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Abstract

We demonstrate the use of the anisotropy of magnetic susceptibility (AMS)

method to determine the orientation of the principal tectonic strain directions

developed during the formation of the West Spitsbergen Fold-and-Thrust

Belt (WSFTB). The AMS measurements and extensive rock-magnetic studies

of the Lower Triassic rocks reported here were focused on the recognition

of the magnetic fabric, the identification of ferromagnetic minerals and an

estimation of the influence of ferro- and paramagnetic minerals on magnetic

susceptibility. At most sites, the paramagnetic minerals controlled the magnetic

susceptibility, and at only one site the impact of ferromagnetic minerals was

higher. The AMS technique documented the presence of different types of

magnetic fabrics within the sampled sites. At two sites, a normal (Kmin

perpendicular to the bedding) magnetic fabric of sedimentary origin was

detected. This was associated with a good clustering of the maximum AMS

axes imposed by tectonic strain. The Kmax magnetic lineation directions

obtained here parallel the general NNW�SSE trend of the WSFTB fold axial

traces and thrust fronts. The two other investigated sites possessed mixed and

inverted fabrics, the latter of which appear to reflect the presence of iron-

bearing carbonates.

The utility of AMS as a complementary method to estab-

lish features such as palaeocurrent directions or as

proxies for determining tectonic strain orientations in

rocks is now well established (e.g., Borradaile & Henry

1997; Parés et al. 1999). The AMS method, as has been

demonstrated by Hrouda & Janak (1976) and Lee &

Angelier (2000), is capable of detecting tectonic strains

ranging from those only weakly through to those ductily

imposed in deformed rocks. Magnetic fabric studies have

also been applied to better understand a number of

fold-and-thrust belts (Saint-Bezar et al. 2002; Louis

et al. 2006; Robion et al. 2007; Vasiliev et al. 2009;

Weil & Yonkee 2009; Maffione et al. 2015). In this study,

the Hornsund�Sørkapp area in the southern part of the

WSFTB was selected for the first time as a target for

AMS investigation. Although it is generally agreed that

the WSFTB has much in common with other fore-

land propagating fold-and-thrust belts, the timing and

mechanics, including the strain trajectories, are generally

controversial as can be gathered, for example, from a

comparison of the works by Bergh et al. (1997) and

Manby & Lyberis (2001).

In the following sections, the geological setting of the

sample sites will be outlined, followed by a description of

the methods employed and the results obtained. These

studies are based on the analysis of oriented samples. The

AMS investigations will focus firstly on the identification

of magnetic minerals that govern the AMS of the

rock. The obtained AMS ellipsoids will then be compared

with the published tectonic strain directions in the target

area.

Geological setting and sampling

The NNW�SSE-trending WSFTB (Fig. 1) extends over

300 km in length from Kongsfjorden in the north to
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Sørkapp (South Cape) in the south and is between 100

and 200 km wide in an east�west direction (e.g., Lepvrier

2000; Manby & Lyberis 2001). It is generally agreed that

the WSFTB is of thick- to thin-skinned character when

traced from west to east, with uplifted basement blocks

along its western margin that give way eastwards to a

Late Palaeozoic�Mesozoic cover recording east- and north-

east-directed folding and thrust faulting (Birkenmajer

1981; Dallmann et al. 1993; Braathen & Bergh 1995;

Manby & Lyberis 1996; Bergh et al. 1997; Harland 1997;

Tessensohn 2001; Poblet & Lisle 2011).

While it is beyond the scope of this paper to evaluate

the competing models that have been proposed to

account for the origin of the WSFTB, they are considered

in some detail by the Case 1 Team (Tessensohn 2001).

Suffice it to say here that there are two main models. The

first model appeals to a dextral transpression mechanism

in the CHRON 24 (56 Mya)�CHRON 13 (35 Mya) interval

along Hornsund and DeGeer Fault zones during the

opening of North Atlantic and Eurasian ocean basins

(Dallmann 1988, 1992; Andresen et al. 1992; Braathen &

Bergh 1995; Harland 1997) to account for the origin of the

WSFTB. A subset of this model (Maher & Craddock 1988)

invokes a decoupling of the post-CHRON 24 deforma-

tion so that the dextral strike�slip component was taken

up by the major offshore faults (e.g., the Hornsund

Fault), while onshore the deformation was imposed by

compressional component orthogonal to the Svalbard

Margin. With the exception of the SEDL (Maher et al.

