
X   =1.00

X   =0.01
perf

lossSD
Software Design and Quality

Methodology for Evaluating a
Domain-Specific Model Transformation

Language

Master’s Thesis of

Joshua Gleitze

at the Department of Informatics
Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr. Ralf H. Reussner
Second reviewer: Prof. Dr.-Ing. Anne Koziolek
Advisor: M. Sc. Heiko Klare
Second advisor: Dr.-Ing. Erik Burger

19th October 2020 – 18th April 2021



This document is licensed under a Creative Commons Attribution 4.0 International License  
(CC BY 4.0): https://creativecommons.org/licenses/by/4.0/deed.en

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe



I declare that I have developed and written the enclosed thesis entirely by myself. I have
not used sources or means without declaring them in the text.
Karlsruhe, 18th April 2021

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Joshua Gleitze)



Abstract

When using multiple models to describe a system, the di�erent descriptions can get out of
synchronization and, hence, contradict themselves. Model transformations are a means to
ensure that models remain consistent even while they are being edited by multiple parties.
Although strong results have been achieved for transforming changes between two mod-
els, the challenge of creating multidirectional model transformations is still insu�ciently
addressed. The Commonalities Language is a declarative, domain-speci�c programming
language allowing to develop multidirectional model transformations by combining bid-
irectional transformation speci�cations. Since it has not yet been validated empirically,
it is an open question whether the language is suitable for developing realistic model
transformations and whether it brings bene�ts over an alternative model transformation
language.
In this thesis, I design a case study evaluating the Commonalities Language. I discuss

both the methodology of the case study and its validity. Furthermore, I introduce a novel
property for bidirectional transformations, called congruency. It ensures a notion of
compatibility between the two directions of a transformation. I motivate from practical
examples why we can expect congruency to hold usually. Afterwards, I present the design
decisions of a test strategy for two model transformation implementations that realize the
same consistency speci�cation. The test strategy also provides a practical application of
congruency. Finally, I contribute improvements to the Commonalities Language.

Together, the contributions of this thesis enable researchers to conduct a case study on
programming languages for model transformations, and, thus, gain a better understanding
of their bene�ts. Congruency can make any transformation better usable and might proof
useful for constructing model transformation networks. The test strategy can be applied
to any acceptance test suite for model transformations.

i





Zusammenfassung

Sobald ein System durch mehrere Modelle beschrieben wird, können sich diese verschie-
denen Beschreibungen auch gegenseitig widersprechen. Modelltransformationen sind ein
geeignetes Mittel, um das selbst dann zu vermeiden, wenn die Modelle von mehreren Par-
teien parallel bearbeitet werden. Es gibt mittlerweile reichhaltige Forschungsergebnisse
dazu, Änderungen zwischen zwei Modellen zu transformieren. Allerdings ist die Her-
ausforderung, Modelltransformationen zwischen mehr als zwei Modellen zu entwickeln,
bislang unzureichend gelöst. Die Gemeinsamkeiten-Sprache ist eine deklarative, domä-
nenspezi�sche Programmiersprache, mit der multidirektionale Modelltransformationen
programmiert werden können, indem bidirektionale Abbildungsspezi�kationen kombi-
niert werden. Da sie bis jetzt jedoch nicht empirisch validiert wurde, stellt es eine o�ene
Frage dar, ob die Sprache dazu geeignet ist, realistische Modelltransformationen zu entwi-
ckeln, und welche Vorteile die Sprache gegenüber einer alternativen Programmiersprache
für Modelltransformationen bietet.
In dieser Abschlussarbeit entwerfe ich eine Fallstudie, mit der die Gemeinsamkeiten-

Sprache evaluiert wird. Ich bespreche die Methodik und die Validität dieser Fallstudie.
Weiterhin präsentiere ich Kongruenz, eine neue Eigenschaft für bidirektionale Modelltrans-
formationen. Sie stellt sicher, dass die beiden Richtungen einer Transformation zueinander
kompatibel sind. Ich leite aus praktischen Beispielen ab, warum wir erwarten können, dass
Transformationen normalerweise kongruent sein werden. Daraufhin diskutiere ich die
Entwurfsentscheidungen hinter einer Teststrategie, mit der zwei Modelltransformations-
Implementierungen, die beide dieselbe Konsistenzspezi�kation umsetzen, getestet werden
können. Die Teststrategie beinhaltet auch einen praktischen Einsatzzweck von Kongruenz.
Zuletzt stelle ich Verbesserungen der Gemeinsamkeiten-Sprache vor.
Die Beiträge dieser Abschlussarbeit ermöglichen gemeinsam, eine Fallstudie zu Pro-

grammiersprachen für Modelltransformationen umzusetzen. Damit kann ein besseres
Verständnis der Vorteile dieser Sprachen erzielt werden. Kongruenz kann die Benutzer-
freundlichkeit beliebiger Modelltransformationen verbessern und könnte sich als nützlich
herausstellen, um Modelltransformations-Netzwerke zu konstruieren. Die Teststrategie
kann auf beliebige Akzeptanztests für Modelltransformationen angewendet werden.

iii





Contents

1 Introduction 1

2 Foundations 3
2.1 Domain-Speci�c Languages . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Model-Driven Software Development . . . . . . . . . . . . . . . . . . . . 4
2.3 Model Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Model Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 The Commonalities Approach . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 The Vitruvius Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 A Case Study Evaluating the Commonalities Language 15
3.1 Goals and Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 The Selected Consistency Preservation Case . . . . . . . . . . . . . . . . 16
3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Congruent Bidirectional Transformations 25
4.1 Relationship to the Consistency Relation . . . . . . . . . . . . . . . . . . 28
4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 A Test Strategy for Di�erent Implementations of a Consistency Specification 35
5.1 Black Box Acceptance Tests . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Exploiting Congruency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 A Test Framework for the Test Strategy . . . . . . . . . . . . . . . . . . . 39

6 Improvements to the Commonalities Language 49
6.1 Consistent Syntax for Renaming Participations . . . . . . . . . . . . . . . 49
6.2 Simpli�ed Operator Imports . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 Clearer Syntax for Operator Chains . . . . . . . . . . . . . . . . . . . . . 53

7 RelatedWork 57
7.1 Evaluating Model Transformation Languages . . . . . . . . . . . . . . . . 57
7.2 Properties of Model Transformations . . . . . . . . . . . . . . . . . . . . 59
7.3 Model Transformation Testing . . . . . . . . . . . . . . . . . . . . . . . . 65

8 Conclusion 67

Bibliography 71

v





List of Figures

2.1 An example for code written in the Reactions Language. . . . . . . . . . 11
2.2 An example for code written in the Commonalities Language. . . . . . . 12

3.1 The Goal-Question-Metric plan for the presented case study. . . . . . . . 20

4.1 The two types of changes in a congruent transformation. . . . . . . . . . 28

5.1 The Test Pyramid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 A schematic test plan exploiting congruency. . . . . . . . . . . . . . . . . 39
5.3 A Java parameter printed without and with custom formatting. . . . . . 42
5.4 Execution time measurements for two test suites. . . . . . . . . . . . . . 44
5.5 A test speci�cation written with the test framework. . . . . . . . . . . . 45
5.6 Test cases derived by the test framework. . . . . . . . . . . . . . . . . . . 47
5.7 Example for a di�erence printed by the test framework. . . . . . . . . . . 47

6.1 The new syntax for Participation aliases. . . . . . . . . . . . . . . . . . . 50
6.2 Demonstration of the new mechanism to resolve operators. . . . . . . . . 52
6.3 The current and the proposed, new syntax for de�ning operator chains. . 54

7.1 Graphic representation of a bidirectional transformation example. . . . . 61
7.2 The relationships between properties of transformations. . . . . . . . . . 63

vii





1 Introduction

Throughout the sciences, models are used to make complex situations manageable. Soft-
ware engineering, more than any other discipline, could pro�t from adopting model-based
techniques more widely [Sel03]. Nevertheless, practitioners still use models mainly in
an informal fashion, if at all [Bad+18]. Thus, they miss out on the bene�ts tool-based,
model-driven development techniques promise; like simulating properties of a system
before it is built, generating parts of the system’s implementation, or avoiding architecture
drift [Sch06; VS06; FR07]. One central reasons for the scarce adoption of model-driven
development is inadequate support by tools [WHR14; Bad+18].

As soon as software developers start modelling more aspects of a software system, they
face a dilemma: On one hand, they want to use the best-suited models for each aspect
of their project. On the other hand, as soon as they use multiple models, the models can
get out of synchronization and start to contradict each other. Any bene�ts they hope
to gain from their models can only be achieved if the models are free of contradictions.
But ensuring manually that the models stay consistent is laborious and can outweigh the
increases in productivity that the developers hoped to gain by introducing the models in
the �rst place [Bad+18]. A solution to resolve this dilemma is using model transformations
that propagate changes made to one model to the other models. There has been much
research on model transformations, resulting in good support for keeping two models in
synchronization [Kah+19]. However, more research is needed on multidirectional model
transformations. State-of-the-art solutions do not adequately support propagating changes
between more than two models [Ste17; Cle+19].
Klare and Gleitze [KG19] proposed the Commonalities Approach as a programming

model to support building multidirectional model transformations out of bidirectional ones.
It allows to re-use the well-established body of knowledge on bidirectional transformations
for themultidirectional case. Gleitze [Gle17] developed a programming language to support
the Commonalities Approach, called the Commonalities Language. Although Klare and
Gleitze give reasons why the Commonalities Approach and Language will improve how
multidirectional model transformations can be developed, it remains an open question
whether these bene�ts manifest themselves in practice. Furthermore, some of the design
decisions on the Commonalities Language are based on not-yet-validated assumptions
about how the language will be used. By conducting a case study on a realistic case
of consistency preservation for multiple models, we can provide the missing validation
regarding these open questions. This thesis lays the groundwork for such a case study.

The case study will use the case of consistency between a Java [Gos+21], a UML [Obj15],
and a PCM [Reu+16] model. These models are di�erent views on a software system: Java
is the system’s implementation, UML captures the system’s architecture, and PCM models
the system’s performance attributes. Hence, the case addresses the dilemma that arises
when using multiple models, as I described above. The case study will validate whether the

1



1 Introduction

Commonalities Language is suitable for building multidirectional model transformations.
Furthermore, it will compare the implementation in the Commonalities Language to an
implementation in an alternative model transformation language. The comparison shall
reveal which bene�ts using the Commonalities Language brings.
Before the case study can be conducted, challenges of both technical and conceptual

nature need to be overcome. After having presented the case study design, I will address
some of these challenges. Concretely, I will make the following contributions in this thesis:

A case study design Chapter 3 describes a design for a case study evaluating the Com-
monalities Language. It presents the study’s methodology and analyses the design’s
validity.

A useful property for bidirectional transformations Chapter 4 presents a novel property
for bidirectional transformations: congruency. I will describe under which conditions
bidirectional transformations can be congruent. I will give practically motivated reasons
for why I expect that all bidirectional transformations that the Commonalities Language
is concerned with can be congruent.

A test strategy comparing transformation implementations Chapter 5 derives a strategy
to test that two model transformation implementations realize the same consistency
speci�cation. It gives reasons for why the test suite should be designed in a particular way,
and checks potential drawbacks of this design. The test strategy also presents a practical
application of congruency.

Improvements to the Commonalities Language Chapter 6 presents improvements to the
Commonalities Language that make the language easier to use and better adapted to its
domain of application. The chapter presents justi�cations for the design decisions behind
the improvements.

All contributions facilitate conducting a case study on the Commonalities Language.
The case study will validate both whether the assumptions on which the Commonalities
Language was designed are accurate, and whether its expected bene�ts manifest in practice.
Thus, the case study and this thesis contribute to �nding an appropriate programming
model for multidirectional model transformations in Vitruvius and in general. Congruency
enables developers to create better usable model transformations. In conjunction with the
presented test strategy, congruency also helps testing model transformations.

The thesis will start by introducing the most relevant concepts that this thesis is based
on (Chapter 2). After presenting the contributions in Chapters 3–6, I will relate them to
the existing body of research in Chapter 7. Chapter 8 concludes the thesis and gives an
outlook on future work.

2



2 Foundations

This thesis is evaluates a domain-speci�c languages for programming model transforma-
tions, the Commonalities Language. In this chapter, I will introduce the concepts that are
relevant to the discussions in this thesis. We will start by looking at what domain-speci�c
languages are and why one might consider using them. We will then turn to model-driven
software development and how it raises the need to maintain model consistency. Finally,
we will see how the Commonalities Approach and the Vitruvius Approach address this
need with the help of the Commonalities Language.

2.1 Domain-Specific Languages

Most software is typically written using a general-purpose programming language, like C.
C is ‘not specialized to any particular area of application’ [Ker88, p. xi] and can, hence,
be used for almost any task. On the other hand, there are programming languages which
are tailored to a speci�c software domain. These languages are called domain-speci�c
languages [Völ13, p. 28]. They deliberately sacri�ce claims of generality to better �t the
requirements of their usage context.
Latex, for example, is a domain-speci�c language for typesetting documents. It o�ers

syntactic features and commands that address typical use cases for this task. While
documents could, theoretically speaking, be typeset with C as well, it would be signi�cantly
more cumbersome than using Latex. For instance, Latex allows writing the text of a
document directly into the source code �le. Text and commands can be mixed freely.
Arguments to commands do not always need to be enclosed by special characters. Strings
in C, on the other hand, must always be delimited by double quotes. String arguments
to functions must also be given in double quotes, and the return value of functions must
be combined with other strings using a function like ‘strcat’. That alone makes Latex a
better �t to produce documents, which contain a lot of text.

Domain-speci�c languages have successfully been applied to various areas of informa-
tion technology. HTML to create web pages, CSS to style them, Make to build software,
Perl-style regular expressions for pattern matching, or SQL to query databases are just a
few of the numerous popular examples [MHS05; FP10, p. xxi]. The languages are valuable
tools for their domains. However, not every software domain bene�ts from having its
domain-speci�c language. Domain-speci�c languages are laborious to develop and �rst
need to be learned by their potential users before they can bring bene�ts. Whether or not
to develop a domain-speci�c language needs to be decided carefully on a case-to-case basis
and the right answer ‘may become clear only after a sizeable investment in domain-speci�c
software development using a [general-purpose language] has been made’ [MHS05, p.
320].

3



2 Foundations

When implementing a domain-speci�c language, there is a fundamental design decision
to be made: whether to develop it as an internal or an external domain-speci�c language.
Internal domain-speci�c languages do not de�ne a new syntax, but instead re-use the
syntax of an existing—usually general-purpose—language, the so-called host language.
Code written in an internal domain-speci�c language is still valid code in the host language.
The domain-speci�c language is merely a speci�c way to use the host language. External
domain-speci�c languages, on the other hand, use their own syntax and, thus, need
their own parser, compiler, type system, etcetera [FP10, p. 28]. Internal domain-speci�c
languages can be implemented faster, and existing tools can be used for them. External
domain-speci�c languages, on the other hand, can freely choose the syntactic constructs
that make the most sense for them and are not limited by the syntax of the host language
[FP10, p. 150 �.]. Whether an internal or an external domain-speci�c language �ts an
intended use case best needs to be decided, once again, on a case-by-case basis [FP10, p.
29]. Both approaches have been used successfully. All previously mentioned examples
are external domain-speci�c languages. The software build system Gradle, for instance, is
con�gured using internal domain-speci�c languages hosted by either Groovy or Kotlin.
Software build systems illustrate that there is no one-size-�ts-all answer for internal versus
external domain-speci�c languages, not even within the same domain. Because for the
domain of software build systems, both approaches have been successful: The external
domain-speci�c language of Make as well as the internal domain-speci�c languages of
Gradle.

2.2 Model-Driven So�ware Development

Software engineering su�ers from a gap between the concepts of the problem and the
concepts of the implementation domain. Even highly evolved programming languages,
like Java, o�er comparably little abstraction and require developers to think in di�erent
terms than those of the problem they are trying to solve [FR07]. Model-driven software
development is a paradigm proposed to reduce this gap. Developers practising model-
driven software development describe software in terms of the problem domain. This can
be seen as the next step in an ever-continuing attempt to raise the abstraction level in
programming [AK03]. In model-driven software development, models are at the centre of
the development process and specify the software system. They can be general-purpose
models for aspects like software architecture, but can also be tailored to the speci�c domain
the software is being built for. Either way, they do not merely document the software
but are made to be a part of it, for example by being automatically transformed into
executable code [FR07]. Thereby, models get equal to programming languages. In fact, we
can regard a programming language as just another model that is used to describe and
create the software. In consequence, the software development process becomes similar to
the practice in other engineering disciplines: Just like a mechanical engineer can feed a
model from its computer-aided design software directly into a computer-controlled mill to
create a physical workpiece, software engineers are enabled to create executable software
just by modelling it. The comparison to other engineering disciplines goes further: with
model-driven software development, software engineers can execute analyses, predict

4



2.3 Model Consistency

properties of the software system, and evaluate the design before it is implemented, solely
based on the models—just like mechanical engineers can [VS06, p. 6].
Practising model-driven software development promises several advantages. First, it

can increase development productivity. Because they are working on a higher level of ab-
straction, developers can ignore details and focus on the software’s ‘core’. The productivity
improvements have been found in empirical studies, however, only if adequate tooling and
code generators are available [Kap+09; MCM12; WHR14]. Second, model-driven software
development can ensure that requirements and speci�cations from di�erent stakeholders
are met. As programming still forces developers to solve problems on a detailed and
technical level, they can lose sight of the bigger picture. Without an integrated view of the
software, it is easy to implement suboptimal solutions: The system’s intended architecture
might be violated, or a feature may fail to meet its requirements precisely [Sch06]. If
the system’s architecture, its requirements or its domain-speci�c properties are modelled
explicitly, and the software is derived from these models, the architecture, requirements
and other properties are enforced. Additionally, since they have been formulated in a
domain-speci�c way, it will be easier to reason about whether they have been stated
correctly.
For our means, models are digital representations of a part of the modelled system. A

model focuses on the aspects that are relevant for a particular point of view and represents
the aspects according to this viewpoint [Sta73, p. 131 �.]. All models we will be concerned
with in this thesis will conform to a metamodel. A metamodel is a model that de�nes the
possible structure of another model [VS06, p. 85]. A model’s metamodel is what a class is
to an object in object-oriented programming. We will formalize metamodels simply as the
set of all valid model instances; that is, a model𝑚 conforms to the metamodel𝑀 if, and
only if,𝑚 ∈ 𝑀 . We will assume that a metamodel is never an empty set.

2.3 Model Consistency

If multiple models describe the same system, it is possible for the same piece of information
to be contained in multiple models. In such a situation, we say that the models share
semantic overlap [Bur+14]. Semantic overlap does not imply that the piece of information
is contained as a syntactic copy in the concerned models. It can be represented in very
di�erent ways, even just implicitly. When editing a model which shares semantic overlap
with other models, it can become out of synchronisation with the other models. While
the models are still expected to share the same piece of information, they now contradict
each other. We say the models are inconsistent. If, on the other hand, no model contradicts
another—either because models share no semantic overlap or because the models having
semantic overlap are in unison—a set of models is called consistent. Consistency is not a
feature that could be de�ned in the metamodel, as it spans across multiple models, that
will often be from di�erent metamodels. It is an external property. In addition, there is
never an inherent or unique de�nition of when a set of models is consistent, although
there may be an intuitive one. Consistency is, thus, relative to a consistency speci�cation
that declares which model states should be considered consistent [Kra17, p. 38].

5



2 Foundations

Finding and resolving inconsistencies is a central activity in software engineering
[NER01]. For example, implementing a new feature of a software system can be seen as
resolving inconsistency, because the software implementation has become inconsistent
with its requirements. Model-driven software development can help to �nd inconsist-
encies, because models can be checked automatically. It can also assist with resolving
inconsistencies.

