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Featured Application: We present analysis strategies for soft X-ray transmission imaging data
focused on the study of chemical and morphological properties of cathode material for lithium
batteries.

Abstract: Energy-dependent full field transmission soft X-ray microscopy (TXM) is able to give a
full picture at the nanometer scale of the chemical state and spatial distribution of oxygen and other
elements relevant for battery materials, providing pixel-by-pixel absorption spectrum. We show
different methods to localize chemical inhomogeneities in Li1.2Mn0.56Ni0.16Co0.08O2 particles with
and without VOx coating extracted from electrodes at different states of charge. Considering the
3d(Mn,Ni)-2p(O) hybridization, it has been possible to discriminate the chemical state of Mn and
Ni in addition to the one of O. Different oxidation states correspond to specific features in the O-K
spectra. To localize sample regions with specific compositions we apply two different methods. In
the first, the pixel-by-pixel ratios of images collected at different key energies clearly highlight local
inhomogeneities. In the second, introduced here for the first time, we directly correlate corresponding
pixels of the two images on a xy scatter plot that we call phase map, where we can visualize the
distributions as function of thickness as well as absorption artifacts. We can select groups of pixels,
and then map regions with similar spectral features. Core-shell distributions of composition are
clearly shown in these samples. The coating appears in part to frustrate some of the usual chemical
evolution. In addition, we could directly observe several further aspects, such as: distribution of
conducting carbon; inhomogeneous state of charge within the electrode; molecular oxygen profiles
within a particle. The latter suggests a surface loss with respect to the bulk but an accumulation layer
at intermediate depth that could be assigned to retained O2.

Keywords: full-field transmission microscopy; chemical mapping; intercalation; batteries; stray light;
composition distribution; arctangent; ratio of normal variables

1. Introduction

The full field transmission Soft X-ray microscopy (TXM) available at ALBA’s MISTRAL
Beamline provides unique access to the chemical state, nanoscale spatial distribution, of
light elements-containing materials. The practically accessible energy range (390–800 eV)
permits to access among others, the O K-edge and the L-edges of several transition metals
(TMs). The reported 2D X-ray imaging of electrochemically discharged Li- and Na/O2
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battery cathodes probing the oxygen chemical state of the involved reaction products by a
full XANES spectrum per pixel is a good example of the TXM capabilities [1–5].

Moreover, intensive investigation in the past few years has demonstrated that oxy-
gen also has remarkable redox activity in many battery intercalation compounds [6–12],
involving the production of trapped oxygen [13,14] and simultaneous TM migration to the
lithium layer [15,16]. Oxygen is formally the anion in the host material and its oxidation is
often referred to as anion redox, in contrast to the more established and understood redox
chemistry of the TM cations. This supplemental activity from the anion provides additional
capacity to cathode material, and therefore larger energy density, which explains the strong
interest for these phenomena, beyond the fundamental point of view. The most studied
group of this class of electrode active materials is the lithium-rich and cobalt poor nickel,
manganese, cobalt oxide, with general formula Li[Li0.2M0.8]O2, where M represents one or
a few TMs.

The presence and the distribution of higher valence oxygen in the active material is of
critical relevance for a full understanding of the redox process in this system, and finally
guides the design of more stable and effective materials. This could not be unquestionably
achieved by diffraction techniques, while most X-ray Absorption Spectroscopy (XAS)
beamlines use hard X-rays and are highly effective for TMs but cannot directly access
oxygen. We have performed a combined hard and soft X-ray absorption study on uncoated
and VOx-coated Li[Li0.2Ni0.16Mn0.56Co0.08]O2 electrode materials at different states of
charge. This has allowed us to find evidence of an unexpected Mn reduction during charge
with the formation of high- and low-spin Mn(III) that is partially reverted to Mn(IV) during
discharge [17]. Quantification of the spinel environment formation and the average oxygen
stoichiometry and oxidation state during charge-discharge has been also provided [18].
In these studies, TXM across the O K and Mn L3 edges provided bulk information on
the different chemical species distributions on a particular Li[Li0.2M0.8]O2 cathode at the
nanometer scale (40 nm of space resolution) by focusing over isolated nanoparticles of
around 100–300 nm size. Herein, we present a focus on soft X-ray imaging, showing in
detail novel analysis approaches for improving quantification and representation of large
set of data represented by energy-dependent TXM images. This adds to the techniques we
already presented previously with application to alkali-oxygen cathodes [1]. In particular,
here we propose a data correction to extend the absorbance linearity range, and a phase
map representation, a tool to precisely isolate pixels and regions of the sample with different
spectral shape, where target spectral features are enhanced/suppressed. From them, 2D
maps of different chemical environments or phases are obtained, which helps to visualize
the electrode material and analyze its homogeneity.

