally in line with findings in Chapter 3, where we applied pairwise

combinations of the same four RS methods to the same data set. In this chapter, we
used combinations of k = 4 methods instead of only combining two algorithms at a
time. Still, applying OW led to a smaller RMSE compared to using equal weights,
even though there are more degrees of freedom — and therefore increased instability
— when estimating a vector wOW of length 4 instead of 2. This shows that given
a sufficiently large training data set, OW is a feasible strategy for combining RS
methods as this improved predictive accuracy over individual methods or pairwise
combinations significantly.
In our experiment, the error correlations between the individual RSs were strong

(see Figure 4.9), and while the RMSEs decreased for all RSs over st, the change of
their ratio(s) was moderate (see Figure 4.8). In Section 4.2.3, we used a simulation
study to show the magnitudes of potential improvements with the projection over
the naive approach as a function of those values (error correlations and changes in
RMSE ratios). Here, due to the properties of the data set and the RSs used, the
margin of improvement over the conventional OW approach was rather small. This
can be seen in Table 4.1, which shows that the naive forecast led to an RMSE that
was 0.087% higher than the best possible RMSE when using a linear weight vector.
However, projection further reduced the relative error and led to RMSE values close
to the out-of-sample OW, which is apparent in Figure 4.6.
The novel projection method shows very promising results, and, with individual

RSs exhibiting (a) lower error correlations, and (b) less similar RMSE development,
larger improvements over OW learned on the training set are expected.

4.6. Conclusion

In this chapter, we introduced a novel approach to learning optimal combination
weights in HRSs by calculating the error covariance matrix and, based on that, the
OW for different numbers of training observations and then projecting this series of
covariance matrices or weights to the full size of available data.
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We applied the projection approach to the MovieLens 1M data set by combining
standard RS algorithms, where it consistently led to the lowest RMSE out-of-sample
compared to individual RSs, a simple averaging of RSs, or OW estimates not using
a weight projection (i.e., a naive projection).

As a limiting factor, the window of improvement between the naive forecast and
the ex-post OW was very small in this study, i.e. the naive forecast was already very
close to the best possible linear weight vector. Still, the projection approach was
able to cut that window by 81% and 94%, respectively. We expect the empirical im-
provement in accuracy of the projection method in comparison to the naive forecast
to be significantly higher for other RS algorithms with smaller error correlations,
and possibly for other data sets and use cases.

In the following chapter, we present a study in which the weight estimation method
introduced in Chapter 3 is adapted to be used for the weighted combination of
classification algorithms.



Chapter 5.

Hybrid Recommender Systems for

Next Purchase Prediction Based on

Optimal Combination Weights

As described earlier, RSs play a key role in e-commerce by pre-selecting presum-
ably interesting products for customers. Hybrid RSs using a weighted average of
individual RSs’ predictions have been widely adopted for improving accuracy and
robustness over individual RSs.
The literature on how to select combination weights in WHRSs is very limited.

While for regression tasks, approaches to estimate accurate weighting schemes based
on individual RSs’ out-of-sample errors exist, there is scant literature in classification
settings. Providing products or product categories of interest to a current user is key
to content and affiliate marketing, generating leads and developing existing customers
in terms of up- and cross-selling endeavors.
In this chapter, we adapt the weighting method proposed in Chapter 3 to a clas-

sification problem, specifically in the area of purchase predictions. We use the Brier
score, the equivalent of the MSE for classification tasks, in order to generate error
vectors. Based on those error vectors, the error covariance matrix of all individuall
classifiers is calculated and fed into the OW estimation. Other than in Chapter 3,
more than two algorithms are combined at once in this study.
The approach is evaluated on a labeled real-world data set from a large European

telecommunications provider, where it is used to predict purchasing probabilities for
three categories of mobile devices. The task is to predict the conditional probability,

81
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given that a certain customer is going to buy a mobile device, in which category
it will be. Thus, the problem can be regarded as a top-1 recommendation task.
Experimental results show that the proposed classifier weighting method leads to
significant improvements, both in the Brier score and the accuracy score, compared
to both the individual models as well as an SA combination.

This chapter is organized as follows. Section 5.1 motivates the importance of a
weighting scheme for WHRSs in purchase prediction or other classification tasks.
Section 5.2 describes the proposed classifier weighting method. Section 5.3 outlines
the experimental design to evaluate the proposed method on a real-world data set,
and Section 5.4 reports the empirical results from those experiments. Section 5.5
discusses the benefits and shortcomings of the proposed approach, and Section 5.6
concludes.

5.1. Motivation and Related Work

Little research has been published on the selection of combination weights in WHRSs.
As described above, there exist some weighting strategies for regression scenarios,
mainly rating prediction, but for classification tasks, binary or multi-class, we are
not aware of analytical methods for selecting weight vectors in WHRSs. However,
those kinds of problems appear very often in e-commerce, where a company wants to
estimate, for a given user, purchasing probabilities of different products or product
categories in order to show personalized advertisements or select suitable customers
for marketing campaigns.

In Chapter 3, we proposed a method of estimating OW for combining multiple
RSs in a rating prediction scenario. That approach derives in-sample OW that
minimize the MSE of the HRS on the training data given certain assumptions. In
this chapter, we propose an analytical weighting procedure to increase the accuracy
and robustness of a multi-class classifier ensemble over the best individual classifier
as well as SA without requiring expensive brute-force search or additional input
data. The proposed approach transfers the weighting method from regression to a
multi-category classification problem, where the goal is to predict the next purchase
of a given customer based on the customer profile. For that, we use the Brier score,
which quantifies the mean squared deviation of the estimated purchase probability
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from the true outcome.
The Brier score, introduced by Brier (1950), can be viewed as the classification

version of the MSE. It measures the accuracy of probabilistic predictions. For m
possible outcomes (classes) and s observations (users)6, it is calculated as