Di�erent approaches have been proposed to manage consistency in model-driven soft-
ware development. Orthographic software modelling [ASB10], for example, uses a central
model that is free of semantic overlap and can, hence, never become inconsistent. The
software is only edited through views that are automatically derived from the central
model. This guarantees that no inconsistencies can arise, but also restricts the models
that can be used. Furthermore, orthographic software modelling does not allow to model
inconsistent states when they exist in reality. For example, product management might
have decided that a feature should be implemented, but implementation has not started
yet. Representing such inconsistencies in the models can be valuable [NER01], but is not
possible in orthographic software modelling.

2.4 Model Transformations

If model inconsistency cannot, or should not, be avoided, then it needs to be resolved at
one point to reach a state where all models are consistent again. If done manually, this task
is time-consuming, prone to error and requires knowledge about all overlapping models.
Experts may not be capable of consistently making changes to models because it would
require modifying models of a domain which they do not have su�cient knowledge of.
For these reasons, it is desirable to automate the process at least partially. A prominent
means for automating consistency preservation are model transformations. They derive a
new target model from an existing source model. In the applications we are interested
in, model transformations create an updated version of the target model after the source
model has been changed, such that the target model re�ects the changes in the source
model and the models are consistent again.

2.4.1 Bidirectional Model Transformations

In our use cases—that is, model consistency preservation—we usually allow users to modify
each of the transformations’ two models, and want to keep the respective other model con-
sistent with the users’ modi�cations. Hence, we require that the transformation between
the two models can transform changes in both directions. We call such a transformation a
bidirectional transformation. This is the class of model transformations that we will be
concerned with in this thesis.

To make it easier to reason about bidirectional transformations, I will use a light-weight
formalization which was put forward by Stevens [Ste10]. It is based on the notion of a
consistency relation 𝑇 ⊆ 𝐴 × 𝐵 for two metamodels 𝐴 and 𝐵. The consistency relation

6



2.4 Model Transformations

de�nes which models are consistent with each other1. For our purposes, the consistency
relation will always be left-total and right-total. This means that every model state has at
least one consistent ‘partner’ state. In practice, the consistency relation𝑇 will often not be
stated explicitly [Kla+20]. Instead, it will usually be understood implicitly by those that
create a model transformation. Nevertheless, the consistency relation is a useful tool for
reasoning about transformations.

In our formalization, a bidirectional model transformation𝑇

⃗

for a consistency relation𝑇
consists of one transformation for each direction, named 𝑇⃗ and and𝑇

⃗

. The transformations
create a new target model from their source model. Because there are practically relevant
consistency relations that can only be realized if a transformation can also examine the
current state of the target model, the transformations receive both models as their input.
We formalize the transformation directions as functions.

De�nition 2.1 ([Ste10]). A bidirectional transformation 𝑇

⃗

C (𝑇,𝑇⃗ ,𝑇

⃗

) between the meta-
models 𝐴 and 𝐵 is given by

𝑇 ⊆ 𝐴 × 𝐵

𝑇⃗ : 𝐴 × 𝐵 → 𝐵

𝑇

⃗

: 𝐴 × 𝐵 → 𝐴.

The most basic requirement we have for bidirectional transformations is that the trans-
formation functions adhere to the consistency relation.

De�nition 2.2 ([Ste10]). A bidirectional transformation 𝑇
⃗

C (𝑇,𝑇⃗ ,𝑇
⃗

) is correct if, and
only if, its results are always consistent:

∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 : (𝑎, 𝑇⃗ (𝑎, 𝑏)) ∈ 𝑇

∧ (𝑇

⃗

(𝑎, 𝑏) , 𝑏) ∈ 𝑇 .

We want to use bidirectional transformations to resolve inconsistencies. If our models
are already in a consistent state, however, there is nothing to do and we expect the
transformations not to modify the models at all. After all, there might be good reasons
why the models are in this particular consistent state, and not in another consistent
one. Inspired by the Hippocratic Oath—which demands ‘�rst, do no harm’—Stevens calls
transformations that ful�l this property ‘Hippocratic’.

De�nition 2.3 ([Ste10]). A bidirectional transformation 𝑇

⃗

C (𝑇,𝑇⃗ ,𝑇

⃗

) is Hippocratic if,
and only if, it does not modify consistent model states:

∀ (𝑎, 𝑏) ∈ 𝑇 : 𝑇⃗ (𝑎, 𝑏) = 𝑎

∧𝑇

⃗

(𝑎, 𝑏) = 𝑏.

1We already saw a similar term in Section 2.3: ‘consistency speci�cation’. How are the two terms related,
and what is the di�erence? In this thesis, I will use ‘consistency relation’ in the speci�c meaning
introduced here; that is, a relation𝐴×𝐵 that de�nes which model states are consistent. With ‘consistency
speci�cation’, on the other hand, I will refer to any, not necessarily formal, speci�cation of when models
are consistent. A consistency speci�cation may additionally encompass an operationalization; that
is, a description of how to reach consistency. A consistency relation is, thus, one possible form of a
consistency speci�cation that does not include an operationalization.

7



2 Foundations

2.4.2 Lenses

One speci�c type of bidirectional model transformations are lenses, as introduced by Foster
et al. [Fos+07]. Lenses transform between a concrete and a more abstract model. They
can lose information when transforming from the concrete to the abstract model. This
operation is called Get. When transforming in the other direction, they use the current
state of the concrete model to restore the lost information best possible [Fos+07]. This
operation is called Put.

De�nition 2.4 ([Fos+07]). A lens 𝑙 B (Get, Put) between two metamodels 𝐴 and 𝐵

consists of two functions2, Get and Put, which are de�ned as

Get: 𝐴 → 𝐵

Put: 𝐴 × 𝐵 → 𝐴.

If we compare this de�nition to the de�nition of a general bidirectional transformation
(De�nition 2.1), we notice that they coincide, except that the Get operation has only
one argument. A lens can, indeed, be regarded as a bidirectional transformation where
one transformation direction ignores the current state of the target model. With this
view, the basic requirements for lenses de�ned by Foster et al. [Fos+07] are equivalent to
correctness (De�nition 2.2) and Hippocraticness (De�nition 2.3) [Ste10]. Lenses that ful�l
these requirements are called well-behaved.

Since the get operation cannot take the current state of the target model into account,
lenses are more restricted than general bidirectional transformations. On one hand, this
means that they can be used in fewer contexts. On the other hand, the restrictions provide
useful guarantees that general bidirectional transformations do not. The Commonalities
Language uses the fact that lenses can be chained. Two general bidirectional transform-
ations 𝑇

⃗

B (𝑇 ⊆ 𝐴 × 𝐵,𝑇⃗ ,𝑇

⃗

) and 𝑈⃗

⃗

C (𝑈 ⊆ 𝐵 ×𝐶, 𝑈⃗ ,𝑈

⃗

) between 𝐴 and 𝐵, and 𝐵 and
𝐶 , cannot be composed into a bidirectional transformation between 𝐴 and 𝐶 , because
both transformation directions need access to the current state of the model 𝐵. Lenses, in
contrast, can be composed this way.

Proposition 2.1 ([Fos+07]). Two well-behaved lenses 𝑙 C (Get𝑙 , Put𝑙 ) between 𝐴 and 𝐵,
and 𝑚 C (Get𝑚, Put𝑚) between 𝐵 and 𝐶 can be composed to a well-behaved lens 𝑐 C
(Get𝑐, Put𝑐) between 𝐴 and 𝐶 by

Get𝑐 : 𝐴 → 𝐶

𝑎 ↦→ Get𝑚 (Get𝑙 (𝑎))
Put𝑐 : 𝐴 ×𝐶 → 𝐴

(𝑎, 𝑐) ↦→ Put𝑙 (𝑎, Put𝑚 (Get𝑙 (𝑎) , 𝑐)) .

The ‘trick’ that allows lenses to be chained is that Get𝑙 can derive the old 𝐵-state from
the old 𝐴-state without any further information.
2Foster et al. de�ne lenses with partial functions, a detail I have omitted to simplify our discussion, since it
is not relevant for us.

8



2.5 The Commonalities Approach

2.4.3 Multidirectional Model Transformations and Transformation Networks

How can we preserve consistency if there are more than two models? When using model
transformations, we have two options: Either combine multiple bidirectional transforma-
tions or use multidirectional transformations, which generalize bidirectional transform-
ations to transform more than two models. Both approaches have merits. Advantages
of combining bidirectional transformations are that bidirectional transformations are
well understood and there are mature tools supporting them. Additionally, as experience
has shown, reasoning about bidirectional transformations is di�cult enough on its own.
Understanding and correctly creating multidirectional transformations will, thus, be even
more di�cult [Ste17]. We can expect that breaking the transformation up into multiple
bidirectional transformations and combining them correctly is the better manageable
approach. It is also the approach which this thesis focuses on.
When we combine multiple bidirectional transformations, we create a transformation

network. Its topology is de�ned by the metamodels we use and by the bidirectional trans-
formations we use between the metamodels. To actually restore consistency in an instance
of such a network, we additionally need a transformation execution strategy. The strategy
de�nes which transformations will be executed in which order. Finding an appropriate exe-
cution strategy is an open problem [GKB21]. For this thesis, we will presuppose that there
is a suitable execution strategy. For all concrete consistency preservation constellation we
will be concerned with, a naive execution strategy su�ces.

2.5 The Commonalities Approach

In the previous section, I motivated that we want to preserve consistency among multiple
models using a network of bidirectional transformations. Klare and Gleitze [KG19] propose
the Commonalities Approach for designing such networks. By examining prototypical
network topologies, they argue that any transformation network topology has inherent
disadvantages if it only involves the models that shall be kept consistent. These disad-
vantages concern how laborious it is to write all required transformations, how open for
change the resulting network is, and how prone the transformations are to be inconsistent
with each other. Klare and Gleitze [KG19] demonstrate that depending on the chosen
topology, the disadvantages manifest to di�erent extents, but can never be avoided entirely.
If, however, we introduce an additional metamodel to the network, we can escape the
dilemma. Klare and Gleitze [KG19] propose that this additional metamodel—the concept
metamodel—should capture all concepts that at least two models of the network have in
common. In other words, the concept metamodel should model the other model’s semantic
overlap.

To build the transformation network with the Commonalities Approach, transformation
developers de�ne transformations between the concrete metamodels and the concept
metamodels. The transformations translate between the common concept in the concept
metamodel and its manifestation in the concrete metamodel. This results in a transforma-
tion network in star topology, with the concept metamodel at its centre.

9



2 Foundations

Using the Commonalities Approach promises three bene�ts [KG19]: First, it makes
the transformations more understandable because common concepts of the concrete
metamodels are made explicit in the concept metamodel. In other transformation networks,
these concepts are encoded only implicitly in the bidirectional transformations. Second,
the approach reduces the potential for errors when writing the transformations because
transformations do only need to translate between the concept metamodel and the concrete
metamodel. In other transformation networks, it is often necessary to take care that a
transformation is compatible to all other transformations. Third, the Commonalities
Approach makes reusing transformation networks easier. It allows to remove a metamodel
from the network without a�ecting the consistency preservation for the rest of the network.
That is not always possible in other transformation networks.

This thesis evaluates the Commonalities Language, a programming language for writing
model transformations with the Commonalities Approach. The Commonalities Language
is part of the Vitruvius framework, which we will now turn our attention to.

2.6 The Vitruvius Framework

Vitruvius is an approach and framework for maintaining consistency in model-driven
development [Kla+20]. Vitruvius allows to combine view-based modelling and consist-
ency preservation in one development process. When applying the Vitruvius approach,
users de�ne a transformation network out of potentially pre-existing models. This trans-
formation network is used as a central datastore for all modelled data, called ‘virtual
single underlying model’ (VSUM). The data in the VSUM is edited only through views,
which allow to select and transform the data so it �ts the editor’s use case best. This way,
Vitruvius promises to combine the bene�ts of consistency preservation and view-based
editing: Through consistency preservation, users can integrate pre-existing models and
their tooling into their development process without losing consistency. Through view-
based editing, users can edit the modelled data in a form that �ts their point of view best,
without every time having to integrate a new model into the network.

Vitruvius o�ers users external domain-speci�c (cf. Section 2.1) programming languages
to program the transformations that make up the VSUM network. Two of them are the
Reactions Language and the Commonalities Language.

2.6.1 The Reactions Language

In the way we formalized them in Section 2.4.1, model transformations are state-based:
they derive a new model based on the state of the input models after one of them was
modi�ed. This is also how most bidirectional transformation languages operate [Hid+16].
However, state-based transformations have a drawback: they cannot know how its input
model states were reached. This information can be relevant. For example, it might be
necessary to di�erentiate whether some object’s features changed, or whether the object
was actually deleted and a replacement with di�erent features was created afterwards.
Thus, state-based transformations are not able to realize all practically relevant consistency
speci�cations [Dis+11]. Because of that, model transformation in Vitruvius happens based

10



2.6 The Vitruvius Framework

1 reaction {

2 after element adl::Component inserted in adl::Repository[components]

3 call {

4 val component = newValue

5 createClass(component)

6 }

7 }

8
9 routine createClass(adl::Component component) {

10 match {

11 require absence of oo:Class corresponding to component

12 val componentsPkg = retrieve oo::Package corresponding to component.repository

tagged with "componentsPackage"

13 }

14 action {

15 val class = create oo::Class and initialize {

16 class.package = componentsPkg

17 class.name = component.name + "Impl"

18 }

19 add correspondence between component and class

20 }

21 }

Figure 2.1: An example for code written in the Reactions Language [Kla+20]. Additionally
to the Reaction Language’s syntax constructs, programmers can use the general-
purpose language Xbase at well-de�ned sections in the the language; like in
the call and in the initialize block.

on changes. Additionally to the current model states, transformations can access the
sequence of changes that lead to the states. Vitruvius o�ers the Reactions Language to
program transformations that react to the changes that occurred.
When writing transformations in the Reactions Language, programmers declare the

change event they want to react to, and how the models should be changed in consequence
of the change. The language o�ers syntax elements for matching the change events and
executing the most common consequential modi�cations. For more advanced actions,
developers can also write code in Xbase, a general-purpose programming language similar
to Java. Xbase code can be written directly into a Reactions Language �le. We can see an
example of this in Figure 2.1. Because the Reactions Language allows embedding a Turing-
complete, general-purpose programming language, and because it allows to match any
possible change, it is guaranteed that the language can be used to realize any consistency
speci�cation (assuming the speci�cation is computable) [Kla+20].

The Reactions Language also gives developers access to a correspondence model. Cor-
respondences store model elements that are in some kind of relationship with each other.
Later invocations of a transformation can use the information in the correspondence model
to recover such relationships after they have been established by earlier invocations. If,
for example, an object 𝑏 in model 𝐵 was created in reaction to the object 𝑎 being created in
model 𝐴, developers could create a correspondence between 𝑎 and 𝑏. If 𝑏 was deleted at a
later point, the correspondence could be used identify 𝑎 and delete it as well. In Figure 2.1,

11



2 Foundations

1 concept ComponentBasedDesign

2
3 commonality Component {

4 with PCM:Component

5 with UML:Component

6 with ObjectOrientation:Class

7
8 has name {

9 = PCM:Component.name

10 = UML.Component.name

11 = prefix(ObjectOrientiation:Class.name, "Impl")

12 }

13 }

Figure 2.2: An example for code written in the Commonalities Language [KG19]. It de-
clares a Commonality for a software component. The name attribute of the
Commonality is mapped to the name attribute of an ObjectOrientation Class by
appending ‘Impl’. Because prefix is a bidirectional operator, the su�x ‘Impl’
will also be removed from names of ObjectOrientation Classes when they are
mapped to the component Commonality.

we can see how a correspondence is created using the ‘add correspondence’ keyword and
how correspondences are queried with the ‘corresponding to’ keyword.

2.6.2 The Commonalities Language

The Commonalities Language is another programming language for writing transform-
ations for Vitruvius. It was created to give developers two bene�ts compared to the
Reactions Language: First, the Commonalities Language aims to have a more declarative
style. That is, programmers should have to focus less on how consistency can be achieved,
but rather only have to de�ne when models are consistent [Gle17, p. 29]. Second, the
Commonalities Language shall allow developers to address multi-model consistency better
by realizing the Commonalities Approach that was introduced in Section 2.5 [KG19].
To create a transformation with the Commonalities Language, developers �rst de�ne

Commonalities. Commonalities are the model objects of the concept metamodel (cf.
Section 2.5) and capture the semantic overlap (cf. Section 2.3) of the models that shall
be kept consistent. Developers can then de�ne how the concrete models map to the
Commonalities. To declare these mappings, developers can use bidirectional operators.
Such operators de�ne the mapping in both directions at the same time. An example of
this can be seen in Figure 2.2.
Operators can be de�ned in Java (or any other JVM programming language) and then

be imported into the Commonalities Language. This allows developers to de�ne and
re-use bits of mapping logic. Unlike the Reactions Language, the Commonalities Language
does not allow to embed code in a general-purpose programming language. It is unclear
whether the Commonalities Language can be used to realize all computable consistency
speci�cations like the Reactions Language can.

12



2.6 The Vitruvius Framework

The Commonalities Language knows three di�erent types of operators [Gle17, p. 32 f.].
The main type are bidirectional operators, which can be executed in both directions. They
have been adopted from Kramer and Rakhman [KR16], who extend the lens formalism
(cf. Section 2.4.2) to cases where the right-hand model can assume values that are outside
the image of the Get function. In these cases, lenses cannot be well-behaved. Kramer and
Rakhman [KR16] show how to construct lenses that are ‘best-possible-behaved’ in such
situations. The resulting operators are more �exible, while retaining the desirable proper-
ties of lenses where possible. The second type of operators are enforceable conditions. Such
operators act as conditions when executed in one direction, and produce a value ful�lling
the condition when executed in the other direction. We can view them as lenses between
an arbitrary metamodel and the metamodel {true, false}. Finally, the Commonalities Lan-
guage allows using predictable expressions. These are usual, unidirectional expressions
that can be used as a fallback when bidirectional operators cannot be used. Their only
restriction is that they must be a deterministic function of their input values.

On a technical level, Commonalities Language code is compiled to Reactions Language
code. Because of that, it is possible to use the Commonalities Language together with the
Reactions Language in the same transformation.

13





3 A Case Study Evaluating the
Commonalities Language

This thesis facilitates a case study that examines the Commonalities Language. The case
study shall reveal whether the Commonalities Language is suitable developing for real-
world model transformations, whether the language’s operator mechanics can be used the
way that they are intended to be used, and whether the Commonalities Language o�ers
bene�ts over the Reactions Language. To those ends, the study analyses code written
with in the Commonalities Language, and compares the code to an implementation of
the same case in the Reactions Language. By examining two implementations of the
same consistency speci�cation we want to reveal relevant di�erences between the two
languages. This chapter will describe the case study and discuss its design.

3.1 Goals and Design

This thesis is part of an overarching objective to �nd good programming models for
consistency preservation with the Vitruvius approach. The Commonalities Language was
proposed to address two shortcomings of the existing consistency programming language
for Vitruvius, the Reactions Language: First, the Commonalities Language shall make
programming transformations more declarative, and thereby shorter and easier to read
and write. Second, the Commonalities Language shall make programming multidirectional
transformations less error-prone, more comprehensible and altogether easier. While the
language was developed with these goals, no empirical evaluation has been conducted yet
to verify whether the language ful�ls its claims in practice. This thesis contributes to such
an empirical test.
To understand the Commonalities Language’s usefulness, we �rst need to analyse its

suitability; that is, the degree to which it can be used to program model transformations.
There might be constellations in which the Commonalities Language cannot be used to
maintain model consistency. Afterwards, we can turn to usefulness, i.e. the question
of how well the Commonalities Language allows programming model transformations.
Unlike for suitability, it is di�cult to �nd absolute indicators for answering this question.
Whether a programming language is useful can, instead, be best understood in comparison
to another programming language. Since the Commonalities Language is developed for
the Vitruvius framework, we compare it to the other model transformation programming
language for Vitruvius, the Reactions Language. Developers using Vitruvius will be faced
with the decision whether to use the Reactions Language or the Commonalities Language1.
1There is another model transformation programming language for Vitruvius: the Mappings Language.
However, the implementation of the Mappings Language is currently not in a state where it could be

15



3 A Case Study Evaluating the Commonalities Language

Hence, we can expect the comparison to yield results that directly give practically relevant
advice to developers.