2. Materials and Methods
2.1. Sample Preparation

Li[Li0.2Ni0.16Mn0.56Co0.08]O2 was prepared by a coprecipitation method and coated by
a VOx layer as described in detail previously [19,20]. Electrodes were prepared by casting
slurries of composition 85% active material, 10% conductive carbon black (C-Nergy, Super
C 45, Imerys), and 5% binder (CMC; DOW Wolff Celulosics, Walocel CRT2000 PA12), onto
25 µm Al foil and assembled in electrochemical cells as detailed earlier. Several cells were
driven to different states of charge along the galvanostatic cycle test at a charge/discharge
rate of C/10 (Figure 1). The respective cells were dismantled inside an Ar filled glovebox,
the cathodes were extracted and rinsed in dimethylcarbonate (Sigma-Aldrich, Germany).
Samples were scratched off from the collector and deposited on carbon-coated Au TEM
grids. Dimethylcarbonate was used to wet the sample powder and improve its adhesion
on the TEM grid. The grids were then stored under Ar in cryogenic vials and transferred
to the microscope in cryogenic condition (T < 110 K) under N2 vapor to avoid atmospheric
contamination.
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Figure 1. Labeling of the set of samples used in this study, represented as charge points in the
corresponding galvanostatic charge-discharge cycle. Each point corresponds to an uncoated sample
(e.g., P01) and a VOx-coated one (e.g., P01VC).

2.2. Data Acquisition and Treatment

Energy-resolved soft TXM was performed at the MISTRAL beamline of the ALBA
Synchrotron. For full details on the acquisition and analysis, please refer to previous
publications [17,18].

Inside the microscope, samples were kept at cryogenic temperature (T < 110 K) and
under high vacuum conditions during all the measurements. The cryogenic temperature
helps minimizing radiation damage [1]. Transmission images (2 s exposure time, effective
pixel size 10 nm, field of view 10 µm × 10 µm) were collected in step mode, varying the
energy across the O K-edge and Mn L-edge with a variable spectral sampling (0.5−0.1 eV),
depending on the energy width of the investigated features. A preliminary calibration
of the absolute value of the energy was performed before the experiment using standard
references samples at different energies along the available energy range of the beamline
(CaCO3, N2, TiO2, Mn2O3, and Fe2O3). The objective zone plate lens (outermost zone
width of 25 nm, 1500 zones) and the back-illuminated CCD detector (Pixis XO by Princeton
Instruments with 1024 × 1024 pixels and 13 nm pixel size) positions were automatically
adjusted to maintain the sample in focus and constant magnification (1300×). To obtain
transmittance, two images are acquired at each energy, the transmitted intensity I and the
incident intensity I0, which we call Flat Field. The obtained energy stack images are aligned
taking as reference the first image.

2.3. Stray Light Correction and Normalization

A full field X-ray microscope presents a significant level of background light (stray
light) from higher-order diffraction originated by the used zone plate. The consequence is
a significant damping of absorbance, with an underestimation of absorbance larger than
7% and a saturation below absorbance =1.2 at the O K-edge. This leads to significant
deformation of spectra with compression in the intensity direction and a limitation to
more quantitative determinations. To correct for this effect, we determined a procedure
that considerably improves the absorbance linearity by determining the stray light and
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introducing it to a general formula that we apply to calculate absorbance from I and I0 on
the O-K region:

A = −log(1.0733 ∗ (I/I0)− 0.0733) (1)

The hypothesis and the determination of this equation are described in detail in
Appendix A.

In order to easily compare the peak intensities in the same absorption edge correspond-
ing to a different thickness in the sample and hence to a different scale in the absorbance
values, a further normalization is performed with respect to the total absorbance varia-
tion across the selected edge. In addition, the contribution of the pre-edge absorption is
subtracted. The following total formula is generally used:

Anorm(E) =
Am(E)− Apre(E)

Apost(E)− Apre(E)
(2)

where Apre(E) and Apost(E) are the line fit in the pre- and post-energy range respectively
and the pixels coordinates x, y were omitted.