BS =
1

sm

s∑
u=1

m∑
i=1

(yui − ŷui)2. (5.1)

yui represents the actual outcome for observation u and class i, which is ei-
ther 0 or 1, and ŷui represents the estimated probability with 0 ≤ ŷui ≤ 1 and∑m

i=1 ŷui = 1, u ∈ {1, . . . , s}. The Brier score is used in this work to estimate
weights for combining probability scores of multiple classifiers. We combine classi-
fying RSs based on the covariance structures of the individual models’ probability
scores such that the Brier score is minimized in the same fashion as the MSE is
minimized in regression settings. With k classification models and m possible class
labels, we calculate error vectors el = y − ŷl, l ∈ {1, . . . , k}, where

y = (y11, . . . , y1m, . . . , ys1, . . . , ysm)′

is the vector of actual outcomes and ŷl is the vector of probability estimations for y
by classifier l. Calculating OW from those error vectors can be shown to minimize the
Brier score in-sample, analogous to the MSE in a regression setting. Next purchase
(class) predictions on unseen data are then derived as the class with the highest
probability score.
Our weighting approach is evaluated on a labeled real-world e-commerce data

set, which contains purchases of three different categories of mobile devices. The
problem is formulated as a top-1 recommendation model, i.e. the question is: Given
that a customer is going to buy a device, which category is the most likely one?
We combine seven classification models which act as demographic filtering RSs (e.g.
Pazzani, 1999), learning purchasing probabilities from customer attributes.

6Note that in this chapter, each user is represented by one observation, i.e. one customer profile.
Therefore, the number of users n and the number of observations s are identical.
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5.2. Methodology

This section introduces the approach to estimate OW for combining predictions of
classification algorithms. Section 5.2.1 considers the assumptions and requirements
of the weighting method. Section 5.2.2 describes the estimation of optimal combi-
nation weights in detail.

5.2.1. Model Assumptions

The classifier weighting is based on statistical forecast combination, as introduced
in Section 2.2.1. In regression settings, Equation (2.6) ensures a minimal in-sample
MSE given that the individual models’ errors follow a multivariate normal distribu-
tion with mean 0, i.e. the models are unbiased.

As mentioned above, our adapted classifier weighting scheme relies on the Brier
score (Brier, 1950) as the classification equivalent of the MSE. For each observation
and each class label, we calculate the deviation between the predicted probability of
the observation pertaining to the class and the true outcome. For each observation,
the predicted probabilities sum to 1, and the true outcome is 1 for one class label
and 0 for all the other labels. Since the errors are flattened, yielding error vectors
of length sm, the deviations between prediction and ground truth sum exactly to
0 for each observation. Consequently, the mean deviation for each flattened error
vector is also 0. Regarding the multivariate normality of the error vectors, respective
analyses of the data set are provided in Section 5.4.1.

Another assumption of the classifier weighting method is that the minimization of
the Brier score of a classifier ensemble results in an accuracy gain over all individual
classifiers as well as an equal weights combination. We expect the Brier score to be
an appropriate metric due to its interpretation as the MSE in probability estimation.

5.2.2. Classifier Weighting Method

Input to the method is a labeled classification data set with s observations and
k classification models. The output is ŵ, the estimate of the out-of-sample OW with
ŵ ∈ Rk and

∑k
l=1 ŵl = 1. The number of classes in the data set is denoted by m. A

portion of the input data is held out, resulting in two subsets, the training set with
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st observations and the holdout set with sh observations. The split is performed
stratified, i.e. the class distributions in the training and holdout set are practically
equal.
All classifiers are fitted on the training set. Each classifier l ∈ {1, . . . , k} then

makes probability predictions Ŷhl ∈ [0, 1]sh×m on the holdout set. These predictions
are flattened into a prediction vector ŷhl of length shm, which contains predicted
probabilities for each instance u ∈ {1, . . . , sh} and for each class i ∈ {1, . . . ,m}.
yh = (y11, . . . , yshm)′ denotes the vector of true outcomes in the holdout set. For
each instance, yh contains 1 for the actual class label of the instance, and 0 for
all other class labels. Figure 5.1 shows an example of two prediction vectors and
the true outcome. For simplicity, we omit the h subscript in this and the following
figures.

ŷ1 ŷ2 y
Instance Class

1 1 0.3343 0.2531 0
2 0.1396 0.3511 0
3 0.5261 0.3958 1

2 1 0.0192 0.0982 0
2 0.4492 0.4895 1
3 0.5316 0.4123 0

3 1 0.2614 0.1163 0
2 0.4296 0.4690 1
3 0.3091 0.4148 0

Figure 5.1.: Example for prediction vectors and actual outcomes with s = 3 observations,
m = 3 classes, and k = 2 classification models.

For each classifier l, the vector ŷhl of predicted probabilities is then compared to
the vector yh of actual outcomes. The error vector for classifier l is calculated as
ehl = yh− ŷhl. For each of the k classifiers, this error vector is computed, yielding an
error matrix Eh = (eh1, . . . , ehk). Calculating OW from those error vectors can be
shown to minimize the Brier score in-sample, analogous to the MSE in a regression
setting. Figure 5.2 displays the error matrix for the predictions from Figure 5.1.
With Σh as the variance-covariance matrix of Eh, the OW estimate ŵ can be

computed using Equation (2.6). The variance-covariance matrix of the error matrix
from Figure 5.2 is given by
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e1 e2

-0.3343 -0.2531
-0.1396 -0.3511
0.4739 0.6042
-0.0192 -0.0982
0.5508 0.5105
-0.5316 -0.4123
-0.2614 -0.1163
0.5704 0.5310
-0.3091 -0.4148

Figure 5.2.: Example for error matrix based on the predictions in Figure 5.1.

Σh =

(
0.1789 0.1730

0.1730 0.1825

)
.

The weight vector estimated in this example is ŵ = (0.6163, 0.3837)′. Finally,
training and holdout sets are concatenated again, and all k individual classifiers are
re-fitted on all s observations. This is to ensure that all models can process as many
observations as possible in the training phase. The classifiers’ probability predictions
on new, unseen data are subsequently combined using the weight vector ŵ estimated
on the training set.

