
Sustainable Energy, Grids and Networks 26 (2021) 100471

I

s

c
R
E

h
2
n

Contents lists available at ScienceDirect

Sustainable Energy, Grids and Networks

journal homepage: www.elsevier.com/locate/segan

Distributed power flow and distributed optimization—Formulation,
solution, and open source implementation
Tillmann Mühlpfordt ∗,1, Xinliang Dai1, Alexander Engelmann2, Veit Hagenmeyer
nstitute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Germany

a r t i c l e i n f o

Article history:
Received 17 November 2020
Received in revised form 16 March 2021
Accepted 19 March 2021
Available online 29 March 2021

Keywords:
Power flow
Distributed optimization
admm
aladin
matlab
Open source

a b s t r a c t

Solving the power flow problem in a distributed fashion empowers different grid operators to compute
the overall grid state without having to share grid models—this is a practical problem to which industry
does not have off-the-shelf answers. We propose two physically consistent problem formulations
(a feasibility and a least-squares formulation) amenable to two solution methods from distributed
optimization: the Alternating direction method of multipliers (admm), and the Augmented Lagrangian
based Alternating Direction Inexact Newton method (aladin); the latter comes with convergence
guarantees. In addition, we provide open source matlab code for rapid prototyping for distributed
power flow (rapidpf): a fully matpower-compatible software that facilitates the laborious task of
formulating power flow problems as distributed optimization problems. Simulation results for systems
ranging from 53 buses (with 3 regions) up to 4662 buses (with 5 regions) show that the least-squares
formulation solved with aladin requires just about half a dozen coordinating steps before the power
flow problem is solved.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The power flow problem is the cornerstone problem for power
ystems analyses: find all (complex) quantities in an ac electri-
cal network in steady state. Planning power systems, expanding
and operating them—all of these tasks rest on the power flow
problem [1]. Traditionally, transmission system operators (tsos)
and distribution system operators (dsos) solve and use power
flow problems independently of each other, each making mod-
eling assumptions with respect to the other system, e.g. treating
the distribution system as a lumped load for the transmission
system [2]. Clearly, these modeling assumptions—even if they
were valid—may lead to real-world mismatches in both power
and voltage. Hence—what is a sovereignty-preserving way to
solve power flow problems for large power systems that may be
composed of several tsos and/or dsos? 3 This is the motivating
question of the present paper.

∗ Corresponding author.
E-mail address: tillmann.muehlpfordt@kit.edu (T. Mühlpfordt).

1 The authors acknowledge funding from the German Federal Ministry of Edu-
ation and Research within the project MOReNet – Modellierung, Optimierung und
egelung von Netzwerken heterogener Energiesysteme mit volatiler erneuerbarer
nergieerzeugung.
2 Current address: Institute for Energy Systems, Energy Efficiency and Energy

Economics, tu Dortmund, Germany.
3 Sometimes the literature refers to a power flow problem for a combination

of tsos and dsos as a global power flow problem [2,3].
 l

ttps://doi.org/10.1016/j.segan.2021.100471
352-4677/© 2021 The Authors. Published by Elsevier Ltd. This is an open access a
c-nd/4.0/).
Mathematically, the power flow problem is modeled as a
system of nonlinear equations, traditionally solved by Newton–
Raphson methods or Gauss–Seidel approaches [1]. These solution
techniques may be classified as centralized approaches; the full
grid model is available to a single central entity. This entity solves
the power flow problem, having access to all information not
just about the problem itself but also about the solution. Hence,
this established approach is in principle able to solve power
systems composed of tsos and dsos (so-called global power flow
problems [2,3])—but only at the cost of giving up sovereignty.

Recently, so-called distributed approaches have drawn signif-
icant academic attention. These are methods for which several
entities (or agents) solve sub-problems independently of each
other, then broadcast some—but not all—information to a coordi-
nator [4–8]. The coordinator then solves a coordination problem,
and sends to all entities the information they need to solve their
sub-problems again.4 This process is repeated until convergence
is achieved. In contrast to centralized methods, decentralized
approaches

• distribute the computational effort,
• preserve sovereignty and/or privacy, e.g. grid models,
• decrease the vulnerability due to a single-point-of-failure,

and

4 We clearly distinguish between distributed and decentralized approaches, the
atter requiring no central coordinator whatsoever.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.segan.2021.100471
http://www.elsevier.com/locate/segan
http://www.elsevier.com/locate/segan
http://crossmark.crossref.org/dialog/?doi=10.1016/j.segan.2021.100471&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:tillmann.muehlpfordt@kit.edu
https://doi.org/10.1016/j.segan.2021.100471
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

T. Mühlpfordt, X. Dai, A. Engelmann et al. Sustainable Energy, Grids and Networks 26 (2021) 100471

t
v
h
A
s
E

• add flexibility.

The interest in distributed approaches is not just academic;
here exists a genuine desire by industry to leverage the ad-
antages for real-world problems. In Germany, for example, the
orizontal connection between the four tsos—50 Hertz, TenneT,
mprion, and TransnetBW—is based on centralized power flow
olutions. However, new legislation and the undergoing German
nergiewende toward more renewables force the German tsos to

focus on new vertical cooperation with the numerous dsos. The
so-called Netzausbaubeschleunigungsgesetz (grid expansion accel-
eration bill5) introduces the concept of the so-called Redispatch
2.0 [9]: This Redispatch 2.0 forces German dsos to provide accu-
rate day ahead congestions and redispatch measures to alleviate
them—all of this in accordance with the four German tsos by
October 2021. Centralized approaches are not favorable for this
vertical cooperation mainly due to privacy concerns: the host
then combines the role of data owner and product owner, and in-
troduces a possible single-point-of-failure. Hence, it is not mainly
the distributed computational effort, but more the increase in
privacy, reliability, and flexibility that spur the interest of tsos
in distributed approaches.

In the context of Redispatch 2.0, especially within the project
‘‘DA/RE’’ (data exchange/redispatch), our industry partner
TransnetBW—one of the four German tsos—explores one possible
scenario for Redispatch 2.0. Namely, only so-called ‘‘light grid
models’’ are exchanged between stakeholders, which are reduced
grid models accounting at least for the major grid exchange
nodes. The approach we propose in the present paper is slightly
different, nevertheless fully compliant with Redispatch 2.0: no
grid models are exchanged whatsoever between stakeholders, but
only voltage information and sensitivities at the coupling nodes.

Large Chinese cities are another example for which the com-
bined power flow problem for tsos and dsos is of relevance.
In [2] it is argued that many Chinese cities are operating both
transmission and distribution systems, both of which are studied
and operated separately however. If a computational method
were available to solve the combined power flow problem in
terms of a privacy-preserving distributed problem, this would be
helpful [2,3].

In light of the above considerations the present paper makes
the following contributions:

c1: We present two mathematical formulations of distributed
power flow problems as privacy-preserving and physically-
consistent distributed optimization problems.

c2: We evaluate the applicability of the Alternating direc-
tion method of multipliers (admm) and the Augmented
Lagrangian based Alternating Direction Inexact Newton
method (aladin) to distributed power flow problems with
up to several thousand buses.

c3: We introduce rapidpf: open-sourcematlab code fully com-
patible with matpower that allows to generate matpower
case files for distributed power flow problems tailored to
distributed optimization; the code is available on https:
//github.com/KIT-IAI/rapidPF/ under the bsd-3-clause li-
cense.

c4: We extend aladin-α, a matlab rapid-prototyping toolbox
for distributed and decentralized non-convex optimization,
to allow for user-defined sensitivities and three new solver
interfaces (fminunc, fminunc, worhp).

