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Abstract: The theory of optimal control has received considerable attention to model motion
behavior or decision making of humans. Most approaches are based on a fixed (or infinite)
time horizon which implies that all information is available at the beginning of the time
interval. Nevertheless, it is reasonable to believe that the human uses information defined by a
continuously moving information horizon at each time instant and adapts accordingly. Therefore,
in this paper, we propose an optimal feedback control approach based on the paradigm of
continuous updating. The model parameters which define individual human behavior consist of
the cost function parameters and the length of the information horizon, which can be identified
via a corresponding inverse optimal control approach. We show the applicability of the approach
with simulations of a potential application example of human behavior identification from the
point of view of a driving assistance system.

1. INTRODUCTION

Understanding how humans move or control a system is
an important issue in human-machine interaction, e.g. in
shared control where a human and an automatic controller
influence a dynamic system simultaneously. The knowl-
edge of human behavior can be used to adapt the controller
according to a particular human partner. The theory of
optimal feedback control arised in the neuroscience com-
munity as a promising approach to model human motor
behavior (Todorov (2004)). The last two decades have
therefore seen a growing interest in optimal control theory
to model all kinds of human movement including reach-to-
grasp (El-Hussieny et al. (2016)), saccadic eye movements
(El-Hussieny and Ryu (2018)) and locomotion (Mombaur
et al. (2010)). This has also motivated the use of optimal
control to model how a human controls or manipulates
a dynamic system alone (Priess et al. (2015); Inga et al.
(2017)) or in cooperation with an assistance system (Inga
et al. (2018)). For this purpose, the model parameters
are determined out of measured data by solving inverse
optimal control problems. This problem has also attracted
much attention from the control engineering community
(see e.g. Johnson et al. (2013); Pauwels et al. (2014); Jean
and Maslovskaya (2018)).

In all the above modeling approaches for human behavior,
it is assumed that the human has all information about
the motion equations and objective function at the be-
ginning of the process and for the complete time interval
which may be finite (e.g. Aghasadeghi and Bretl (2014))
or infinite (e.g. Priess et al. (2015); El-Hussieny et al.
(2016)). Nevertheless, most of real-life control processes

evolve continuously in time, and the human may not
have all information about the process at the initial time
instant. For example, in an automotive application, the
driver only has local information about the road curva-
ture or any obstacles which may force a lane change.
Hence, it is questionable whether approaches based on
classical optimal control theory reflect human decision
making adequately. Therefore, we conjecture that a human
continuously receives updated information and adapts his
behavior continuously to the new situation and hence, it is
important to include this characteristic in an identification
procedure of a human behavior model.

Some literature exists where it is assumed that humans
have a preview time up to which they have knowledge
of the systems states or plan their actions, especially
in the field of human driver modeling for automotive
applications, see e.g. the work in Gray et al. (2013); Flad
et al. (2014); Inga et al. (2015); Zhang et al. (2019).
Nevertheless, this preview time is usually set manually and
not identified out of measured data. Understanding the
length of the information horizon with an identification
approach can be beneficial to better understand human
decision making.

The idea of an information horizon has also been explored
in the papers of Gromova and O.L. (2016), Petrosian
(2016), Petrosian and Barabanov (2017), Petrosian et al.
(2018), Yeung and Petrosian (2017), Petrosian and Gro-
mova (2018), Petrosian and Kuchkarov (2019), Petrosian
et al. (2019). In these papers it is assumed that the in-
formation about motion equations and payoff functions
is updated in discrete time instants. In the papers Pet-
rosian and Tur (2019), Kuchkarov and Petrosian (2019)
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information about the process evolves continuously in
time. In the paper Petrosian and Tur (2019), a system of
Hamilton-Jacobi-Bellman equations is derived for solving
a Nash dynamic game with continuous updating. Similarly,
Kuchkarov and Petrosian (2019) explore the class of linear-
quadratic differential games with continuous updating and
derive the explicit form of the Nash equilibrium.

