Preparing Ginkgo for AMD GPUs
— A Testimonial on Porting CUDA Code
to HIP

Yuhsiang M. Tsai! , Terry Cojean® , Tobias Ribizel'
and Hartwig Anzt!?

Karlsruhe Institute of Technology, Karlsruhe, Germany
2 Innovative Computing Lab, University of Tennessee, Knoxville, TN, USA
yu-hsiang.tsai terry.cojean tobias.ribizel hartwig.anzt}@kit.edu

Abstract With AMD reinforcing their ambition in the scientific high
performance computing ecosystem, we extend the hardware scope of the

INKGO linear algebra package to feature a HIP backend for AMD GPUs.
In this paper, we report and discuss the porting e ort from CUDA,
the extension of the HIP framework to add missing features such as
cooperative groups, the performance price of compiling HIP code for
AMD architectures, and the design of a library providing native backends
for NVIDIA and AMD GPUs while minimizing code duplication by using
a shared code base.

Keywords: Portability - GPU - CUDA - HIP

Introduction

Over the last decade, GPUs have been established as the main powerhouse in
leadership supercomputers [1]. GPUs have proven valuable components to accel-
erate computations not only for machine learning workloads, but also for numeri-
cal linear algebra libraries powering computational science [2]. As of today, AMD
and NVIDIA are considered the main GPU manufacturers. In the past, software
e orts primarily focused on NVIDIA GPUs due to the comprehensive CUDA
development environment and the common adoption in HPC centers. With the
next leadership supercomputers deployed in the US National Laboratories being
equipped with AMD GPUs [2], and the US Exascale Computing Project’s mis-
sion to provide math functionality on the leadership systems, we extend the
scope of the INKGO library to feature an AMD GPU backend.

In this paper, we report and discuss the e ort of porting a CUDA-focused
library to the HIP ecosystem. We elaborate on the use of the perl-based script
provided by AMD that aims at simplifying the transition process, its pitfalls
and flaws. We also assess the performance HIP-based code achieves on NVIDIA
architectures when compiled using NVIDIA’s nvce compiler.

Transitioning a code base from one architecture to another, and platform
portability in general, is an important problem in the software technology ecosys-
tem. In particular, the number of adopters and contributors of community soft-
ware scales only in the presence of good platform portability. The e ort of port-
ing a software stack to new architectures is, for example, described for molecular
dynamics algorithm in [7], and for the solution of finite element problems in [12].
Concerning performance portability, the authors of [11] compare the algorithm
performance for CUDA, HC++, HIP, and OpenCL backends.

Compared to previous work, we highlight that this work contains the follow-
ing novel contributions:

— We discuss the porting of linear algebra kernels from CUDA to HIP.

— We add technology to the HIP ecosystem that is lacking but needed, e.g., a
subwarp cooperative group concept with shuffle operations.

— We compare the performance of HIP and CUDA kernels coming from the
same code base and providing the same functionality.

— Up to our knowledge, INKGO is the first open-source sparse linear algebra
library supporting several matrix types (Coo, Csr, Sellp, Ell, Hybrid), solvers
(CG, BiCG, GMRES, etc.), preconditioner (block-jacobi) and factorization
(ParILU and ParILUT) on AMD and NVIDIA GPUs.

— We ensure full result reproducibility by archiving all performance results.

Before providing more details about the porting e ort in Sect. 3, we recall
some background information about CUDA and HIP in Sect. 2. We present the
results of the experiments of the same kernels being compiled by CUDA and
HIP in Sect.4. We conclude in Sect. 5 with a summary of this paper.

2 Background

2.1 Compute Unified Device Architecture - CUDA

NVIDIA developed the CUDA programming model and the corresponding nvce
compiler enabling developers to write kernels for GPU architectures using the C
or C++ programming language. Also, NVIDIA provides several math libraries,
like cuBLAS, cuSPARSE, and cuSOLVER containing ready-to-use numerical
algorithms and core functionalities allowing users to easily develop a parallel
application without writing device kernel functions.