Crucially, picking a programming language for developing a model transformation for
Vitruvius is not an either-or question. Instead, the languages have been developed to
complement each other. Developers can, for example, pick the Commonalities Language
as their default language, but fall back to using the Reactions Language for constellations
where the Commonalities Language cannot be used or is less useful2. Because of that, the
case study described in this thesis should be designed to yield results that indicate under
which circumstances which language is more useful.

With these considerations in mind, I derived a ‘Goal-Question-Metric’ plan [BW84] for
the case study. I �rst broke the research goal up into quanti�able questions. Then I found
appropriate metrics that can be used to answer the questions. The ‘Goal-Question-Metric’
approach ensures that the selected metrics are adequate for evaluating the research goal.
The plan itself is given in Figure 3.1 (on page 20). We will discuss the chosen metrics in
detail in Section 3.4.3, which focuses on construct validity.

3.2 The Selected Consistency Preservation Case

Subject of the proposed case study will be an implementation of a consistency speci�cation
for UML, PCM, and Java models. The consistency speci�cation was designed by Langham-
mer [Lan17] and synchronizes the representation of concepts from object-oriented and
component-based software design between the three model types. Where concepts exist
in multiple models—for example a class in UML and Java, or a component in UML and
PCM—the speci�cation de�nes the intuitive mapping for those concepts. It speci�es, for
example, that for every Java class there shall be a UML class with equivalent properties;
and vice versa. When a concept does not exist in a target model but shall still be represen-
ted, the speci�cation establishes conventions to express the source concept through the
concepts of the target model. Java, for example, has no concept for software components.
So a component that was created in UML or PCM is represented in Java using a Java
package and a Java class. Hennig [Hen20, p. 30 �.] gives a detailed description of all the
mappings that encompass the consistency speci�cation.
The selected consistency preservation case is a good �t for the case study goal for

several reasons. First, the case preserves consistency among models with much semantic
overlap. For instance, almost all structural features of Java can be represented in UML. The
Commonalities Language was developed to allow building transformations that synchron-
ize concepts among model types with semantic overlap. Hence, the case is one that the
language claims to address. Second, the consistency speci�cation is multidirectional. Since
the Commonalities Language was developed to address multidirectional transformations

used for real-world case studies. Furthermore, the Commonalities Language might be considered a
superset of the Mappings Language, meaning that there might be no use case at all where the Mappings
Language is better suited than the Commonalities Language. This is, of course, a subject for another
empirical evaluation.

2There has been no case study combining di�erent languages in Vitruvius yet. However, since the
Commonalities Language generates code in the Reactions Language, we can reasonably expect that the
two languages can be combined easily.

16



3.3 Methodology

better than bidirectional solutions do, the case must include at least three models. Third,
the selected case involves structurally diverse models. For example, PCM’s objects all
have a dedicated identi�er feature. UML also uses identi�ers for objects, but does not
model them explicitly. Instead, identi�ers are assigned by the serialization mechanism.
Java objects, lastly, have no singular identi�er, but are identi�ed by their name and their
topological position in the model tree. As a second example, packages in UML are model
objects containing all other objects that are in the package. In Java, on the other hand,
a package is conceptually created by all types declaring it. Types are stored in di�erent
compilation units, so there cannot be a single package instance that points to all contained
objects. Such structural peculiarities pose technical challenges for model transformation
languages and implementations. The fact that the models of the selected case have a diverse
structure and contain such peculiarities means that the case study tests the Commonalities
Language in a wider range.

3.3 Methodology

To conduct the the case study, Langhammer’s consistency speci�cation for UML, PCM, and
Java needs to be implemented using the Commonalities Language. Hennig [Hen20] has
already started such an implementation, but there are signi�cant parts of the speci�cation
that are not covered. While some of those parts could not be realized because of time
constraints, other parts could not be realized because the Commonalities Language did not
allow it [Hen20, p. 119-122]. Furthermore, Hennig identi�ed issues with the Commonalities
Language that led to suboptimal code in the implementation [Hen20, p. 95-105]. Hence,
the Commonalities Language needs to be adapted and extended to allow, where possible,
realizing the parts of the speci�cation that can currently not be realized, and to allow
writing better code for the parts where the code currently has clear de�ciencies. We will
discuss the validity of this approach in Section 3.4.

Chen [Che17], Klatte [Kla17] and Syma [Sym18] have implemented Langhammer’s con-
sistency speci�cation in the Reactions Language. Other developers have since maintained
and improved the implementation. It shall be used as a baseline to compare the imple-
mentation in the Commonalities Language against. To make sure that the comparison
is valid, both implementations need to implement the exact same behaviour. Even small
di�erences in behaviour threaten the validity of the study, because the di�erence may be
in an area where one of the two languages is more useful. The di�erences would then
alter the outcome of the study.
Because of the size and complexity of the case study, we should not trust that both

implementations will exhibit the same behaviour just because they were implemented
against the same speci�cation. Instead, there needs to be an extensive test suite ensuring
that both implementations behave the same in all relevant aspects. The test suite also needs
to make sure that the exhibited behaviour complies with Langhammer’s speci�cation
exactly. Any di�erences between the speci�cation and the implementations might, once
again, hide relevant di�erences between the languages. The test strategy and the technical
realization of this test suite is the topic of Chapter 5.

17



3 A Case Study Evaluating the Commonalities Language

After the Commonalities Language has been adapted to allow conducting the case study,
the consistency speci�cation has been implemented in the Commonalities Language, and
both implementations have been tested to accurately implement the same and the right
speci�cation; the �nal step in the case study will be to evaluate the metrics speci�ed in
Figure 3.1 against the implementations. Since not all of the metrics are objective, the
evaluation needs to be conducted by a domain expert.

3.4 Validity

In this section, we will examine the validity of the case study. Since the case study
was not conducted completely yet, there are insu�cient results and we cannot draw
any conclusions yet. Nevertheless, we can already judge the validity of the presented
methodology and metrics. We will, in turn, examine whether the study’s results can be
generalized outside of the scope of the case (external validity); whether the values we
obtain for our metrics can be attributed to the treatment (internal validity); and whether the
selected metrics accurately capture the concepts we are interested in (construct validity)
[Woh+12, p. 102 f.].

3.4.1 External Validity

When interpreting the results of a case study, we can usually not separate the measured
phenomenon as clearly from the case study’s context [Yin13, p. 13] as we could, for example,
in a controlled experiment. Hence, we can generalize from case studies worse than from
other types of studies [Woh+12, p. 55]. Without further empirical evaluation, there will
be no sure way to tell whether similar results can be expected when implementing other
consistency speci�cations with the Commonalities Language. The case studymainly serves
as a proof of existence; that is, it shows that there are practically relevant consistency
speci�cations for which the Commonalities Language is, or is not, suitable and useful.
In Section 3.3, I described that the Commonalities Language should be adapted while

the case study is being implemented. Since the language will be adapted with the speci�c
case in mind, chosen solutions may not be su�ciently generalized, that is, they may only
apply to the case at hand. This further reduces the external validity of the study.

Generalizability of case studies can be improved by ‘strategic selection of cases’ [Fly06].
To that end, we study a ‘critical case’ with this case study, such that we know that if we
cannot �nd positive results for this case, it is unlikely that we will �nd positive results in
other cases [Fly06]. The Vitruvius framework and the Commonalities Language have been
developedwith the case of consistency of UML, PCM, and Java inmind. Both the framework
[Kla+20] and the language [Gle17, p. 13 f.] used a simpli�ed version of the case as a running
example. Furthermore, the case study lets domain experts implement the transformations
and encourages them to make the best use of the respective transformation language.
This ampli�es the impact of potential advantages or disadvantages of the languages.
Furthermore, as detailed in Section 3.2, the case o�ers a variety of model structures that
need to be transformed, so that the languages need to prove themselves under diverse
circumstances.

18



3.4 Validity

3.4.2 Internal Validity

The case study implementations will have been written by di�erent developers. This pre-
cludes any biases that are common in intra-subject studies, like maturation or sequencing
e�ects. On the other hand, having di�erent developers for the implementations means
some of the di�erences in the implementations may have been caused by the developers’
di�erent programming styles instead of the di�erent languages. Di�erences can, thus,
not be entirely attributed to the di�erent treatments. We try to minimize this limitation
by using domain experts to implement the case study. While implementing, the experts
try to �nd not just any solution, but rather one that makes the best use of the respective
language’s features.
The implementers are, in part, aware of the case study the implementation is being

created for. This may cause subject e�ects, i.e., it may in�uence the code the implementers
write in a way that makes it conform to the study’s hypothesis. However, since the
implementers try to program optimal (instead of ‘realistic’) implementations anyway,
these e�ects should not be able to change the outcome. All in all, the case study’s results
will relate more to an ideal implementation in the respective language, than to what an
average developer might program. Similar to how the study can only provide a proof
of existence and cannot be generalized (see Section 3.4.1), the study informs on what is
possible with the languages, but not necessarily on what to expect when the languages
will be used in practice.

A similar threat to validity stems from adapting the Commonalities Language itself to
facilitate the case study. The threat is that changes to the Commonalities Language may be
tailored to optimize the metrics of the case study, instead of optimizing the usefulness of
the language. Whether that is possible, however, is a matter of whether the study has good
construct validity. If optimizing the Commonalities Language according to the metrics
of the study did not optimize usefulness as well, the study’s metrics would be un�t to
measure the intended constructs. As long as the design of the study provides su�cient
construct validity, this threat should, thus, not reduce the study’s validity further. On the
other hand, adapting the Commonalities Language before evaluating it is essential for the
study’s internal validity. Since we want to measure how suitable and useful the language
is for developers wanting to use it, the study needs to be conducted with a version of the
language that developers would realistically use. As long as the language misses essential
features, such that it does not allow implementing certain consistency speci�cations, or
only allows to do so in a cumbersome way, the language cannot be evaluated in the case
study. If it was evaluated in such a premature state, the results would not inform on the
experience developers will have in practice because developers would not use the language
in that state to begin with.

3.4.3 Construct Validity

Let us now turn to assessing how well the chosen metrics (cf. Figure 3.1) can represent the
constructs we want to measure. In other words: How well do the chosen metrics answer
our questions? We will examine each question in turn.

19



3 A Case Study Evaluating the Commonalities Language

Goal Understand whether and how the Commonalities Language helps developers develop
model transformations for Vitruvius.

Question 1 How suitable is the Commonalities Language for developing model
transformations?
Metric 1 A characterisation of consistency speci�cations that cannot be reason-

ably preserved with the Commonalities Language.
Metric 2 The ratio of model features that can be reasonably transformed with

the Commonalities Language to the those that cannot.

Question 2 Do the operator mechanics of the Commonalities Language o�er good
abstraction and reusability?
Metric 3 The number of usages per used operator.
Metric 4 The number of operators used per position where operators can be

used.

Question 3 To what extent is it easier to develop multidirectional transformations
in the Commonalities Language than in the Reactions Language?
Metric 5 The ratio of the size of the implementation in the Commonalities Lan-

guage, including operators and Reactions Language parts with their called
Java code; to the size of the implementation in the Reactions Language,
including called Java code; all measured in source lines of code.

Metric 6 The number of classes of the abstract syntax tree of both the Com-
monalities Language and the Reactions Language.

Figure 3.1: The Goal-Question-Metric plan for the presented case study.

All metrics we discuss in this sectionwill rely on the assumption that, as we established in
Section 3.4.2, the case study implementation uses the Commonalities Language’s features to
�nd one of the best implementations. Hence, we preclude that any shortcomings measured
by the metrics are due to a suboptimal implementation, and attribute the shortcomings to
the language. I will refer to this assumption as the ‘optimal code assumption’.

3.4.3.1 Suitability

As mentioned in Section 2.6.2, it is unknown whether the Commonalities Language can be
used to implement every computable consistency speci�cation. Hence, Question 1 shall
establish in which situations the Commonalities Language can and and in which situations
it cannot be used. Here, we are not only interested in evaluating the language, but also
in exploratively learning more about the language’s capabilities. To answer the question,
I de�ne two metrics: First, a description of the situations where the Commonalities
Language cannot be used (Metric 1). Unusually for the Goal-Question-Metric approach,

20



3.4 Validity

this is a qualitative, rather than a quantitative metric. Nevertheless, this is appropriate
for the explorative nature of the question. The second metric (Metric 2) is quantitative
and evaluates the language’s suitability by taking the ratio of model features that could
to model features that could not be transformed. Together, the two metrics establish a
clear construct: They show when the Commonalities Language was unsuitable for the
case study, and how often that happened.
Both metrics are objective except for one complication: Since the Commonalities Lan-

guage allows to use operators that are programmed in Java—a Turing-complete, general-
purpose programming language—it is not unlikely that all computable consistency spe-
ci�cations can be realized with it technically, but not in a way that programmers would
consider reasonable. It could, for example, be possible to write an operator that implements
the whole transformation and only uses the Commonalities Language to be triggered
initially. With such a solution, the language could be used for the speci�cation in question,
but no programmer would ever want to use it this way. To avoid such ‘solutions’, I speci�ed
the metrics to only consider reasonable implementations of consistency speci�cations. De-
termining what is reasonable and was is not, however, introduces a subjective component
into the construct. I argue that this subjectiveness does not harm the precision or under-
standability of the construct signi�cantly because developers will have similar de�nitions
of when the constructs of the Commonalities Language have been used reasonably.

3.4.3.2 Operator Mechanics

The Commonalities Language allows programmers to de�ne operators externally and
re-use them in the language. This is the central mechanism to specify transformation logic
in the Commonalities Language. If the mechanics are used as intended, programmers
need to de�ne new operators seldom and can specify most pieces of logic by combining
existing operators. With Question 2 I examine whether the language was built in a way
that allows this use. The construct that that the question aims at is twofold: Its �rst
component is abstraction, i.e. whether the operator mechanics allow writing operators
that are su�ciently abstract, such that they can be re-used well. Its second component is
combinability, that is, whether operators can be combined well. It might be possible that
su�ciently abstract operators can be de�ned (good abstraction) but the language does not
allow to combine them well (bad combinability).

Metric 3 measures abstraction: A su�ciently abstract operator can be used in di�erent
contexts, and we expect such an operator to be used multiple times. A concrete operator
with insu�cient abstraction, on the other hand, can not be used in di�erent contexts
and we expect that it will not be used often. There are two caveats: First, even if it is
possible to de�ne su�ciently abstract operators, there might be no need to re-use every
single one of the de�ned operators. Thus, we cannot conclude from the fact that an
operator was not re-used that it is was not de�ned abstractly enough. Nevertheless, the
only other possible reason—except bad abstraction—why no (or few) operators are re-used
is that implementing the consistency speci�cation does not allow re-using logic. This
is not the case. The speci�cation contains multiple mappings with similar logic. For
example, there are multiple occasions where the transformations need to convert strings
between upper and lower case, append or prepend strings by other strings, or convert

21



3 A Case Study Evaluating the Commonalities Language

between enumerations. Hence, should we �nd with Metric 3 that only few operators
are re-used, we can attribute this to bad re-usability of the operators, which we can, per
the optimal code assumption, attribute to the Commonalities Language not allowing to
de�ne su�ciently abstract operators. The other caveat is that operators might be re-
used in the implementation, but not in di�erent contexts. This would be a form of code
duplication. In this case, the fact that the operator was used multiple times would not
indicate that it is a well-abstracted operator, but only that the same context occurred
multiple times. Per the optimal code assumption, there will be no code duplication that
could have been avoided with better code. There might, however, be code duplication
because the Commonalities Language lacks mechanisms to avoid it. This would harm the
precision of Metric 3. Hence, while developing the case study, the Commonalities Language
needs to be extended such that whenever code should be de-duplicated, the language allows
to do that. Luckily, extending the Commonalities Language is part of this case study’s
methodology (cf. Section 3.3), so we can be sure that the language will have su�cient
mechanisms to avoid code duplication before it is evaluated. We can, in conclusion, expect
Metric 3 to give a good measure of the abstraction that the Commonalities Language
allows operators to have.

To measure how well operators can be combined with the Commonalities Language, we
will count how many operators were used per code location that allows using operators
(Metric 4). If operators can be combined well, we would expect that there are multiple
locations where more than one operator was used. This su�ers from a similar caveat as
Metric 3: If there are not many code locations where operators are combined, we cannot
know whether this is due to bad combinability of operators, or due to the implementation
not needing to combine operators. Unlike before, there are no strong arguments to decide
a priori which will be the case. Hence, the Metric 4 can be used to provide evidence for
combinability. If, however, the metric shows only few operator combinations, the case
study implementations needs to be examined carefully to judge whether this is due to a
shortcoming of the language, or due to the selected consistency speci�cation.

3.4.3.3 Comparison to the Reactions Language

With Question 3, we ask whether the Reactions Language or the Commonalities Language
is the better choice to implement the case study’s case. Unlike the previous questions,
this one targets a construct that is not de�ned precisely. The study de�nes the ‘better
choice’ in terms of ‘development e�ort’, meaning the amount of work that is required
to write and maintain the transformations. This measure is both subjective—because
di�erent developers need di�erent amounts of time for di�erent tasks—and di�cult to
measure—because especially the necessary tasks for maintaining transformations are
unknown a priori and could only be evaluated ex post after having conducted a long-
running study3. We will, hence, have to settle on a metric that correlates with development
e�ort, but will not be able to capture to whole picture.
3A study that only focuses on implementation e�ort while ignoring maintenance e�ort would skew its
results. Maintenance is often the most cost- and time-consuming activity in a software project. Program-
ming languages could, theoretically, trade easiness of maintenance against easiness of implementation.
Such a study would not detect such trade-o�s.

22



3.4 Validity

Subramanyam and Krishnan [SK03] analysed di�erent code metrics for object-oriented
software regarding their power to predict defects. They formulated the hypothesis that
‘larger classes will be associated with a higher number of defects, all else being equal’
[SK03], which they could support with the results of the study. The study was conducted on
both Java and C++ code, which shows that the correlation is not speci�c to a programming
language (although it might still be speci�c to object-oriented code). Their �ndings suggest
that for a given problem, the solution with less code will be less prone to bugs. Hence,
implementation size quali�es as a measurement for maintenance e�ort. It also quali�es as a
measure for implementation e�ort, since we can expect that writing more code takes more
time, all else being equal. Thus, we will compare the size of the implementations measured
in source lines of code4 (Metric 5). When counting the lines, we need to make sure to count
all source code �les that are part of the respective implementation. For the implementation
in the Reactions Language, this includes all Reactions Language �les and all Java code5
that is transitively called from the Reaction Language code. For the implementation in
the Commonalities Language, the count includes all Commonalities Language �les and
the Java code of called operators, including Java code that is transitively called by the
operators. When counting Java code lines, only the lines of the source code should be
counted, not the lines of libraries the source code might be linked against. As described in
Section 2.6.2, code written in the Commonalities Language can be mixed with code written
in the Reactions Language. If the Commonalities Language implementation contains code
in the Reactions Language, these lines of this code shall be counted as they are counted
for the Reactions Language implementation. The code of both implementations must be
entirely disjunct to make sure the count is accurate. If the two implementations shared
common code, it would be unclear how to count it, since some of the code might only be
required for one of the two implementations.

Implementation size can, however, not be the only measure for development e�ort. As
Subramanyam and Krishnan warn: ‘This is because, if we reduce the size of all classes
in the application, it may in�uence other design complexity measures.’ [SK03]. The
statement refers to the fact that an implementation might trade complexity for length, i.e.
write shorter, but more complex code that is not actually easier to maintain. A similar
argument can be made for programming languages: A language could allow writing short
code by being more di�cult to use. Language developers could, for example, introduce
many specialized features that allow to write short code but make learning and using
the language di�cult. Unlike for implementations in object-oriented languages, there
are no metrics that have been shown to measure the complexity of a language (see also
Section 7.1 where we discuss related studies). In this study, we will use the number of
classes in the abstract syntax tree of a language (Metric 6) as a measure for how large the
language is. The reasoning is that the more classes an abstract syntax tree has, the more
concepts the language contains, and the more e�ort it is to learn and use the language.