The class of control problems with dynamic updating has
some similarities with Model Predictive Control (MPC)
theory which is worked out within the framework of nu-
merical optimal control (Goodwin et al. (2005), Kwon and
Han (2005), Rawlings and Mayne (2009), Wang (2005))
and which has also been used as a human behavior model
in Ramadan et al. (2016). In the MPC approach, the cur-
rent control action is achieved by solving a finite-horizon
open-loop optimal control problem at each sampling in-
stant.For linear systems there exists a solution in explicit
form (Hempel et al. (2015), Bemporad et al. (2002)). How-
ever, in general, the MPC approach demands the solution
of several optimization problems. Another related series
of papers corresponds to the class of stabilizing control
(Mayne and Michalska (1990), Kwon et al. (1982), Kwon
and Pearson (1977), Shaw (1979)). While these techniques
to determine optimal control are close to the ones pre-
sented in this paper, their considered problem is usually
assumed to have a strict terminal contraint for the states
in each horizon.

In this paper, we present a human behavior modeling
approach based on the paradigm of continuous updating.
This solves the problem of modeling human behavior when
information about the process updates continuously in
time. This means that the human

• has information about motion equations and objec-
tive function only on [t, t + T ], where T is the infor-
mation horizon and t is the current time instant.

• receives updated information as time t ∈ [t0,+∞)
evolves.

Furthermore, we leverage explicit solutions of a linear-
quadratic optimal control problem with continuous up-
dating to propose a corresponding inverse optimal control
approach, where not only the human cost functions param-
eters are identified, but also the length of the information
horizon T .

The paper is structured as follows. In Section 2, a descrip-
tion of the initial optimal control problem and correspond-
ing optimal control problem with continuous updating is
presented. In Section 3, the explicit form of the solution
of the optimal control problem with continuous updating
is given for the class of linear-quadratic control problems.
Then, we present in Section 4 the inverse optimal control
approach with continuous updating, where both cost func-
tion parameters and the length of the information horizon
are identified. Afterwards, we show in Section 5 simulation
results of the proposed modeling approach based on con-
tinuous updating with parameter identification. Finally,
we draw conclusions in Section 6.

2. OPTIMAL CONTROL WITH CONTINUOUS
UPDATING

In this section, we present our results concerning opti-
mal control with continuous updating. We first present
the classical optimal control problem before showing our
continuous updating approach.

2.1 Initial Optimal Control Problem

Consider the optimal control problem defined on the
interval [t0, T ]:

J(x0, t0;u) =

T∫

t0

g[t, x(t), u(t, x)]dt → min
u

(1)

subject to

ẋ(t) = f(t, x, u),
x(t0) = x0,
x ∈ compRn, u = u(t, x) ∈ U ⊂ compRm, t ∈ [t0, T ],

(2)

where compRm is a compact set in an m-dimensional
space of real numbers, g[t, x(t), u(t, x(t))], f(t, x, u) are
integrable functions, x(t) ∈ Rn is the solution of the
Cauchy problem (2) with fixed u(t, x) ∈ Rm. The control
u(t, x) ∈ Rm is called admissible if the problem (2) has a
unique and continuous solution.

2.2 Problem Formulation for Optimal Control with
Continuous Updating

Using the initial optimal control problem defined on the
closed time interval [t0, T ], we construct the corresponding
optimal control problem with continuous updating.

Consider the following optimal control problem defined on
the interval [t, t+ T ], where 0 < T < +∞:

J(x, t;ut) =

t+T∫

t

g[s, xt(s), u
t(s, xt)]ds → min

ut
(3)

subject to

ẋt(s) = f(s, xt, u
t),

xt(t) = x,
xt ∈ compRn, ut = ut(s, xt) ∈ U ⊂ compRm, s ∈ [t, t+ T ],

(4)
where ut(s, xt) ∈ Rm and xt(s) ∈ Rn are the optimal
control and the optimal state trajectories on the interval
[t, t+ T ], respectively.

The main characteristic of the optimal control problem
with continuous updating is the following:

The current time t ∈ [t0,+∞) evolves continuously and as
a result the human continuously obtains new information
about motion equation and objective function on the
interval [t, t+ T ].