5 Translation by the authors.
2

We explain our contributions relative to the state-of-the-art.
Ad c1: The idea to solve a global power flow problem that

stands for the combination of tsos and dsos was described in [2,
3]. Specifically, [2] coined the term ‘‘Master–slave-splitting’’ to
highlight the idea that there is a master system to which several
workers are connected6; also so-called ‘‘boundary systems’’ are
introduced which make up the physical connection between the
master and its worker [2]. The solution of the overall power flow
problem is obtained iteratively: initialize the boundary voltages,
keep them fixed, solve the power flow for the worker systems,
then substitute the solution to the boundary system, and solve
the master system. This process is executed until the difference
of voltage iterates is sufficiently small. Any power flow solver can
be used to solve the sub-problems. Hence, the main idea of [2]
is to solve the original large power flow problems by breaking
it into smaller power flow problems. For each of the smaller
power problems, the electrical values for the connection buses
have to be fixed, and iterated over. Unfortunately, no convergence
guarantees are provided, and the method was applied to systems
with less than 200 buses.

In the follow-up work [3] a convergence analysis is carried
out, but its practicability is limited due to mathematical settings—
such as the implicit function theorem—that are difficult to relate
to real-world criteria and/or data. Also, the simulation results
from [3] are the ones from [2]. It hence remains unclear how
well this method scales. Unfortunately, neither [2] nor [3] provide
plots on the actual convergence behavior of their method, or
wall-clock simulation times, or the influence of different initial
conditions—all of which are aspects relevant to practitioners.

The works [2,3] intertwine problem formulation and problem
solution. A consequence of this approach is that [2,3] do not
provide a clear and coherent mathematical formulation of the
problem they wish to tackle. Also, it is difficult to argue whether
the limits in the convergence analysis appear from the problem
formulation or the problem solution. Finally, it is difficult to judge
whether the problem as they solve is physically consistent. In
other words: is the solution according to [2,3] equivalent to the
solution of the original power flow problem?

The present paper follows an approach different from [2,3]:
we propose to first reformulate the original problem in a truly
distributed manner—and then apply method from distributed
optimization. We untangle the formulation from the solution,
yielding the following advantages:

• clear distinction between problem formulation and problem
solution;

• two different mathematical problem formulations that make
no assumptions on the sub-problems (e.g. meshed grids vs.
radial grids);

• convergence properties follow from theory of distributed
optimization;

• reproducible numerical results for test systems with up to
≈ 4000 buses.

Ad c2: Recently, distributed optimization techniques have
drawn attention for distributed optimal power flow problems. It
is especially admm that finds widespread application for optimal
power flow [4,7,10]. However, admm typically requires numerous
iterations to approach satisfying numerical accuracy [11]. In addi-
tion, admm is known to be rather sensitive to both tuning and the
choice of initial conditions [12]; line flow limits pose a significant
obstacle for admm [4]. Furthermore, convergence guarantees for
admm apply to convex optimization problems, but optimal power
flow is known to be non-convex.

6 We prefer the less inappropriate term ‘‘worker’’ instead of ‘‘slave’’.

https://github.com/KIT-IAI/rapidPF/
https://github.com/KIT-IAI/rapidPF/
https://github.com/KIT-IAI/rapidPF/

T. Mühlpfordt, X. Dai, A. Engelmann et al. Sustainable Energy, Grids and Networks 26 (2021) 100471

v
b
m
s
c
p
t
i
a
t
l
a
a

t
l
p
f
t
p
f
t

m
l
t
(
c
f
P
a
t
a
a
f
m
a
i
i
a
r

G
s
t
a
m
t
s
f
s
a
t
o
s
f
m

s
t
T
a
t

v

I
f
B
p
a
t
t
t
o
(
t
w
l

p
f
s

p

f

There exist distributed optimization methods that are de-
ised for non-convex problems, for instance aladin. With aladin
eing a second-order method, it has access to curvature infor-
ation that speed up convergence, at the expense of having to
hare more information among the sub-problems. The proof-of-
oncept applicability of aladin to distributed optimal power flow
roblems has been demonstrated in [8,13,14]; how to reduce
he information exchange among the sub-problems is discussed
n [15]. aladin has more favorable convergence properties than
dmm. That is, within a few dozen iterations aladin converges to
he optimal solution with satisfying numerical accuracy [8]. Just
ike with admm, however, tuning remains a challenge with al-
din. Also, the largest test case to which aladin was successfully
pplied is the 300-bus test case.
To summarize: both admm and aladin have demonstrated

heir potential for solving distributed optimal power flow prob-
ems. It is fair to ask how both methods apply to distributed
ower flow problems—a question that has not been tackled be-
ore to the best of the authors’ knowledge. Our findings suggest
hat aladin outperforms admm for the distributed power flow
roblem far more significantly than it does for the optimal power
low problem (in terms of scalability, speed, performance, and
uning).

Ad c3: For academic power system analyses matpower is a
ature, well-established, and widely adopted open source col-

ection of matlab code [16]. It is not just the many compu-
ational facets that matpower provides that make it popular
power flow and several relaxations, optimal power flow, unit
ommitment, etc.), but also the so-called matpower case file
ormat has inspired other open source packages, for instance
owerModels.jl [17] or PyPSA [18]. Based on both the popularity
nd the maturity of matpower we provide glue code that solves
he following laborious task: given several matpower case files,
nd given connection information for these case files, construct
matlab struct that corresponds to the mathematical problem

ormulation, and that is amenable to distributed optimization
ethods. This glue code is called rapidpf, and it is publicly avail-
ble with a rich documentation—and full matpower compatibil-
ty. In addition, rapidpf decreases the time-from-idea-to-result,
t computes relevant sensitivities (gradients, Jacobians, Hessians),
nd it comes with post-processing functionalities. The code for
apidpf is hosted under https://github.com/KIT-IAI/rapidPF/.

The idea of rapidpf is inspired by the matlab packages TDNet-
en [19] and AutoSynGrid [20]. From a first glance, TDNetGen
eems to provide functionality similar to rapidpf. As written in
he abstract of [19], TDNetGen is matlab code ‘‘able to gener-
te synthetic, combined transmission and distribution network
odels’’. Unfortunately, TDNetGen is not as flexible as desired:

here is currently no straightforward way to generate TDNetGens
o-called templates from arbitrary matpower case files. Also, the
ocus of TDNetGen is on generating large test systems, not on
olving them. In turn, rapidpf allows to both generate test systems
nd prepare them. By preparation we mean the following: to put
hem in a standard mathematical form amenable to distributed
ptimization methods such as admm and aladin. This preparation
tep must not be underestimated, because providing for an inter-
ace to distributed solvers is key in making distributed techniques
ore popular.
The focus of AutoSynGrid is on generating numerous test

ystems with similar statistical properties [20]. Hence, the func-
ionality of AutoSynGrid is not directly comparable to either
DNetGen or rapidpf. Nonetheless, the idea of providing the
cademic community with an open source tool fully aligns with
he spirit of rapidpf.

Ad c4: The recently published matlab toolbox aladin-α pro-

ides several implementations of both admm and aladin [21]. A

3

ts user interface allows the user to provide merely the cost
unctions, the equality constraints, and the inequality constraints.
esides setting several default parameter settings, aladin-α com-
utes derivatives required for either admm or aladin. To do so,
ladin-α relies internally on casadi, an automatic differentia-
ion framework that also parses the optimization problem to
he low level interface of Ipopt [22,23]. The idea of aladin-α is
o provide rapid prototyping capabilities for general distributed
ptimization problems; it is not specifically tailored to distributed
optimal) power flow problems. From the authors’ experience,
his all-purpose character in combination with casadi being hard-
ired into aladin-α hinders it from being applicable to mid- or

arge-scale power flow problems.
We forked the code and tailored it to the needs of distributed

ower flow problems: the exact power flow Jacobian is passed
rom matpower, Hessian approximations are provided, and three
olvers are newly interfaced (fminunc, fminunc, worhp).
Although the motivation for the present paper is to solve

ower flow problems for systems composed of tsos and dsos, the
authors stress that this setup is not a requirement. The presented
methodology is generic in the following sense:

Given i ∈ {1, . . . , nreg
} power flow problems, and given suit-

able connection information, what is a coherent methodology
for solving the overall power flow problem in a distributed
manner?