1997), no other onshore margin-parallel strike�slip faults

that might be expected in support of a transpression

model have been identified. Indeed, the evidence for the

proposal that the SEDL (Maher et al. 1997) lineament

represents such an onshore fault zone is questionable in

light of extensive field data presented by Manby & Lyberis

(1996) and Tessensohn (2001). Leever et al. (2011), on

the other hand, disregard the latter field-based studies

and favour instead the SEDL as representing a major

onshore strike�slip fault in their analogue modelling of

the WSFTB.

An alternative two-stage model, based on a stress

tensor analysis of the entire WSFTB was first proposed

by Lyberis & Manby (1993a, b) and later by Manby &

Lyberis (2001). These authors, on the basis of relative

plate motion considerations (e.g., Srivastava & Tapscott

1986), suggest that as much as 200 km of Greenland�
Svalbard orthogonal convergence was triggered by the

opening of the Labrador Sea-Baffin Bay. This break-up,

which has been modelled at 88 Mya, was followed by

seafloor spreading at 70 or 63 Mya (Larsen et al. 2009;

Hosseinpour et al. 2013). Much of the intra-continental

deformation within the North Greenland�Canadian

Arctic Eurekan and WSFTB regions can be attributed

to the anti-clockwise rotation of the Greenland craton

with respect to North America (e.g., Roest & Srivastava

1989; Jackson & Gunnarsson 1990; Srivastava & Roest

1999; Müller et al. 2008) in the above-mentioned time

interval.

Sampling location

The target area is situated in southern Hornsund�
Sørkapp sector of the WSFTB which exhibits a typical

west Spitsbergen pattern of deformation in the form of

east�north-east vergent folds and thrusts incorporating

the Late Paleozoic�Mesozoic successions. The extent to

which the western Proterozoic�Early Paleozoic base-

ment blocks exhibit the same degree and character of

Eurekan deformation is still a matter of debate (e.g.,

Dallmann 1992; Tessensohn 2001; Thiedig et al. 2001;

Michalski et al. 2012).

Samples for AMS studies were collected from the Lower

Triassic Vardebukta Formation (lower part of Sassendalen

Group). Lithologically, this formation is represented in

the study area by non-siliceous, grey coloured, variably

organic-rich shales, laminated siltstone, mudstones and

fine-grained sandstones (Birkenmajer & Trammer 1975).

The samples were retrieved from the more competent

siltstones and mudstones with small amount of carbo-

nates of the Hornsund Vardebukta Formation.

The AMS was measured for four sites located in dif-

ferent parts of the Hornsund�Sørkapp sector of the WSFTB

(Fig. 2). Two of the sampled sites*sites 1 and 2 (also

referred to as COND1 and COND2; Fig. 2a)*were located

on the southern and south-western slopes of Condevin-

toppen nunatak. The other two sites*site 3 (CYP) and site

4 (BAU)*were located, respectively, on the southernmost

tip of Treskelen Peninsula and on the north-west slopes of

Bautaen (Fig. 2b). Bedding orientations in those sites are

as follows: COND1: 249/42 (dir/dip), COND2: 71/160 and

77/165, BAU: 53/153 and CYP: 79/30. The sampled

tectonic structures were first identified by Birkenmajer

(1990) and are located on the Norwegian Polar Institute

1:100 000 maps (Ohta & Dallmann 1994).