In Listing 1.1, CUDA uses __global__ as the declaration specifier to tell the
compiler this function runs on a GPU and uses execution configuration syntax
(<<< >>>) to represent the configuration of grid and block dimensions, execution
stream, and dynamically-sized shared memory. Moreover, developers can provide
additional information at compile-time to optimize the execution performance
like __launch bounds__ to limit the register usage.

template <int value>

__global__ void dummy_kernel(const int num, int *__restrict__ array) {
// kernel_code

}

int main() {
// allocation of memory and calculation of grid/block_size
dummy_kernel <4> <<<dim3(grid_size), dim3(block_size)>>>(num, array);
return O;

}

© 00O Uk WN -

Listing 1 1 CUDA kernel launch syntax.

2.2 C++ Heterogeneous-Compute Interface for Portability - HIP

As a counterpart to NVIDIA’s CUDA ecosystem, AMD more recently developed
the GPU compute programming language and library ecosystem “RadeonOpen-
Compute” (ROCm). ROCm is the first open-source HPC platform for GPU
computing shipping with several math libraries, like rocBLAS, rocSPARSE;, roc-
SOLVER, etc. This enables users to develop GPU-ready applications in ROCm
like in the CUDA ecosystem.

Aside from ROCm, AMD also provides a HIP abstraction that can be seen as
a higher layer on top of the ROCm ecosystem, enveloping also the CUDA ecosys-
tem. The idea behind HIP is to increase platform portability of software by pro-
viding an interface through which functionality of both, ROCm and CUDA can
be accessed. Obviously, this would remove the burden of converting or rewriting
code for di erent hardware architectures, therewith also reducing the mainte-
nance e ort for libraries supporting several backends.

In Listing 1.2, HIP uses the same declaration specifier __global__like CUDA,
but a di erent execution configuration syntax. HIP handles kernels featuring
template parameters with the macro HIP_. KERNELS_NAME. Although HIP
also provides the __launch bounds__ flag for kernel optimization, the e ect di ers
from the CUDA ecosystem due to the architectural di erences between AMD
and NVIDIA GPUs.

1| template <int value>

2| __global__ void dummy_kernel(const int num, int *__restrict__ array) {
3 // kernel_code

4}

5/ int main() {

6 // allocation of memory and calculation of grid/block_size

7 hipLaunchKernelGGL (HIP_KERNEL_NAME (dummy_kernel<4>), dim3(grid_size),
8 dim3(block_size), 0, O, num, array);

9 return 0;

10| }

Listing 1 2 HIP kernel launch syntax.

2.3 Di erence Between AMD and NVIDIA GPUs

The primary technical di erence between AMD and NVIDIA GPUs is the num-
ber of threads that are executed simultaneously in a wavefront/warp. In NVIDIA

GPUs, a warp contains 32 threads, in AMD GPUs, a wavefront contains 64
threads. This di erence potentially impacts all other parameter configurations
and has to be taken into account when designing kernels and setting thread
block size, shared memory and register usage, and compute grid size for valid
parameter settings and optimal kernel performance.

Less relevant for the kernel design and parameter choice is that GPUs di er
in the number of multiprocessors accumulated in a single device and in the
memory bandwidth. While these are still relevant for kernel optimization, they
rarely impact the correctness of a kernel design. We elaborate on the optimization
of kernel parameters in Sect. 3.5.

As of today, AMD’s ROCm ecosystem — and the HIP development ecosys-
tem — still lacks some key functionality of the CUDA ecosystem. For example,
HIP lacks a cooperative group interface that can be used for flexible thread
programming inside a wavefront, see Sect. 3.3.

3 Porting CUDA Functionality to the HIP Ecosystem

Next, we report and discuss how we ported INKGO’s GPU functionality avail-
able for CUDA backends to the HIP ecosystem. To understand the technical
realization, it is however useful to first elaborate on INKGO’s design.

3.1 Ginkgo Design

A high-level overview of INKGO’s software architecture is visualized in Fig. 1.
The library design collects all classes and generic algorithm skeletons in the
“core” library which, however, is useless without the driver kernels available
in the “omp”, “cuda”, and “reference” folders. We note that “reference” con-
tains sequential CPU kernels used to validate the correctness of the algorithms
and as reference implementation for the unit tests realized using the googletest
[6] framework. The “include” folder contains the public interface. Extending
INKGO’s scope to AMD architectures, we add the “hip” folder containing the
kernels in the HIP language, and the “common” folder for platform-portable
kernels with the intention to reduce code duplication, see Sect. 3.2.
To reduce the e ort of porting INKGO to AMD architectures, we use the
same base components of INKGO like config, binding, executor, types and
operations, which we only extend and adapt to support HIP.