Many classification algorithms yield class membership scores that can be used to
rank observations based on their likelihood to pertain to a certain class. However,
those scores in general cannot be interpreted as proper probability estimates, since
they are not well-calibrated, i.e. predicted class membership scores do not match ex-
post probabilities (Niculescu-Mizil and Caruana, 2005). While this is not an issue
for class predictions of single classifiers, in classifier ensembles it is important to
have reliable probability estimates. Therefore, we compare the OW estimation with
and without calibration. For the calibration setting, we use isotonic regression as
introduced by Zadrozny and Elkan (2002).
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5.3. Experimental Design

We now describe the experiments conducted to evaluate the proposed weighting
approach. Section 5.3.1 describes the use case and data set used for evaluation.
Section 5.3.2 introduces the individual classifier methods used for the WHRS. In
Section 5.3.3, details about the experiments and evaluation criteria are given.

5.3.1. Use Case and Data Set

For the evaluation of the proposed classifier weighting scheme, we use a proprietary
real-world data set from a large European telecommunications provider. Figure 5.3
displays the schema of the data set. It contains several hundred thousand purchases
of mobile devices by customers. All purchases occurred in the years 2018 and 2019.
In the figure, the last column represents the target variable, the first two columns
are metadata for identification, and the columns in between are predictors.

Figure 5.3.: Schematic display of the real-world data set used for evaluation. The propri-
etary data set stems from a large European telecommunications provider.

The mobile devices are divided into three categories. The goal is to predict, for
each of the m = 3 categories, the conditional probability that the given customer
will select the respective category, given a purchase. The category with the highest
estimated probability is then recommended. The most frequent of the three class
labels occurs in 48% of cases in the data set. Thus, a simple classifier which always
predicts that label would already achieve an accuracy score of 48%, which can serve
as a lowest bound for more sophisticated models.
The data set contains more than 40 predictor variables, consisting of customer

properties such as sociodemographics, characteristics of the customer’s contract, and
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aggregated behavioral information such as mobile data usage. The data types of the
predictors are mixed, comprising binary, integer, real-valued as well as categorical
variables. All values of the predictors were measured immediately before the respec-
tive purchase, representing a snapshot of the respective customer and contract in
order to recognize purchasing patterns.

5.3.2. Individual Classifiers

This section describes the individual models used to test the weighting method. Since
the model’s inputs are vectors representing customers via their respective properties,
the method used here can be classified as demographic filtering (e.g. Pazzani, 1999),
although the predictors do not only contain demographic information. In total, k = 7

classifying algorithms were combined, which are briefly outlined here. We used the
implementations in the Python package scikit-learn (Pedregosa et al., 2011) for
the individual classifiers.

• Logistic regression: The logistic regression model assumes a linear relation-
ship between the predictor variables and the log-odds of the positive outcome
of a binary dependent variable (e.g. Hastie et al., 2009). The model can be
extended for non-binary classification either fitting a one-vs-all model for each
class label or minimizing the multinomial logistic loss. The latter is used here.

• k-nearest neighbors classifier7: A k-nearest neighbors classifier predicts,
for a given instance to classify, the class which most occurs in the k training
points with the smallest distance to that instance (Altman, 1992). For prob-
abilistic predictions, the class distribution of those k instances is predicted.
The distance metric used here is the Euclidean distance, and the number of
neighbors considered is set to k = 5.

• Multi-layer perceptron: A multi-layer perceptron is a frequently-used form
of neural networks, consisting of an input layer with p nodes (the number
of features), an output layer with m nodes (the number of classes), and one
or more hidden layers (e.g. Hastie et al., 2009). The nodes of the hidden

7Note that in this bullet point only, k represents the number of neighbors. In the rest of this chapter
and thesis, k is used to denote the number of individual models combined in the WHRS.
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layer use a nonlinear activation function, in our case the rectified linear unit
f(x) = max{0, x}. The weights between nodes are initialized randomly and
then sequentially updated using the backpropagation algorithm, which com-
putes the gradient of the loss function with respect to each weight. The weight
optimization is done using the efficient stochastic gradient descent method
Adam (Kingma and Ba, 2014), and the maximum number of iterations is set
to 1000.

• Decision tree: The decision tree algorithm (Breiman et al., 1984) learns
simple “if-else” style decision rules by recursively splitting the data set with
respect to a certain variable and value in order to create subsets which are
more pure in terms of class distribution. We use a maximum depth of 5 in
order not to overfit the training set.

• Random forest: The random forest algorithm (Breiman, 2001) fits an en-
semble of decision trees on the training data. By randomly selecting bootstrap
samples of data and randomly selecting a subset of variables available for split-
ting at each node, the trees in the ensemble are partially independent, reducing
the model variance and thus alleviating a single decision tree’s tendency to
overfit the training data. For predicting probabilities on new data, the average
of predicted probabilities of all trees in the ensemble is calculated. We choose
a number of 100 trees with a maximum depth of 5 for the forest.

• AdaBoost: AdaBoost (Freund and Schapire, 1997) is an ensemble method
which fits simple base learners sequentially, where in each iteration, weights
for previously misclassified instances are increased such that the next base
learner is forced to focus on more difficult cases. For prediction, the outputs
of all base learners are aggregated. We use 50 decision trees with a depth of 1,
also known as “decision stumps”.

• Gradient boosting: Gradient boosting (Friedman, 2001) sequentially builds
an additive model. In each iteration, m (the number of classes) regression trees
are fitted on the negative gradient of the loss function, which for probabilistic
outputs is the deviance. We choose a value of 100 iterations.
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5.3.3. Evaluation and Benchmarks

As mentioned in Section 5.3.1, the prediction task in this business case is to recom-
mend one of m = 3 possible categories of mobile devices to each customer in the test
set. Therefore, an ensemble of three-class classifiers is used. In order to evaluate the
classifier weighting approach we propose, the following methods are compared:

• Individual classifiers: For each of the seven models described in Sec-
tion 5.3.2, the individual performance on the test set is calculated.

• SA: An equal weights average of the predictions of all seven classifiers on the
test set is used as a benchmark for the hybrid approach.

• OW estimate: This is the approach proposed in this chapter (see Section 5.2.2
for details).

