KIT | KIT-Bibliothek | Impressum | Datenschutz

Time-dependent electromagnetic scattering from thin layers

Nick, Jörg; Kovács, Balázs; Lubich, Christian

Abstract:

The scattering of electromagnetic waves from obstacles with wave-material interaction in thin layers on the surface is described by generalized impedance boundary conditions, which provide effective approximate models. In particular, this includes a thin coating around a perfect conductor and the skin effect of a highly conducting material. The approach taken in this work is to derive, analyse and discretize a system of time-dependent boundary integral equations that determines the tangential traces of the scattered electric and magnetic fields. In a second step the fields are evaluated in the exterior domain by a representation formula, which uses the time-dependent potential operators of Maxwell’s equations. A key role in the well-posedness of the time-dependent boundary integral equations and the stability of the numerical discretization is taken by the coercivity of the Calderón operator for the time-harmonic Maxwell’s equations with frequencies in a complex half-plane. This entails the coercivity of the full boundary operator that includes the impedance operator. The system of time-dependent boundary integral equations is discretized with Runge–Kutta based convolution quadrature in time and Raviart–Thomas boundary elements in space. ... mehr


Volltext §
DOI: 10.5445/IR/1000131458
Veröffentlicht am 13.04.2021
Cover der Publikation
Zugehörige Institution(en) am KIT Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 04.2021
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000131458
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 39 S.
Serie CRC 1173 Preprint ; 2021/14
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
Schlagwörter Maxwell’s equations, time-domain scattering, generalized impedance boundary conditions, time-dependent boundary integral equation, convolution quadrature, boundary elements, stability, error bounds
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page