It may be that the individual power flow problems happen
to coincide with tsos and/or dsos, but they can as well be sub-
problems of a genuinely large power flow problem that should be
solved in a distributed way. In either case, the answer the present
paper can provide to the above question is:

If the distributed power flow problem is formulated as a
distributed-least squares problem, and if this problem is solved
with aladin using a Gauss–Newton Hessian approximation,
then the solution is found within half a dozen aladin iterations
for systems ranging from 53 to 4662 buses.

Remark 1 (Partitioning). The present paper assumes that the par-
titioning of the grid is given. For insights on how to partition large
grids in computationally advantageous ways, interested readers
are kindly referred to [24–26].

The paper is organized as its title suggests: formulation, so-
lution, implementation, followed by an extensive section on re-
sults, and concluding comments. The formulation Section 2 intro-
duces nomenclature and the mathematical formulation of the dis-
tributed power flow problem. The solution Section 3 covers two
methods from distributed optimization: admm and aladin. The
implementation is covered in Section 4, with a strong focus on the
open source matlab code rapidpf. The results Section 5 gives both
qualitative and quantitative assessments of the approach, clearly
demonstrating that the least-squares formulation in combination
with aladin is the most suitable solution approach. Concluding
comments in Section 6 close the paper.

2. Problem formulation

Consider a single-phase equivalent of a connected AC electrical
network in steady state with nbus

∈ N buses. Solving the power
flow problem for this grid means to solve a set of nonlinear equa-
tions such that the complex voltage of all buses of the network is
found. The standard way to solve power flow problems is to apply
a centralized method: a single machine determines the solution,
or instance, via Gauss–Seidel or Newton–Raphson methods [1].

n alternative is to distribute the computational effort to several

https://github.com/KIT-IAI/rapidPF/

T. Mühlpfordt, X. Dai, A. Engelmann et al. Sustainable Energy, Grids and Networks 26 (2021) 100471

a
o
i
d
i
i
i
F

2

t
c
t
e
p
w
t
b
t
R
r
h
b
f

2

c
t
m
a

x

f
o
o

{

Table 1
List of symbols for distributed power flow.
Symbol Meaning

nreg Number of regions
nconn Number of connecting lines between regions
ncore
i Number of core buses in region i

ncopy
i Number of copy buses in region i

xi Electrical state of core buses in region i
zi Electrical state of copy buses in region i

machines, leading to so-called distributed approaches. Distributed
pproaches are promising because they eliminate single-point-
f-failures, they better preserve privacy, their technical scale-up
s easier, and they foster cooperation between transmission and
istribution system operators. The idea of distributed power flow
s to solve local power flow problems within each subsystem,
ndependently of each other, and to find consensus on the phys-
cal values of the exchanged power between the subsystems, see
ig. 1(a).

.1. Nomenclature

Before we cover suitable mathematical formulations for dis-
ributed power flow, we introduce some nomenclature. For that
onsider Fig. 1(a), which shows a 12-bus system divided into
hree subsystems (or so-called regions). Suppose we are the op-
rator of region R1 = {1, 2, 3}, for which we know all electrical
arameters as well as all bus specifications, and for which we
ould like to solve a power flow problem. This requires addi-
ional information: the complex voltages of buses {4, 8}, and the
ranch parameters of the tie lines—hence, connection informa-
ion about the neighboring subsystems R2 = {4, . . . , 7} and
3 = {8, . . . , 12}.7 We shall call buses {1, 2, 3} the core buses of
egion R1, and buses {4, 8} the copy buses of region R1; Fig. 1(b)
ighlights the distinction. The combination of core buses and copy
uses allows to formulate a self-contained power flow problem
or every region.

.2. Distributed power flow

Table 1 introduces the notation we use from here on: we
onsider a finite number i ∈ {1, . . . , nreg

} of regions. The (elec-
rical) state xi of region i contains the voltage angles, the voltage
agnitudes, the net active power, and the net reactive power of
ll core buses

i =
(
θ core
i vcore

i pcorei qcorei

)
∈ R4ncorei . (1)

The (electrical) state zi of region i contains the voltage angles and
the voltage magnitudes of all copy buses

zi =
(
θ
copy
i v

copy
i

)
∈ R2ncopyi . (2)

Hence, each region i is represented by a total of 4ncore
i +2ncopy

i real
numbers. For all core buses of region i the respective 2ncore

i power
flow equations gpf

i :R4ncorei × R2ncopyi → R2ncorei , and the respective
2ncore

i bus specifications gbus
i :R4ncorei → R2ncorei make up the power

low problem for this very region [27].8 Subtracting the number
f equations from the number of decision variables gives a total
f

4ncore
i + 2ncopy

i
Decision vars.

− 2ncore
i

Power flow eqns.

− 2ncore
i

Bus specs.

= 2ncopy
i (3)

7 We stress that no information about the net power of the neighboring buses
4, 8} is required to formulate the power flow equations.
8 The copy buses are required solely to formulate the power flow equations.
 c

4

missing equations per region i.9
It remains to formalize the information that every copy bus

from region i corresponds to a core bus from a neighboring
region j ̸= i. An example: in Fig. 1(b), bus 4 is a copy bus of
region R1, and it is a core bus of region R2. Hence, their complex
voltage must be identical.

With the above nomenclature the distributed power flow
problem reads

gpf
i (xi, zi) = 0 ∀i ∈ {1, . . . , nreg

} (4a)

gbus
i (xi) = 0 ∀i ∈ {1, . . . , nreg

} (4b)
nreg∑
i=1

Ai

[
xi
zi

]
= 0. (4c)

The local power flow problem for region i is given by (4a) and
(4b), see Remarks 2 and 3; the so-called consensus matrices Ai ∈

R4nconn×(4ncorei +2ncopyi) enforce equality of the voltage angle and the
voltage magnitude at the copy buses and their respective core
buses, hence they provide the remaining 4nconn

=
∑nreg

i=1 2ncopy
i

missing equations, see footnote 9.

Remark 2 (Power Flow Equations). The specific form of the
regional power flow equations gpf

i (·) in (4) is arbitrary. Neverthe-
less, we choose polar coordinates for the voltage phasors when
defining the electrical state in (1). In that case, the regional power
flow equations are

pj = vj

ni∑
k=1

vk
(
Gjk cos(δj − δk) + Bjk sin(δj − δk)

)
(5a)

qj = vj

ni∑
k=1

vk
(
Gjk sin(δj − δk) − Bjk cos(δj − δk)

)
, (5b)

for all buses j from region i; the bus admittance matrix entries
are Yjk = Gjk + jBjk. For further details we refer to the excellent
primer [28].

Remark 3 (Bus Specifications). For conventional power flow stud-
ies, each bus is modeled as one of the following:

• Slack bus: The voltage magnitude and the voltage angle are
fixed; the net active and the reactive power are determined
by the power flow solution.

• pq/load bus: The active power and the reactive power are
fixed; the voltage magnitude and the voltage phasor are
determined by the power flow solution.

• pv/voltage-controlled bus: The active power and the voltage
magnitude are fixed; the reactive power and the voltage
angle are determined by the power flow solution.

Mathematically, these are equality constrains of the form gbus
i (·)

for every region i.

Remark 4 (Physical Consistence). The concept of core buses and
copy buses allows to compose the distributed power flow prob-
lem in a physically consistent manner: no additional modeling
assumptions are introduced or required. If the correct solution
to the distributed problem is found, then this will also be the
solution to the respective centralized power flow problem. In
other words, the concept of copy buses and core buses does not
introduce a structural numerical error [4].