4‘Source lines of code’ refers to the number of source code lines that are neither comments nor contain
only white space.

5For reasons of brevity, I will refer to all code that can be run on the JVM and was written in a multi-purpose
programming language as ‘Java code’; even though some of the code was written in the Java dialect
Xtend.

23



3 A Case Study Evaluating the Commonalities Language

In e�ect, the combination of Metric 5 and Metric 6 tests how well the languages make
use of the strengths of domain-speci�c languages (cf. Section 2.1). The language that is
better adapted to the domain should require less code to solve the problem, without having
to introduce many di�erent concepts to the language. Notably, since the Commonalities
Language allows to fall back to Reactions Language, the comparison will show to which
extend it is bene�cial to use the Commonalities Language in addition to the Reactions
Language. Only if the Commonalities Language can be used well to implement the
whole case study will the comparison yield insights into how bene�cial it is the use the
Commonalities Language exclusively.

24



4 Congruent Bidirectional
Transformations

The two transformation directions 𝑇⃗ and 𝑇

⃗

of a bidirectional transformation 𝑇

⃗

are not
uniquely de�ned by their consistency relation 𝑇 . If 𝑇 is not bijective, the directions have
the freedom to choose among di�erent target model states for a given input model state.
For practical use, however, it is desirable that both directions of a transformations make
use of this freedom in a compatible way. In this chapter, I will present a novel property for
bidirectional transformations that formalizes this expectation: congruence. The property
can guide transformation developers when building transformations. It ensures a notion
of compatibility between the two directions of a bidirectional transformation and makes
transformations more predictable for users. It will also become relevant in Chapter 5 for
testing transformations.
Let us begin with an example: Java does not have a native construct to represent soft-

ware components. To maintain consistency between PCM models and Java source code,
transformation developers have to de�ne a convention that speci�es how to represent
software components in Java. Langhammer [Lan17, p. 69], for instance, proposes to map
every new PCM component to a new Java package containing an implementation class
for the component. This is not the only possible solution, developers can choose among
multiple possible conventions that would all be considered valid by users. Nevertheless,
users expect that in any chosen solution, both directions of the transformation adhere to
the same convention. To illustrate why this is important to users, imagine the following
scenario: We use a consistency speci�cation based on Langhammer’s [Lan17, p. 69] con-
vention for mapping components. However, our speci�cation does not give details on how
to handle the names of components or implementation classes, respectively (more on this
assumption will follow in Section 4.1). Now assume we de�ned the following bidirectional
transformation between PCM and Java: The PCM�Java transformation creates a package
and a class for every component. The package has the name of the component in lowercase
letters; and the class has the name of the component, with ‘Impl’ appended to it. The
Java�PCM transformation creates a PCM component for every Java package containing a
class ending with ‘Impl’1 and gives the component the name of the class. If an architect
modelled a component called ‘UserRepository’ in PCM, the PCM�Java transformation will
create the Java package ‘userrepository’ containing a class called ‘UserRepositoryImpl’. If,
however, a Java developer created a package called ‘userrepository’ and put a class named
‘UserRepositoryImpl’ into it, the Java�PCM transformation will create a component called
‘UserRepositoryImpl’. We can see a discrepancy: When the developer applies the changes

1In practice, the transformation would need to di�erentiate more carefully whether the class should really
represent a component, for example by asking the user for input. But this is not relevant to our discussion.

25



4 Congruent Bidirectional Transformations

that resulted from the architect’s changes manually (i.e. adds the package and the class),
the resulting changes are di�erent from the initial changes by the architect. The archi-
tect’s component was named ‘UserRepository’, while the component that results from the
developer making the corresponding changes in Java will be called ‘UserRepositoryImpl’.
Users will be surprised by this behaviour. If creating a component named ‘UserRepository’
results in a class named ‘UserRepositoryImpl’, then it stands to reason that creating a class
named ‘UserRepositoryImpl’ creates a component called ‘UserRepository’.
If we abstract from this example, we can observe that we expect bidirectional trans-

formations to have ‘interchangeable changes’. That means that if a user changes model 𝑎0
to 𝑎1 (e.g. adds a component in PCM) and the transformation transforms model 𝑏0 to be
𝑏1 as a consequence (e.g. adds a package and a class to Java); then we expect that if the
user changes model 𝑏0 to 𝑏1, the transformation will change 𝑎0 to be 𝑎1. In other words:
changes made by transformations should have the same e�ect as changes made by users.

De�nition 4.1. Given a bidirectional transformation 𝑇

⃗

C (𝑇,𝑇⃗ ,𝑇

⃗

), a change from
(𝑎0, 𝑏0) ∈ 𝑇 to 𝑎𝑐 is user-transformation-interchangeable if, and only if, transforming
𝑎𝑐 by𝑇

⃗

leads to a new model 𝑏𝑐 , and transforming 𝑏𝑐 back by𝑇

⃗

results in 𝑎𝑐 . More formally,
𝑎𝑐 ∈ 𝐴 is user-transformation-interchangeable in state (𝑎0, 𝑏0) ∈ 𝑇 i�

𝑇

⃗(
𝑎0,

𝑏𝑐︷    ︸︸    ︷
𝑇⃗ (𝑎𝑐, 𝑏0)

)
= 𝑎𝑐 .

Dually, 𝑏𝑐 ∈ 𝐵 is user-transformation-interchangeable in state (𝑎0, 𝑏0) ∈ 𝑇 i�

𝑇⃗ (𝑎𝑐,𝑇

⃗

(𝑎0, 𝑏𝑐)) = 𝑏𝑐 .

De�nition 4.2. A bidirectional transformation 𝑇

⃗

C (𝑇,𝑇⃗ ,𝑇

⃗

) between 𝐴 and 𝐵 is user-
transformation-interchangeable if, and only if, all changes are user-transformation-inter-
changeable. More formally, 𝑇

⃗

is user-transformation-interchangeable i�

∀ (𝑎0, 𝑏0) ∈ 𝑇 : ∀𝑎𝑐 ∈ 𝐴 : 𝑇

⃗

(𝑎0, 𝑇⃗ (𝑎𝑐, 𝑏0)) = 𝑎𝑐

∧ ∀𝑏𝑐 ∈ 𝐵 : 𝑇⃗ (𝑇

⃗

(𝑎0, 𝑏𝑐) , 𝑏0) = 𝑏𝑐 .

If a user-transformation-interchangeable transformation between𝐴 and 𝐵 is also Hippo-
cratic and correct, it is uniquely de�ned by a bijection between𝐴 and 𝐵. We will prove this
later in Proposition 4.1 (on page 29). It justi�es calling the whole transformation ‘bijective’.

De�nition 4.3. A correct, Hippocratic and user-transformation-interchangeable trans-
formation is called bijective.

It would, however, not be realistic to expect all transformations to consist exclusively of
user-transformation-interchangeable changes (and, hence, be bijective) [Ste10]. To see why,
we extend our example above. Langhammer suggests that, because his proposed mapping
‘is hard to match for [Java] developers’ [Lan17, p. 70], a component could already be created
in PCM after a new Java package was created2. This is a sensible proposal; but the resulting
2Langhammer proposes to ask the user whether the new package should, in fact, represent a new component.
But once again, this is not relevant for our discussion.

26



transformation will not be user-transformation-interchangeable. After adding a package in
Java, for example, the new transformation will create a component in PCM; but after adding
a component in PCM, the new transformation will create a package and a class in Java.
Hence, adding a package in Java is not user-transformation-interchangeable. Nevertheless,
we observe that the change, although not being user-transformation-interchangeable
itself, resulted in a user-transformation-interchangeable change. As users, we can still
accept that: Adding a package is an alias for adding a package and a class. Hence, we are
not surprised that the PCM�Java transformation would create a package and a class in
reaction to a new PCM component, even though we just added a package to create a PCM
component.
Abstracting from our extended example again, we derive that we should tolerate not

only user-transformation-interchangeable changes, but also changes that lead to user-
transformation-interchangeable changes after being transformed once. I even argue that
we should only tolerate such changes. In other words, we should build transformations in
a way that they always produce user-transformation-interchangeable changes. Let us call
such transformations congruent.

De�nition 4.4. A bidirectional transformation𝑇

⃗

C (𝑇,𝑇⃗ ,𝑇

⃗

) between𝐴 and 𝐵 is congruent
if, and only if, transforming any change results in a user-transformation-interchangeable
change. More formally, 𝑇

⃗

is congruent i�

∀ (𝑎0, 𝑏0) ∈ 𝑇 : ∀𝑎𝑐 ∈ 𝐴 : 𝑇⃗ (𝑇

⃗

(𝑎0, 𝑇⃗ (𝑎𝑐, 𝑏0)) , 𝑏0) = 𝑇⃗ (𝑎𝑐, 𝑏0)
∧ ∀𝑏𝑐 ∈ 𝐵 : 𝑇

⃗
(𝑎0, 𝑇⃗ (𝑇

⃗
(𝑎0, 𝑏𝑐) , 𝑏0)) = 𝑇

⃗
(𝑎0, 𝑏𝑐) .

Just as I implied, congruency is a weakening of user-transformation-interchangeability:

Lemma 4.1. Every user-transformation-interchangeable transformation is congruent.

Proof. Since 𝑇⃗ and 𝑇

⃗

are deterministic, wrapping them around the De�nition 4.2 retains
equality and yields De�nition 4.4:

∀ (𝑎0, 𝑏0) ∈ 𝑇 : ∀𝑎𝑐 ∈ 𝐴 : 𝑇

⃗

(𝑎0, 𝑇⃗ (𝑎𝑐, 𝑏0)) = 𝑎𝑐

∧ ∀𝑏𝑐 ∈ 𝐵 : 𝑇⃗ (𝑇

⃗

(𝑎0, 𝑏𝑐) , 𝑏0) = 𝑏𝑐

=⇒ ∀ (𝑎0, 𝑏0) ∈ 𝑇 : ∀𝑎𝑐 ∈ 𝐴 : 𝑇⃗ (𝑇

⃗

(𝑎0, 𝑇⃗ (𝑎𝑐, 𝑏0)) , 𝑏0) = 𝑇⃗ (𝑎𝑐, 𝑏0)
∧ ∀𝑏𝑐 ∈ 𝐵 : 𝑇

⃗

(𝑎0, 𝑇⃗ (𝑇

⃗

(𝑎0, 𝑏𝑐) , 𝑏0)) = 𝑇

⃗

(𝑎0, 𝑏𝑐) . �

Furthermore, we can conceptualize congruent transformations as user-transformation-
interchangeable transformations that additionally allow alias changes. Alias changes lead
to user-transformation-interchangeable changes when transformed (see Figure 4.1).

Lemma 4.2. Every congruent transformation has user-transformation-interchangeable
changes.

Proof. Let 𝑇

⃗

C (𝑇,𝑇⃗ ,𝑇

⃗

) be a bidirectional transformation between the metamodels 𝐴 and
𝐵. If we start with any consistent state (𝑎0, 𝑏0) ∈ 𝑇 and transform any change 𝑎𝑐 ∈ 𝐴

27



4 Congruent Bidirectional Transformations

𝑎0 𝑏0

𝑏1

𝑎2

𝑎3

𝑎4 𝑏4

𝑏5

𝑎 𝑏 : 𝑇⃗ (𝑎, 𝑏0) = 𝑏

𝑎 𝑏 : 𝑇

⃗

(𝑎0, 𝑏) = 𝑎

Figure 4.1: Relative to a consistent state pair (𝑎0, 𝑏0) ∈ 𝑇 (grey background) of a congruent
bidirectional transformation 𝑇

⃗

C (𝑇,𝑇⃗ ,𝑇

⃗

), any change to another model state
is either a user-transformation-interchangeable change (green), or an alias
change (brown). Alias changes are transformed into user-transformation-inter-
changeable changes by 𝑇

⃗

.

(or 𝑏𝑐 ∈ 𝐵) to 𝑏𝑡 B 𝑇⃗ (𝑎𝑐, 𝑏0) (or 𝑎𝑡 B 𝑇

⃗

(𝑏𝑐, 𝑎0)), the result will be a user-transformation-
interchangeable change. We can see this by �lling the result into De�nition 4.4, which
directly yields De�nition 4.2:

𝑇⃗ (𝑇

⃗

(𝑎0, 𝑇⃗ (𝑎𝑐, 𝑏0)) , 𝑏0) = 𝑇⃗ (𝑎𝑐, 𝑏0) =⇒ 𝑇⃗ (𝑇

⃗

(𝑎0, 𝑏𝑡 ) , 𝑏0) = 𝑏𝑡

𝑇

⃗

(𝑎0, 𝑇⃗ (𝑇

⃗

(𝑎0, 𝑏𝑐) , 𝑏0)) = 𝑇

⃗

(𝑎0, 𝑏𝑐) =⇒ 𝑇

⃗

(𝑎0, 𝑇⃗ (𝑎𝑡 , 𝑏0)) = 𝑎𝑡 . �

4.1 Relationship to the Consistency Relation

While considering the above example regarding consistency of software components
between PCM and Java, we assumed that the consistency speci�cation did not de�ne
how names of components and implementation class should be mapped onto each other.
This was necessary to construct the example. If we assumed a more sensible consistency
speci�cation that speci�es how to handle component names and implementation class
names, we would not have been able to construct an example that is not congruent, but
still correct and Hippocratic. This is consistent with the introduction of this chapter, where
I described congruency as, intuitively speaking, a property of how transformations ‘use
the freedom’ that the transformation relation leaves them. If there is no freedom, any
correct transformation will also be congruent. Let us formalize this intuition.

Wewill begin with the strictest of consistency relations: bijective ones. If the consistency
relation is bijective, then there is no freedom at all and any correct bidirectional trans-
formation will be user-transformation-interchangeable. Conversely, all user-transforma-
tion-interchangeable transformations that are also Hippocratic have bijective consistency
relations.

28



4.1 Relationship to the Consistency Relation

Proposition 4.1. There is a correct, Hippocratic, and user-transformation-interchangeable
bidirectional transformation for a consistency relation 𝑇 if, and only if, 𝑇 is bijective.

Proof. Let 𝐴 and 𝐵 be the metamodels that are related by 𝑇 . Recall that neither 𝐴 nor 𝐵 is
empty (cf. Section 2.2).

‘ =⇒ ’ Assume that 𝑇 is not bijective. 𝑇 is left-total and right-total per de�nition (see
Section 2.4.1). Hence, 𝑇 is either not left-unique or not right-unique. Assume without loss
of generality that 𝑇 is not left-unique (else swap the roles of 𝐴 and 𝐵). Hence, there are
(𝑎1, 𝑏) ∈ 𝑇 and (𝑎2, 𝑏) ∈ 𝑇 with 𝑎1 ≠ 𝑎2. Let 𝑇

⃗

= (𝑇,𝑇

⃗

, 𝑇⃗ ) be any correct and Hippocratic
transformation for𝑇 . By its Hippocraticness, we know that 𝑇⃗ (𝑎1, 𝑏) = 𝑏 and𝑇

⃗

(𝑎2, 𝑏) = 𝑎2.
Consequently, we see that

𝑇

⃗

(𝑎2, 𝑇⃗ (𝑎1, 𝑏)) = 𝑎2 ≠ 𝑎1.

Thus, 𝑇

⃗

is not user-transformation-interchangeable.

‘⇐= ’ Let 𝑇 be bijective. The only correct bidirectional transformation is the induced
transformation 𝑇

⃗

= (𝑇,𝑇⃗ ,𝑇

⃗

), with

𝑇⃗ : (𝑎, 𝑏) ↦→ 𝑇 (𝑎)
𝑇

⃗

: (𝑎, 𝑏) ↦→ 𝑇 −1 (𝑏) .

𝑇

⃗

is well-de�ned, correct and Hippocratic [Ste10]. It is also user-transformation-inter-
changeable:

∀ (𝑎0, 𝑏0) ∈ 𝑇 : ∀𝑎𝑐 ∈ 𝐴 : 𝑇
⃗
(𝑎0, 𝑇⃗ (𝑎𝑐, 𝑏0)) = 𝑇 −1 (𝑇 (𝑎𝑐)) = 𝑎𝑐

∧ ∀𝑏𝑐 ∈ 𝐵 : 𝑇⃗ (𝑇

⃗

(𝑎0, 𝑏𝑐) , 𝑏0) = 𝑇
(
𝑇 −1 (𝑏𝑐)

)
= 𝑏𝑐 . �

Because congruency is strictly weaker than user-transformation-interchangeability,
there are consistency relations that do not allow the latter, but do allow the former. To
get a better understanding of which consistency relations allow congruency, we de�ne
‘indirect consistency’.

De�nition 4.5. Given a consistency speci�cation 𝑇 ⊆ 𝐴 × 𝐵 between 𝐴 and 𝐵, we de�ne
the additional relations for all 𝑖 ∈ N+:

𝑇 0 B 𝑇

𝑇 𝑖 B
{
(𝑎, 𝑏) | ∃ (𝑎′, 𝑏′) ∈

(
𝑇 𝑖−1\ {(𝑎, 𝑏)}

)
: (𝑎, 𝑏′) ∈ 𝑇 ∧ (𝑎′, 𝑏) ∈ 𝑇

}
𝑇 ∗ B

⋃
𝑛∈N0

𝑇𝑛

We say that 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 are 𝑖-step consistent i� (𝑎, 𝑏) ∈ 𝑇 𝑖 , and indirectly consistent i�
(𝑎, 𝑏) ∈ 𝑇 ∗.

Congruency, just like user-transformation-interchangeability can be trivial:

Proposition 4.2. Let 𝑇 ⊆ 𝐴 × 𝐵 be a consistency relation between the metamodels 𝐴 and 𝐵.
If there is no pair of model elements (𝑎, 𝑏) ∈ 𝐴 × 𝐵 that is 2-step consistent, then any correct,
Hippocratic bidirectional transformation between 𝐴 and 𝐵 is congruent.

29



4 Congruent Bidirectional Transformations

Proof. Let𝑇 have no model pair that is truly 2-step consistent. Assume to the contrary that
there exists a bidirectional transformation 𝑇

⃗

B (𝑇,𝑇⃗ ,𝑇

⃗

) that is correct and Hippocratic,
but not congruent. Because 𝑇

⃗

is not congruent, we know that there exist (𝑎0, 𝑏0) ∈ 𝑇 such
that either

∃𝑎𝑐 ∈ 𝐴 : 𝑇⃗
( 𝑎𝑥︷              ︸︸              ︷
𝑇

⃗(
𝑎0, 𝑇⃗ (𝑎𝑐, 𝑏0)︸    ︷︷    ︸

𝑏𝑐

)
, 𝑏0

)
︸                        ︷︷                        ︸

𝑏𝑥

≠ 𝑇⃗ (𝑎𝑐, 𝑏0)︸    ︷︷    ︸
𝑏𝑐

;

or
∃𝑏𝑐 ∈ 𝐵 : 𝑇

⃗

(𝑎0, 𝑇⃗ (𝑇

⃗

(𝑎0, 𝑏𝑐) , 𝑏0)) ≠ 𝑇

⃗

(𝑎0, 𝑏𝑐) .