• Out-of-sample OW: The linear weight vector with ex-post minimal Brier
score, calculated on the test set, serves as an upper performance bound for
any linear weight vector. The goal of the OW estimate is to come as close as
possible to this performance.

For each of the mentioned methods, there are two treatments: First, the proba-
bilistic predictions are taken as-is. Second, the predicted probabilities are calibrated
using isotonic regression before making predictions or combining the probabilistic
predictions. The un-calibrated and calibrated treatments are compared.

In order to evaluate the weighting approach and compare it to other strategies,
10% of the data set is used as a test set. Another 10% of the data set is used as
a holdout set to calculate out-of-sample errors of the individual classifiers in order
to estimate OW, as described in Section 5.2.2. This leaves 80% of the data set as a
training set.

We use two evaluation metrics in the experiment: the accuracy score and the Brier
score which is also used for weight estimation. Those two metrics are chosen because
the proposed weighting approach aims at increasing the accuracy of a classifier en-
semble over all individual components as well as an SA combination by minimizing
the Brier score. As mentioned in Section 5.2.1, we expect the minimization of the
Brier score to result in a significant accuracy gain.
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For reasons of robustness, the experiment is repeated ten times with random
training-holdout-test allocations. Accuracy and Brier scores are averaged over those
runs, and their standard deviations are reported.

5.4. Empirical Evaluation

This section contains the experimental results of comparing the proposed classifier
weighting method to the aforementioned benchmarks. Section 5.4.1 describes the
data preparation, i.e. checking the model requirements. Section 5.4.2 reports the
results.

5.4.1. Data Preparation

As mentioned above, the weighting method requires unbiased individual estimators
(mean errors of 0) and multivariate normal error vectors. We described in Sec-
tion 5.2.1 that the mean errors are 0 when using the flattened deviation between
predicted probabilities and true outcomes as error vectors. Now, we inspect the
distribution of deviations.
Figure 5.4 displays, for each individual classifier, a histogram of out-of-sample er-

rors, using ten equal-width bins. The vertical axes are not labeled since the number
of observations in the test set would give away the number of observations in the
entire data set (see Section 5.3.1). The figure shows the histograms when feeding
error vectors into the weight estimation as-is, i.e. without calibration. It is clear to
see that the errors are not normally distributed. Some of the classifiers partially ex-
hibit a bell-shaped distribution, however all with a gap around 0. Others, especially
AdaBoost, are nowhere near bell-shaped.
However, applying the mentioned classifier calibration technique using isotonic

regression changes the error distribution. Figure 5.5 shows the same plot, but this
time after isotonic calibration of each classifier. While there is still a gap near 0, all
distributions now exhibit a bell-shaped form. They are still not normally distributed,
but the calibration helps to better approach the assumption.
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AdaBoost Decision tree Gradient boosting

Logistic Regression

1 0 1

Multi-layer perceptron

1 0 1

Random forest

1 0 1

k-nearest-neighbors

Figure 5.4.: Histograms of all individual classifiers’ out-of-sample errors using ten equal-
width bins. The vertical axes are not labeled in order not to disclose the
confidential number of observations in the proprietary data set.

5.4.2. Results

Table 5.1 displays the results of comparing the WHRS using the OW estimation
introduced in this chapter, a WHRS using SA combination, and the individual clas-
sifiers. Both for the accuracy and the Brier score, the mean and standard deviation
over ten runs are reported. For better comparability, the percentage differences be-
tween the OW estimation and the other methods is also reported for both metrics
(columns “Diff.”). As mentioned in Section 5.3.3, in addition to the individual clas-
sifiers, the SA combination and the OW estimate, the results using out-of-sample
OW are also reported (last row) as an upper bound for the performance of a linear
weighting vector.

The table shows that the combination using OW estimation clearly outperforms all
individual methods as well as the SA combination. The best-performing individual
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AdaBoost Decision tree Gradient boosting

Logistic Regression

1 0 1

Multi-layer perceptron

1 0 1

Random forest

1 0 1

k-nearest-neighbors

Figure 5.5.: Histograms of all individual classifiers’ out-of-sample errors using ten equal-
width bins after applying isotonic calibration. The vertical axes are not la-
beled in order not to disclose the confidential number of observations in the
proprietary data set.

classifier, which is the neural network with an accuracy of 66.8%, has a 2.4% lower
accuracy and a 4.99% higher Brier score than the HRS using the OW estimate. An
SA combination using equal weights slightly outperforms the best individual method,
but leads to a 2.2% lower accuracy and a 6.25% higher Brier score than estimated
OW.
The results also show that the estimated OW vector is very close in both accuracy

(0.07% lower) and Brier score (0.07% higher) to the ex-post, out-of-sample OW
vector. This indicates that the weighting approach proposed in this study can yield
weight vectors that are close to the best possible linear weighting HRS.
Table 5.2 displays the results when all classifiers’ probability estimates are cali-

brated using isotonic regression before estimating OW. After calibration, all classi-
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Table 5.1.: Comparison of performance between a hybrid recommender system using op-
timal weight (OW) estimation, a simple average (SA) combination, and all
individual classifiers.

Method Accuracy (std.) Diff. Brier score (std.) Diff.

Logistic regression 0.6440 (0.0012) +6.14% 0.1595 (0.0004) -10.70%
k-nearest-neighbors 0.6280 (0.0016) +8.84% 0.1677 (0.0004) -15.09%
Multi-layer perceptron 0.6675 (0.0015) +2.40% 0.1499 (0.0005) -4.99%
Decision tree 0.6463 (0.0013) +5.76% 0.1600 (0.0003) -10.98%
Random forest 0.6430 (0.0014) +6.30% 0.1649 (0.0004) -13.63%
AdaBoost 0.6503 (0.0012) +5.10% 0.2187 (0.0000) -34.88%
Gradient boosting 0.6590 (0.0013) +3.71% 0.1529 (0.0003) -6.88%

Simple average 0.6688 (0.0012) +2.20% 0.1519 (0.0002) -6.25%
Optimal weight estimate 0.6835 (0.0013) 0.1424 (0.0003)

Ex-post optimal weights 0.6840 (0.0013) -0.07% 0.1423 (0.0003) +0.07%

fiers’ Brier scores are in a range between 0.15 and 0.16. Their individual accuracy
scores are not significantly affected, with one exception: The calibrated nearest-
neighbors classifier has an accuracy of 64.8%, as compared to 62.8% for the non-
calibrated version. This indicates that the calibration changed the order of the class
ranking for some instances, leading to a higher number of correct class predictions.