The control u(t, x) in the optimal control problem with
continuous updating has the form:

u(t, x) = ut(s, x)|s=t, t ∈ [t0,+∞), (5)

where ut(s, x), s ∈ [t, t + T ] is the control in the problem
defined on the interval [t, t+T ] and ut(s, x)|s=t is the part
of that control in the first instant s = t. The main idea
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of (5) is that as the current time t evolves information
updates, therefore in order to model the behavior of the
human it is necessary to consider the control ut(s, x) only
in the points where s = t.

The trajectory x(t) in the optimal control problem with
continuous updating is determined in accordance with the
system dynamics in (2) where u = u(t, x) is the control in
(5). We assume that the control with continuous updating
obtained using (5) is admissible.

The essential difference between the control problem with
continuous updating and classic optimal control problem
defined on the closed interval is that the decision maker
in the initial problem is guided by the objective that it
will eventually receive on the interval [t0, T ], but in the
case of a control problem with continuous updating, at
the time instant t the system is oriented on the expected
objective (3), which is calculated using the information on
the interval [t, t + T ] or the information that the system
has at the instant t.

2.3 Optimal Control with Continuous Updating

For the framework of continuously updated information,
we use the concept of optimal control in feedback form
u∗(t, x). Furthermore, we require that for any fixed current
time t ∈ [t0,+∞), u∗(t, x) coincides with the optimal
control in the problem specified by (3) and (4), defined
on the interval [t, t+ T ] in the instant t.

However, direct application of classical approaches for
optimal control in feedback form is not possible. Consider
another current time instant t+ ε, ε << T , then according
to the aforementioned requirement, u∗(t + ε, x) in the
instant t + ε must coincide with the optimal control in
the problem defined on the interval [t+ ε, t+ ε+ T ].

Therefore u∗(t, x), t ∈ [t0,+∞) should be defined as an
infinite combination of optimal controls on intervals [t, t+
T ] for every current time instant t ∈ [t0,+∞).

In order to construct such controls, we consider a concept
of generalized optimal control in feedback form

ũ∗(t, s, x), t ∈ [t0,+∞), s ∈ [t, t+ T ], (6)

which we are going to use further for construction of the
control u∗(t, x).

Definition 2.1. The control ũ∗(t, s, x) is a generalized op-
timal control in the problem with continuous updating if
it is optimal, for any fixed t ∈ [t0,+∞), with respect to
the problem given by the cost function (3), and the system
dynamics (4).

Using generalized optimal control it is possible to define
solution concept for an optimal control problem with
continuous updating.

Definition 2.2. The control u∗(t, x) is called optimal con-
trol with continuous updating if

u∗(t, x) = ũ∗(t, s, x)|s=t, t ∈ [t0,+∞), (7)

where ũ∗(t, s, x) is the generalized optimal control defined
in Definition 2.1.

3. LINEAR QUADRATIC OPTIMAL CONTROL
WITH CONTINUOUS UPDATING

In this section, we give solutions for the optimal control
problem with continuous updating according to Defini-
tion 2.2 for the class of linear-quadratic optimal control.

3.1 Problem Formulation for the Linear-Quadratic Case
with Continuous Updating

According to the general problem statement of the opti-
mal control problem with continuous updating the linear
quadratic case will have the following form:

Consider the optimal control problem defined on the
interval [t, t+ T ], where 0 < T < +∞:

J(x, t;ut) =

t+T∫

t

xt
T (s)Qxt(s)

+ ut(s, xt)
TRut(s, xt)ds → min

ut
(8)

subject to

ẋt(s) = Axt(s) +But(s, xt),
xt(t) = x,
xt ∈ Rn, ut = ut(s, xt) ∈ U ⊂ compRm, s ∈ [t, t+ T ].

(9)

The definitions of the generalized optimal control and the
optimal control with continuous updating are analogous
to Definitions 2.1 and 2.2.

3.2 Optimal Control with Continuous Updating for LQP

Here we present the explicit form of the optimal control
with continuous updating using the system of Riccati
differential equations.

Theorem 3.1. The linear quadratic control problem with
continuous updating defined by (8) and (9) has, for every
initial state x0, a solution if and only if the Riccati
differential equation (10) has a symmetric solution K(·)
on the interval [0, 1]:

K̇(τ) = −TATK(τ)− TK(τ)A+ TK(τ)SK(τ)− TQ,

K(1) = 0, (10)

where S = BR−1BT , Q, R are assumed to be symmetric
and R is positive definite.

