KIT | KIT-Bibliothek | Impressum | Datenschutz

Curiosities regarding waiting times in Pólya’s urn model

Henze, Norbert ORCID iD icon 1; Holmes, Mark
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Consider an urn, initially containing b black and w white balls. Select a ball at random and observe its colour. If it is black, stop. Otherwise, return the white ball together with another white ball to the urn. Continue selecting at random, each time adding a white ball, until a black ball is selected. Let T$_{b,w}$ denote the number of draws until this happens. Surprisingly, the expectation of T$_{b,w}$ is infinite for the “fair” initial scenario b = w = 1, but finite if b = 2 and w = 10$^9$. In fact, E[Tb,w] is finite if and only if b ≥ 2, and the variance of [T$_{b,w}$] is finite if and only if b ≥ 3, regardless of the number w of white balls. These observations extend to higher moments.


Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 2346-8092, 2588-9028
KITopen-ID: 1000131429
Erschienen in Transactions of A. Razmadze Mathematical Institute
Verlag Elsevier
Band 174
Heft 2
Seiten 149-154
Bemerkung zur Veröffentlichung in press
Schlagwörter Inverse Pólya distribution; Pólya’s urn model; Waiting time
Nachgewiesen in Scopus
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page