Abbreviations
AMS: anisotropy of magnetic susceptibility
IRM: isothermal remanent magnetization
Mya: millions of years ago
SEDL: Svartfjella�Eidembukta�

Daudmannsodden lineament
SI: The International System of Units
WSFTB: West Spitsbergen Fold-and-Thrust Belt
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Methods and results

At each of the sampling sites, six to seven hand samples of

the common bedding orientation were collected. Samples

were subsequently drilled in the laboratory to give

specimens of 24 mm diameter. From all four sites, approxi-

mately 160 specimens were analysed. All the experiments

presented here were conducted in the Palaeomagnetic

Laboratory of the Institute of Geophysics, Polish Academy

of Sciences.

IRM and Lowrie test

The initial identification of the ferromagnetic minerals

was carried out by applying the procedures described by

N
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Fig. 1 Simplified tectonic sketch of the southern Spitsbergen, modified from Dallmann (1992) and Bergh & Grogan (2003). Annotated and framed areas

denote localities described in the text. Abbreviations: AB, Adriabukta; EHF, Eastern Hornsund Fault; IHF, Inner Hornsund Fault; LS, Liddalen syncline; LD,

Liddalen; LF, Liddalen Fault; MF, Meranfjellet; SS, Samarinbreen Syncline; TR, Treskelodden.
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Lowrie (1990) and using a Squid cryogenic magnetometer

(2G Enterprises, Mountain View, CA, USA), MMTD80

thermal demagnetizer (Magnetic Measurements, Aughton,

UK) and MMPM10 pulse magnetizer (Magnetic Mea-

surements, Aughton, UK). This experiment determines

the magnetic carriers, based on coercivities of different

minerals and their unblocking temperatures. IRM was

applied at 0.12, 0.4 and 3T along three orthogonal axes,

x, y and z, respectively. The results from all four sites

indicated the presence of magnetic iron sulphides, which

was readily identified on all three coercivity curves and

displayed maximum unblocking temperatures (max Tub)

of 3508C (Fig. 3a). The lack of characteristic (for greigite)

decrease in the curves between 2008C and 3008C would

suggest that the magnetic minerals present were of

pyrrhotite affinity rather than greigite (e.g., Sagnotti &

Winkler 1999; Roberts et al. 2011). All sites were also

found to contain low-Ti magnetite, which is distinguished

Fig. 2 Locations of sampling sites (map modified from Birkenmajer 1990; Ohta & Dallmann 1994).
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by the appearance of Tub values above 5258C recorded

on low and intermediate coercivity curves. At one site

(COND1, Fig. 3b), haematite was also found to be present,

being marked on the high coercivity curves at Tub values

in the 6708C�6808C range. The unblocking temperatures

of 4508C and 6208C recorded on low coercivity curves

and occasionally on the intermediate curves are attrib-

uted to the presence of accessory maghemite.

These results are consistent with studies of the IRM

acquisition curves carried out using a Squid and MMPM10

pulse magnetizer. The IRM results (Fig. 4) were similar at

three sites (BAU, CYP, COND2) where specimens reached

saturation in the low fields, indicating the presence of low

and intermediate coercivity minerals such as pyrrhotite,

magnetite and maghemite (Fig. 4a). Only one specimen

from site BAU and all specimens from COND1 site

displayed the additional presence of a mineral with the

highest coercivity interpreted to be haematite (Fig. 4b).

The high unblocking temperatures of haematite were also

marked to some degree on the low-coercivity curves which

could explain the magnetic anisotropy of the studied rocks.

This anisotropy can cause the acquired magnetization to

not exactly parallel the applied 3T field and consequently

influence the results of the experiment.

Magnetic susceptibility versus temperature

Subsequent measurements of the low-field bulk mag-

netic susceptibility were performed during continuous

heating to 7008C and cooling to room temperature using

a KLY3S/CS3/CS-L bridge made by Agico (Czech Republic).