Other approaches, such as ‘‘cutting’’ connecting tie lines and
enforcing equality of the electrical state at the intersection [21],

9 Note that
∑nreg

i=1 ncopy
i ≡ 2nconn—we introduce two copy nodes for every line

onnecting two regions, yielding a total of 4nconn missing equations.

T. Mühlpfordt, X. Dai, A. Engelmann et al. Sustainable Energy, Grids and Networks 26 (2021) 100471

a
l
t
c
w
n

R
r
s
c

n
t
f

∀

g

g

o

∀

Fig. 1. Graphical depiction of nomenclature for distributed power flow problems, see Section 2.1.
re in general not physically consistent (only in the absence of
ine capacitance). Hence, even if the true solution to the dis-
ributed problem is found, this solution is not numerically identi-
al to the solution of the centralized power flow problem. In other
ords, the concept of cutting lines does introduce a structural
umerical error, generally speaking.

emark 5 (Privacy). To formulate the power flow equations for
egion i, the voltage information of the copy buses needs to be
hared among neighboring regions; this is inherent to the idea of
ore and copy buses. Although this means having to share data,
the copy bus voltage data (i) does not contain a wealth of privacy
information yet (ii) allows for a physically consistent problem
formulation, see Remark 4.

2.3. Distributed optimization problem

The distributed power flow problem from (4) is a system of
onlinear equations—in a form amenable to distributed optimiza-
ion. We propose to solve Problem (4) either as a distributed
easibility problem

min
xi,zi

i∈{1,...,nreg}

0 s. t. (6a)

pf
i (xi, zi) = 0 (6b)
bus
i (xi) = 0 (6c)
nreg∑
i=1

Ai

[
xi
zi

]
= 0, (6d)

r as a distributed least-squares problem10

min
xi,zi

i∈{1,...,nreg}

nreg∑
i=1

[
gpf
i (xi, zi)
gbus
i (xi)

]2

s. t.
nreg∑
i=1

Ai

[
xi
zi

]
= 0. (7)

Necessarily, the solution from the distributed feasibility problem
is a solution for the distributed least-squares problem. Both for-
mulations divide and conquer: formulate power flow problems
for every region, and relate them by enforcing equal voltages
at the connecting buses. The privacy overhead for the regional
power flow problems is limited: only the voltage information of
the connecting buses is required to formulate the regional power
flow equations.

10 If not stated otherwise, we have ∥ · ∥ ≡ ∥ · ∥ .
2

5

Table 2
Correspondence of terms from general problem (8) to feasibility problem (6)
and to least-squares problem (7).
Term from (8) Feasibility problem (6) Least-squares problem (7)

fi(χi) = 0
[

gpf
i(xi, zi)

gbus
i(xi)

]2

gi(χi) =

[
gpf

i(xi, zi)
gbus

i(xi)

]
n/a

Both of the given formulations—feasibility (6) and least-squares
(7)—are special cases of a general problem formulation. We shall
state the general problem formulation in order to simplify the
solution algorithms to follow. Using

R = {1, . . . , nreg
}, (8a)

we define

min
χi

∀i∈R

∑
i∈R

fi(χi) s.t. (8b)

gi(χi) = 0 ∀i ∈ R (8c)∑
i∈R

Aiχi = 0, (8d)

where χi = (xi, zi) combines the core bus state and the copy bus
state for region i. The consensus constraints (8d) are identical for
either problem formulation; the correspondence of the cost and
the equality constraints is summarized in the following Table 2.

3. Problem solution

Two viable methods to tackle distributed optimization prob-
lems of the form (6) or (7) are admm and aladin; we provide
a brief overview of both. In the following, the superscript k

denotes the kth iterate; the superscript 0 hence denotes the initial
condition.

Remark 6 (Wording). Different problems bring about different
wording. In the problem formulation in Section 2 we speak of
‘‘regions’’, because the power flow problem is usually related to
an existing physical region. In the problem solution to follow,
however, we prefer to speak of ‘‘subsystems’’, and ‘‘local prob-
lems’’, because the optimization problems that need to be solved
in parallel need not resemble anything that exists in the physical
world.

T. Mühlpfordt, X. Dai, A. Engelmann et al. Sustainable Energy, Grids and Networks 26 (2021) 100471

i

H
o
t
q
c
u
b

m
b
F
p

a
t

s
a
A
o
o
t
v
a
a
l
c
t

4

(
e

3.1. admm

The Alternating direction method of multipliers (admm) is
a popular method for distributed optimization, particularly for
problems in the context of power systems [4,10,29]. Despite the
popularity of admm, convergence is in general not guaranteed
due to the non-convex ac power flow equations. We use admm
as a benchmark method reflecting the current state-of-the-art
for distributed optimization in power systems. There exists a
plethora of admm variants; the present paper relies on the for-
mulation from [30]. We refer to [11,30,31] for more details on
admm and its derivations and restrict ourselves to recalling the
overall algorithm.

For problem (8), admm is summarized in Algorithm 1. In
step 1), admm solves local optimization problems, where the
influence of the neighboring regions is incorporated via auxiliary
terms in the objective function considering Lagrange-multiplier
estimates λi ∈ Rnconn and estimates of the primal variables
ζ k
i ∈ R4ncorei +2ncopyi .11 In step 2), all local solutions χ k+1

i are
collected in a coordination problem. In many cases, this step can
be simplified to a simple averaging step between neighboring
subsystems [11]. Finally, the solution of the coordination problem
ζ k
i is sent to each subsystem, and after a local Lagrange multiplier
update—step 3)—the iterates start from the beginning.

Its low-weight communication overhead makes admm favor-
able: neighboring subsystems need to exchange but their local
solutions, and the coordination step reduces to averaging among
neighboring subsystems.

Algorithm 1 admm for problem (8)
Initialization: ζ 0

i , λ0
i for all i ∈ R, ρ

Repeat:

1) χ k+1
i = argmin

gi(χi)=0
fi(χi) + λk⊤

i Aiχi +
ρ

2 ∥Ai(χi − ζ k
i)∥

2
2, i ∈ R (parallel)

2) ζ k+1
= argmin

Aζ=0

∑
i∈R −λk⊤

i Aiζi +
ρ

2 ∥Ai(χ k+1
i − ζi)∥2

2 (centralized)

3) λk+1
i = λk

i + ρAi(χ k+1
i − ζ k+1

i), i ∈ R (parallel)

Remark 7 (admm for Non-Convex Problems). Recently, the con-
vergence of admm has been shown for special classes of non-
convex problems [32,33]. However, these works consider non-
convexities in the objective function, whereas for the ac power
flow equations the non-convexity appears in the constraints, for
which to the best of our knowledge no convergence guarantee
exists so far. Note that divergence of admm can occur also for
very small-scale problems in the context of power systems [34];
however, this is rarely observed.

3.2. aladin

As an alternative to admm, the Augmented Lagrangian based
Alternating Direction Inexact Newton method (aladin) has been
proposed [30]. Its main idea is to replace the relatively simple
coordination step in admm with a more sophisticated one in-
cluding also constraint and curvature information to yield fast
and guaranteed convergence—also for problems with non-convex
constraints.

aladin for problem (8) is shown in Algorithm 2. Step 1)
of aladin is similar to admm: each subsystem minimizes its
objective function with auxiliary terms. A minor difference is

11 We deal with non-convex problems, hence the argmin operator in step 1)
s to be understood locally.
6

that aladin maintains one global Lagrange multiplier λ only,
and that positive definite weighting matrices Σi are considered
in the augmentation term, where ∥x∥2

Σ = x⊤Σ x. In step 2),
aladin then computes sensitivities of the local problems, i.e. the
gradient of the cost function, ∇fi (χ

k
i), an approximation of the

essian of the Lagrangian function, Bk
i , and the Jacobian matrix

f the constraints, ∇gi(χ k
i). These sensitivities are communicated

o a central coordinator, which solves an equality-constrained
uadratic program (qp) in step 3) of aladin. As a result, primal in-
rements ∆χ k

i are communicated back to the subsystems, which
pdate ζ k

i and λk in step 4), and the iteration starts from the
eginning.
In aladin, there are two tuning parameters: ν and ρ. The

atrices Σi can be used for variable scaling—in case of well-
ehaved problems they can simply be set to the identity matrix.
or details on selecting these parameters for optimal power flow
roblems we refer to [8].