If the linear quadratic control problem with continuous
updating has a solution, then it is unique and the optimal
control in feedback form is

u∗(t, x) = −R−1BTK(0)x. (11)

Proof. In order to prove the Theorem we introduce the
following change of variables

s = t+ Tτ,

yt(τ) = x(t+ Tτ),

vt(τ, yt) = u(t+ Tτ, x).

(12)

By substituting (12) in the motion equations (9) and
objective function (8) we obtain

ẏt(τ) = TAyt(τ) + TBvt(τ, yt) (13)
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of (5) is that as the current time t evolves information
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to the aforementioned requirement, u∗(t + ε, x) in the
instant t + ε must coincide with the optimal control in
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According to the general problem statement of the opti-
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(9)

The definitions of the generalized optimal control and the
optimal control with continuous updating are analogous
to Definitions 2.1 and 2.2.

3.2 Optimal Control with Continuous Updating for LQP

Here we present the explicit form of the optimal control
with continuous updating using the system of Riccati
differential equations.

Theorem 3.1. The linear quadratic control problem with
continuous updating defined by (8) and (9) has, for every
initial state x0, a solution if and only if the Riccati
differential equation (10) has a symmetric solution K(·)
on the interval [0, 1]:

K̇(τ) = −TATK(τ)− TK(τ)A+ TK(τ)SK(τ)− TQ,

K(1) = 0, (10)

where S = BR−1BT , Q, R are assumed to be symmetric
and R is positive definite.

If the linear quadratic control problem with continuous
updating has a solution, then it is unique and the optimal
control in feedback form is

u∗(t, x) = −R−1BTK(0)x. (11)

Proof. In order to prove the Theorem we introduce the
following change of variables

s = t+ Tτ,

yt(τ) = x(t+ Tτ),

vt(τ, yt) = u(t+ Tτ, x).

(12)

By substituting (12) in the motion equations (9) and
objective function (8) we obtain

ẏt(τ) = TAyt(τ) + TBvt(τ, yt) (13)

and

J(yt, t; vt) =

1∫

0

TyTt (τ)Qiyt(τ) + T (vt( τ, yt))
T
Rvt(τ, yt)dτ.

(14)
It is known (see e.g. (Engwerda, 2005, Theorem 5.1)) that
the criterion for existence of optimal control in feedback
form is the existence of symmetric solution for the system
of differential equations (10). The optimal control has the
form

v∗t (τ, yt) = −R−1BTK(τ)yt. (15)

From (12) we have

τ =
s− t

T
.

Returning to original variables we obtain the following
control

ut(s, x) = −R−1BTK

(
s− t

T

)
x.

This control is optimal control in the problem defined on
the interval [t, t+ T ] by construction. The equations (13),
(14) and solution (15) have the same form for all values t.
Then a generalized optimal control in the control problem
with continuous updating has the form

ũ∗(t, s, x) = −R−1BTK

(
s− t

T

)
x. (16)

By using (7), we set the optimal control with continuous
updating equal to the generalized optimal control (16), for
s = t:

u∗(t, x) = −R−1BTK(0)x, t ∈ [t0,+∞). (17)

Thus, control (15) in the subtask exists for any initial
value yt (t ≥ t0), then control (17) in the optimal control
problem with continuous updating of information exists
for any x0. �

Using the form of the optimal control with continuous
updating u∗(t, x) given in (11), it is possible to propose
a corresponding inverse optimal control problem with
continuous updating, which we present in the following.

4. INVERSE OPTIMAL CONTROL PROBLEM WITH
CONTINUOUS UPDATING

Suppose the function g[t, x(t), u(t, x(t))] in (1) is pa-
rameterized and therefore, in an inverse optimal control
problem, this parametrization is unknown and has to
be estimated from observed control and state trajecto-
ries. Furthermore, the value of the information horizon
T is also unknown. We denote by θ the set of unknown
parameters including the cost function parametrization
and the information horizon. The inverse control problem
with continuous updating involves the estimation of the
unknown parameter set θ based on the observed control
û(t) and corresponding trajectory x̂(t) on the interval
[t0, T ]. The objective is to obtain estimated optimal control
u∗
θ(t, x

∗
θ(t)) and corresponding trajectory x∗

θ(t) such that
the difference between these model trajectories and the
observed ones is minimal.