3. Results

Spectra integrated over the whole field of view for the set of samples are reported in
Figure 2. To only consider reliable absorbance we selected valid pixels with absorbance at
the measured maximum B between 0.15 and 1.08, i.e., from image regions with sample and
with an expected error below 10%; therefore, we consider their shape highly accurate. A
measurement without spatial resolution would require a thin and highly homogeneous
sample to warrant the same quality. The prepeaks in O-K spectra include transitions to
empty oxygen 2p states that in the case of bonding with a TM are hybridized with its
d-states. These peaks result as the most intense and sharp feature, and as shown previously
their envelope reproduces closely the shape of Mn 3d states, which indeed is the most
abundant TM in the active material [17]. To describe their evolution along the first charge-
discharge we identified three main components: A, B, and C, centered at 528.1 eV, 529.1 eV,
and 530.3 eV, respectively. A is attributed to Ni(IV), formed upon initial Li deintercalation,
before P03. B corresponds to the main Mn(IV) peak, while C emerges during the oxidation
plateau at 4.5 V and has been attributed to both the formation of Mn(III), as evidenced by
Mn-K edge XAS [17] and trapped molecular O2, as recently discovered [14]. Intensities of
molecular oxygen mainly overlap with other features, but the observed evolution between
P03 and P05 is compatible with its presence. In fact, if corrected to our energy scale, peak
C overlaps perfectly with transitions to O2 π* states, and the increased intensity around
540 eV corresponds well to O2 σ* reported in literature [21]. We suggested that Mn(III)
is stabilized by the interaction with molecular O2 [18], so that the two components are
spatially highly associated in feature C within our resolution. The coating introduces a
remarkable delay in the spectra evolution by charging, particularly in the Ni oxidation at
P03 and in the growth of peak C at P04.
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Figure 2. Normalized O-K spectra obtained from the average intensity of valid pixels in the field
of view. Coated and noncoated samples of the same point of charge have been grouped to favor
comparison. Vertical blue bars mark the position of the three components A, B, C considered in
our analysis, while the “O2” labels denote the position of the main features of molecular oxygen
according to Ruckman et al. [21]. Note that the O2 π* feature overlaps with component C.

An example of the transmission images relative to the spectra is reported in Figure 3
for the pristine VOx-coated sample. Figure 3a,b represent respectively the absorbance
averaged in the flat O-K pre-edge region (i.e., immediately before the absorption prepeaks)
and in the C region, where an absorption jump higher than one is present only in a minor
fraction of the sample area. All components absorb similarly before the edge, but at the
O prepeaks energy, the absorbance is much stronger only for the active material, which
contains oxygen-transition metal bonds. The point-by-point difference is more obvious
in Figure 3c, where these two maps are overlapped in a dual channel image, with red
(pre-edge) and yellow (prepeak) colors. The red color prevails where only super C carbon
black is present, in a finer texture, while most of the area has different orange tonalities that
can be attributed to carbon mixed with coarser oxide particles. Figure 3d is the combination
of the oxide (Figure 3b, yellow) with the V signal (green) of the coating. Indeed, smaller and
isolated particles show more vivid green tonalities than larger aggregates where (surface)
vanadium contribution is smaller. The fine red colored particles do not contain vanadium
and are more difficult to recognize in Figure 3d.

A full-field transmission spectromicroscopy measurement consists in acquiring several
transmission images varying the energy across the absorption edge of interest, the oxygen
K edge in the present case. After normalization, alignment, and conversion to absorbance, a
full X-ray absorption spectrum (XAS) can be extracted at each image pixel, usually resulting
in ∼1× 106 single pixel XAS (a typical field of view contains 1024 × 1024 pixels). This
large number of spectra complicates the extraction of scientifically meaningful information
and efficient and reproducible data processing requires some level of automatization. To
localize sample regions with specific compositions we apply two different methods. In
the first, we produce maps of ratios between the components that clearly highlight local
inhomogeneities. In the second method, we produce phase maps, consisting of the scatter
plot obtained by directly correlating these components pixel by pixel on a xy graph, and
then mapping regions with comparable spectral features. With this second approach
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absorption artifacts are more easily recognized. Core-shell distributions are clearly shown
in these samples.
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Figure 3. Images obtained from the pristine Vanadium-coated sample. (a) absorbance map averaged
in the O-K pre-edge energy range (526.3–527.2 eV); (b) absorbance map averaged in the O-K prepeak
energy range (C peak region, 530.3–530.1 eV); (c) composite image with following channels: red (a),
and yellow (difference b-a); (d) composite image from the V-L region (516.8–525.9 eV), green channel,
and (b), yellow channel. The background from the pre-edge has been subtracted from both oxide
and vanadium components. Insets in (c,d) show a detail at increased magnification.