Algorithm 2 aladin for problem (8)
Initialization: ζ 0

i , λ0, Σi ≻ 0 for all i ∈ R, ν, ρ

Repeat:

1) Solve for all i ∈ R

χ k
i = argmin

gi(χi)=0
fi(χi) + λk⊤Aiχi +

ν

2
∥χi − ζ k

i ∥
2
Σi

, (parallel)

2) Compute ∇fi (χ
k
i), Bk

i ≈ ∇
2
χi

(
fi (χ

k
i) + γ ⊤

i gi (χ
k
i)

)
, ∇gi(χ k

i).

3) Solve the coordination qp

∆χ k
= argmin

∆χ

∑
i∈R

1
2 ∆χ⊤

i Bk
i ∆χi + ∇f ⊤

i (χ k
i)∆χi (centralized)

+ λk⊤ (∑
i∈R Ai(χ k

i + ∆χi) − b
)
+

ρ

2
∥
∑

i∈R Ai(χ k
i + ∆χi) − b∥2

2

subject to ∇g(χ k)∆χ = 0.

4) Set ζ k+1
i = χ k

i + ∆χ k
i and λk+1

= λk
+ ρ

(∑
i∈R Aiχi − b

)
. (parallel)

Remark 8 (Choosing Hessian Approximations Bk
i). aladin is guar-

anteed to converge locally for any positive definite Hessian ap-
proximation Bk

i [30]. However, the domain of local convergence
nd especially the convergence rate depend on the ‘‘approxima-
ion quality’’ of Bk

i . Hessian approximations may also reduce the
communication and computation overhead, for example via a
Broyden–Fletcher–Goldfarb–Shanno (bfgs) approach [8].

Remark 9 (Communication and Coordination Effort in aladin and
admm). In contrast to admm, aladin requires more communica-
tion and coordination per iteration compared with admm. The
ensitivities Bk

i and ∇gi(χ k
i) have to be communicated, whereas

dmm requires to communicate local decision variables χ k
i only.

lso the coordination step in aladin is more expensive: instead
f computing simple averages, the coordination qp in step 3)
f aladin requires solving a linear system of equations. With
he help of this additional information, however, aladin con-
erges faster than admm, hence partially compensating for the
dditional communication overhead. As an alternative to basic
ladin, which is proposed here, one might consider using bi-
evel aladin [15]. Bi-level aladin is able to reduce the per-step
ommunication and coordination overhead even further. We refer
o [8,15] for more detailed analytical and numerical comparisons.

. Implementation

The problem formulations (Section 2) and suggested solutions
Section 3) are moot without means to actually implement, ex-
cute, and validate them. We introduce rapidpf, an open source

T. Mühlpfordt, X. Dai, A. Engelmann et al. Sustainable Energy, Grids and Networks 26 (2021) 100471

m
w
t

4

m
p
i
p
h
o
i
m

T

f
F
c
c
b
c
t

o
b

Fig. 2. Flow chart for rapidpf depicting its inputs (case files & connection information) and its output (matlab struct compatible with aladin-α).
t
o
s
g

atlab code that tackles the problem formulation. Additionally,
e present an extension to aladin-α, an open sourcematlab code
hat deals with the problem solution.

.1. Rapid prototyping for distributed power flow (rapidpf)

Although there exist several excellent open-source tools to
odel, study, and solve (optimal) power flow problems (e.g. mat-
ower in matlab [16], PowerModels in Julia [17], or pandapower
n Python [35]), the same cannot be said for distributed (optimal)
ower flow problems—to the best of the authors’ knowledge. To
elp overcome both the tedious, error-prone, and laborious task
f formulating distributed power flow problems, and of interfac-
ng distributed optimization methods, we provide open source
atlab code for rapidpf, which automates the following task:

Given nreg matpower case files for all i ∈ {1, . . . , nreg
} regions,

and given information about how the i ∈ {1, . . . , nreg
} re-

gions are connected, generate a matlab struct compatible with
aladin-α.

he features of rapidpf span:

• Rapid prototyping: rapidpf decreases the time-from-idea-to-
result.

• Compatibility: rapidpf is compatible with matpower and
aladin-α. All generated case files can be visualized, for
example using ‘‘Steady-State AC Network Visualization in
the Browser’’12.

• Comparability: rapidpf generates matpower case files that
can be validated by matpower functions such as runpf().

• Sensitivities: rapidpf generates function handles for gradi-
ents, Jacobians, and Hessians.

• Documentation: rapidpf comes with a self-contained and
user-friendly online documentation.

• Open source: rapidpf is publicly available under the bsd-3-
clause license on https://github.com/KIT-IAI/rapidPF/.

• Post-processing: rapidpf provides rich post-processing func-
tionalities to analyze the results quickly and intuitively.

The code of rapidpf is made up of three components: the case
ile generator, the case file splitter, and the case file parser, see
ig. 2. The case file generator requires as inputs severalmatpower
ase files in combination with their connection information; the
onnection information encodes who is connected to whom and
y what (kind of branch and/or transformer). The regions can be
onnected in (almost) arbitrary ways, see Fig. 3.13 The output of
he case file generator is a matpower-compatible merged case

12 Available on https://immersive.erc.monash.edu/stac/.
13 The exception being that two buses are allowed to be connected by just
ne line. Remark 11 provides further guidance about the assumptions on how
uses can be connected.
7

Fig. 3. Supported types of connections between regions.

file. This merged case file is generated for validation purposes: it
provides a reference solution that can be computed, for instance,
by running matpower’s runpf() command. The splitter adds
information to each of the nreg case files about its core buses and
copy buses. Finally, the parser takes the augmented case files, and
generates an aladin-α-compatible matlab struct that describes
the problem either as a distributed feasibility problem (6) or as a
distributed least-squares problem (7). The parser also generates
sensitivities of the power flow problem, namely the Jacobian of
the power flow equations and bus specifications as well as their
Hessian information.

Remark 10 (Sensitivities). All first- and second-order optimiza-
tion methods require information about derivatives. Hence,
rapidpf provides them for the user. The gradient of the local cost
function, and the Jacobian of the power flow problem are the ex-
act analytical expressions. The Hessian matrix—required only for
aladin but not admm—is approximated by one of four methods:
finite differences, bfgs, limited-memory bfgs, or Gauss–Newton.
The first three methods can be applied to both problem formu-
lations (feasibility (6) and least-squares (7)); Gauss–Newton is a
method tailored to nonlinear least-squares problems [36], hence
applies only to the least-squares formulation (7).