— config: hardware-specific information like warp size, lane_mask_type, etc.;

— binding: the C++ style overloaded interface to vendors’ BLAS and sparse
BLAS library and the exception calls of the kernels not implemented;

— executor: the “handle” controlling the kernel execution and the ability to
switch the execution space (hardware backend);

— types: the type of kernel variables and the conversion between library vari-
ables and kernel variables;

(Core \

Library Infrastructure
Algorithm Implementations
* Iterative Solvers

* Preconditioners

Runtime polymorphism selects the right kernel
depending on the target architecture;
Common
Architecture-specific kernels « Shared kernels

execute the al_gorlthm ‘/ Reterence \\‘
on target architecture;

Library core contains architecture-agnostic
algorithm implementation;

OpenMP CUDA HIP

OpenMP-kernels CUDA-GPU kernels HIP-GPU kernels

* SpMV * SpMV * SpMV

« Solver kernels * Solver kernels * Solver kernels

* Precond kernels * Precond kernels * Precond kernels
. .

Reference kernels
+ SpMV

* Solver kernels

* Precond kernels

N\ ,,/‘

Reference are sequential Optimized architecture-specific kernels; =

kernels to check correctness %‘, ‘!?‘?9,'5‘?,55

of algorithm design and I l l | l Ca '
optimized kernels;

Fig 1 The INKGO library design overview. The components added when extending
the scope to AMD GPUs are the “HIP” and the “Common” modules.

— operations: a class aggregating all the possible kernel implementations such
as reference, omp, cuda and hip, which allows to switch between implemen-
tations at runtime.

Moreover, some components are not officially supported by vendors, e.g. com-
plex number atomic_add! on CUDA and HIP, and warp-wide cooperative groups
on HIP. For the functionality missing in both vendor ecosystems, we implement
CUDA device functions providing the functionality and apply the work flow
listed in Algorithm 1 to generate corresponding HIP kernels. For components
missing only in one vendor ecosystem, we implement kernels providing the same
functionality in the other ecosystem. In particular, as the HIP ecosystem cur-
rently lacks the warp-wide cooperative groups we make heavy use of, we imple-
ment device functions that provides this functionality for AMD architectures,
see Sect. 3.3.

3.2 Avoiding Code Duplication

Despite the fact that the HIP ecosystem allows to compile the kernels for both
AMD and NVIDIA GPUs, we currently plan to still provide native support
in the CUDA ecosystem. This choice is motivated by the wider adoption of
CUDA in the high performance computing community on the one side, and the
unclear future of this functionality remaining in the HIP ecosystem on the other
side. A third reason is that preserving native CUDA support allows to utilize
novel CUDA-specific technology, e.g., dynamic parallelism. Extending INKGO

A complex atomic_add involves separate real and imaginary atomic_add and thus is
not strictly an atomic operation, as no ordering between the individual components
of multiple complex atomic operations is guaranteed.

to AMD GPUs, a primary goal was to avoid a significant level of code duplica-
tion. For this purpose, we created the “common” folder containing all kernels and
device functions that are identical or the CUDA and the HIP executor except
for kernel configuration parameters (such as warp size or launch_bounds). These
configuration parameters are not set in the kernel file contained in the “com-
mon” folder, but in the files located in “cuda” and “hip” that are interfacing
these kernels. This way we can avoid code duplication while still configuring the
parameters for optimal kernel performance on the distinct hardware backends.

3.3 Cooperative Groups

CUDA 9 introduced cooperative groups for flexible thread programming. Coop-
erative groups provide an interface to handle thread block and warp groups and
apply the shuffle operations that are used heavily in INKGO for optimizing
sparse linear algebra kernels. HIP [3] only supports block and grid groups with
thread rank), size) and sync), but no subwarp-wide group operations like
shuffles and vote operations.

For enabling full platform portability, a small codebase, and preserving the
performance of the optimized CUDA kernels, we implement cooperative group
functionality for the HIP ecosystem. Our implementation supports the calcula-
tion of size/rank and shuffle/vote operations inside subwarp groups. We acknowl-
edge that our cooperative group implementation may not support all features of
CUDA’s cooperative group concept, but all functionality we use in INKGO.