This experiment indicates the characteristic values of the

Temperature (°C)

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

10

20

30

40

50

x 0.12 T
y 0.4 T
z 3T

Temperature (°C)

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100

x 0.12 T
y 0.4 T
z 3T

m
A

/m

m
A

/m

CYP03 CON06(a) (b)

Fig. 3 Results of thermal demagnetization of a composite three-axis IRM (Lowrie 1990). Applied fields: 0.12T (black curve); 0.4 T (red curve) and 3T

(green curve) for (a) CYP03 and (b) CON06.
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Curie temperatures for the ferromagnetic minerals present

in the sample. Moreover, the specific shape of the initial

part of the curves allows an estimation of the percentage

contribution of ferro- and paramagnetic minerals ratio to

the magnetic susceptibility of the sample to be made

(Hrouda et al. 1997; Garcı́a-Lasanta et al. 2015). The

interpretation of the results (Fig. 5) from most of the

samples was hampered by thermochemical changes

above 4008C, which led to the formation of new magnetite.

However, at temperatures below 350�4008C the initial

segments of the curves were undisturbed and characterized

by both linear and hyperbolic shapes. The use of separation

methods for distinguishing the ferromagnetic from the

paramagnetic susceptibility components described by Hrou-

da et al. (1997) indicates that the ferro/para ratio in the

investigated material usually falls in the 30�60% range.

In a few samples from the COND1 site (Fig. 5b), a

relatively small amount of thermochemical alteration of

the phases prompted the investigation of the undisturbed

heating curves at higher temperatures. At this site, the

observed Curie/Néel temperatures revealed the presence

of magnetite and some of haematite.

Hysteresis parameters

The outcomes of the magnetic susceptibility versus

temperature experiments were complementary to the

studies of the hysteresis loops derived from the Micro-

Mag AGM Vibrating Sample Magnetometer (Lake Shore

Cryotronics, Westerville, OH, USA), which was formerly

manufactured by Princeton Measurements Corp. The

hysteresis loops from all of the samples tested showed a

generally paramagnetic behaviour (Fig. 6a), with a minor

influence of the ferromagnetic minerals. At only one site

(COND1), the ferromagnetic minerals prevailed (Fig. 6b).

Magnetization induced in a 0.5 T field achieved the

highest values in sites COND2 and CYP, reflecting a

higher influence of paramagnetic minerals (Ms1, Table 1).

Considering the site mean values of the Ms (saturation

magnetization after a paramagnetic slope correction,

related to ferromagnetic minerals), it can be concluded

that the ferromagnetic contribution did not show any

significant variation amongst the sites, with the excep-

tion of site BAU, where it was the lowest. The analytical

results of the ferro-/paramagnetic contribution to the
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magnetic susceptibility were similar for most of the sites,

typically falling in the 20�50% range but reaching a

somewhat higher value at site COND1 (Table 1).

The results of the rock-magnetic studies can be

summarized as follows. Rock magnetic studies allowed

identification of magnetite, magnetic iron sulphides (most

probably pyrrhotite) as well as some maghemite at all

sites and additionally haematite at site COND1. The ferro-

and paramagnetic ratio at three sites was defined at the

level 30�60%. Magnetic hysteresis parameters analysis

Fig. 6 Example of hysteresis loops where (a) the paramagnetic fraction is dominant and (b) the ferromagnetic fraction is dominant. Numbers 1 (large

graphs) and 2 (small graphs) indicate loops before and after paramagnetic correction, respectively.
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suggested a slightly higher content of ferromagnetic

minerals at COND1. These analyses were consistent with

those of temperature-dependent magnetic susceptibility.

Anisotropy of magnetic susceptibility

The AMS was measured with an MFK1-FA susceptibility

bridge (Agico). The AMS results (Fig. 7) display signifi-

cant diversification between sites. Firstly, the magnetic

susceptibility values are differentiated*from ca. 25 to

300*10�6 SI (Fig. 7). The shapes of the AMS ellipsoids

and orientation of their axes were also found to vary.

At site COND2, the AMS ellipsoid had a predominantly

oblate shape with a magnetic foliation parallel to the

bedding plane. The shape of AMS ellipsoid at this site

had a generally planar outline, and the maximum axes

are relatively well clustered with a general NNW�SSE

orientation approximately matching the north-west�
south-east regional fold axial traces of the WSFTB. This

can be interpreted to represent a composite fabric of

mainly sedimentary origin but with a discernible tectonic

overprint (e.g., Parés & Van der Pluijm 2002). Similar

results were observed at site COND1; however, in this

case the AMS ellipsoid was more of a combined oblate

and triaxial shape and maximum axes were distributed

rather around a great-circle girdle with a tendency to

grouping in an NNW�SSE orientation. Both the mentioned

sites revealed the highest degree of mean anisotropy:

1.054 and 1.018, respectively (Pj, Fig. 7).