Let, without loss of generality, the former be the case (else swap the roles of 𝐴 and 𝐵). Let
𝑏𝑐 B 𝑇⃗ (𝑎𝑐, 𝑏0), 𝑎𝑥 B 𝑇

⃗

(𝑎0, 𝑏1) and 𝑏𝑥 B 𝑇⃗ (𝑎𝑥 , 𝑏0), as indicated in the formula above. Per
assumption, we know that 𝑏𝑐 ≠ 𝑏𝑥 . It follows that 𝑎𝑥 ≠ 𝑎𝑐 , because otherwise we would
have 𝑇⃗ (𝑎𝑥 , 𝑏0) = 𝑇⃗ (𝑎𝑐, 𝑏0), which violates our assumption. Since𝑇

⃗

is correct, we conclude
that (𝑎𝑐, 𝑏𝑐) ∈ 𝑇 , (𝑎𝑥 , 𝑏𝑐) ∈ 𝑇 , and (𝑎𝑥 , 𝑏𝑥 ) ∈ 𝑇 . But then 𝑎𝑐 and 𝑏𝑥 are 2-step consistent;
that is, (𝑎𝑐, 𝑏𝑥 ) ∈ 𝑇 2. This is a contradiction. �

Notably, this means that every lens is congruent:

Lemma 4.3. Every well-behaved lens is congruent.

Proof. Let 𝐿⃗
⃗

C (𝐿, 𝐿⃗, 𝐿
⃗

) be a well-behaved lens between 𝐴 and 𝐵; that is, 𝐿⃗
⃗

is correct and
Hippocratic, and there exists a function Get: 𝐴 → 𝐵 such that 𝐿⃗ (𝑎, 𝑏) = Get (𝑎) for
all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. We show that 𝐿 has no 2-step consistent pairs. Hence, assume to
the contrary that 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 are 2-step consistent. Hence, there are (𝑎′, 𝑏′) ∈ 𝐿,
such that (𝑎, 𝑏′) ∈ 𝐿 and (𝑎′, 𝑏) ∈ 𝐿. Furthermore 𝑏 ≠ 𝑏′. But then 𝐿⃗

⃗

is not Hippocratic,
because 𝐿⃗ (𝑎′, 𝑏) = Get (𝑎′) = 𝐿⃗ (𝑎′, 𝑏′), so either 𝐿⃗ (𝑎′, 𝑏) ≠ 𝑏 or 𝐿⃗ (𝑎′, 𝑏′) ≠ 𝑏′. This is a
contradiction. �

By now, we have found that, depending on the consistency relation, user-transformation-
interchangeability can be impossible, and congruency can be trivial. Now we will �nd a
relaxed, su�cient condition for the existence of a congruent transformation for a given
consistency relation. We will show later, in Example 7.1 on page 61, that the condition is
su�cient, but not still not necessary. Nevertheless, there are also consistency relations for
which there are no congruent, Hippocratic, bidirectional transformations; even though
there is a correct and Hippocratic one. Example 7.2 on page 63 provides such a consistency
relation.

Proposition 4.3. Let 𝑇 ⊆ 𝐴 × 𝐵 be a between two metamodels 𝐴 and 𝐵. If any indirectly
consistent pair of models (𝑎, 𝑏) ∈ 𝐴 × 𝐵 is also consistent, then there is a correct, Hippocratic
and congruent bidirectional transformation 𝑇

⃗

C (𝑇,𝑇⃗ ,𝑇

⃗

).

Proof. We construct such a bidirectional transformation. 𝑇 has subsets that form a left-
unique, right-unique (but not necessarily bijective) relation. Let 𝑆 be a maximal of these
subsets (that is, no tuple 𝑡 ∈ 𝑇 can be added to 𝑆 without making it not left-unique or not

30



4.1 Relationship to the Consistency Relation

right-unique). Recall that neither 𝐴 nor 𝐵 is empty and that 𝑇 is left-total (cf. Section 2.2).
Thus, 𝑆 is also not empty. We de�ne the transformations as

𝑇⃗ (𝑎, 𝑏) =


𝑏 if (𝑎, 𝑏) ∈ 𝑇

𝑏𝑠 if (𝑎, 𝑏𝑠) ∈ 𝑆

𝑏𝑡 where (𝑎, 𝑏𝑡 ) ∈ 𝑇

𝑇

⃗

(𝑎, 𝑏) =


𝑎 if (𝑎, 𝑏) ∈ 𝑇

𝑎𝑠 if (𝑎𝑠, 𝑏) ∈ 𝑆

𝑎𝑡 where (𝑎𝑡 , 𝑏) ∈ 𝑇

We can see directly from the de�nition that 𝑇

⃗

must be Hippocratic (because of the
respective �rst case) and correct (because we always select a result from 𝑇 ). Since 𝑇 is
left-total and right-total, the functions are also well-de�ned. We will show one direction
of congruency, the other direction is dual and can be shown analogously.

Let (𝑎0, 𝑏0) ∈ 𝑇 and 𝑎𝑐 ∈ 𝐴. We di�erentiate three cases:

1. Assume (𝑎𝑐, 𝑏0) ∈ 𝑇 . We get:

𝑇⃗ (𝑇

⃗

(𝑎0, 𝑇⃗ (𝑎𝑐, 𝑏0)) , 𝑏0)
= 𝑇⃗ (𝑇

⃗

(𝑎0, 𝑏0) , 𝑏0)
= 𝑇⃗ (𝑎0, 𝑏0)
= 𝑏0

= 𝑇⃗ (𝑎𝑐, 𝑏0) .

2. Else, assume that there is a 𝑏𝑐 ∈ 𝐵\ {𝑏0} such that (𝑎𝑐, 𝑏𝑐) ∈ 𝑆 . Since we are not
in case 1, we know that (𝑎𝑐, 𝑏0) ∉ 𝑇 and, hence, 𝑇⃗ (𝑎𝑐, 𝑏0) = 𝑏𝑐 . We also know
that (𝑎0, 𝑏𝑐) ∉ 𝑇 . Because else, 𝑎𝑐 and 𝑏0 would be indirectly consistent via (𝑎𝑐, 𝑏𝑐),
(𝑎0, 𝑏𝑐), (𝑎0, 𝑏0); although 𝑎𝑐 and 𝑏0 are not consistent. Hence, 𝑇

⃗

(𝑎0, 𝑏𝑐) = 𝑎𝑐 . We
get:

𝑇⃗ (𝑇

⃗

(𝑎0, 𝑇⃗ (𝑎𝑐, 𝑏0)) , 𝑏0)
= 𝑇⃗ (𝑇

⃗

(𝑎0, 𝑏𝑐) , 𝑏0)
= 𝑇⃗ (𝑎𝑐, 𝑏0) .

3. Else, let𝑏𝑐 B 𝑇⃗ (𝑎𝑐, 𝑏0). Since we are neither in case 1 nor 2, we know that (𝑎𝑐, 𝑏𝑐) ∉ 𝑆

and 𝑏𝑐 ≠ 𝑏0. We also know that there is no other 𝑏𝑥 ∈ 𝐵 such that (𝑎𝑐, 𝑏𝑥 ) ∈ 𝑆

because else we would be in case 2. It follows that there must be an 𝑎𝑠 ∈ 𝐴 such
that (𝑎𝑠, 𝑏𝑐) ∈ 𝑆 . Otherwise, 𝑆 would not be maximal because we could add (𝑎𝑐, 𝑏𝑐)
to it. By the same argument as in case 2, (𝑎0, 𝑏𝑐) ∉ 𝑇 . Hence, 𝑇

⃗

(𝑎0, 𝑏𝑐) = 𝑎𝑠 and
(𝑎𝑠, 𝑏𝑐) ∈ 𝑇 . Similarly, (𝑎𝑠, 𝑏0) ∉ 𝑇 , because else 𝑎𝑐 and 𝑏0 would be indirectly
consistent via (𝑎𝑐, 𝑏𝑐), (𝑎𝑠, 𝑏𝑐) and (𝑎𝑠, 𝑏0); although 𝑎𝑐 and 𝑏0 are not consistent.

31



4 Congruent Bidirectional Transformations

Hence, 𝑇⃗ (𝑎𝑠, 𝑏0) = 𝑏𝑐 . We get:

𝑇⃗ (𝑇

⃗

(𝑎0, 𝑇⃗ (𝑎𝑐, 𝑏0)) , 𝑏0)
= 𝑇⃗ (𝑇

⃗

(𝑎0, 𝑏𝑐) , 𝑏0)
= 𝑇⃗ (𝑎𝑠, 𝑏0)
= 𝑏𝑐

= 𝑇⃗ (𝑎𝑐, 𝑏0) . �

The condition that indirect consistency shall imply consistency is a natural one. For
example, imagine that we did not represent UML comments in Java. Hence adding a
comment to a UML model does not change whether or not the model is consistent with
Java. Similarly, the body of Java methods is not represented in UML by Langhammer’s
consistency speci�cation. Hence, changing the body of a constructor does not make a
consistent Java model inconsistent with UML. Now consider consistent Java and UML
model states, both representing a software component. We know that, �rst, the Java
state with a di�erent constructor body is consistent with the UML state, and, second,
the UML state with an added comment is consistent with the Java state. Given these
facts, it is only reasonable to expect that the Java state with a di�erent constructor body
is also consistent with the UML state with an added comment . Otherwise, a correct
bidirectional transformation would be forced to remove the modi�ed constructor body
after the comment was added to Java. This is obviously not desirable.

4.2 Evaluation

In this chapter, I introduced a novel property for bidirectional transformations, which I
called congruency. I propose that additionally to correctness and Hippocraticness, we
should expect congruency of all transformations that are used for maintaining consistency
between models with semantic overlap. I have explained with examples why I expect
transformations to become more predictable and easier to use if they are user-transforma-
tion-interchangeable. Then I showed why this is too strict to be a general requirement,
but that we can still gain the proposed advantages if we require transformations to be
congruent. Additionally, I will show in Chapter 5 how congruent transformations are
easier to test than non-congruent ones.
There are three reasons why I think that it is realistic to expect that it will always be

possible to use congruent transformations when maintaining consistency of models with
semantic overlap. First, as shown in Proposition 4.3, every consistency relation can be
maintained by a congruent bidirectional transformation if all indirectly consistent model
pairs are also consistent with each other. As I explained, this is a intuitive requirement and
it is reasonable to expect that all practical transformation relations will ful�l it. Second,
congruency maps cleanly onto the idea of semantic overlap. Two models sharing semantic
overlap means that there is a common concept that can be represented in both models. For
every initial model state, we can designate a pair of a representations in each model that
map onto each other. This pair will be the respective user-transformation-interchangeable
change for each model. The pair would be in the subset 𝑆 in the proof of Proposition 4.3.

32



4.2 Evaluation

In our example above, the state after adding a PCM component and the state after adding
a Java package with a Java class would form such a pair. Additionally, congruency allows
aliases for these states in both models. These aliases are either other ways to express the
same concept, like the simpli�cation of only adding a Java package, that we discussed;
or they capture additional model data which is irrelevant to the common concept, like
comments in UML. All such aliases would be in 𝑇 \ 𝑆 in the proof of Proposition 4.3. This
way, semantic overlap can naturally lead to a congruent bidirectional transformation. Last,
as far as I was able to test the transformations in the case study of this thesis, they were all
congruent or meant to be congruent. This gives the previous two theoretical arguments
some early empirical validation. Nevertheless, more practical experience will be needed to
be sure that congruency is a good requirement for all bidirectional transformations when
maintaining consistency between models with semantic overlap.

33





5 A Test Strategy for Di�erent
Implementations of a Consistency
Specification

A part of the case study presented in Chapter 3 compares two implementations of the
same consistency speci�cation, one in the Reactions Language, and the other in the
Commonalities Language. As discussed in Section 3.3, it is crucial for the internal validity
of the case study that the compared implementations both implement the same behaviour,
and that this behaviour conforms to the speci�cation. However, when examining the
pre-existing implementation in the Reactions language by Chen [Che17], Klatte [Kla17]
and Syma [Sym18] and the implementation in the Commonalities Language by Hennig
[Hen20], it quickly became apparent that they did not realise the same logic. Instead, they
had interpreted Langhammer’s requirements [Lan17] di�erently. The implementations
were covered by tests, but those tests were written for each implementation separately.
Hence, the tests could not detect the discrepancies between the implementations. To
ensure that both implementations ful�l the requirements to be used in the case study,
I developed a test strategy and a framework for a test suite that can be applied to both
implementations. In this chapter, I will present and discuss the design decisions for this
new test suite.

5.1 Black Box Acceptance Tests

Software test cases are typically categorized into at least two categories: Whether they are
unit, integration, or system tests; and whether they apply black box, white box, or grey
box testing. The �rst category concerns the subject of the tests: either a small unit of the
software in isolation, or the interplay of several units, or the whole software system at once.
The second category di�erentiates how much knowledge about the implementation is used
to de�ne the test cases. In white box testing, any information about the implementation
can be used to improve the test cases and focus them on the areas that are deemed in
particular need of testing. In black box testing, the opposite is the case: No knowledge
about the implementation is used, and test cases are de�ned only based on information
that users have about the system. The software system is, hence, treated as a ‘black box’.
In grey box testing, only speci�c information about the implementation is used to de�ne
test cases.
The pre-existing tests for the Reactions Language implementation are mostly white

box unit tests. They focus on small parts of the transformations and test the properties
that developers considered most relevant. The tests are accompanied by some white box

35



5 A Test Strategy for Di�erent Implementations of a Consistency Speci�cation

unit tests

integration tests

system
tests

number of test cases

de
ve
lo
pm

en
te

�o
rt

ex
ec
ut
io
n
tim

e

Figure 5.1: The Test Pyramid. Because tests at higher levels require more e�ort to develop
and take longer to be executed, there should be more test cases at lower levels
than at higher levels. To achieve this, tests at higher levels can rely on the
behaviour that was already tested at lower levels. This illustration is analogous
to the one by Fowler [Fow12].

integration tests, which cover relevant behaviour when combining multiple Reactions.
The pre-existing tests for the implementation in the Commonalities Language are di�erent.
They test the transformations by providing user changes and checking the result models
after applying the transformation. Since they test the whole transformation from the
users’ perspective, they are black box system tests. The new tests suite for the case study
will check the whole respective implementation against its speci�cation. Hence, it is
an acceptance test suite. Acceptance tests are a subcategory of system tests. The test
suite will be applied to two signi�cantly di�erent implementations, so it can not rely on
implementation details. It must, thus, be a black box test suite.
When de�ning a test strategy, it is usually recommended to combine unit, integration

and system tests such that they form an imagined pyramid, the so-called ‘Test Pyramid’
(cf. Figure 5.1) [Coh09; Fow12]. Unit tests form the foundation of the pyramid. They are
the cheapest tests to develop, the fastest to execute, and they provide the most actionable
information when they fail [Coh09]. The middle layer of the pyramid contains integration
tests. These tests focus on whether the software units can be properly integrated with each
other. The integration tests can rely on the behaviour that has already been asserted by the
unit tests. Thus, they only need to test integration, and do not need to check the behaviour
of individual units. The top layer of the Test Pyramid is formed by system tests. They can,
once again, rely on the behaviour that has been asserted on the layers below and only
need to check the remaining requirements for the system as a whole. Since tests typically
get more expensive to develop, take longer to execute, and provide less information to
debug errors as we progress from unit, to integration, to system tests; adhering to the Test
Pyramid promises a better use of resources and more robust tests [Coh09].

36



5.1 Black Box Acceptance Tests

The test suite for the case study cannot contain unit tests or integration tests that test
both implementations at the same time. The two implementations are too heterogeneous
to allow breaking them into parts among the same lines. Thus, the only category of test
cases that can be executed against both implementations are system tests. There can,
of course, be individual unit and integration tests for each implementation. However,
they run the risk of interpreting the consistency speci�cation slightly di�erently. This is
what already happened with the pre-existing tests. Hence, the case study acceptance tests
should not rely on unit or integration tests. This way, the consistency speci�cation only
gets interpreted once (instead of twice, once per implementation), reducing the potential
for errors. Furthermore, should any misinterpretation of the speci�cation occur, it will
a�ect both implementations in the same way, giving none an advantage in the case study.
Without any lower level tests to rely on, the case study acceptance test suite needs

to contain a high number of test cases to cover the speci�cation well. For reference, the
existing test suite covering the Reactions Language implementation contained 511 test
cases. Nevertheless, developers generally agreed that the test suite was not su�ciently
comprehensive and needed to cover more cases. Once a comprehensive test acceptance
test suite has been created, it will be desirable to remove the implementation-speci�c
tests that cover the same cases as the acceptance test suite. Implementation-speci�c
tests will only make sense to check implementation-speci�c invariants or functionality
of implementation-speci�c helpers. Keeping implementation-speci�c tests that check
the same functionality as the acceptance test suite would mean a higher maintenance
e�ort. However, the resulting test strategy—elaborate system tests and only few unit and
integration tests—will then be the opposite of what is recommended with the Test Pyramid
pattern. Such a strategy—dubbed the ‘Test Ice Cream Cone’ [Fow12]—is considered an
anti-pattern for the same reasons that the Test Pyramid is recommended.

Given the above, we can derive the following requirements for the acceptance test suite:
Test Requirement 1 The same acceptance test suite covers all relevant aspects of the

consistency speci�cation.

Test Requirement 2 The same acceptance test suite can be applied to the implementation
in the Commonalities Language and the implementation in the Reactions Language.

Test Requirement 3 It must be easy to write and maintain acceptance test cases, such that
it does not require signi�cantly more e�ort than writing unit tests.

Test Requirement 4 The acceptance tests must provide good debug information in case of
failures, such that developers can understand the issue well and quickly.

Test Requirement 5 The test suite implementationmust be performant, such that hundreds
of test cases can be executed in only a few seconds.

If requirements , 3, 4, and 5 are ful�lled, the test suite will not su�er from not following
the Test Pyramid pattern. As Fowler puts it: ‘The pyramid is based on the assumption that
broad-stack tests are expensive, slow, and brittle compared to more focused tests, such
as unit tests. While this is usually true, there are exceptions. If my high level tests are
fast, reliable, and cheap to modify—then lower-level tests aren’t needed’ [Fow12]. The
following two sections will describe how the test suite can ful�l its requirements.

37



5 A Test Strategy for Di�erent Implementations of a Consistency Speci�cation

5.2 Exploiting Congruency

In Chapter 4, I introduced congruency and explained why we should expect it of bidirec-
tional transformations. In this section, I will describe how we can use congruency to make
specifying test cases easier. This contributes to realizing Test Requirement 3. At the same
time, the technique tests whether the transformations are congruent.
When writing a (black box) acceptance test for a transformation network, the general

procedure is as follows: Start with a consistent state of the models, apply a user change,
transform the changed models through the network, and check that the resulting models
are in the expected state afterwards. To write a test case, we need to specify three
model states per transformation: The initial state, the state after the user change, and
the expected state after applying the transformations. This e�ort can be reduced if we
remember that bidirectional transformations are correct. We can use the result state of
other test cases—which must be consistent—as the initial state for new test cases. The
�rst test cases will simply start with empty models. With this technique, we only need to
specify two model states per transformation.
Congruent bidirectional transformations have two type of changes: user-transform-

ation-interchangeable changes and alias changes (see Lemma 4.2 and Figure 4.1). If we
transform a user-transformation-interchangeable change in one direction, we know that
the transformation result can also be an input change for the other direction, which
should, after being transformed, result in the initial input change. By specifying two
model states, one for each metamodel of the bidirectional transformation, we can, hence,
derive two test cases. Apart from user-transformation-interchangeable changes, congruent
transformations only have alias changes. The result of transforming an alias change is a
user-transformation-interchangeable change (Lemma 4.2). Hence, to test an alias change,
we only need to specify the alias change and can re-use the model speci�cations of the res-
ulting user-transformation-interchangeable changes from other test cases. Altogether, we
can follow the following procedure to specify test cases for bidirectional transformations:

1. Specify an initial state of the models by either referencing the result of another test
case, or by using empty models.

2. Derive from the consistency speci�cation a user-transformation-interchangeable
change to the initial state.

3. Program the user-transformation-interchangeable change and the result change of
transforming it.

4. Derive from the consistency speci�cation relevant alias changes for the user-trans-
formation-interchangeable change.

5. Program the alias changes.
6. Let a test framework derive one test case for each changed model state we have

speci�ed.