The cross-platform cooperative group functionality we implement with shuffle
and vote operations covers CUDA’s native implementation. HIP only interfaces
CUDA’s warp operation without _sync suffix (which refers to deprecated func-
tions), so we use CUDA’s native warp operations to avoid compiler warning
and complications on NVIDIA GPUs with compute capability 7.x or higher. We
always use subwarps with contiguous threads, so we can use the block index to
identify the threads’ subwarp id and its index inside the subwarp. We define

Size = Given subwarp size
Rank = tid % Size
LaneOffset = |tid % warpsize / Size| X Size

Mask = ~ 0 >> (warpsize - Size) << LaneOffset

where tid is local thread id in a thread block such that Rank gives the local id
of this subwarp, and 0 is a bitmask of 32/64 bits, same bits as lane mask_type,
filled with 1 bits according to CUDA/AMD architectures, respectively. Using
this definition, we can realize the cooperative group interface, for example for
the shfl _xor, ballot, any, and all functionality:

subwarp.shfl_xor(data, bitmask) = __shfl_xor(data, bitmask, Size)
subwarp.ballot (predicate) = (__ballot(predicate) & Mask) >> LaneOffset
subwarp.any(predicate) = (__ballot(predicate) & Mask) = 0
subwarp.all(predicate) = (__ballot(predicate) & Mask) == Mask

Note that we use the ballot operation to implement any and all operations.
The original warp ballot returns the answer for the entire warp, so we need
to shift and mask the bits to access the subwarp results. The ballot operation
is often used in conjunction with bit operations like the population count (pop
count), which are provided by C-style type-annotated intrinsics __popc[11] in
CUDA and HIP. To avoid any issues with the 64bit-wide lane masks on AMD
GPUs, we provide a single function popcnt with overloads for 32 and 64 bit
integers as well as an architecture-agnostic lane mask_type that provides the
correct (unsigned) integer type to represent a (sub)warp lane mask.

template <int Size, typename ValueType>
__global__ void reduce(ValueType *__restrict_
auto local_data = datal[threadIdx.x];
for (int i = 0; i < inner_loops; i++) {
auto group = tiled_partition<Size>(this_thread_block());
#pragma unroll
- for (int bitmask = 1; bitmask < Size; bitmask <<= 1) {
for (int bitmask = 1; bitmask < group.size(); bitmask <<= 1) {

data, int inner_loops) {

© 00~ O U W N
+ +

const auto remote_data = __shfl_xor(local_data, bitmask, Size);
10| + const auto remote_data = group.shfl_xor(local_data, bitmask);
11 local_data = local_data + remote_data;
12 }
13 }
14 data[threadIdx.x] = local_data;
15| 2}

Listing 1 3 Reduce kernel. Green part is cooperative group implementation, and red
part is legacy implementation

Reduction Kernel: Legacy vs Cooperative

ns Reduction Kernel: Legacy vs Cooperative Group on V100
120 ns Group on RadeonVIl
350
100 M Int (Legacy) 300 m Int (Legacy)
o Int (Coop) “iInt (Coop)
250 e G
Long (Legacy) g Long (Legacy)
60 Long (Coop) 200 2 Long (Coop)
© m Float (Legacy) 150 3 ® Float (Legacy)
Float (Coop) 100 B = Float (Coop)
20 = Double (Legacy) so I I m Double (Legacy)
. Double (Coop) 0 & Double (Coop)
Size =32 Size=4 Size=32(HIP) Size =4 (HIP) Size = 64 Size=4

Fig 2 INKGO’s cooperative groups vs. legacy functions for di erent data types on
V100 (left) and RadeonVII (right). (Color figure online)

To assess the performance of our cross-platform cooperative group imple-
mentation, we use the local reduction kernel shown in Listing 1.3 that utilized
either the vendor’s legacy functionality (red) or INKGO’s cross-platform coop-
erative group interface (green). In Fig. 2, we report the runtime needed for 100
reduction operations (after a warm-up phase of 10 reductions) on NVIDIA’s
V100 GPU and AMD’s RadeonVII GPU. To exclude the overhead of the kernel
launch and memory operations, we run the kernel executing “inner_loops” reduc-
tions (line 4 of Listing 1.3) for “inner_loops = 1000” and “inner_loops = 2000”