Remark 11 (Connecting Buses). A fewmore words are appropriate
about how systems can be connected within the case file gen-
erator. First, we formally distinguish between the master system
and its worker systems. The sole difference is that (without loss of
generality) the slack bus of the overall system is the slack bus
of the master system. The connection between two systems is
directed, imposing a natural distinction between the from- and
to-system. For instance, consider the line connecting the Master
and Worker 1 in Fig. 3: the Master is the from-system, Worker
1 is the to-system. The connecting buses in both the from- and
he to-system must be generation buses, hence either a slack bus
r a pv bus. If the connecting bus in the to-worker-system is the
lack bus, then this slack bus is replaced by a pq bus with zero
eneration and zero demand. If the connecting bus in the to-

worker-system is a pv bus, then this pv bus is replaced by a pq bus
with zero generation and its original demand. If no connecting
bus in the to-worker-system is the slack bus, then the worker
system’s slack bus is replaced by a pv bus; the respective set
points for the active power and the voltage magnitude are taken
from the matpower case file entries in mpc.gen.

https://github.com/KIT-IAI/rapidPF/
https://immersive.erc.monash.edu/stac/

T. Mühlpfordt, X. Dai, A. Engelmann et al. Sustainable Energy, Grids and Networks 26 (2021) 100471

4

s
a

r

5

s
f
s
t
T
p
p
d
c

a
a

R
e
a
r
a

e
t
r
t
a
g
i
T

‘

Fig. 4. Problem formulation, problem solution, and interfaced solvers.
.2. Extensions to aladin-α

Whereas rapidpf is matlab code tailored to simplify and
treamline the problem formulation, the open source matlab code
ladin-α is used to tackle the problem solution [21]. aladin-α

provides tested implementations and several variants of both
admm and aladin. Under the hood, aladin-α depends largely on
casadi—an open source tool for algorithmic differentiation—and
Ipopt as the solver for nonlinear programs. Unfortunately, the
sole dependency on casadi and Ipopt hinders distributed methods
from aladin-α to be applicable to medium- to large-scale power
systems (as we shall discuss in Section 5). Hence, we created a
separate branch for aladin-α that allows to use the user-defined
sensitivities from rapidpf, and that allows to interface different
solvers such as fmincon, fminunc,14 or worhp [37], see also the
ight-hand side of Fig. 4.

. Results

We turn to numerical results for power systems of various
izes. We examine several combinations of the two problem
ormulations—feasibility (6) and least-squares (7)—and the two
olution methods—admm and aladin, paired with different ways
o compute sensitivities and interface different solvers, see Fig. 4.
he section is devised top-down: we begin with qualitative com-
arisons of admm and aladin, then examine the least-squares
roblem in combination with aladin (for different solvers and
ifferent Hessian approximations). The final section analyzes the
onvergence behavior for a 4662-bus system.
Our main finding is that the least-squares formulation with

ladin and a Gauss–Newton Hessian approximation outperforms
ll other combinations.

emark 12 (Settings Common to All Examples). For all following
xamples, the connecting lines between all regions are modeled
s transformers with a per-unit reactance of 0.00623, and a tap
atio of 0.985; the resistance, the total line charging susceptance,
nd the transformer phase shift angle are set to zero.15
The initial condition for the primal state (i.e. the state of the

lectrical grid) is created from the matpower case files as follows:
he voltage angle and voltage magnitude are initialized with their
espective entries from the entries in the bus struct; similarly,
he net active power and the net reactive power are initialized
s the difference between the respective summed entries in the
en struct and the bus struct. All dual variables are set to 0.01
nitially. Both aladin and admm terminate if∑
i∈R

Aiχi

1

≤ 10−10.

14 The solvers fmincon and fminunc are part of matlab’s Optimization
oolboxTM .
15 In light of Remark 6 we switch back to referring to ‘‘subsystems’’ as
‘regions’’ and so on.
8

Table 3
Qualitative comparison of both problem formulations (feasibility vs. least-
squares) and their solution by either admm or aladin.

Feasibility problem (6) Least-squares problem (7)

admm aladin admm aladin

Scalability poor acceptable acceptable very good
Speed poor good acceptable very good
Performance poor good acceptable very good
Tuning poor acceptable acceptable good

All computed solutions are verified relative to the reference
solution provided by the matpower command runpf().

5.1. Qualitative comparison

We base our qualitative findings on a total of 7 test cases
that are summarized in the first four columns of Table 4. The
qualitative comparison comprises both solution methods (admm
and aladin) applied to both problem formulations (feasibility and
least-squares).

From Table 3, which summarizes our qualitative findings, it
appears that admm is unsuitable for either problem formulation.
The performance of admm depends critically on both the choice
of the penalty parameter and the initial condition. Fig. 5(a) shows
the convergence behavior for admm applied to the feasibility
formulation of the 53-bus test case from Table 4. admm exhibits
strange and overall dissatisfying convergence properties for var-
ious choices of the penalty parameter ρ. Most of the considered
cases (the ones from Table 4) did not converge successfully even
after having done significant parameter sweeps. Fig. 5(a) shows
the influence of the choice of the penalty parameter ρ, and the
often-encountered convergence behavior with admm: after rela-
tively few iterations, the solution is in the vicinity of the optimal
solution, but it takes several hundred iterations before further
refinement occurs. And even then, the solution is far from being
accurate. Fig. 5(b) shows the critical dependence on the (primal)
initial condition. Perturbing the primal initial condition around
the optimal solution, the plots show that the entire optimization
process is prolonged significantly.

In contrast to admm, aladin appears applicable to solve the
distributed power flow problems from Table 4. In all of the
qualitative aspects we consider (scalability, speed, performance,
tuning), the least-squares formulation outperforms the feasibility
counterpart by far, see Table 3. It is especially the aspect of
scalability that hinders the feasibility problem. For instance, the
354-bus test case from Table 4 already took 38.2 s to solve with
fmincon, and converged within 14 aladin iterations.

5.2. Least-squares formulation with aladin

Based on our findings from the previous Section 5.1, we con-
sider only the least-squares formulation with aladin in the fol-

lowing.

T. Mühlpfordt, X. Dai, A. Engelmann et al. Sustainable Energy, Grids and Networks 26 (2021) 100471

I

Fig. 5. Convergence behavior of admm for a feasibility problem formulation of the 53-bus test case from Table 4. In each subplot, the upper plot shows the distance
to the optimal solution, and the lower plot shows the violation of the consensus constraints. See also Remark 12.
5.2.1. Different solvers
We investigate how the different solvers mentioned in Fig. 2

cope with the different test cases from Table 4; we use the sensi-
tivities provided by rapidpf in all cases, i.e. analytical gradients of
the cost function, exact Jacobians, and the Gauss–Newton Hessian
approximation.

Interestingly, Table 4 suggests that just half a dozen aladin
iterations are sufficient to solve the test cases, which range from a
total of 53 buses to 4662 buses. Hence, the applicability of aladin
itself is demonstrated. Of course, the overall solution time differs
significantly with the choice of the local solver.16 As a negative
result we find that plain aladin-α is not suitable for the problem

16 All computations were carried out on a standard a desktop computer with
ntel R⃝ CoreTM i5-6600K CPU @ 3.50GHz Processor and 16.0 gb installed ram; no
efforts were made towards parallelization.
9

at hand.17 That is why we chose to implement interfaces for the
three other solvers: fminunc, fmincon, and worhp. Although
fminunc is the seemingly best fit—the local subproblems are
unconstrained optimization problems—its practical applicability
is limited to subproblems of a few hundred buses. For the 2708-
and 4662-bus test systems, fminunc takes significantly longer,
because the dimension of the local subproblem grows too large.
The solution times for fmincon and worhp are acceptable for all
considered cases.