A statistically more proper representation of component ratio is using the arctangent
of the ratio, as explained in Appendix B. When plotting distributions of ratio values,
skewed shapes are obtained in general, while the arctangent allows avoiding intrinsically
asymmetric representations of distributions and better discrimination of compositional
heterogeneities that are reflected in deviations from the normal Gaussian shape. Figure 4
shows the detail of C vs. B maps and corresponding histograms that allow analyzing the
spectra heterogeneity on the sample. As B is the most intense and dominant component
of the sample, we use it to normalize changes in C and remove thickness effects. The
choice of a nearby component for normalization reduces the impact of small misalignments
and possible sample contractions that may then produce artifacts. The spectral variations
along the charge-discharge cycle are reflected by the shifts in the average value, which
increases slightly from P01 to P03, corresponding to the sloping part of the profile, where
the main process is the Ni oxidation, and more strongly with P04 and further at P05, where
the anion redox is expected to contribute in overlap to the partial Mn reduction, and
component C emerges. With discharge the component C withdraws partially, leading to
the decreased ratio. The delay caused by the VOx coating indeed is also evident at P04,
because C does not move before this stage. The peak width also increases considerably at
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P04, particularly with the uncoated sample. This looks not related to the value of the ratio,
because the distribution becomes sharper again at P05. Not only can we infer an increased
composition heterogeneity in this sample. At a closer look, the uncoated P04 distribution
also becomes quite asymmetric, with increased intensity on the side of lower C/B ratios.
This seems related to a larger relative number of regions with lower O2 content, in some
regions of the bulk, and generally at particle edges, which could be seen as a possible
confirmation of the escape of molecular oxygen from macroscopic cracks or damages
in the particles. The smaller width for the corresponding coated sample corresponds
to a more homogenous composition, which could be mainly attributed to the delayed
delithiation of the active material. In fact, both distributions are quite similar at the fully
deintercalated sample P05. Nevertheless, looking at P08 the coated sample seems to show
slightly poorer reversibility and a more irregular distribution of areas with different colors.
The uncoated sample instead shows a more ordered arrangement, from the edge to the
bulk, of lower-higher-lower ratio, which seems to correspond to concentric layers with
different thickness. As proposed by House et al. the surface layer could correspond to
a densified, oxygen-poor region [14], while the bulk should have an evenly distributed
concentration of trapped oxygen. However, we notice also a layer of high concentration of
oxygen that may accumulate at the interior of the densified shell, confirming that the shell
may act as a barrier for further oxygen release.

It is interesting also to follow the evolution of the A/C ratio (Figure 5). This is more
complex than the previous because of the asynchronous evolution of A and C components.
The larger width indicates the heterogeneity of the metal oxidation, already present in the
pristine P01, which becomes substantial at P03, particularly in the coated sample, where A
and C are still both low, in contrast to the uncoated where A is already high. However, the
following distributions are remarkably sharp, indicating that increases in oxygen content
are spatially correlated with a higher Ni oxidation.

We propose an alternative representation as phase maps, based on the comparison of
the pixel-by-pixel absorbance collected at two particular energy values. The distributions
expressed as ratios can be resolved by plotting one component vs. the other, obtaining
scatter plots, where different ratios or a different thickness can be systematically selected
in the field of view. Pixels with different absorbance ratios of the two selected peaks will
be easily identified. For instance, in Figure 6, the phase map for P05 is reported for peak
C (~530.3 eV) versus the absorbance value in the pre-edge region (~523.0 eV). Because of
the great number of pixels (≈106) the density of point is reported using different colors.
The scatter plot has a characteristic plume shape, with the spot at the origin corresponds to
background pixels outside any object. Larger sample thickness will correspond to points
more distant from the origin. Two populations of pixels distributed along two lines with
different slope are clearly visible (Figure 6a). Selecting the pixels corresponding to the
small slope line (Figure 6b), i.e., small oxygen content, we are able to select regions in the
sample where instead the carbon additive is abundant (Figure 6c).