Figure 5.2 shows schematically how a test plan can be derived from speci�ed input model
states. In e�ect, we need to specify one model state per transformation and test case. This
halves the amount of model states that need to be speci�ed compared to if we did not

38



5.3 A Test Framework for the Test Strategy

Speci�ed Model States

Initial States (empty models, or derived from other test cases)

𝑎0 𝑏0

After User-Transformation-Interchangeable Changes

𝑎i 𝑏i

After Alias Changes

𝑎1 𝑎2 𝑏1

derive

Test Cases

𝑇⃗

(
𝑎i , 𝑏0

)
?
= 𝑏i

𝑇

⃗(
𝑎0 , 𝑏i

)
?
= 𝑎i

𝑇⃗

(
𝑎1 , 𝑏0

)
?
= 𝑏i

𝑇⃗

(
𝑎2 , 𝑏0

)
?
= 𝑏i

𝑇

⃗(
𝑎0 , 𝑏1

)
?
= 𝑎i

Figure 5.2: A schematic test plan exploiting congruency. Left: Examples for the initial and
the changed model states of the metamodels 𝐴 and 𝐵. Right: The test plan that
will be derived for those model states. It tests the bidirectional transformation
𝑇

⃗

C (𝑇,𝑇⃗ ,𝑇

⃗

) between 𝐴 and 𝐵.

make use of congruency. Furthermore, all user-transformation-interchangeable changes
coincided between the transformations of the tested transformation network. That is,
a change to the metamodel 𝐵 that was user-transformation-interchangeable for some
transformation 𝑇

⃗

between 𝐴 and 𝐵 was also always user-transformation-interchangeable
any transformation 𝑈⃗

⃗

between 𝐵 and 𝐶 . This reduces the e�ort for specifying test cases
even further.

5.3 A Test Framework for the Test Strategy

We saw in the previous section that test cases for the case study acceptance test suite can
have a speci�c structure. Test cases can be de�ned by specifyingwhich other test case to use
to obtain the initial model states from, then providing the model states, and �nally marking
whether themodel states are user-transformation-interchangeable changes or alias changes.
Since a lot of acceptance test cases will have to be written (see Section 5.1), it is worthwhile
to develop a specialized test framework that derives the test cases automatically from
this input, and reduces the boilerplate code that needs to be written to a minimum. The
test framework needs to setup the Vitruvius framework, obtain the initial states from the
previous test case, apply the input model state, apply the tested transformations, compare
the transformation result to the other model states, and fail the test if any di�erences
are found. I implemented the test framework as part of this thesis. In this section, I will

39



5 A Test Strategy for Di�erent Implementations of a Consistency Speci�cation

discuss the framework’s design, focussing on how it helps ful�lling the test requirements
we found in Section 5.1.

5.3.1 Specifying Model States

The case study test suite must implement the consistency speci�cation by Langhammer
[Lan17] correctly, otherwise the case study’s validity will be harmed. This is Test Require-
ment 1. The importance of this requirement is underlined by the fact that the pre-existing
tests already had interpreted the consistency speci�cation di�erently. One way to help
avoiding mistakes in the test suite is to ensure that the tests are easy to read. The easier
developers can understand written test cases, the less likely it becomes that discrepancies
to the consistency speci�cation will be missed. When programming changes for the test
cases, using EMF’s API directly to create and modify model objects leads the programmer
to write in an imperative style. The resulting code is verbose and does not re�ect the
structure of the resulting model well. To address this, the test framework provides an
annotation that uses Xtend’s code generation features to generate helpers for creating
model objects. If used together with Xtend’s lambda functionality, developers can use the
helpers to program model changes in a declarative style. The resulting code is signi�cantly
shorter and represents the structure of the model objects. This should make it easier to
read the speci�ed changes and verify their correctness.

5.3.2 Comparing Model States

After the input changes have been transformed, the test framework needs to compare the
transformation results to the expected model states. When writing unit test, developers
usually specify tailored assertions, verifying that relevant portions of the result model
are correct. These assertions can be very speci�c. If they fail, the failure in and of itself
already provides a lot of information about what went wrong. Plus, developers can provide
additional context-dependent information with the assertion, further helping to debug the
issue. This approach is not available to the test framework because it is agnostic to the
speci�c changes that are being veri�ed. Instead, the test framework needs to compare the
whole result models with the whole expected models. This raises two challenges: First,
model comparison needs to account for speci�cs of the metamodels whose instances are
being compared. Second, model comparison needs to provide rich error messages. To ful�l
Test Requirement 4 (debug information), the result of the model comparison cannot simply
be ‘pass’ or ‘fail’. After a test failure, this would force developers to manually examine the
di�erences between the whole models. Instead, the comparison needs to provide a detailed
and readable description of the di�erences between the models that failed the tests. This
section will describe how the framework compares models and �nds di�erences, while
the next section will explain how the framework generates readable messages.

Comparing EMF models is not a straightforward task, but ‘intrinsically complex’ [BP08].
For instance, the comparison needs to account for di�erent types of features, like derived
features, identifying attributes, containment references and non-containment attributes.
The EMF Compare project implements a metamodel-agnostic and extensible algorithm for
comparing EMF models [BP08]. The test framework uses EMF Compare to compare the

40



5.3 A Test Framework for the Test Strategy

transformed model states against the expected ones. However, without further adaptions,
EMF Compare generates false negative results; i.e., marks models as di�erent even though
they should be considered equal. Hence, the framework uses EMF Compare’s extensibility
to make the following adaptions to its comparison algorithm:

• Consider the roots of model trees to be equal. Otherwise, EMF Compare will not
report detailed di�erences between the models.

• Ignore ordering changes of unordered references, even if they are containment
references. EMF Compare reports ordering changes of unordered containment
references per default, which can lead to false negatives.

• Allow ignoring certain features during the comparison. For example, the Java meta-
model contains layout information which cannot be reproduced reliably and which
is irrelevant for the semantics of the model. The PCMmetamodel contains identi�ers
which are randomly assigned and can thus di�er between otherwise semantically
equal models. Without ignoring such features the comparison can yield false negat-
ives.

• Allow specifying how model objects that are referenced via non-containment refer-
ences should be compared. This is relevant if the referenced objects have no unique
identifying attribute (like in Java) or if the identifying attribute cannot be used for
the comparison (like in PCM). Without these speci�cations, the comparison can be
false positive or false negative.

5.3.3 Model Printing

The acceptance test checks compare whole model trees, which can become quite large even
for simple test examples. We expect the tests to give developers detailed and actionable,
yet easy to read information about test failures (Test Requirement 4). To achieve this,
the test framework introduces its own human-readable notation for model objects. The
notation aims to make scanning the printed objects as easy as possible. To that end, it
establishes the following conventions:

• Every model feature and every collection item is printed on its own line. The only
exception are collections with only one element, which are kept on a single line to
avoid unnecessary visual clutter.

• The identifying feature of a model object is always printed �rst, since it establishes
the object’s identity and allows to detect quickly whether the object has been moved.

• Do not print unset features, since this conveys very little information, while taking
up much space for objects with many features.

• Print objects with all their features if they are in a containment reference, since
the features are being compared. Print other referenced objects only in a form that
establishes their identity, since those objects’ features are not being compared.

41



5 A Test Strategy for Di�erent Implementations of a Consistency Speci�cation

1 OrdinaryParameter#1(

2 name="clients"

3 typeReference=NamespaceClassifierReference#1(

4 classifierReferences=[ClassifierReference#1(

5 typeArguments=[QualifiedTypeArgument#1(

6 typeReference=NamespaceClassifierReference#2(

7 classifierReferences=[ClassifierReference#2(

8 target=Class#1

9 )]

10 )

11 )]

12 target=Interface#1

13 )]

14 )

15 )

1 OrdinaryParameter#1(

2 name="clients"

3 typeReference=java.util.List<org.example.Client>

4 )

Figure 5.3: The model of a Java parameter printed without and with custom formatting.
Top: The default model printing algorithm prints type references verbosely and
hides relevant information. Bottom: With custom formatting, the parameter’s
type can be read easily.

One particularity for the notation are objects whose metaclass does not de�ne an identify-
ing feature. Developers need to understand whether two instances of such objects were
considered equal by the comparison algorithm, and there should also be a way to print
short references to such objects when they appear in non-containment references. Hence,
the model printing facility assigns arti�cial identi�ers to such objects and uses the same
identi�er for all instances that are considered equal by the comparison algorithm.

To improve the model notation even further, the test framework allows to customize the
representation of speci�c metaclasses. This makes sense if the default notation would be
verbose and there is a sensible, domain-speci�c, shorter notation. For example, references
to other classes in Java are represented using two nested objects, with the inner object
pointing to the class. If the type reference involves type parameters, the model structure
representing it gets even more involved. Instead of printing this structure directly, we can
replace it with the fully quali�ed type reference, like we would write in Java. Figure 5.3
shows a comparison. When providing custom notations, developers must take care not to
hide details which might become relevant in model comparisons.

After a test failure has occurred, the test framework �rst prints the expected model tree
using the notation described above. Afterwards, it prints a list of all di�erences between the
expected and the actual model state. The di�erences give a reference path to the a�ected
objects. Developers can follow the path from the model root to identify the a�ected object.
Additionally, the a�ected object’s identi�er is printed. After the list of di�erences, the
framework prints the model state of the transformed object using the notation described
above. The expected interaction with this error message is that developers �rst skim over

42



5.3 A Test Framework for the Test Strategy

the expected model to understand what the test case was testing. Afterwards, they read
the detailed di�erences to understand what exactly went wrong. Finally, they can consult
the transformed object to get more context for the detected di�erences.

5.3.4 Performance

Having addressed development e�ort (Test Requirement 3) and detailed debug information
(Test Requirement 4), the remaining potential disadvantage of the test strategy’s ‘ice cream
cone’ is execution time (Test Requirement 5). To estimate whether the acceptance test suite
will run considerably longer than a unit test suite, I conducted a performance benchmark
comparing both suites. The benchmark measured the time it took to execute 𝑛 test cases
for di�erent values of 𝑛. This allows us to build a linear regression model from which we
can extrapolate how long executing a higher number of test cases would take.

The benchmark was executed using JMH [Ale+21], a state-of-the-art benchmarking tool
for the JVM [Ste+17]. For each test suite 𝑠 and each number𝑛 of test cases, 20 measurements
were taken. Each measurement executed the respective test cases repeatedly for 60 seconds.
The measurements were preceded by 10 warm-up iterations of 20 seconds each. The warm-
up and measurement iterations were all executed in the same JVM instance. Both test
suites have a startup time of multiple seconds, caused by initializations in the underlying
frameworks and libraries. This startup time a�ects both suites equally, but would add
considerable noise to the measurements. By using exactly one JVM instance per (𝑠, 𝑛)
combination, this e�ect was avoided and the initializations only a�ected the warm-up
iterations, while the measurements captured the net execution time. The benchmark was
executed on a machine equipped with an Intel® Core™ i7-7500U CPU, having 4 virtual
cores with a base frequency of 2.7 GHz. The benchmark was running in the OpenJDK
64-Bit Server VM 18.9, build 11.0.9.1+1, on the Ubuntu 20.10 operating system.

The results of the benchmark are shown in Figure 5.4. The standard error of the mean
was less than 2 milliseconds for each (𝑠, 𝑛) measurement series. The 𝑝-value of the linear
regressions is less than 1h for both test suites, indicating very high correlation. The
regressions predict an execution time for 1000 test cases of 13.1 seconds for the acceptance
test suite and 6.4 seconds for the unit test suite. Both test suites had an execution time
that was approximately proportional to the number of test cases. The regressions predict
that the execution time for the acceptance test suite is approximately double as long as
the execution time of the unit test suite.

The validity of this performance evaluation is primarily threatened by the small sets of
test cases that the benchmark could operate on. To ensure that we compare comparable
test cases, I selected a single transformation as test subject, namely the PCM↔Java
transformation written in the Reactions Language. The acceptance test suite contained
26 test cases for this transformation. The unit test suite contained 15 test cases testing
behaviour that was also tested by the acceptance test suite. I grouped the test cases by the
concept they test, namely consistency of PCM repositories, PCM components, and PCM
systems. This resulted in three groups, with 𝑛 ∈ {9, 19, 26} for the acceptance test suite
and 𝑛 ∈ {3, 12, 15} for the unit test suite. Grouping the test cases in more or other groups
would have resulted in misleading results, since some test cases take inherently longer
than others. For example, renaming a component requires creating a component �rst, so

43



5 A Test Strategy for Di�erent Implementations of a Consistency Speci�cation

0

100

200

300

10 20
Number of Test Cases

Ex
ec
ut
io
n
Ti
m
e
[m

s]

Test Suite
Acceptance Test Suite
Unit Test Suite

Figure 5.4: Execution time measurements for the acceptance test suite (green) and the unit
test suite (brown). The linear regressions are superimposed with dashed lines.

the test for renaming takes inherently longer than the test for creation. The grouping I
chose assured that each group was equally a�ected by such e�ects.

Even with the aforementioned limitations, the performance analysis allows us to draw
approximate conclusions about the performance impact of the presented test strategy.
A doubled execution time per test case is noticeable, but acceptable. We should take
into account that an acceptance test case performs more checks than a unit test case.
Hence, we can expect the acceptance test suite to require less test cases to check the same
behaviour. The absolute predicted value of 13.1 seconds for 1000 test cases (plus framework
initialization) is also acceptable. This value was predicted for serial execution. The test
cases can be parallelized to improve the absolute execution time.

5.3.5 Conclusion

We can see everything discussed in this chapter in e�ect in Figure 5.5. The code uses the test
framework to test the creation of a conceptual repository. This corresponds to the creation
of a PCM repository, the creation of three Java packages, or the creation of a UML model
and three UML packages, respectively [Hen20, p. 47 f.]. The speci�cation starts with empty
models and de�nes seven changes: one user-transformation-interchangeable change in
every metamodel, one alias change in Java and PCM, and two alias changes in UML. The
speci�cation also exploits the fact that the consistency speci�cation speci�es overlapping
user-transformation-interchangeable changes. Consequently, the test framework will
derive seven test cases, as shown in Figure 5.6. Figure 5.7 shows an example of a failure
message generated by the framework.

All in all, the test framework described in this section helps realizing the Test Require-
ments 1 (correctness), 3 (development e�ort), 4 (debug information), and 5 (performance).
Thus, it facilitates a comprehensive, yet e�cient test strategy.

44



5.3 A Test Framework for the Test Strategy

1 @TestFactory

2 def creation(extension EquivalenceTestBuilder builder) {

3 stepFor(pcm.domain) [ extension view |

4 resourceAt('model/Test'.repository).propagate [

5 contents += pcm.repository.Repository => [

6 entityName = 'Test'

7 ]

8 ]

9 ]

10
11 inputVariantFor(pcm.domain, 'lowercase name') [ extension view |

12 resourceAt('model/test'.repository).propagate [

13 contents += pcm.repository.Repository => [

14 entityName = 'test'

15 ]

16 ]

17 ]

18
19 stepFor(java.domain) [ extension view |

20 resourceAt('src/test/package-info'.java).propagate [

21 contents += java.containers.Package => [

22 name = 'test'

23 ]

24 ]

25
26 resourceAt('src/test/contracts/package-info'.java).propagate [

27 contents += java.containers.Package => [

28 name = 'contracts'

29 namespaces += #['test']

30 ]

31 ]

32
33 resourceAt('src/test/datatypes/package-info'.java).propagate [

34 contents += java.containers.Package => [

35 name = 'datatypes'

36 namespaces += #['test']

37 ]

38 ]

39 ]

40
41 inputVariantFor(java.domain, 'creating only the root package') [ extension view |

42 resourceAt('src/test/package-info'.java).propagate [

43 contents += java.containers.Package => [

44 name = 'test'

45 ]

46 ]

47 ].alsoCompareToMainStepOfSameDomain()

...

Figure 5.5: A test speci�cation written with the test framework. The stepFor method
de�nes user-transformation-interchangeable changes and the inputVariantFor
method de�nes alias changes. Continued on the next page.

45



5 A Test Strategy for Di�erent Implementations of a Consistency Speci�cation

...

48 stepFor(uml.domain) [ extension view |

49 resourceAt('model/model'.uml).propagate [

50 contents += uml.Model => [

51 name = 'model'

52 packagedElements += uml.Package => [

53 name = 'test'

54 packagedElements += uml.Package => [

55 name = 'contracts'

56 ]

57 packagedElements += uml.Package => [

58 name = 'datatypes'

59 ]

60 ]

61 ]

62 ]

63 ]

64
65 inputVariantFor(uml.domain, 'creating only the root package') [ extension view |

66 resourceAt('model/model'.uml).propagate [

67 contents += uml.Model => [

68 name = 'model'

69 packagedElements += uml.Package => [

70 name = 'test'

71 ]

72 ]

73 ]

74 ].alsoCompareToMainStepOfSameDomain()

75
76 inputVariantFor(uml.domain, 'creating only the root package (uppercase name)') [

extension view |

77 resourceAt('model/model'.uml).propagate [

78 contents += uml.Model => [

79 name = 'model'

80 packagedElements += uml.Package => [

81 name = 'Test'

82 ]

83 ]

84 ]

85 ].alsoCompareToMainStepOfSameDomain()

86
87 return testsThatStepsAreEquivalent

88 }

Figure 5.5: Continued from the previous page.

46



5.3 A Test Framework for the Test Strategy

Figure 5.6: The test cases that the test framework derives from the speci�cation code in
Figure 5.5, as visualized by the Eclipse IDE.

1 Expected: a resource containing a Model deeply equal to <Model#1(

2 name="model"

3 packagedElement={Package#1(

4 name="test"

5 packagedElement={

6 Package#2(name="contracts"),

7 Package#3(name="datatypes")

8 }

9 )}

10 )>

11 but: found the following differences:

12 • .packagedElement{0}.packagedElement{1} (Package#4).name had the wrong value: "data"

13 for object <Model#2(

14 name="model"

15 packagedElement={Package#5(

16 name="test"

17 packagedElement={

18 Package#2(name="contracts"),

19 Package#4(name="data")

20 }

21 )}

22 )>

23 in the resource at <[test view]/model/model.uml>

Figure 5.7: Example for a di�erence printed by the test framework. The output was taken
from an execution of the test shown in Figure 5.5 against a faulty implementa-
tion that assigned a wrong name to the UML dataype package.

47





6 Improvements to the Commonalities
Language

Before we can expect to �nd relevant insights with a case study, the Commonalities
Language needs to have matured enough to be realistically usable. Otherwise, the internal
validity of the study would be threatened (see Section 3.3 and Section 3.4.2). To that end, I
realized two improvements to the language and propose a third one. The changes bring
the Commonalities Language closer to being ready to be examined in the case study.

6.1 Consistent Syntax for Renaming Participations

In the Commonalities Language, the set of model classes that correspond to a Commonality
is called a ‘Participation’. The participating classes are called ‘Participation Classes’,
and the metamodel they stem from is called the ‘Participation Domain’. When de�ning
Participations, it is desirable—and sometimes even necessary—to change the name of a
Participation Class or the Participation Domain. Per default, Participation Classes have
the same name as their type, and Participation Domains are called like the domain they
reference. Giving either a Participation Class or Participation Domain another name can be
desirable if the default name does not convey the function of the element well. It becomes
necessary if there are two Participation Classes of the same type in the same Participation,
or if there are two Participations of the same domain in the same Commonality.

The initial design of the Commonalities Language recognized these use cases and allowed
to rename Participation Domains and Participation Classes [Gle17, p. 39 f.]. However, the
concrete syntax for this feature was not intuitive: First, there were two di�erent keywords
for renaming: ‘called’ to rename a Participation Class, and ‘as’ to rename a Participation
Domain. Second, the new name for a Participation Domain needed to be provided at
the very end of the declaration, after the Participation Classes. This made it ambiguous
whether the name belonged to the Participation Domain or the last Participation Class
(cf. the second example in Figure 6.1). Third, the new name was to be given in quotes.
This broke the usual conventions of the language, since the new name is an identi�er, but
nowhere else in the language are quotes needed to declare or reference an identi�er. In
the current version of the Commonalities Language, the syntax is streamlined. Renaming
is now always done with the keyword ‘as’, the new name always follows directly after
the renamed object, and quotes are no longer needed. Figure 6.1 contrasts the old with
the new syntax. The change makes the Commonalities Language easier to use because its
syntax is more consistent.