Therefore, in this paper, the inverse optimal control prob-
lem with continuous updating is solved with an approach
analogous to the bi-level approach for standard optimal
control introduced in Mombaur et al. (2010), where it

has successfully been applied with experimental data. The
model parameters θ are determined such that the squared
error between observed and model trajectories is mini-
mized. This objective is represented by the optimization
problem

Div =

T∫

t0

||xθ(t)−x̂(t)||2+||uθ(t, x
∗
θ(t))−û(t)||2 dt → min

θ
,

(18)
where xθ and uθ are the optimal control trajectories
arising from the minimization of the cost function (1)
with parameters θ. Note that in the continuous updating
inverse optimal control approach, uθ(t, xθ(t)) is defined as
in (7) and xθ(t) arises from the corresponding solution
of the system dynamics. Therefore, in the following, we
consider the linear-quadratic optimal control problem with
continuous updating such that we are able to exploit the
explicit form given in (11) for the solution of (18).

5. SIMULATION RESULTS

In this section, we illustrate our proposed optimal control
approach with continuous updating and how the corre-
sponding solution of the inverse problem can be applied
to identify suitable parameters to describe behavior of the
driver controlling the lateral dynamics of a vehicle.

5.1 Single-track and Steering Model

The simulated system is a single-track and steering model
with six states from Flad et al. (2014). The model is a
validated linear approximation of steering behavior in a
midsize passenger car.

The system state vector is given by

x(t) =
[
β(t) ψ(t) ψ̇(t) y(t) δ(t) δ̇(t)

]T
,

where β(t) is the side-slip angle, ψ(t) is the yaw angle,

ψ̇(t) is the yaw angle velocity , y(t) the lateral distance

from middle lane, δ(t) is steering wheel angle and δ̇(t) is
the steering wheel angle velocity. All states are in SI units.
The control u(t, x) ∈ R in the system is the applied torque
by the human.

The system dynamics have the form:

ẋ(t) = Ax(t) +B u(t) (19)

with x(t0) = x0 given and

lf

δ
β

lr

ψ

vy

Fig. 1. Geometric relations of the single-track vehicle
model.
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, (20)

B =
[
0 0 0 0 0 1

Js

]T
.

The model geometric relations are depicted schematically
in Fig. 1. The system’s parameters can be found in Table 1.

Table 1. System constants of the linear single-
track steering model of Flad et al. (2014)

Name Value Unit Description

v 20 m
s

vehicle velocity

lf 1.5 m length of center of mass to

front wheelbase
lr 1 m length of center of mass to

rear wheelbase

Cf 137.5 kN
rad

front tire slip

Cr 137.5 kN
rad

rear tire slip

M 1500 kg vehicle mass

Jz 1800 kgm2 vehicle yaw inertia

Ds 1 Nms
rad

damping constant of

steering train

Cs 1 Nm
rad

retraction constant of

steering wheel

Js 0.1 Nms2

rad
inertia of the steering train

is 16 − steering transfer constant

.

Similar to e.g. Cole et al. (2006), we suppose that the
objective function of the driver has a quadratic form,
therefore the integrand in (1) and (8) has the form:

g[t, x(t), u(t, x), θ] = xT (t)Qx(t) + u(t, x)TRu(t, x). (21)

The parameter θ has to be identified out of the generated
data by means of the approach in (18). The parameter θ
is composed of the elements of the matrices Q and R and
the time horizon T :

θ = {Q,R, T}. (22)

5.2 Optimal Control with Continuous Updating

In order to illustrate the different solutions arising from
optimal control with continuous updating, we first define
the ground truth parameters of the objective function of
the human driver to have the form:

Q = diag(1, 10, 1, 40, 10, 1), R = [1] . (23)

Furthermore, suppose the initial state at t0 = 0 is

x0 = [0 0 0 1 1 0.1] .