Alternatively, pixels selection on the phase map itself will allow the reproducible
and automatic selection of pixels corresponding to a different thickness as reported for
P01, P05 (uncoated), and P05VC (coated) measures in Figures 7–9, respectively. Scatter
representation of ratio between main spectral components C and A (a) is cut at zones of
different thickness. The spatial localization of each zone is then represented in (b), with
different colors, while in (c) the corresponding normalized spectra are shown, including a
zoom on the prepeaks O-K edge region. With the previous method we compared spectral
component ratios that indirectly reflect spectral changes but cannot detect possible local
deviations from the general variants observed at a first inspection. In this case, we instead
directly obtain average spectra that can be compared entirely. For P01 the progression of
the concentric zones from border to bulk shows a slight shift towards higher energy but
no significant change in the peak ratio. Instead, P05 has an evolution that more clearly
demonstrates indications of Figure 4. Peak C is relatively low at the edge, increases in the
intermediate zone, and then decreases again towards the bulk. The zone of component
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A (~528.0 eV) also reflects this less/more/less charged evolution, appearing more like
a shoulder in the intermediate spectra, and in agreement with the correlation A vs. C
suggested by Figure 5 above. The evolution at corresponding coated P05VC (Figure 9)
instead suggests the highest accumulation of molecular oxygen at the edge, decreasing
towards the bulk.
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plotted. Two populations of pixels with different oxygen abundance with respect to the total material thickness are clearly
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pink in (c). The scale bar corresponds to 1 µm.
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Figure 7. Data extracted at the O-K edge of the pristine Li1.2Mn0.56Ni0.16Co0.08O2 electrode material (P01): (a) Scatter
representation of ratio between main spectral components C and A (at 530.3 eV and 528.1 eV), each point representing a
pixel with a specific ratio value. Because of the great number of pixels (≈106) the density of point is reported using different
colors. Using the scatter plot, different ratios can be systematically selected in the field of view. Their spatial localization is
then represented in (b), while in (c) the corresponding normalized spectra are reported, including a zoom on the prepeaks
O-K edge region is shown with clear different peak intensities features.
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4. Discussion

In this report, we presented different strategies to analyze and represent data obtained
from energy-dependent full-field transmission microscopy at the O-K edge on intercalation
oxides. Given the substantial amount of stray light present in the MISTRAL microscope
(above 7% of the incident light), it is important to apply a correction as the one explained
in Appendix A and establish appropriate intervals of sufficient absorbance reliability if
quantitative analysis is needed. This is particularly relevant with TM oxides, where the
hybridization of metal d- and oxygen p- states generates strongly absorbing prepeaks that
practically limit the observable thickness to a few hundred nm, easily surpassed by typical
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secondary particles of practical electrode materials. Nevertheless, in the present case a
significant percentage of the field of view could be optimally imaged from LRNMC without
the need for specific sample preparation. From differential images it is possible to filter off
components such as background or nonactive material but not active material components
as previously done with lithium and sodium oxides discharged on cathodes of aprotic
metal air batteries [2,3]. In this case, the components do not appear as steps on an increasing
absorption edge like a cumulative curve but are close to each other and localized in the
preabsorption peak as shoulders or individual peaks. Without a proper deconvolution, the
components are not strictly independent, but we use them for a qualitative rapid detection
of spectral changes over the sample field of view. We presented here two alternative
methods to make use of these components. In the first, their ratio (once the pre-edge
background is subtracted from each of them) is mapped directly. If absorbance linearity
is ensured the map is thickness-independent and is essentially sensitive to changes of the
chemical environment. To ensure a linear distribution of points an arctangent function has
been proposed, as detailed in Appendix B. This allows extracting unskewed representations
of the chemical distributions, and widths between different combinations of components or
different samples can be compared. In the second method, presented here for the first time,
phase maps in the form of scatter plots directly represent one component vs. the other.
Composition and thickness are disentangled, so that it is possible to recognize saturations,
select specific thickness or composition ranges, and localize them on the field of view, so
that full spectra can be extracted from those sample regions. It is important to remark that
this selection method for regions of interest may bias the resulting spectrum, particularly
in presence of random deviations from the average spectrum, as in the case of noisy, weak
absorbing pixels. It is therefore always important to check that the selected regions of
interest have meaningful shape.