49



6 Improvements to the Commonalities Language

old syntax [Gle17, p. 40] new syntax reference

Java:(Class called "Impl") Java:(Class as Impl) Java:Impl

Java:Class as "Lang" (Java as Lang):Class Lang:Class

Java:(Class called "Impl")as "Lang" (Java as Lang):(Class as Impl) Lang:Impl

Figure 6.1: The syntax for renaming Participation Classes and Participation Domains
before (left) and after (centre) the change. The right column lists how the
resulting Participation Class can be referenced.

6.2 Simplified Operator Imports

Operators are the building blocks for mapping logic in the Commonalities Language. They
can be de�ned in any JVM language and then be used in the Commonalities Language
to specify how features map onto each other. To use any operator that is not de�ned in
the standard library of the language, developers need to import the operators into the
Commonalities Language �le using an import statement. I realized three improvements to
this import mechanism. Two of them make the feature easier to use, while the last is an
important technical improvement.
Developers can create operators for the Commonalities Language by o�ering a class

that implements a speci�c interface and by annotating it with a special annotation. This
annotation also speci�es the name by which the operator can be referenced from the
Commonalities Language. Giving operators their names via an annotation instead of
just using the class name has two advantages: First, classes can have names according
to general and implementation-speci�c conventions for Java class names. Additionally,
operators can be identi�ed by strings that are not valid Java identi�ers, like ‘+’ or ‘%’.
The �rst improvement concerns the names that developers use to import operators

into the Commonalities Language. Before, imports used to refer to the name of the JVM
class. An operator like ‘firstUpper’ was imported by importing its implementing class,
which was called ‘FirstUpperOperator’. This could be especially irritating if the operator’s
identi�er di�ered much from the Java class name, like the operator ‘%’, which might be
implemented by a class called ‘ModuloOperator’. Since operators are meant to be reusable,
the developers using operators have not necessarily written them. The import mechanism
forced those developers to remember two identi�ers for every operator: the one by which
they can use it in the language, and the one by which they can import it. Consequently, I
adapted the language such that imports now refer to the language identi�er of an imported
operator. Instead of

import tools.vitruv.commonalities.operators.ModuloOperator,
developers can now write

import tools.vitruv.commonalities.operators.%.
This change makes the import system of the Commonalities Language easier to use because
developers using operators now only need to remember one identi�er for each operator.

Additionally to importing each used operator individually, developers can also import all
operators from a JVM package (‘wildcard imports’). The Commonalities Language used the

50



6.2 Simpli�ed Operator Imports

syntax ‘<package name>.*’ for this feature. Unfortunately, this meant that the identi�er
‘*’ was not available to be used for an operator, as there would have been no possibility
to import it. Its import would have coincided with the syntax for a wildcard import. The
identi�er ‘*’ is commonly used for multiplication in programming, and multiplication is a
sensible bidirectional operator [KR16]. Hence, I changed the syntax for wildcard imports
to ‘<package name>._’. This is the syntax that the Scala programming language uses for
wildcard imports [Ode+06]. The change allows developers to use ‘*’ as an identi�er for
operators.

The third change to operator imports improved how operators are resolved on a technical
level. The old implementation scanned all JVM classes that were de�ned in a project and
�ltered them for potential operator implementations. The resulting set of operators could
then be imported from the language. This approach only worked inside the Eclipse IDE,
where all classes of a project where available for inspection. The approach would have
been di�cult to realize for the stand-alone compiler of the Commonalities Language. It
would have required scanning the whole classpath to �nd all potential operators. Since
the classpath of Vitruvius projects is considerably large, the approach would also have
been ine�cient. Without a working stand-alone compiler, the Commonalities Language
could only be compiled from inside the Eclipse IDE1. To allow automated tests to run in
continuous integration, the tests started an Eclipse IDE and compiled the Commonalities
Language code to Java in that IDE before testing it. In consequence, the tests had long
execution times, which slowed down the development-test feedback cycle for all developers
using the language.

To overcome these disadvantages, I changed how the Commonalities Language resolves
imports. I established a bijection between operator identi�ers and the name of the imple-
menting Java class. For instance, an operator that can be imported as ‘example.package.%’
will be mapped by the bijection to the fully quali�ed name ‘example.package.cl_operat-
ors__.mod_’. The language will lookup the implementing class at this name. As before,
developers should be able to pick the names for operator implementation classes freely.
Hence, I used Xtend’s code generation feature to generate facade classes for annotated
operator implementations. The facade classes are named according to the bijection and
delegate to the actual implementation classes. The Commonalities Language can then
derive the location of an operator’s facade class from the operator name and the imports
via the bijection. Figure 6.2 demonstrates this mechanism. The new logic removes the
need to query the whole classpath for all de�ned operators and allows implementing a
stand-alone compiler for the Commonalities Language. The availability of a stand-alone
compiler is a big step towards a mature version of the Commonalities Language, as the
code can now be checked in the build process just like code in any other language.

1There were also other technical reasons for why the Commonalities Language could not be compiled
without running an Eclipse IDE. However, these other reasons were far less substantial and relatively
easy to resolve.

51



6 Improvements to the Commonalities Language

1 package tools.vitruv.applications.cbs.commonalities.domaincommon.operators
...

14 @AttributeMappingOperator(

15 name='firstUpper',

16 commonalityAttributeType = @AttributeType(multiValued=false, type=String),

17 participationAttributeType = @AttributeType(multiValued=false, type=String)

18 )

19 class FirstUpperOperator extends AbstractAttributeMappingOperator<String, String> {
...

43 }

1 package tools.vitruv.applications.cbs.commonalities.domaincommon.operators.cl_operators__;
...

11 public class firstUpper implements IAttributeMappingOperator<String, String> {

12 private final FirstUpperOperator delegate;

13
14 public firstUpper(final ReactionExecutionState executionState) {

15 this.delegate = new FirstUpperOperator(executionState);

16 }

17
18 public String applyTowardsCommonality(final String arg0) {

19 return this.delegate.applyTowardsCommonality(arg0);

20 }

21
22 public String applyTowardsParticipation(final String arg0) {

23 return this.delegate.applyTowardsParticipation(arg0);

24 }

25 }

1 import tools.vitruv.applications.cbs.commonalities.domaincommon.operators._

2
3 concept ComponentBasedSystems

4
5 commonality Repository {

...

26 has name {

27 = PCM:Repository.entityName

28 -> PCM:Resource.name

29
30 = firstUpper(ObjectOrientedDesign:RepositoryPackage.name)

31 }
...

52 }

Figure 6.2: Demonstration of the new mechanism to resolve operators. Top: Excerpt of
the implementation of the firstUpper operator. Centre: The facade that is
generated for the operator. It will be looked up by the Commonalities Language.
Bottom: Import and use of firstUpper in the Commonality for a repository.

52



6.3 Clearer Syntax for Operator Chains

6.3 Clearer Syntax for Operator Chains

The operator system of the Commonalities Language is in large parts inspired by the
system Kramer designed for the Mappings Language [Gle17, p. 34 �. Kra17, p. 151 �. KR16].
The Commonalities Language also adopted the concrete syntax for operators proposed by
[Kra17, p. 179]; namely using the well-known notation of mathematical functions with
parentheses, for example ‘𝑎(𝑏 (1, 2), 𝑐 (4))’. In the Mappings Language, the syntactic choice
is also motivated by the fact that the language grammar embeds the Xbase grammar
[Kra17, p. 179], which uses this function notation. The Commonalities Language does not
re-use the Xbase grammar and is, hence, not bound by its concrete syntax. The function
notation has disadvantages when used for bidirectional operators, which makes revisiting
the design choice for their concrete syntax worthwhile.

To discuss the operator syntax, let us consider an example from the case study presented
in Chapter 3. It expands on the example of naming a Java implementation class for a
software component, which we have seen throughout the thesis. Until now, we have
discussed that the implementation class should be given the name of the software com-
ponent, with ‘Impl’ appended to it. However this convention alone will not su�ce. The
names of components in PCM and UML can be any string. Java class names, on the other
hand, may only use certain characters—in particular, no white space—must not start with
a number, and must not coincide with a keyword [Gos+21, p. 24–26]. Furthermore, Java
class names are conventionally given in upper camel case, that is, the name ‘administrative
user repository’ becomes ‘AdministrativeUserRepository’.

We have discussed that the Commonalities Languagewas designed to allow developers to
re-use bits of transformation logic through operators (see Section 3.4.3.2). Thus, developers
will combine multiple operators to realize the name mapping described above. First, they
would likely have a Java-speci�c operator that converts any string into a valid Java
identi�er when executed in one direction, and leaves a Java identi�er unchanged in the
other direction. This operator can be re-used throughout the case study whenever a Java
identi�er needs to be generated. Second, they would likely have an operator that converts
a string into camel case notation in one direction, and in the other direction replaces any
occurrence of a lower case character ‘a’ followed by an upper case character ‘B’ with ‘a b’.
This operator can be re-used elsewhere as well, not just in the context of Java, because
camel case notation is common throughout programming-related technologies. Finally, to
append the su�x ‘Impl’, the developers would use an operator that appends a su�x to
strings in one direction, and strips the su�x, if present, in the other direction. Putting it all
together, the Commonality feature declaration for a component name might look like in
Figure 6.3 (top), line 4; if we used intuitive names for the operators. The example assumes
that the camel case operator takes a constant that can be either UPPER or LOWER, indicating
whether to use upper camel case (‘UserRepository’) or lower camel case (‘userRepository’).
Furthermore, it assumes that the component Commonality is directly mapped to a Java
class, and not via an ObjectOrientation:Class Commonality, like it is done in the case
study and in Figure 2.2.
Looking at the example, we can notice drawbacks of the syntax. First, the structure of

the Commonalities Language forces us to de�ne how we can obtain the component name
from a Java class name. Until now, we found it more intuitive to think of the mapping

53



6 Improvements to the Commonalities Language

1 has name {

2 = UML:Component.name

3 = PCM:Component.name

4 = fromCamelCase(UPPER, stripSuffix("Impl", fromJavaIdentifier(Java:Class.name)))

5 }

1 has name {

2 <> UML:Component.name

3 <> PCM:Component.name

4 <> toCamelCase(UPPER) | addSuffix("Impl") | toJavaIdentifier | Java:Class.name

5 }

Figure 6.3: The current (top) and the proposed, new syntax (bottom) for de�ning operator
chains in the Commonalities Language.

the other way: We described how to obtain a Java class name from a component name.
Since we are dealing with bidirectional operators, this issue will always be present. We
give textual representations of operator chains, so there is always one direction of an
operator chain that follows the natural reading order (in the Commonalities Language’s
English-like syntax, that is left-to-right), while the other direction goes against it. A
priori, we might assume that there is no reason to favour one direction over the other.
However, practice has shown that developers tend to think about, and communicate about,
Commonalities mappings in terms of how the concept model can be transformed to the
concrete model. This is consistent with how the Commonalities Language uses the lens
formalism (cf. Section 2.4.2) that makes up its bidirectional operators. The Get operation
always transforms towards the concrete metamodel. Both Foster et al. [Fos+07] and Kramer
and Rakhman [KR16] conceptualise and name lenses based on their Get operation, and
consider Put the ‘inverse’ of that. We can infer that operator chains in the Commonalities
Language will generally be easier to understand if they de�ne how to obtain the concrete
metamodel’s value from the concept metamodel’s value. Because then the direction of
reading will be the same as the conceptually more intuitive transformation direction.

The second drawback we can notice is that by using function notation, the Commonalit-
ies Language suggests that its operators behave like other functions in programming, even
though that is not the case. With normal functions, we can, for example, give variables or
constants at any argument position. This is not possible for bidirectional operators. For
example, ‘stripSuffix(Java:Class.name, "Impl")’ would not compile, even though the
concrete syntax suggests that this should be valid code. The reason is that the Commonalit-
ies Language has two inherently di�erent types of arguments: The input and output value
of the operator (which swap roles depending on the executed direction) and constants
parametrising the operator (which stay the same regardless of the direction of execution).
The concrete syntax should re�ect that fact, lest it irritates developers.

Taking these considerations into account, I propose to modify the concrete syntax for
operator expressions in the Commonalities Language. First, I propose to introduce the
higher-order operator ‘|’ that chains two operators together via lens composition, as
described in Proposition 2.1 on page 8. The operator is inspired by the pipe operator of
the UNIX shell [Tho76] and will, thus, hopefully feel familiar to most programmers. We

54



6.3 Clearer Syntax for Operator Chains

will call it ‘pipe operator’ in the Commonalities Language, as well. The pipe operator is
not meant to replace the function notation entirely. Instead, it is only used to connect the
input and output arguments. To parametrise operators by constants, developers still use
function notation. The parenthesis can be omitted if there are no parametrising arguments.
Unlike in other programming language, there is no chance of confusing operators and
variables, since the Commonalities Language does not have variables.

Secondly, I propose to change the keyword used to introduce a bidirectional mapping
from ‘=’ to ‘<>’. The reason for this change is that the = is well-known in programming,
and almost always means ‘assign the result of the right-hand expression to the left-hand
item’. This is misleading because when using bidirectional operators, data can �ow in both
directions, not just right to left. Using a di�erent syntax stresses this fact. Furthermore,
‘<>’ is consistent with the existing symbols ‘->’ and ‘<-’ used to introduce a unidirectional
left-to-right or right-to-left mapping, respectively.
In e�ect, our example would be written as in Figure 6.3 (bottom), line 4 if we used

intuitive names for the operators. It is apparent that the new syntax does not su�er
from the two drawbacks described above. The new syntax also looks less familiar to
programmers that are used to typical imperative language like Java and C. Although
this might be considered a disadvantage, I argue that it is actually an advantage. Since
bidirectional operators behave fundamentally di�erent from functions, it is appropriate
that they have a fundamentally di�erent syntax. The new syntax also has the bene�t that
operators are now applied in the order they are read, left to right.

The idea of an operator that allows better readable chaining of operators or functions is
not new. It has been realized in di�erent programming languages like F# [F S21, ‘|>’] or
Clojure [Hic19, ‘as->’]. There also is a current proposal to introduce such an operator into
the widely used web programming language Ecma Script [Ehr21]. The Firefox browser has
already implemented experimental support for it. This shows that the need for chaining
operators with a better readable syntax than function notation also occurred in other
languages. Arguably, this need is even greater for bidirectional operators, which also have
to be read in the reverse order.
This section has focused exclusively on the syntax for bidirectional operators. Their

new syntax is now di�erent from the one used for unidirectional operators. Although this
might be considered inconsistent, I propose to leave the syntax for unidirectional operators
unchanged. None of the drawbacks we have discussed above apply to unidirectional
operators, since they do indeed behave like normal functions. Hence, using function
notation is appropriate for them.

55





7 RelatedWork

Before concluding, I will relate the contributions presented in this thesis to the current
state of research. We will look at three major areas: First, research that compares model
transformation languages. The case study presented in Chapter 3 contributes to and is
based on such research. Second, theoretical �ndings on model transformations and how
congruency (presented in Chapter 3) relates to them. Third, we will consider works in the
area of validating and verifying model transformations.

7.1 Evaluating Model Transformation Languages

Model transformations have been the subject of intensive research, and numerous tools
for developing transformations have been presented. Naturally, the model transform-
ation community is interested in understanding the relevant di�erences between the
tools. Consequently, multiple papers have surveyed the available model transformation
tools and categorized them [MV06; CH06; Hid+16]. Macedo, Jorge and Cunha [MJC17]
present a comprehensive taxonomy for model repair tools, of which transformations are
a subcategory. The most recent and largest survey is by Kahani et al. [Kah+19], who
compare 60 model transformation tools using 46 facets. These works provide an overview
of the available tools and introduce a taxonomy that allows to categorize the tools and
understand their di�erences. Hence, they enable users to select the right tool based on
the features they need. Compared to the case study presented in this thesis, the surveys
di�er in intent: They aim to categorize as many tools as possible in a useful way, but do
not directly judge �tness for a particular purpose. This thesis, on the other hand, focuses
on comparing only two tools, but aims at �nding whether their functional di�erences lead
to actual improvements for developers.
The problem of having to pick the right tools is, of course, not speci�c to model trans-

formations. General-purpose programming languages have been the subject of studies as
well. The chosen programming language can have signi�cant in�uence on programmer
productivity and solution quality [DKC07; NF15; AOG16]. This suggests that studying the
di�erences between model transformation languages will also reveal signi�cant di�erences.
The insights from general-purpose languages can guide us when designing evaluations for
model transformations languages, even though we must take care whether the �nding can
still apply in this domain. For example, the size in source lines of code has proven to be a
good predictor of maintainability across programming languages [Lip82; SK03; GFS05],
even when controlling for other factors. We used this experience when designing the case
study in this thesis.
The works most similar to Chapter 3 are those that evaluate model transformation

languages empirically. Kolahdouz-Rahimi et al. [Kol+14] use a structured approach to

57



7 Related Work

asses the suitability of model transformation languages for model refactoring. They start
from the ISO/IEC 9126-1 standard [ISO01] (superseded by ISO/IEC 25010 [ISO11]), which
de�nes a quality model for software. The authors select from the quality model the
characteristics they deem relevant for their use case. Like in this thesis, they apply the
Goal-Question-Metric approach [BCR02] to derive the metrics that measure the charac-
teristics. This method provides some evidence for why their metrics cover all relevant
aspects for the overall assessment. By evaluating �ve implementations of their case study
using their approach, they yield statistically signi�cant di�erences between the examined
transformation languages. The case study presented in this thesis evaluates three of the
six characteristics the authors chose: functionality, usability, and maintainability.

Grønmo, Møller-Pedersen and Olsen [GMO09] compare three transformation languages,
two graphical and one text-based. They implement a case study in all three languages
and discuss several characteristics of the implementations and how they are in�uenced
by the languages’ design. The main metric they evaluate is implementation size. Unlike
in the case study presented in this thesis, Grønmo, Møller-Pedersen and Olsen do not
control with any metric whether the languages ‘buy’ smaller implementations by making
the language more complex. Nevertheless, the authors report the insights they gathered
in the case study regarding how complex the languages are.
Samimi-Dehkordi, Khalilian and Zamani [SKZ14] present a method to assess model

transformation languages. They use four main criteria—readability, writability, reliability
and cost—and specify several characteristics for each of these criteria. The characteristics
are judged by experts. After applying their method to �ve transformation languages, they
conclude that yields no clear ranking of the languages, but rather helps selecting the right
language for a given task. The authors’ approach di�ers from the one of the case study
in Chapter 3, as experts judge the languages directly, instead of gathering metrics from
implementations written with the languages.
This thesis focused on the Commonalities Language and Reactions Language, which

are speci�c for the Vitruvius framework. In the context of Vitruvius, Klare et al. [Kla+20]
have applied transformations written in the Reactions Language to the case of consistency
of UML, Java and PCM (which we also used in this thesis) and a case of consistency in
embedded automotive software architectures. They showed that the transformations
were suitable for these cases and that they were signi�cantly smaller in terms of lines of
code than an implementation in plain Java. Werle [Wer16] compared the Mappings Lan-
guage—another domain-speci�c model transformation language for Vitruvius—to Triple
Graph Grammar tools [Hil+13]. The comparison focused on di�erences in functionality.
Empirical evaluation of model transformation languages has, so far, been limited to

conducting case studies. The contributions in this thesis are no di�erent in this regard.
Researchers may currently still prefer case studies over experiments or user studies because
many tools still lack relevant features [Kah+19]. Hence, qualitative feedback gathered
from case studies might be considered more valuable than quantitative results that may be
invalidated as soon as the language changes. This is certainly the case for the Commonal-
ities Language. Kramer et al. [Kra+16] present a template for an experiment that compares
the understandability of model transformation languages. This is the �rst description of
an experiment on model transformation languages. However, the template has not been
used in an experiment yet.