Samples from site BAU revealed completely different

AMS properties, corresponding to the so-called inverted

magnetic fabrics (e.g., Rochette 1988; Rochette et al.

1992; Rochette et al. 1999; Chadima et al. 2006). At this

site, the degree of anisotropy was relatively low (Fig. 7)

and the AMS ellipsoid varied from prolate to triaxial and

oblate shapes. The maximum axes were reasonably well

clustered and oriented perpendicular to the bedding

plane, whereas the minimum axes lay in the bedding

plane. The site CYP samples, like those from site BAU,

exhibited a variety of AMS ellipsoid shapes. The max-

imum axes displayed, however, a bimodal distribution,

suggesting composite magnetic fabrics. One cluster was

oriented perpendicular to the bedding plane, matching

the inverted magnetic fabrics, while the other was parallel

to the fold axis and regional tectonic trend, suggesting a

tectonic origin.

Discussion

The in-depth petro-magnetic investigations described here

elucidate the magnetic properties of the rocks under

investigation, which is a precondition to any tectonic

Table 1 Selected hysteresis parameters of investigated samples. The ferro-/paramagnetic minerals ratio was evaluated on the basis of the initial slope

values before and after correction for paramagnetic minerals.

Samples values Mean for site

Sample name

Ms1a

(mAm2/kg)

Ms2b

(mAm2/kg)

Mrc

(mAm2/kg) Hcd (mT)

Ferro/para

content (%) Ms1a Ms2b Mrc Hcd

Ferro/para

content

bau1 0.52 471.40 55.26 7.32 0.98

bau3 13.46 481.90 60.96 9.22 0.14

bau5 7.06 695.80 75.46 7.75 0.33 6.57 792.70 89.26 8.25 0.49

bau6 5.12 1773.00 184.70 8.61 0.68

bau8 6.69 541.40 69.92 8.38 0.30

con1 3.55 1978.00 412.20 9.06 0.89

con3 2.66 528.70 62.89 8.01 0.53

con4 10.60 2010.00 417.50 8.35 0.61 5.43 1673.14 298.44 8.26 0.71

con5 5.02 2006.00 212.10 7.06 0.76

con6 5.30 1843.00 387.50 8.80 0.78

con11 23.86 947.80 100.60 8.14 0.15

con12 18.62 2958.00 268.60 7.05 0.45

con13 30.72 1083.00 95.21 7.38 0.13 26.51 1698.56 200.56 7.76 0.24

con16 35.94 2329.00 420.60 8.50 0.30

con18 23.39 1175.00 117.80 7.72 0.19

cyp1 33.60 3100.00 379.30 7.96 0.32

cyp5 13.36 520.60 51.84 6.49 0.15

cyp6 41.25 1121.00 66.63 4.91 0.10 40.08 2310.92 276.23 6.88 0.21

cyp7 52.38 3235.00 432.00 7.62 0.26

cyp12 59.81 3578.00 451.40 7.44 0.24

aThe saturation magnetization before correction for paramagnetic minerals. bThe saturation magnetization after correction. cMagnetic remanence. dCoercivity.
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interpretation based on AMS methods. The ferromagnetic

minerals present in the siltstones, mudstones and small

number of carbonates from the Vardebukta Formation were

iron oxides (mainly magnetite with subordinate contribu-

tion of maghemite and haematite) and iron sulphides

(pyrrhotite). The results received from the hysteresis para-

meters and temperature-dependent magnetic susceptibility

investigations demonstrate that at all sites the para-/ferro-

magnetic ratio was approximately uniform (Figs. 5, 6, Table

1). With the exception of site COND1, where the ferromag-

netic minerals prevail slightly, in the remaining sites the

paramagnetic contribution into the susceptibility was dom-

inant*in the ca. 50 to ca. 80% range. Considering the

lithology of studied rocks, we conclude that the paramag-

netic minerals were mostly phyllosilicates.