We use optimal control with continuous updating, i.e. the
results of Theorem 3.1 to generate data sets which simulate
measurements of human steering behavior. This was done
by solving (10) numerically using the ode45 solver of
MATLAB. The data sets, denoted by D1 to D4, consist
of optimal state and control trajectories with t ∈ [0, 10]
and with the parameters for the information horizon

T = 1, T = 1.5, T = 2, T = 2.5, (24)

Fig. 2. Optimal controls with continuous updating with
different lengths of the information horizon.

Fig. 3. y(t) for the control problem with continuous updat-
ing with different lengths of the information horizon.

respectively. All data sets are generated based on the
same cost function parameters (23) and system dynamics
(20). We exemplarily show the corresponding optimal
trajectories of the control in Fig. 2 as well as the lateral
distance from the middle lane and the steering wheel angle
in Fig. 3 and Fig. 4, respectively.

5.3 Inverse Optimal Control Problem

Now we solve the inverse optimal control problem (18)
using the approach with continuous updating to obtain
an estimate of θ as defined in (22). We use the data set
D2, i.e. the optimal control trajectories with continuous
updating with T = 1.5, as observed trajectories x̂(t) and
û(t) on the interval [0, 10]. In order to show the significance
of identifying T asides from the cost function matrices, we
present the optimal [Q,R] for the different fixed values of
T defined in (24). Furthermore, we show the corresponding
values of the objective function Div (18). In order to
avoid ambiguity of the parameters, we normalized all cost
function parameters with respect to R = [1.00]. The
results are given by
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in Fig. 1. The system’s parameters can be found in Table 1.

Table 1. System constants of the linear single-
track steering model of Flad et al. (2014)

Name Value Unit Description
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lf 1.5 m length of center of mass to

front wheelbase
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rad
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rad

retraction constant of

steering wheel
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rad
inertia of the steering train

is 16 − steering transfer constant

.

Similar to e.g. Cole et al. (2006), we suppose that the
objective function of the driver has a quadratic form,
therefore the integrand in (1) and (8) has the form:

g[t, x(t), u(t, x), θ] = xT (t)Qx(t) + u(t, x)TRu(t, x). (21)

The parameter θ has to be identified out of the generated
data by means of the approach in (18). The parameter θ
is composed of the elements of the matrices Q and R and
the time horizon T :

θ = {Q,R, T}. (22)

5.2 Optimal Control with Continuous Updating

In order to illustrate the different solutions arising from
optimal control with continuous updating, we first define
the ground truth parameters of the objective function of
the human driver to have the form:

Q = diag(1, 10, 1, 40, 10, 1), R = [1] . (23)

Furthermore, suppose the initial state at t0 = 0 is

x0 = [0 0 0 1 1 0.1] .

We use optimal control with continuous updating, i.e. the
results of Theorem 3.1 to generate data sets which simulate
measurements of human steering behavior. This was done
by solving (10) numerically using the ode45 solver of
MATLAB. The data sets, denoted by D1 to D4, consist
of optimal state and control trajectories with t ∈ [0, 10]
and with the parameters for the information horizon

T = 1, T = 1.5, T = 2, T = 2.5, (24)

Fig. 2. Optimal controls with continuous updating with
different lengths of the information horizon.

Fig. 3. y(t) for the control problem with continuous updat-
ing with different lengths of the information horizon.

respectively. All data sets are generated based on the
same cost function parameters (23) and system dynamics
(20). We exemplarily show the corresponding optimal
trajectories of the control in Fig. 2 as well as the lateral
distance from the middle lane and the steering wheel angle
in Fig. 3 and Fig. 4, respectively.

5.3 Inverse Optimal Control Problem

Now we solve the inverse optimal control problem (18)
using the approach with continuous updating to obtain
an estimate of θ as defined in (22). We use the data set
D2, i.e. the optimal control trajectories with continuous
updating with T = 1.5, as observed trajectories x̂(t) and
û(t) on the interval [0, 10]. In order to show the significance
of identifying T asides from the cost function matrices, we
present the optimal [Q,R] for the different fixed values of
T defined in (24). Furthermore, we show the corresponding
values of the objective function Div (18). In order to
avoid ambiguity of the parameters, we normalized all cost
function parameters with respect to R = [1.00]. The
results are given by

Fig. 4. δ(t) for the control problem with continuous updat-
ing with different lengths of the information horizon.