As for the WHRSs, the SA combination of calibrated classifiers has a slightly
better (smaller) Brier score and worse (smaller) accuracy than the non-calibrated SA
combination. Now, the best individual classifier, which is again the neural network,
slightly outperforms the SA combination in terms of accuracy. For the estimated
OW, the Brier score is virtually unchanged, while the accuracy slightly increases
when using calibration. This is probably caused by the nearest-neighbors classifier’s
gain in accuracy. The performance increase of the OW estimation over the best
classifier (2.68%) as well as the SA (3.07%) is even higher than in the no-calibration
treatment.
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Table 5.2.: Results analogous to Table 5.1 after applying isotonic calibration to all individ-
ual classifiers.

Method Accuracy (std.) Diff. Brier score (std.) Diff.

Logistic regression 0.6440 (0.0014) +6.40% 0.1593 (0.0004) -10.83%
k-nearest-neighbors 0.6484 (0.0017) +5.69% 0.1561 (0.0003) -9.01%
Multi-layer perceptron 0.6673 (0.0015) +2.68% 0.1500 (0.0005) -5.29%
Decision tree 0.6460 (0.0013) +6.07% 0.1600 (0.0003) -11.21%
Random forest 0.6461 (0.0018) +6.05% 0.1593 (0.0003) -10.80%
AdaBoost 0.6487 (0.0011) +5.63% 0.1579 (0.0003) -10.03%
Gradient boosting 0.6590 (0.0012) +3.97% 0.1528 (0.0003) -7.03%

Simple average 0.6648 (0.0015) +3.07% 0.1500 (0.0002) -5.29%
Optimal weight estimate 0.6852 (0.0013) 0.1421 (0.0003)

Ex-post optimal weights 0.6861 (0.0013) -0.12% 0.1419 (0.0003) +0.12%

5.5. Discussion

In this section, we discuss and interpret the results obtained from the experimental
evaluation in the previous section.
First, as apparent in Table 5.1, the technique of estimating OW using a subset

of the available training data and then applying the learned weighting to the full
data set clearly outperforms the SA combination as well as all individual methods.
Although seven classification models were combined, meaning a weight vector of
length k = 7 had to be estimated, the estimated OW comes very close to the ex-post
OW, both in terms of accuracy and Brier score. This is probably due to the rather
large data set used in the experiments, leading to robust weight estimates. Large
e-commerce vendors usually have large data sets available, making the proposed
approach a feasible and effective means to boost predictive accuracy.
In the use case of this study, the proposed classifier weighting approach was able

to increase the accuracy over the best individual classifier as well as SA by more
than 2%. The impact of such an improvement depends on the business case at hand.
For the project partner that provided the data set, this improvement is significant.
Due to the high number of customers, being able to predict the right purchase in
2% more of the cases can lead to a considerable profit enhancement. Other large
corporations, especially in e-commerce, could benefit in a similar way. On the other
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hand, for smaller companies with fewer customers as well as smaller data sets, other
factors are more important, such as the model interpretability.

The theoretical model requirements were not entirely fulfilled in the use case, since
the classifier error vectors were not normally distributed. Real-world use cases often
differ substantially from theoretical requirements, which is why many approaches do
not work well under those circumstances. However, the proposed approach was still
able to reach an accuracy and Brier score very close to the ex-post best possible,
and to improve performance over individual classifiers and an SA combination. This
shows that the classifier weighting is well suited for practitioners, even if the data is
messy, as it often is in practice.

The classifier weighting method can be integrated into existing machine learning
pipelines rather easily. Due to its analytical nature, it does not require expensive
computations, and the weights are readjusted automatically without regular human
intervention. Therefore, the cost-benefit ratio calculates favorably. The potential of
gaining significant performance was shown in this study, and because of the added
robustness, there is minimal risk of losing accuracy given sufficient data.

Second, as can be seen when comparing Table 5.1 to Table 5.2, although calibrating
the probability estimates of the individual classifiers using isotonic regression led to
decreasing Brier scores of the individual models (especially AdaBoost), it did not lead
to significant differences in the accuracy of the OW combination. This is probably
because almost all classifiers already had mostly well-calibrated scores.

Finally, while in general, a minimal Brier score does not automatically lead to
the highest accuracy, in our case, the methods with the lowest Brier score (neural
network for the individual methods and OW estimate for the HRSs) did have the
highest accuracies as well. Especially the OW estimate, which aims at minimizing
the Brier score of an HRS, outperformed all other models by more than 2% in terms
of accuracy. This indicates that selecting combination weights based on the Brier
score is a good strategy for creating accurate HRSs and therefore confirms our last
assumption from Section 5.2.1.