At two of the studied sites (COND1 and COND2), the

maximum AMS axes showed a predominantly NNW�SSE

orientation parallel to the regional tectonic trend. Simi-

larly, at site CYP, where the maximum AMS axes display

bimodal distribution, one of the distinct populations lay in

the bedding plane and also displayed an NNW�SSE trend.

At all three sites, such axial alignments are interpreted to

be imposed by tectonic processes. It appears therefore that

the NNW�SSE oriented maximum AMS axes coincide

with the maximum axis of finite strain ellipsoid in the

Hornsund�Sørkapp sector of the WSFTB.

The well-grouped maximum AMS axes from site BAU

were oriented perpendicular to the bedding plane and

are very difficult to interpret (e.g., Rochette et al. 1992;

Rochette et al. 1999; Chadima et al. 2006). Considering

the local tectonic framework, it is difficult to explain this

orientation as a result of local tectonic strain. Inverted

magnetic fabrics can also be interpreted as an effect of

a specific magnetic mineralogy. There are numerous

Fig. 7 The AMS results at the investigated sampling sites. Stereographic diagrams show results before the tectonic correction. Abbreviations:

K1, maximum axis; K2, intermediate axis; K3 minimum axis; orange line, bedding plane; Km mean magnetic susceptibility; L, magnetic lineation; F,

magnetic foliation; Pj, Jelinek’s degree of anisotropy; T, shape parameter; P, anisotropy degree. The dashed line in the map of Svalbard indicates the

orientation of the WSFTB.
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minerals which could be inverted fabric carriers (e.g.,

Rochette et al. 1992); however, for sedimentary rocks,

the most likely are considered to be either single-domain

magnetite grains or iron-bearing carbonates, for exam-

ple, siderite, ankerite and Fe-bearing dolomite (Rochette

1988; Ellwood et al. 1989). The petro-magnetic studies

we carried out did not detect any sign of a high, single-

domain, magnetite content in site BAU samples. On the

contrary, the results from the BAU site were similar to

most of the other sites and indicate that the magnetic

susceptibility is mostly controlled by the paramagnetic

minerals. We conclude, therefore, that the inverted

fabrics observed at site BAU are most probably related

to iron-bearing carbonates, the presence of which was

detected using the method proposed by Ellwood et al.

(1989). We identified siderite to be the carrier of the

reverse fabric, but ankerite was also present.

It is evident, however, that the four sites investigated in

this study represent an encouraging preliminary approach

to establishing the AMS structure in the Hornsund�
Sørkapp sector of WSFTB and its possible relations with

the finite strain ellipsoids indicated by the structural data

reported in the literature. The results described here

complement the reported field data and how the onshore

WSFTB structures parallel the Svalbard margin, suggest-

ing the imposition of an orthogonal compression. Our

data do not, however, lend support to either of the two

models mentioned above nor can any comment be made

at this preliminary stage of the study regarding the

possible partitioning of the tectonic strain.

Conclusions

The results presented in this article allow the following

conclusions concerning the magnetic mineralogy and the

magnetic properties of the sampled rocks to be drawn.

Although magnetite and magnetic iron sulphides

(probably pyrrhotite) are present at all investigated sites,

AMS fabric is governed mainly by phyllosilicate minerals,

resulting in the presence of normal magnetic fabric. Only

at the BAU site with reverse fabric, AMS was related to

iron-bearing carbonates, mainly to siderite.

The values of magnetic susceptibility are low and

mostly controlled by paramagnetic fractions at most sites,

whereas at COND1 the ferromagnetic minerals dominate.

The AMS results were correlated with published strain

directions, and at three of the investigated sites we have

found AMS axes fitting well to maximum strain direc-

tions for the studied sector of the WSFTB. Although the

results are preliminary, they show that AMS methods can

contribute to tectonic investigations and would support

the need for further more in-depth studies of other

sectors of the WSFTB.
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