DivT=1 = 7.7944 · 10−9, R = 1.00

QT=1 = diag(17.11, 38.56, 727.49, 91.64, 65.98, 2.50),

DivT=1.5 = 5.4986 · 10−13, R = 1.00

QT=1.5 = diag(11.95, 9.91, 1.00, 40.00, 10.01, 1.00),

DivT=2 = 0.017448, R = 1.00

QT=2 = diag(0.00, 0.00, 0.00, 18.54, 0.00, 0.34),

DivT=2.5 = 0.11415, R = 1.00

QT=2.5 = diag(0.00, 0.00, 0.00, 9.79, 0.00, 0.02).
(25)

The inverse optimal control approach introduced in Sec-
tion 4, where we also identify the information horizon T .
The solution of (18) is calculated using the Sequential
Quadratic Programming (SQP) method in the fmincon
solver of MATLAB, where we constrained the parameters
to be positive. The identification results are

T opt = 1.4815

DivT opt = 1.3065 · 10−10, R = 1.00, (26)

QT opt = diag(177.12, 8.82, 9.84, 41.26, 10.99, 1.03).

Based on the identified parameters QT opt and T opt, we

generate the trajectories u
T opt

id and x
T opt

id corresponding to
the optimal control with continuous updating. Fig. 5 shows
the original optimal control (from data set D2, black line)
and the optimal control with continuous updating from the
identified parameters (yellow line). Similarly, in Fig. 6 and
Fig. 7 the ground truth and identified model trajectories
are shown for the lateral distance from the middle lane
y(t) and the steering wheel angle δ(t).

5.4 Discussion

From Fig. 2, it is noticeable that the optimal control
trajectories are different depending on the assumed length
of the information horizon T . Additionally, Fig. 3 and Fig.
4 show that more information leads to a more effective
stabilization of the states.

Fig. 5. Ground truth control (black line) and identified
optimal control with continuous updating (yellow

line) generated with T opt = 1.4815 and QT opt .

Fig. 6. Ground truth y(t) (black line) and identified
optimal control with continuous updating (yellow

line) generated with T opt = 1.4815 and QT opt .

The solutions in (25) indicate that, if we assume that the
human acts according to a moving information horizon,
then the assumption of a fixed—possibly wrong —infor-
mation horizon may lead to suboptimal results. This shows
the importance of identification of optimal value of infor-
mation horizon T from the observed data, which we were
able to conduct by means of our performed inverse optimal
control approach. The identified cost function parameters

QT opt with optimal T are the closest to the ground truth
defined in (23), but differ especially in the first diagonal
element of matrix Q, the parameter of the slip angle
deviation. In this maneuver, the value of the slip angle
does not affect the other states considerably. Therefore,
it is a challenge to identify the corresponding parameters
correctly. Nevertheless, the identified parameters were still
able to explain the ground truth trajectories adequately.
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Fig. 7. Ground truth δ(t) (black line) and identified
optimal control with continuous updating (yellow

line) generated with T opt = 1.4815 and QT opt .

6. CONCLUSION

In this paper, we presented an optimal control approach
and the corresponding inverse problem based on con-
tinuous updating, where the decision maker updates his
behavior based on the new information available which
arises from a shifting time horizon. We showed simulations
results which show the applicability of the approach and
also highlight the importance of identifying the real value
of information horizon T opt. Our approach provides a
means of more profound modeling of engineering systems
with humans. Future work will focus on the test of in-
verse optimal control with continuous updating using real
measured data from different human drivers.
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Fig. 7. Ground truth δ(t) (black line) and identified
optimal control with continuous updating (yellow

line) generated with T opt = 1.4815 and QT opt .

6. CONCLUSION

In this paper, we presented an optimal control approach
and the corresponding inverse problem based on con-
tinuous updating, where the decision maker updates his
behavior based on the new information available which
arises from a shifting time horizon. We showed simulations
results which show the applicability of the approach and
also highlight the importance of identifying the real value
of information horizon T opt. Our approach provides a
means of more profound modeling of engineering systems
with humans. Future work will focus on the test of in-
verse optimal control with continuous updating using real
measured data from different human drivers.
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