Conclusion 97

5.6. Conclusion

In this chapter, we presented an approach to estimate optimal combination weights
for WHRSs in a classification context, e.g. for purchase prediction. The weighting
method fits all individual classifiers on a subset of the available training data and
calculates out-of-sample errors of probabilistic predictions on the rest of the training
data. Using the variance-covariance matrix of those out-of-sample errors, a weight
vector is calculated which is optimal on the holdout set. Then, all classifiers are
re-fitted on the entire available data set, and the calculated weight vector is used for
combining predictions on new, unseen data.
Results on a real-world e-commerce data set show that this approach significantly

outperforms both an SA combination, assigning equal weights to all components,
as well as all individual classifiers. This is an encouraging finding, indicating that
OW estimated using the Brier score is an adequate and simple method for increasing
accuracy and robustness of classifiers.
This study contributes to research and practice. First, a novel and accurate an-

alytical weighting scheme for classifiers is proposed. It contributes to the literature
on WHRSs as well as classifier ensembles in general. For practitioners, especially
companies with many customers and large data sets as well as different classifying
models in use, the method provides a computationally efficient means of increasing
accuracy and robustness, and thus revenue and profit, without requiring great effort
to set up or maintain.
Commonly, e-commerce companies already test and compare different algorithms

with the goal of maximizing predictive accuracy. Depending on the size of a company
and its number of customers, an accuracy increase as small as 1% can lead to a
significantly higher profit. The proposed approach offers a simple and efficient means
to combine their existing methods and thus achieve higher levels of performance and
profit.
As described in Section 1.1, both the importance of accurate RSs and the benefits

of HRSs have been demonstrated in IS research. The weighting method proposed in
this chapter therefore provides a relevant contribution both to the existing body of
research and to practitioners, mainly large companies with substantial data available
and many customers.
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As a limiting factor, we did not engage in extensive hyper-parameter tuning for the
individual classification algorithms, since the goal of this study was to demonstrate
the improvement of a WHRS using an OW estimate over all individual models as
well as an SA combination. In addition, we did not perform any feature selection or
engineering. Performing both of those tasks might have improved the accuracy of
the HRS even further.

The following and final part summarizes the contributions of this thesis, addresses
the research questions, and proposes directions for future research.



Part III.

Finale





Chapter 6.

Conclusion

In today’s world shaped by information overload and a large number of options in
many areas of life, decision support systems and information filtering are becoming
ever more important. RSs provide a means of automatically pre-selecting a set
of interesting items in a personalized manner for each user. The accuracy of RSs
increases the perceived personalization and the likelihood of users accepting the
RS as a decision aid. In addition, each RS algorithm has its unique benefits and
shortcomings and is, in certain situations, unable to generate recommendations.
The combination of multiple RSs into a WHRS is a means of mitigating those

shortcomings as well as increasing accuracy and robustness of recommendations.
While the advantages of WHRSs have been shown in the literature, little prior
research has dealt with the estimation of OW for maximizing the WHRS’s accu-
racy. In this thesis, multiple approaches were proposed to advance the research on
weight selection in WHRSs. In this final chapter, the contributions of the thesis are
summarized, and interesting directions for future research, possible extensions and
additional application opportunities of the proposed methods are discussed.

6.1. Summary of Contributions

In Chapter 3, a weighting scheme for minimizing the RMSE of a WHRS with k = 2

individual RSs was developed. It was shown to outperform, on the MovieLens 1M
data set, all individual RS algorithms as well as an SA combination and a more
robust weighting scheme which uses the inverse ratio of error variances of the two
algorithms as the weight estimate.

101
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Those results and insights allow us to address the first research question of this
thesis, which is subdivided into three parts. We begin with RQ 1a: Given the
assumptions of OW, does a weighting scheme for a WHRS with two individual RSs
based on OW estimation lead to lower errors than each individual RS as well as an
SA combination on an RS benchmark data set?

While the assumptions of OW, i.e. multivariate normal errors with mean 0, were
not entirely met in the study of Chapter 3, the requirements were still approximately
fulfilled such that a transformation of the individual RSs’ errors did not make a
difference in the accuracy of the WHRS. Regarding the accuracy of the proposed
weighting scheme, the question can be answered positively: The OW estimation
method significantly outperformed, for all six pairs of RSs respectively, the two
individual RSs as well as an SA combination. MovieLens 1M, a well-established
benchmark data set in RS research, was used for the empirical evaluation.

The second part of the research question is RQ 1b: Can the weighting scheme based
on OW estimation lead to lower errors than the more robust modified OW estimate
ignoring error correlations on the benchmark data set?

This question can also be answered positively. While the modified OW estimate
ignoring error correlation led to lower errors than an SA combination, it was still
outperformed significantly by the OW estimate which considers the error correlation.

Finally, we address RQ 1c: Does the forecast combination puzzle, i.e. OW being
outperformed by more robust weighting schemes, occur in the combination of RSs on
the benchmark data set, and if so, for which number of ratings?

The forecast combination puzzle did show when repeating the experimental eval-
uation of the proposed weighting scheme on smaller subsets of the MovieLens 1M
data set containing 50% and 10% of the ratings, respectively. While overall, OW was
still the most accurate method, the differences in RMSE to SA and modified OW
decreased with the number of observations in the data set. For the subset with 10%,
OW was on average the best strategy, but was for one pair of RSs outperformed by
the more robust modified OW estimate as well as an SA combination.

In Chapter 4, the weighting scheme from Chapter 3 was extended in two ways,
namely (a) to be able to combine more than two RS algorithms at once, and (b)
to mitigate the bias which stems from estimating OW based on the individual RSs
fitted on a subset of available ratings, but then using the learned weights with the
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individual RSs fitted on all available ratings. The MovieLens 1M data set was again
used for evaluation, and it was shown that (a) the combination of k = 4 individual
RSs increases the boost in accuracy over the individual algorithms, and that (b) the
weight projection method led to smaller errors compared to the weighting approach
without projection.
Based on those results, we address the second research question of this thesis,

which is again subdivided into three parts. We start with RQ 2a: How does the
accuracy of an OW combination on the benchmark data set develop in relation to the
individual RSs when the number of RSs in the WHRS is increased from 2 to 4?
While the estimation of an OW vector of length k = 4 instead of 2 increases the

degrees of freedom and therefore also the margin of error, the extended weighting
approach was able to estimate very accurate weights, resulting in an even greater
increase of accuracy than in Chapter 3 over the individual RS algorithms. While in
Chapter 3, an OW combination of the two best RSs decreased the RMSE by 0.6%

compared to the best individual algorithm, in Chapter 4, an OW combination of all
four RSs decreased the RMSE by more than 1% in comparison to the best individual
method.
The second part of the second research question is RQ 2b: Assuming perfect ex-

trapolation, what is the performance improvement potential of a weight projection
approach over a conventional OW estimate?
This question can be answered with insights from Section 4.2.3. There, we an-