5.2.2. Different hessian approximations
With aladin being a second-order optimization method, the

(approximated) Hessian. We compare four different Hessian ap-
proximations for the least-squares problem (7) with aladin: finite

17 By ‘‘plain’’ we mean aladin-α that interfaces only casadi with Ipopt.

T. Mühlpfordt, X. Dai, A. Engelmann et al. Sustainable Energy, Grids and Networks 26 (2021) 100471

m
m
p

i

Fig. 6. Decrease of the ∞-norm of the power flow equations, the bus specifications, and the consensus violations, each per aladin iteration for the 4662-bus system
from Table 4. See also Remark 12.
Table 4
Computing times for different test cases and different solvers when solving the distributed least-squares problem (7) with aladin and
sensitivities from rapidpf .
Buses nreg matpower

case files
nconn Solution time in s for aladin

iterationsfminunc fmincon worhp

53 3 9, 14, 30 3 2.5 2.2 2.4 4
354 3 3 × 118 5 2.5 3.1 4.8 5
418 2 118, 300 2 4.5 5.2 7.0 5
826 7 7 × 118 7 3.7 5.3 7.2 5

1180 10 10 × 118 11 4.9 6.7 9.8 6
2708 2 2 × 1354 1 212.7 41.9 53.6 4
4662 5 3 × 1354, 2 × 300 4 387.9 90.1 113.8 5
differences, bfgs, limited-memory bfgs, and the Gauss–Newton
ethod. The results (see Table 5) confirm: the Gauss–Newton
ethod outperforms all other methods. The finite difference ap-
roximation, just like the two bfgs methods, are all-purpose

Hessian approximation unaware of the underlying problem struc-
ture. Gauss–Newton, in turn, is a Hessian approximation tailored
to nonlinear least squares problem, see also Remark 10. The
results from Table 5 make it clear that already for small sys-
tem sizes, the all-purposes Hessian approximations should be
avoided.18

5.3. 4662-Bus system – Convergence behavior

Next, we study the convergence behavior of the 4662-bus test
case. This test case is composed of three 1354-bus matpower
test cases, and two 300-bus matpower test cases. Table 6 shows

18 Although they lead to longer computation times, the total number of aladin
terations is unaffected.
10
the connecting buses between the regions. For other relevant
information such as how the connecting lines are modeled, and
how the initial conditions are chosen, see Remark 12.

To solve the distributed power flow problem we choose a
least-squares formulation with aladin. We use the Gauss–Newton
Hessian approximation, and fmincon is used to solve the local
problems. From Table 4 we see that this setup requires 5 aladin
iterations and about 90 s. Fig. 6 shows, for every aladin iteration
and for every region, the ∞-norm of the power flow Eqs. (4a),
of the bus specifications (4b), and of the consensus constraint
violations (4c). After 5 aladin iterations, all violations are below
10−10, and the computations are terminated.

6. Conclusion & outlook

The relevance of distributed power flow problems is increas-
ing, because they allow for better cooperation between different
stakeholders, e.g. tsos and dsos without exchanging full grid
information. Distributed optimization can tackle such distributed

T. Mühlpfordt, X. Dai, A. Engelmann et al. Sustainable Energy, Grids and Networks 26 (2021) 100471

t
o
o

t
c
c
e
M

a
m
w
t
r

C

M
S
M
C
e

D

f
a

A

b
s
f
s

Table 5
Computing times for least-squares problem (7) with aladin and fmincon, for different Hessian approximations. The entries in the
column ‘‘Buses’’ refers to the entries in Table 4. See also Remark 12.
Buses Finite difference bfgs Limited-memory bfgs Gauss–Newton

53 10.0 28.6 22.9 2.2
354 61.5 287.8 107.4 3.1
418 185.6 1086.4 148.2 5.2
826 n/a n/a n/a 5.3

. . . n/a n/a n/a See Table 4
4662 n/a n/a n/a See Table 4
Table 6
Regions and used test cases for 4662-bus test case (left). Connecting buses between regions (middle). Connection graph (right)
Region matpower case file From-system To-system

Region Bus Region Bus

1 case1354pegase 1 17 2 46
2 case1354pegase 1 111 3 271
3 case1354pegase 2 64 4 10
4 case300 2 837 5 8
5 case300
power flow problems. It is specifically the Augmented Lagrangian
based Alternating Direction Inexact Newton method (aladin)
with its convergence guarantees that yields promising results: if
the distributed power flow problem is formulated as a distributed
least-squares problem, and if a Gauss–Newton Hessian approx-
imation is used, then about half a dozen iterations suffice to
converge to the correct solution. We introduce rapid prototyping
for distributed power flow (rapidpf) to facilitate rapid proto-
yping. It is fully matpower-compatible matlab code that takes
ver the laborious task of creating code amenable to distributed
ptimization.
Future steps will focus mainly on further structure exploita-

ion for solving the problem, and on implementing larger test
ases. The least-squares formulation is promising, hence dedi-
ated nonlinear-least squares techniques should be investigated,
.g. a tailored Gauss–Newton method, or a tailored Levenberg–
arquardt method [36].
The simulation results we presented were all carried out on

single machine. To leverage the literal distribution of the opti-
ization, efforts toward parallel computing shall be undertaken
hen tackling larger test cases. Finally, rapidpf can be extended
o optimal power flow problems upon adding cost functions per
egion.

RediT authorship contribution statement

Tillmann Mühlpfordt: Conceptualization, Investigation,
ethodology, Software, Writing - original draft. Xinliang Dai:
oftware, Investigation, Visualization. Alexander Engelmann:
ethodology, Writing - original draft. Veit Hagenmeyer:
onceptualization, Funding acquisition, Writing - review &
diting.

eclaration of competing interest

The authors declare that they have no known competing
inancial interests or personal relationships that could have
ppeared to influence the work reported in this paper.

cknowledgments

The authors would like to thank Jochen Bammert and To-
ias Weißbach (both TransnetBW GmbH) for insightful discus-
ions and continuing support and interest in distributed power
low. Finally, Tillmann Mühlpfordt thanks Daniel Bacher for his
upporting the migration from Gitlab to GitHub.
11
References

[1] J. Grainger, W. Stevenson, Power System Analysis, McGraw-Hill Education,
1994.

[2] H. Sun, B. Zhang, Distributed power flow calculation for whole networks
including transmission and distribution, in: 2008 IEEE/PES Transmission
and Distribution Conference and Exposition, 2008, pp. 1–6.

[3] H. Sun, Q. Guo, B. Zhang, Y. Guo, Z. Li, J. Wang, Master–slave-splitting
based distributed global power flow method for integrated transmission
and distribution analysis, IEEE Trans. Smart Grid 6 (3) (2015) 1484–1492.

[4] T. Erseghe, Distributed optimal power flow using ADMM, IEEE Trans. Power
Syst. 29 (5) (2014) 2370–2380.

[5] B.H. Kim, R. Baldick, Coarse-grained distributed optimal power flow, IEEE
Trans. Power Syst. 12 (2) (1997) 932–939.

[6] G. Hug, S. Kar, C. Wu, Consensus + innovations approach for distributed
multiagent coordination in a microgrid, IEEE Trans. Smart Grid 6 (4) (2015)
1893–1903.

[7] B. Kim, R. Baldick, A comparison of distributed optimal power flow
algorithms, IEEE Trans. Power Syst. 15 (2) (2000) 599–604.

[8] A. Engelmann, Y. Jiang, T. Mühlpfordt, B. Houska, T. Faulwasser, Toward
distributed OPF using ALADIN, IEEE Trans. Power Syst. 34 (1) (2019)
584–594.

[9] Bundesministerium der Justiz und für Verbraucherschutz, Netzaus-
baubeschleunigungsgesetz Übertragungsnetz, 2011, https://www.gesetze-
im-internet.de/nabeg/index.html.

[10] J. Guo, G. Hug, O.K. Tonguz, A case for nonconvex distributed optimization
in large-scale power systems, IEEE Trans. Power Syst. 32 (5) (2017)
3842–3851.

[11] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization
and statistical learning via the alternating direction method of multipliers,
Found. Trends R⃝ Mach. Learn. 3 (1) (2011) 1–122.

[12] A.X. Sun, D.T. Phan, S. Ghosh, Fully decentralized AC optimal power flow
algorithms, in: 2013 IEEE Power Energy Society General Meeting, 2013,
pp. 1–5.

[13] A. Engelmann, T. Mühlpfordt, Y. Jiang, B. Houska, T. Faulwasser, Distributed
AC optimal power flow using ALADIN, IFAC-PapersOnLine 50 (1) (2017)
5536–5541, 20th IFAC World Congress.