By applying these methods on our sample set we could highlight a possible uneven
distribution of trapped oxygen molecules in the primary particles, confirming recent
suggestions [14] of oxygen release from a surface shell that is eventually densified and
retains further oxygen escape. In addition, between these two regions we detect a layer
of increased oxygen concentration that may represent a front of these molecules in face of
the proposed surface barrier. These gradients are less evident with a VOx coating, which
might be considered a confirmation of the improved retention capability of the coating.
However, chemical distributions are more irregular and reversibility is actually poorer. This
suggests that a fine control of the coating morphology is necessary to obtain a substantially
improved reversibility and cycle life.
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Appendix A. Stray Light Correction

A transmission microscopy measurement consists in acquiring the incident intensity
on sample I0 and the transmitted intensity I emerging from the sample on a two dimensional
detector, typically a CCD camera. The transmission T at each pixel is then calculated as
their ratio:

T(x, y) =
I(x, y)
I0(x, y)

(A1)

It is generally considered that a transmission measurement is quantitative because it
can be directly related to the properties of the sample via the Beer–Lambert law [22,23]:

T(x, y, E) =
I(x, y, E)
I0(x, y, E)

= e(−
∫

u(x,y,E)dt)= e(−
∫

σ(x,y,E)n(x,y)dt) (A2)

where µ is the linear absorption coefficient and the integral is extended over the sample
thickness t. From Equation (A2) the absorbance for each pixel can be calculated from the
measured transmission as

A(x, y, E) ∗ ln(10) = −ln(T) = µt = σnt (A3)

where µ was rewritten as the product of the photoelectric absorption cross section σ and
the number of atoms or molecules per unit volume n. Depending on the sample chemical
composition, σ and therefore A will have peaks maxima around specific energy values,
which can be predicted using various different theoretical approaches [24,25] and that
allow in principle to define the sample chemical state with spatial resolution.

This information is available at MISTRAL, a state-of-the-art Fresnel Zone Plate (FZP)
based full field transmission soft X-ray microscope installed at one of the bending magnet
of the Alba Light Source [26], where the energy can be moved across the absorption edges
of various interesting elements between 300 eV and 800 eV and chemical maps with a
spatial resolution of few tents of nanometers can be obtained, both for biological and
nonbiological samples [2,27–29]. The main limit of the technique is the small range of
accessible sample thickness and concentration, due to the small X-ray penetration depths
in the soft energy range and the resulting failure of the Beer–Lambert law. This limitation
is even stronger if we consider the instrumental deviations from Equation (A2), due to the
way the transmission is acquired in any real full field soft X-ray transmission microscope.
Indeed, at each intensity acquisition, also an unknown background, originating mainly
from the unused -1 order of the FZP lens [30] is acquired. In the following, we will use the
base 10 both for the exponential and the logarithm operations. The measured transmission
Tm and the measured absorbance Am taking the background B into account have to be
rewritten as:

Tm(x, y) =
I(x, y) + B(x, y)
I0(x, y) + B(x, y)

6= T(x, y) (A4)

Am(x, y) = − log(T) 6= A(x, y) (A5)

The presence of the background further limits the accessible range of thickness because
only if it is fully negligible with respect to the measured intensities the validity of Equation
(A1) is kept. If it is not the case, the spectral shape will appear distorted with essentially
the high-intensity peaks appearing flattened [31] (see Figure A1). This could be a problem
when quantitative estimation based on the spectral shape has to be performed. Here we
focus on oxygen K-edge measurements realized on Li-rich cathodes particles at various
states of charge and propose a method, based on some simplifications, that allow us to
estimate the background in Equation (A4) and hence recover the real spectral shape A(E).
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Figure A1. Calculated measured absorbance (red line) in the presence of a background equal to 7.3%
of the incident intensity as a function of the ideal absorbance (i.e., K = 0, blue line). The underestima-
tion increases for higher values of the absorbance, i.e., for smaller values of the transmitted intensity.
The corresponding deviation (difference theoretical absorbance—measured absorbance) is reported
as dot orange line. The variation of the measured absorbance using the maximum and minimum
value of K within the error bar is also reported in yellow.