alyzed the improvement potential of the weight projection approach depending on
different characteristics of the data set and the individual RSs. We found out that
the improvement potential is larger when the error correlations between the individ-
ual RSs is lower, when their initial ratio of RMSEs is more similar, and when the
development curve of their RMSEs over the number of training observations is more
heterogeneous. Given favorable values of those parameters, the projection approach
can decrease the RMSE of a combination of k = 2 RSs by more than 10% of the
better individual RS, compared to the conventional estimation of OW.
This leads to RQ 2c: Does the projection of error covariances or OW lead to a

lower error than the conventional OW estimate on the benchmark data set?
In the empirical evaluation on the MovieLens 1M data set, the circumstances were

unfavorable due to high error correlations and similar RMSE developments. Still,
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the projection method consistently led to lower errors than the conventional method
of estimating OW, introduced in Chapter 3. The direct projection outperformed the
naive forecast by a factor of about 6 in terms of the difference to the best RMSE,
while for the projection of the error covariance, the factor was about 17.
Finally, in Chapter 5, the weighting method from Chapter 3 was adapted to be

used in a classification setting for predicting a given customer’s next purchase. The
weighting scheme was developed to calculate weighted averages of the classifiers’
estimated probabilities of an instance pertaining to each class. The Brier score
was used as the classification equivalent of the MSE, and it was shown on a real-
world data set from a large European telecommunications provider that the classifier
weighting approach led to a significantly higher accuracy score than all individual
classifiers as well as an SA combination.

Based on the results and insights from that study, we now address the third and
final research question of this thesis, which is subdivided into three parts as well.
We start with RQ 3a: Can the estimation of OW for the combination of regressors
into a WHRS be adapted to be used for the combination of classifiers?

This question can be answered positively. The OW estimation approach for
WHRSs introduced in Chapter 3 is adaptable to classification scenarios, as shown in
this chapter. Combining the probability predictions of multiple classifiers using the
Brier score as the equivalent to the MSE allows to learn weights which outperform
all individual classifiers as well as an SA combination significantly.

The second part of the third research question is RQ 3b: Does the minimization
of the Brier score of a WHRS comprised of classifying algorithms lead to an increase
of the accuracy score over all individual classifiers as well as an SA combination?

The answer to this question is also positive. While in general, the classifier with
the lowest Brier score is not guaranteed to have the highest accuracy score, the Brier
score proved to be an adequate proxy for the accuracy score in the experimental
evaluation of the proposed classifier weighting on the real-world telecommunications
data set: The method with the lowest Brier score had the highest accuracy score in
all cases. This holds true both for the individual classifiers and the WHRSs. The
minimization of the Brier score for estimating OW led to a significant increase in
the accuracy score.

Finally, we address the third and last part of the third research question, RQ 3c:
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Does the calibration of the classifiers’ probability estimates lead to an improvement
in estimating OW in a WHRS?
Comparing Table 5.1 to Table 5.2, it can be seen that the intermediate step of

calibrating all classifiers’ probability scores before combining them into a WHRS
does not lead to a significant improvement, although the accuracy score of the cali-
brated OW WHRS is slightly higher than that of the un-calibrated OW WHRS. Due
to the small difference, the disadvantages of the additional estimation step, which
introduces more degrees of freedom, outweigh the advantages.

6.2. Future Research

In this final section of the thesis, directions for future research are proposed. One
interesting alley for further work is the more detailed analysis of the bias-variance
trade-off in the weighted combination of RSs. In this thesis, it was shown that given
a sufficient number of ratings or purchases as an input, weights can be learned which
are very close to the out-of-sample best possible linear weighting vector. This was the
case for the combination of two, but also for four individual RSs, and even for seven
classifiers. The more models are combined, the higher the degrees of freedom and
thus the higher the model variance of OW in comparison to more robust weighting
schemes like SA or the modified OW estimate. However, it was also shown that
when the number of training observations decreases, the forecast combination puzzle
is visible as the advantage of OW over other weighting methods declines. Future
research could analyze the relationship between the size of the training set, the
number of RSs combined, and the relative performances of OW, SA, modified OW,
and OW using direct or covariance projection. In situations with less training data
or more combined models, the shrinkage of OW toward SA might further improve
accuracy and robustness. Linear shrinkage methods, i.e., linear combinations of OW
and SA weights, as well as non-linear approaches to shrink OW towards SA might
be explored.
Another direction for future work is the application of the proposed weighting

schemes in areas other than RS. The approach introduced in Chapter 3 was adapted
from the forecast combination literature. However, we are not aware of a weight
projection method such as the one proposed in Chapter 4, neither in WHRS research
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nor in the forecast combination or machine learning literature. While the technique’s
benefits and potentials were shown in a rating prediction context in this thesis, there
is no reason why it should not be able to increase the accuracy of an ensemble of
statistical or machine learning algorithms for other regression tasks.

Similarly, the classifier weighting scheme introduced in Chapter 5 can be used for
any classification task in order to maximize the accuracy of an ensemble of classifiers
by optimizing the weights with which the predicted class probabilities are combined.

Apart from that, an interesting direction for future studies is to test the approach
using other algorithms, e.g. implicit feedback CF methods (which would require
other data sets), and study whether it is also able to improve an ensemble of RSs in
terms of other metrics, such as ranking metrics which are often relevant in a top-N
recommendation setting.

Regarding the projection approach proposed in Chapter 4, future work might in-
vestigate the effect of this method when applied to different individual RS algorithms.
We expect further improvements with the projection weighting method if RSs have
lower error correlations. In addition, further improvements can be expected in case
the developments of the RMSEs over the number of training observations are more
heterogeneous among the components of the WHRS. This could also be achieved by
using a different data set containing additional independent input data.

The two proposed projection methods also have a bias-variance trade-off: The
covariance projection has a lower bias, but a higher variance, due to the higher
degrees of freedom when extrapolating the error covariance rather than just the
weight vector. Our supposition is that the direct projection approach might be
better suited in situations with smaller data sets or a higher number of individual
RSs due to its higher robustness. Even a combination of the two approaches, e.g.
via linear shrinkage, is worth exploring.