[14] A. Engelmann, T. Mühlpfordt, Y. Jiang, B. Houska, T. Faulwasser, Distributed
stochastic AC optimal power flow based on polynomial chaos expansion,
in: IEEE American Control Conference (ACC), 2018, pp. 6188–6193.

[15] A. Engelmann, Y. Jiang, B. Houska, T. Faulwasser, Decomposition of non-
convex optimization via bi-level distributed ALADIN, IEEE Trans. Control
Netw. Syst. (2020) 1.

[16] R. Zimmerman, C. Murillo-Sánchez, R. Thomas, MATPOWER: Steady-state
operations, planning, and analysis tools for power systems research and
education, IEEE Trans. Power Syst. 26 (1) (2011) 12–19.

[17] C. Coffrin, R. Bent, K. Sundar, Y. Ng, M. Lubin, PowerModels.jl: An open-
source framework for exploring power flow formulations, in: 2018 Power
Systems Computation Conference (PSCC), 2018, pp. 1–8.

[18] T. Brown, J. Hörsch, D. Schlachtberger, PyPSA: Python for power system
analysis, J. Open Res. Softw. 6 (4) (2018) arXiv:1707.09913.

[19] N. Pilatte, P. Aristidou, G. Hug, TDNetGen: An open-source, parametrizable,
large-scale, transmission, and distribution test system, IEEE Syst. J. 13 (1)
(2019) 729–737.

http://refhub.elsevier.com/S2352-4677(21)00042-4/sb1
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb1
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb1
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb3
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb3
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb3
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb3
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb3
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb4
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb4
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb4
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb5
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb5
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb5
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb6
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb6
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb6
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb6
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb6
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb7
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb7
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb7
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb8
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb8
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb8
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb8
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb8
https://www.gesetze-im-internet.de/nabeg/index.html
https://www.gesetze-im-internet.de/nabeg/index.html
https://www.gesetze-im-internet.de/nabeg/index.html
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb10
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb10
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb10
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb10
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb10
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb11
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb11
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb11
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb11
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb11
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb13
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb13
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb13
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb13
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb13
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb15
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb15
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb15
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb15
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb15
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb16
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb16
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb16
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb16
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb16
http://arxiv.org/abs/1707.09913
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb19
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb19
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb19
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb19
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb19

T. Mühlpfordt, X. Dai, A. Engelmann et al. Sustainable Energy, Grids and Networks 26 (2021) 100471
[20] H. Sadeghian, Z. Wang, AutoSynGrid: A MATLAB-based toolkit for auto-
matic generation of synthetic power grids, Int. J. Electr. Power Energy Syst.
118 (2020) 105757.

[21] A. Engelmann, Y. Jiang, H. Benner, R. Ou, B. Houska, T. Faulwasser,
ALADIN-α – An open-source MATLAB toolbox for distributed non-convex
optimization, 2020, arXiv e-prints arXiv:2006.01866.

[22] J. Andersson, J. Gillis, G. Horn, J. Rawlings, M. Diehl, CasADi – A Software
framework for nonlinear optimization and optimal control, Math. Program.
Comput. 11 (1) (2019) 1–36.

[23] A. Wächter, L. Biegler, On the implementation of an interior-point fil-
ter line-search algorithm for large-scale nonlinear programming, Math.
Program. 106 (1) (2006) 25–57.

[24] J. Guo, G. Hug, O.K. Tonguz, Intelligent partitioning in distributed opti-
mization of electric power systems, IEEE Trans. Smart Grid 7 (3) (2016)
1249–1258.

[25] A. Murray, M. Kyesswa, P. Schmurr, H. Çakmak, V. Hagenmeyer, A com-
parison of partitioning strategies in AC optimal power flow, 2019, arXiv
e-prints arXiv:1911.11516.

[26] M. Kyesswa, A. Murray, P. Schmurr, H. Çakmak, U. Kühnapfel, V. Hagen-
meyer, Impact of grid partitioning algorithms on combined distributed AC
optimal power flow and parallel dynamic power grid simulation, IET Gener.
Transm. Distrib. (2020) in print.

[27] S. Frank, S. Rebennack, An introduction to optimal power flow: Theory,
formulation, and examples, IIE Trans. 48 (12) (2016) 1172–1197.

[28] S. Frank, S. Rebennack, A Primer on Optimal Power Flow: Theory, For-
mulation, and Practical Examples, Tech. Rep., Colorado School of Mines,
2012.
12
[29] E. Dall’Anese, H. Zhu, G.B. Giannakis, Distributed optimal power flow for
smart microgrids, IEEE Trans. Smart Grid 4 (3) (2013) 1464–1475.

[30] B. Houska, J. Frasch, M. Diehl, An augmented Lagrangian based algorithm
for distributed nonconvex optimization, SIAM J. Optim. 26 (2) (2016)
1101–1127.

[31] D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods, vol. 23, Prentice Hall Englewood Cliffs, NJ, 1989.

[32] M. Hong, Z.-Q. Luo, M. Razaviyayn, Convergence analysis of alternating
direction method of multipliers for a family of nonconvex problems, SIAM
J. Optim. 26 (1) (2016) 337–364.

[33] Y. Wang, W. Yin, J. Zeng, Global convergence of ADMM in nonconvex
nonsmooth optimization, J. Sci. Comput. 78 (1) (2019) 29–63.

[34] K. Christakou, D.-C. Tomozei, J.-Y. Le Boudec, M. Paolone, AC OPF in
radial distribution networks – Part I: On the limits of the branch flow
convexification and the alternating direction method of multipliers, Electr.
Power Syst. Res. 143 (2017) 438–450.

[35] L. Thurner, A. Scheidler, F. Schäfer, J. Menke, J. Dollichon, F. Meier, S.
Meinecke, M. Braun, pandapower — AN open-source Python tool for
convenient modeling, analysis, and optimization of electric power systems,
IEEE Trans. Power Syst. 33 (6) (2018) 6510–6521.

[36] J. Nocedal, S. Wright, Numerical Optimization, Springer Science & Business
Media, New York, 2006.

[37] R. Kuhlmann, S. Geffken, C. Büskens, WORHP Zen: Parametric sensitivity
analysis for the nonlinear programming solver WORHP, in: N. Kliewer,
J.F. Ehmke, R. Borndörfer (Eds.), Operations Research Proceedings 2017,
Springer International Publishing, 2018, pp. 649–654.

http://refhub.elsevier.com/S2352-4677(21)00042-4/sb20
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb20
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb20
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb20
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb20
http://arxiv.org/abs/2006.01866
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb22
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb22
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb22
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb22
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb22
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb23
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb23
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb23
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb23
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb23
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb24
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb24
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb24
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb24
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb24
http://arxiv.org/abs/1911.11516
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb26
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb26
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb26
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb26
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb26
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb26
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb26
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb27
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb27
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb27
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb28
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb28
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb28
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb28
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb28
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb29
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb29
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb29
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb30
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb30
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb30
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb30
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb30
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb31
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb31
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb31
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb32
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb32
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb32
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb32
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb32
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb33
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb33
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb33
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb34
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb34
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb34
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb34
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb34
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb34
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb34
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb35
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb35
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb35
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb35
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb35
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb35
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb35
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb36
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb36
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb36
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb37
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb37
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb37
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb37
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb37
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb37
http://refhub.elsevier.com/S2352-4677(21)00042-4/sb37

	Distributed power flow and distributed optimization—Formulation, solution, and open source implementation
	Introduction
	Problem formulation
	Nomenclature
	Distributed power flow
	Distributed optimization problem

	Problem solution
	admm
	aladin

	Implementation
	rapidpf
	Extensions to aladin-α

	Results
	Qualitative comparison
	Least-squares formulation with aladin
	Different solvers
	Different hessian approximations

	4662-Bus system – Convergence behavior

	Conclusion & outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