Assuming a background proportional to the incident intensity:

B(x, y) = κ I0 (A6)

we can rewrite (4) as:

Tm(x, y) =
I(x, y) + B(x, y)
I0(x, y) + B(x, y)

=
T(x, y) + κ

1 + κ
(A7)

In a reference sample, i.e., a sample with a known absorption spectrum, in absence of
effects related to the beam polarization and the crystals orientations [32], the absorption
has to be the same everywhere except for a constant factor depending on the thickness (see
Equation (A1)):

Tthick
m (x, y) ∝ Tthin(x, y) ; Athick

m (x, y) ∝ Athin(x, y)

Let us rewrite then Equation (A5) explicitly for a thick region on the reference sample:

Tthick
m (x, y) =

Tthick(x, y) + κ

1 + κ
=

c× Tthin(x, y) + κ

1 + κ

In a thin region I(x, y)� B(x, y) and therefore Athin(x, y) ∼= Athin
m (x, y). This allows

us to write:

Athick
m = −log

(
Tthick

m

)
= −log

(
c× 10−Athin(x,y) + κ

1 + κ

)
∼= −log

(
c× 10−Athin

m (x,y) + κ

1 + κ

)
(A8)
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Measuring the absorbance both in a thick and in a thin region of a reference sample we
can then estimate the two parameters c and κ fitting Athick

m as a function of Athin
m . This has been

done on a MnO2 reference sample particle. The fit and its result are reported in Figure A2. In
the inset, the selected MnO2 particle with the thin region in red is also reported. The thin
region of the particle was selected using a measured absorbance threshold <0.43 on the
maximum absorbance peak (≈529.1 eV). At this value of the measured absorbance (0.43),
the deviation with respect to the theoretical one was assumed to be small enough to be
neglected (see Figure A2).
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pands towards bigger values the accessible measurable absorbance, as expected. Look-
ing at Figure A3, we could speculate that if the linearity between the two components is 
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maintained at least up absorbance ~1.5 after the correction is applied. It is easy to verify 
that this corresponds to expanding the accessible thickness by 30%. 

Figure A2. Measured thick absorbance as a function of the measured thin absorbance. The fitted
curve is shown with a red line. Fit parameters and corresponding results are also reported. In the
inset in the upper right corner, the MnO2 particle from which the absorbances were extracted is
shown with the thin region in red. The scale bar is 200 nm.

Following this simple model, the background in the measured intensities is about
7.3% the incident intensity on the sample. Using this estimation, we have corrected
all the measures reported in this work. The comparison of the phase map with and
without background correction is reported in Figure A3 for P05 data. The absorbance
peak value at ~530.3 eV versus the one at ~528.1 eV is plotted using a color-coded scale
to represent the corresponding density of points in different regions of the plot. It is clear
that the background correction redistributes the plot values along an almost straight line
and expands towards bigger values the accessible measurable absorbance, as expected.
Looking at Figure A3, we could speculate that if the linearity between the two components
is maintained up to absorbance ~1 without the background correction, this linearity is
maintained at least up absorbance ~1.5 after the correction is applied. It is easy to verify
that this corresponds to expanding the accessible thickness by 30%.
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Figure A3. Effect of the background correction on the phase map for P05 data where the absorbance peak value at ~530.3 eV
versus the one at ~528.1 eV is plotted. (a) Phase map for the noncorrected spectrum and (b) for the background corrected
one. In (b) plot values are redistributed on an almost straight line and on a bigger absorbance values range.

Appendix B. Ratio Correction

When representing the correlation between two values that are assumed proportional,
such as two components of spectra from the same compound in different thicknesses, the
simple ratio between these two components has a complex distribution [33] with skewed
shape. This can be understood graphically in Figure A4a, because A/C can be represented
as the projection of the data point on the vertical line of the Cartesian diagram at unity
x value. The projection of a normally scattered distribution will result skewed. If we
instead project the points on the unit circumference, the distribution will retain its Gaussian
shape. An example of this simple transformation is shown in Figure A4b, comparing the
histograms of A/C and of atan(A/C) ratio maps. Symmetry has significantly improved after
applying the arctangent to the ratio. In this way, a real compositional heterogeneity will be
easier to appreciate in the distribution.
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