Finally, the idea of measuring optimal hyper-parameter values for increasing num-
bers of training observations and projecting those to the full size of the available
data set is not restricted to weight estimation in linear combination, but can also be
investigated for the selection of other parameters such as regularization or shrinkage
factors.
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Jahrer, M., Töscher, A., and Legenstein, R. (2010). Combining predictions for ac-
curate recommender systems. In Proceedings of the 16th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages 693–702.
ACM.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to
Statistical Learning, volume 112. Springer.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. In
Proceedings of the 3rd International Conference on Learning Representations.

Komiak, S. Y. and Benbasat, I. (2006). The effects of personalization and familiarity
on trust and adoption of recommendation agents. MIS Quarterly, 30(4):941–960.

Koren, Y. and Bell, R. (2015). Advances in collaborative filtering. In Ricci, F.,
Rokach, L., and Shapira, B., editors, Recommender Systems Handbook, pages 77–
118. Springer US, Boston, MA.

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for
recommender systems. Computer, 42(8):30–37.



110 Bibliography

Makridakis, S. and Hibon, M. (2000). The M3-Competition: Results, conclusions
and implications. International Journal of Forecasting, 16(4):451–476.

Malgonde, O., Zhang, H., Padmanabhan, B., and Limayem, M. (2020). Taming
the complexity in search matching: Two-sided recommender systems on digital
platforms. MIS Quarterly, 44(1a):48–84.

Mannes, A. E., Soll, J. B., and Larrick, R. P. (2014). The wisdom of select crowds.
Journal of Personality and Social Psychology, 107(2):276–299.

Niculescu-Mizil, A. and Caruana, R. (2005). Predicting good probabilities with su-
pervised learning. In Proceedings of the 22nd International Conference on Machine
Learning, pages 625–632.

Ning, X., Desrosiers, C., and Karypis, G. (2015). A comprehensive survey of
neighborhood-based recommendation methods. In Ricci, F., Rokach, L., and
Shapira, B., editors, Recommender Systems Handbook, pages 37–76. Springer US,
Boston, MA.

Oestreicher-Singer, G. and Sundararajan, A. (2012). Recommendation networks and
the long tail of electronic commerce. MIS Quarterly, 36(1):65–83.

Pazzani, M. J. (1999). A framework for collaborative, content-based and demo-
graphic filtering. Artificial Intelligence Review, 13(5):393–408.

Pazzani, M. J. and Billsus, D. (2007). Content-based recommendation systems. In
Brusilovsky, P., Kobsa, A., and Nejdl, W., editors, The Adaptive Web: Methods
and Strategies of Web Personalization, pages 325–341. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. (1994).
GroupLens: An open architecture for collaborative filtering of netnews. In Pro-



Bibliography 111

ceedings of the 1994 ACM Conference on Computer Supported Cooperative Work,
pages 175–186.

Ricci, F., Rokach, L., and Shapira, B. (2015). Recommender systems: Introduction
and challenges. In Ricci, F., Rokach, L., and Shapira, B., editors, Recommender
Systems Handbook, pages 1–34. Springer US, Boston, MA.

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2000). Application of dimension-
ality reduction in recommender system - a case study. Technical report, Minnesota
Univ Minneapolis Dept of Computer Science.

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001). Item-based collaborative
filtering recommendation algorithms. In Proceedings of the 10th International
Conference on World Wide Web, pages 285–295.

Smith, J. and Wallis, K. F. (2009). A simple explanation of the forecast combination
puzzle. Oxford Bulletin of Economics and Statistics, 71(3):331–355.

Timmermann, A. (2006). Forecast combinations. In Elliott, G., Granger, C. W. J.,
and Timmermann, A., editors, Handbook of Economic Forecasting, volume 1, pages
135–196. Elsevier.

Xiao, B. and Benbasat, I. (2007). E-commerce product recommendation agents: Use,
characteristics, and impact. MIS Quarterly, 31(1):137–209.

Xu, J., Benbasat, I., and Cenfetelli, R. T. (2014). The nature and consequences of
trade-off transparency in the context of recommendation agents. MIS Quarterly,
38(2):379–406.

Zadrozny, B. and Elkan, C. (2002). Transforming classifier scores into accurate multi-
class probability estimates. In Proceedings of the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 694–699.

Zhang, T. C., Agarwal, R., and Lucas Jr, H. C. (2011). The value of IT-enabled re-
tailer learning: Personalized product recommendations and customer store loyalty
in electronic markets. MIS Quarterly, 35(4):859–881.


	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction and Foundations
	Introduction
	Motivation
	Research Questions
	Structure of this Thesis

	Foundations
	Recommender Systems
	Recommender Systems Paradigms
	Weighted Hybrid Recommender Systems

	Robust Combination of Forecasts
	Statistical Forecast Combination
	The Bias-Variance Trade-Off in Forecast Combination



	Weighting Schemes for Hybrid Recommender Systems
	Applying Optimal Weight Combination in Hybrid Recommender Systems
	Motivation and Related Work
	Methodology
	Experimental Design
	Data Set
	Individual Recommender Systems
	Evaluation and Benchmarks

	Results and Discussion
	Data Preparation
	Experimental Results
	Results with Fewer Observations

	Conclusion

	Projection of Optimal Weights in Hybrid Recommender Systems
	Motivation and Related Work
	Methodology
	Model Assumptions
	Projection Methodology
	Improvement Potential

	Experimental Design
	Empirical Evaluation
	Data Preparation
	Experimental Results

	Discussion
	Conclusion

	Hybrid Recommender Systems for Next Purchase Prediction Based on Optimal Combination Weights
	Motivation and Related Work
	Methodology
	Model Assumptions
	Classifier Weighting Method

	Experimental Design
	Use Case and Data Set
	Individual Classifiers
	Evaluation and Benchmarks

	Empirical Evaluation
	Data Preparation
	Results

	Discussion
	Conclusion


	Finale
	Conclusion
	Summary of Contributions
	Future Research

	Bibliography