58



7.2 Properties of Model Transformations

Additionally to evaluating model transformation languages, there has been research on
evaluating model transformations themselves, and �nding metrics that correlate with well-
maintainable implementations [vALvdB09; Kap+10; vAms+11; RRA17]. These results are
promising in the sense that maintainability for model transformations can, at least partly,
be predicted. However, the found metrics are usual speci�c to the used transformation
language and cannot be transferred to other languages. Even if they can be de�ned
analogously in other transformation languages, it is unclear whether they have the same
predictive power there. Thismeans that they cannot be used to compare di�erent languages,
which we have been interested in.

7.2 Properties of Model Transformations

Stevens [Ste10; Ste12] and Diskin [Dis08] have proposed algebraic models to formalize
bidirectional transformations. I have adopted Stevens’ model [Ste10] in this thesis (see
Section 2.4.1). Themodel corresponds toDiskin’s di-systems [Dis08], except that di-systems
use partial functions for the transformation directions. Together with their algebraic
models, the authors also de�ne desirable properties for bidirectional transformations.
They recognize that without further requirements, bidirectional transformations do not
behave as expected. However, although they present several useful properties, only two
of them have been widely assumed to always hold for realistic examples. These are
correctness (De�nition 2.2) and Hippocraticness (De�nition 2.3) [Ste10].
Stevens [Ste10] starts the discussion about requirements for transformations by not-

ing that, although one might tend to think about bidirectional transformations as being
bijective, most most of them are not. We have seen an example of this in Chapter 4. Most
requirements for bidirectional transformations can be understood as an attempt to recover
some of the useful properties of bijective transformations, without forcing the transform-
ations to actually be bijective. For instance, Diskin [Dis08] and Stevens [Ste12] present
history-ignorance, which ensures a certain compatibility between di�erent executions of
the same transformation direction. Undoability [Ste10] is a weaker requirement in the
same spirit. Both requirements are useful for users and tool developers alike [Ste10; Ste17].
Unfortunately, many practically relevant transformations are neither history-ignorant nor
undoable [Ste10].

Another desirable property for bidirectional transformations is that the two directions
of the transformation are compatible in some sense, similar to how they are in bijective
transformations. Congruency (cf. Chapter 4) is such a property; mandating that each
transformation direction produces a change that has an interchangeable change in the
other direction. [Ste12] provides two properties ensuring compatibility between directions,
as well: ‘matching’ and ‘simply matching’. They are based on the consistency relations
that bidirectional transformation induce, and require the resulting equivalence classes to
map onto each other. These two properties have many similarities to congruency. We will
examine the relationships more closely in the following.
To introduce Stevens’ properties, let me �rst specify what I mean by transformations

inducing equivalence relations.

59



7 Related Work

De�nition 7.1 ([Ste12]). Given a bidirectional transformation 𝑇

⃗

C (𝑇,𝑇⃗ ,𝑇

⃗

) between 𝐴

and 𝐵, the two equivalence relations ∼𝑇⃗ ⊆ 𝐴 ×𝐴 and ∼𝑇

⃗

⊆ 𝐵 × 𝐵 are de�ned as

𝑎1 ∼𝑇⃗ 𝑎2 ⇐⇒ ∀𝑏 ∈ 𝐵 : 𝑇⃗ (𝑎1, 𝑏) = 𝑇⃗ (𝑎2, 𝑏)
𝑏1 ∼𝑇

⃗

𝑏2 ⇐⇒ ∀𝑎 ∈ 𝐴 : 𝑇

⃗

(𝑎, 𝑏1) = 𝑇

⃗

(𝑎, 𝑏2) .

Second, we need the notion of a transversal of an equivalence relation as a helpful tool.

De�nition 7.2. Given a set 𝑆 and an equivalence relation ∼ on 𝑆 , a transversal 𝑆 |∼ of 𝑆 is
a set containing exactly one representative of each equivalence class of 𝑆 under ∼.

We are now equipped to formulate Stevens’ de�nition of matching and simply matching:

De�nition 7.3 ([Ste12]). A bidirectional transformation 𝑇

⃗

C (𝑇,𝑇⃗ ,𝑇

⃗

) between 𝐴 and 𝐵
is matching if, and only if, there is a bijection 𝑓 : 𝐴|∼𝑇⃗ → 𝐵 |∼𝑇

⃗

and

∀𝑎𝑟 ∈ 𝐴|∼𝑇⃗ : (𝑎𝑟 , 𝑓 (𝑎𝑟 )) ∈ 𝑇 .

Furthermore, 𝑇

⃗

is simply matching i� additionally

∀𝑎𝑟 ∈ 𝐴|∼𝑇⃗ ∀𝑏 ∈ 𝐵 : (𝑎𝑟 , 𝑏) ∈ 𝑇 ⇐⇒ 𝑏 = 𝑓 (𝑎𝑟 ) .

We might recognize similarities to the discussion in Chapter 4. The equivalence classes
of ∼𝑇⃗ and ∼𝑇

⃗

are similar to the alias changes we described. The bijection 𝑓 between the
transversals resembles the de�nition of user-transformation-interchangeable changes. And
indeed, there are transformation relations for which the simply matching transformations
are exactly the congruent transformations. Nevertheless, congruency is strictly weaker
than simply matching.

Proposition 7.1. Every correct, simply matching, bidirectional transformation is congruent.

Proof. Let 𝑇

⃗

C (𝑇,𝑇⃗ ,𝑇

⃗

) be a correct, simply matching, bidirectional transformation
between 𝐴 and 𝐵. Let 𝐴 |∼𝑇⃗ be a transversal of 𝐴 under ∼𝑇⃗ , 𝐵 |∼𝑇

⃗

be a transversal of 𝐵
under ∼𝑇

⃗

, and 𝑓 : 𝐴|∼𝑇⃗ → 𝐵 |∼𝑇

⃗

be the bijection between the two transversals. We show
one direction of congruency, the other is dual. Let (𝑎0, 𝑏0) ∈ 𝑇 and 𝑎𝑐 ∈ 𝐴. Furthermore,
let 𝑎𝑟𝑐 ∈ 𝐴|∼𝑇⃗ be the representative of 𝑎𝑐 in 𝐴|∼𝑇⃗ ; that is, 𝑎𝑐 ∈

[
𝑎𝑟𝑐
]
∼𝑇 .

Because 𝑇

⃗

is simply matching and correct, and by the de�nitions of ∼𝑇⃗ and ∼𝑇

⃗

, we see

𝑇⃗ (𝑇

⃗

(𝑎0, 𝑇⃗ (𝑎𝑐, 𝑏0)) , 𝑏0) = 𝑇⃗ (𝑇

⃗

(𝑎0, 𝑏𝑥 ) , 𝑏0) , for some 𝑏𝑥 ∈
[
𝑓
(
𝑎𝑟𝑐
) ]

∼𝑇

⃗

= 𝑇⃗
(
𝑇

⃗(
𝑎0, 𝑓

(
𝑎𝑟𝑐
) )
, 𝑏0

)
= 𝑇⃗ (𝑎𝑥 , 𝑏0) , for some 𝑎𝑥 ∈

[
𝑓 −1

(
𝑓
(
𝑎𝑟𝑐
) ) ]

∼𝑇
= 𝑇⃗

(
𝑓 −1

(
𝑓
(
𝑎𝑟𝑐
) )
, 𝑏0

)
= 𝑇⃗

(
𝑎𝑟𝑐 , 𝑏0

)
= 𝑇⃗ (𝑎𝑐, 𝑏0) . �

To show that there are congruent transformations that are not simply matching, we
construct the following example. Its consistency relation contains a pair of model states
that are indirectly consistent but not consistent. Hence, it also shows that this is not a
necessary condition for the existence of a congruent bidirectional transformation.

60



7.2 Properties of Model Transformations

𝐴 𝐵

0

1

2

3

0

1

2

3

𝐴

𝐵 0 1 2 3

0 0 3 0 3
1 0 1 0 1
2 2 1 2 1
3 2 3 2 3

𝐵

𝐴 0 1 2 3

0 0 1 0 1
1 2 1 2 1
2 2 3 2 3
3 0 3 0 3

Figure 7.1: Graphic representations of the consistency relation 𝑇4 (left), the right direction
𝑇⃗ 4 (centre), and the left direction 𝑇

⃗

4 (right) of the bidirectional transformation
𝑇

⃗

4 B (𝑇4, 𝑇⃗ 4,𝑇

⃗

4) from Example 7.1. Values that are pre-determined by Hippo-
craticness are coloured grey in the tables of the the transformation directions.

Example 7.1. Let 𝐴 = 𝐵 = Z/4Z and let 𝑇4 be a consistency relation between them, such
that every element in 𝐴 is paired with itself and its predecessor (see Figure 7.1, left):

(𝑎, 𝑏) ∈ 𝑇 ⇐⇒ 𝑎 = 𝑏 ∨ 𝑎 = 𝑏 − [1]4 .

We de�ne the bidirectional transformation 𝑇

⃗

4 B (𝑇4, 𝑇⃗ 4,𝑇

⃗

4) between 𝐴 and 𝐵 as follows:
First, 𝑇

⃗

4 is Hippocratic. Second, every value that is not de�ned by Hippocraticness is
obtained by choosing the old value plus two (see Figure 7.1, centre and right):

𝑇⃗ 4 : 𝐴 × 𝐵 → 𝐵

(𝑎, 𝑏) ↦→
{
𝑏 if (𝑎, 𝑏) ∈ 𝑇

𝑏 + [2]4 else

𝑇

⃗

4 : 𝐴 × 𝐵 → 𝐴

(𝑎, 𝑏) ↦→
{
𝑎 if (𝑎, 𝑏) ∈ 𝑇

𝑎 + [2]4 else

Lemma 7.1. There exists a correct, Hippocratic, congruent, bidirectional transformation that
is not simply matching.

Proof. We can see directly from the de�nition of Example 7.1 and in Figure 7.1 that 𝑇

⃗

4
is correct and Hippocratic. The equivalence classes of ∼𝑇⃗ 4 can be read from the rows of
the centre table in Figure 7.1, and the equivalence classes of ∼𝑇

⃗

4 can be read from the

61



7 Related Work

rows of the right-hand table in Figure 7.1. All elements with equal rows are in the same
equivalence class [Ste12]. We see that there are no non-trivial equivalence classes for both
relations. Hence, 𝐴 |∼𝑇⃗ 4= 𝐴 and 𝐵 |∼𝑇

⃗

4= 𝐵. There are two bijections between 𝐴 |∼𝑇⃗ 4 and
𝐵 |∼𝑇

⃗

4 which are also a subset of 𝑇 : 𝑓 : 𝑎 ↦→ 𝑎 and 𝑔 : 𝑎 ↦→ 𝑎 − [1]4. Hence, 𝑇

⃗

4 is matching.
But 𝑇

⃗

4 is not simply matching because there are other consistent pairs for both bijections;
for example ( [2]4 , [1]4) ∈ 𝑇 , although [1]4 ≠ 𝑓 ( [2]4), and ( [2]4 , [2]4) ∈ 𝑇 , although
[2]4 ≠ 𝑔 ( [2]4).
To show that 𝑇

⃗

4 is congruent, we observe two properties of 𝑇4. First, we notice that
values with the same distance to each other are equal with regard to 𝑇4:

∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 ∀𝑛 ∈ Z/4Z : (𝑎, 𝑏) ∈ 𝑇4 ⇐⇒ (𝑎 + 𝑛,𝑏 + 𝑛) ∈ 𝑇4.

Second, values with a distance of two are opposites with regard to 𝑇4:

∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 : (𝑎 + [2]4 , 𝑏) ∉ 𝑇4 ⇐⇒ (𝑎, 𝑏) ∈ 𝑇4 ⇐⇒ (𝑎, 𝑏 + [2]4) ∉ 𝑇4

Let (𝑎0, 𝑏0) ∈ 𝑇4 and 𝑎𝑐 ∈ 𝐴. We di�erentiate two cases:

1. (𝑎𝑐, 𝑏0) ∈ 𝑇4. Then:

𝑇⃗ 4 (𝑇

⃗

4 (𝑎0, 𝑇⃗ 4 (𝑎𝑐, 𝑏0)) , 𝑏0) = 𝑇⃗ 4 (𝑇

⃗

4 (𝑎0, 𝑏0) , 𝑏0)
= 𝑇⃗ 4 (𝑎0, 𝑏0)
= 𝑎0

= 𝑇⃗ 4 (𝑎𝑐, 𝑏0) .

2. (𝑎𝑐, 𝑏0) ∉ 𝑇4. Then:

𝑇⃗ 4 (𝑇

⃗

4 (𝑎0, 𝑇⃗ 4 (𝑎𝑐, 𝑏0)) , 𝑏0) = 𝑇⃗ 4 (𝑇

⃗

4 (𝑎0, 𝑏0 + [2]4) , 𝑏0)
= 𝑇⃗ 4 (𝑎0 + [2]4 , 𝑏0 + [2]4)
= 𝑏0 + [2]4
= 𝑇⃗ 4 (𝑎𝑐, 𝑏0) .

Conversely, let (𝑎0, 𝑏0) ∈ 𝑇4 and 𝑏𝑐 ∈ 𝐵. Once again, we di�erentiate two cases:

1. (𝑎0, 𝑏𝑐) ∈ 𝑇4. Then:

𝑇

⃗

4 (𝑎0, 𝑇⃗ 4 (𝑇

⃗

4 (𝑎0, 𝑏𝑐) , 𝑏0)) = 𝑇

⃗

4 (𝑎0, 𝑇⃗ 4 (𝑎0 + 𝑏0))
= 𝑇

⃗

4 (𝑎0, 𝑏0)
= 𝑎0

= 𝑇

⃗

4 (𝑎0, 𝑏𝑐) .

2. (𝑎0, 𝑏𝑐) ∉ 𝑇4. Then:

𝑇

⃗

4 (𝑎0, 𝑇⃗ 4 (𝑇

⃗

4 (𝑎0, 𝑏𝑐) , 𝑏0)) = 𝑇

⃗

4 (𝑎0, 𝑇⃗ 4 (𝑎0 + [2]4 , 𝑏0))
= 𝑇

⃗

4 (𝑎0 + [2]4 , 𝑏0 + [2]4)
= 𝑎0 + [2]4
= 𝑇

⃗

4 (𝑎0, 𝑏𝑐) . �

62



7.2 Properties of Model Transformations

user-
transformation-
interchangeable

bijective

history-ignorant

undoable simply matching

matchingcongruent

Prop. 4.1

Prop. 4.1

Pro
p.
7.1

Le
m.
7.1

Lem. 7.2

𝑥 𝑦 : 𝑥 =⇒ 𝑦

for all bx

𝑥 𝑦 : ¬ (𝑥 =⇒ 𝑦)
for some bx

bx: correct, Hippocratic,
bidirectional transformation

Figure 7.2: The relationships between properties of correct, Hippocratic, bidirectional
transformations. This �gure extends a similar one by Stevens [Ste12] with the
properties presented in this thesis. The additions are marked green.

Congruency is a strictly weaker property than simply matching. Matching is also strictly
weaker than simply matching. Nevertheless, congruency and matching are not equivalent.
There are transformations that are matching, but not congruent. Whether congruency
implies matching is an open question.

Example 7.2 ([Ste12]). Let 𝐴 = 𝐵 = {0, 1} and 𝑇2 B {(𝑎, 𝑏) | 𝑎 · 𝑏 = 0}. The bidirectional
transformation 𝑇

⃗

2 = (𝑇2, 𝑇⃗ 2,𝑇

⃗

2) between 𝐴 and 𝐵 is uniquely de�ned by correctness and
Hippocraticness.

Lemma 7.2. There exists a correct, Hippocratic, matching, bidirectional transformation that
is not congruent.

Proof. 𝑇

⃗

2 is matching: It has only trivial equivalence classes and the bijection 𝑓 : 𝑎 ↦→ 𝑎 + 1
mod 2 is a subset of 𝑇2 [Ste12]. However, 𝑇

⃗

2 is not congruent:

𝑇⃗ (𝑇

⃗

(0, 𝑇⃗ (1, 1)) , 1) = 𝑇⃗ (𝑇

⃗

(0, 0) , 1)
= 𝑇⃗ (0, 1)
= 1
≠ 𝑇⃗ (1, 1) = 0. �

The relationships between the properties we have discussed in this section are summar-
ized in Figure 7.2.
Chapter 4 and Chapter 5 of this thesis add to the existing algebraic descriptions of

desirable properties for bidirectional transformations. Notably, congruency has been

63



7 Related Work

motivated in this thesis from observations of practical examples. Chapter 5 also presents
a practical use case for congruency. The properties most similar to congruency, simply
matching and matching, have not yet been reported to have practical uses. Furthermore,
congruency can be tested locally, as shown in Section 5.2: We can take individual model
states and test whether congruency holds for them. (Simply) matching, on the other hand,
can only be tested globally, if at all. Testing for those properties would require, �rst,
to determine all equivalence classes of both transformation directions. Then we would
need to check whether the transformation relation contains a bijection between those
equivalence classes.

Stevens writes that they ‘have the impression that a large class of practical examples [. . . ]
are in fact simply matching’ [Ste12]. This conjecture supports the one stated in Chapter 4,
namely that all transformations that are used to maintain consistency for models with
semantic overlap can, and should, be congruent.
Bidirectional transformations have been analysed theoretically from numerous other

angles. In this thesis, we have abstracted the actual transformation logic into black box
functions in this thesis and only set requirements for them. Diskin [Dis11] proposes an
algebraic framework for specifying the actual transformation logic based on tile algebra
and category theory. It builds complex transformations out of simpler building blocks and
also o�ers a visual representation for the mapping logic. In our formalism, we also only
considered state-based model transformations. Diskin et al. [Dis+11] and Diskin, Xiong
and Czarnecki [DXC11] show that certain consistency speci�cations cannot be modelled
without considering the changes that have been made to models and o�er algebraic tools
to model such changes. Similar issues can occur if traces between model elements are
not modelled. We have described that Vitruvius uses correspondences (cf. Section 2.6.1),
but have ignored them in the formalism. Diskin, Gómez and Cabot [DGC17] show how
traceability mappings, like Vitruvius’ correspondences, can be modelled algebraically and
which bene�ts it brings. The way we modelled bidirectional transformations, they can
also not handle the case that both models have been changed before the transformation
was executed. This is often referred to as model synchronization. Supporting this use case
requires a broader theoretical framework and poses challenges of its own [Ore+13]. When
lifting existing bidirectional transformations to make them synchronizing, properties we
have discussed in this chapter—like history-ignorance—are, once again, relevant [Xio+13].

In recent years, the attention of the model transformations research community has been
broadened from the bidirectional case to the multidirectional case; i.e. to transformations
between more than two metamodels. There are two fundamental approaches to this issue:
First, extending the existing tools and formalisms to directly support transforming between
more metamodels [MCP14; TA15; TA16]. Second, combining existing transformations
into a transformation network that spans across more models than the transformations
it is built out of [Ste17; Ste18; GKB21]. The two approaches are not mutually exclusive;
transformation networks can, at least in theory, incorporate multidirectional transforma-
tions. The Vitruvius approach uses model transformation networks and the discussed case
study (Chapter 3) focuses on a case of a model transformation network between UML,
PCM and Java. The Commonalities Language allows de�ning a model transformation
networks [Gle17; KG19]. So far, the theoretical results for transformation networks have
been limited. It is known that a network of bidirectional transformations can express

64



7.3 Model Transformation Testing

any multiary consistency relation if adding an auxiliary model is allowed [Ste17; RPD90;
Cle+19]. However, �nding an appropriate strategy to execute the transformations in a
network prooves challenging and has only been achieved in limited settings [Di +17;
Ste17; Ste18; GKB21]. Finding sensible properties for bidirectional transformations may
be decisive in this regard. For example, history-ignorant transformations can be executed
easily [Ste17]. Unfortunately, most transformations are not history-ignorant [Ste10; Ste17].
As detailed in Section 4.2, it seems more realistic to expect transformations to be congruent.
In Section 5.2 we saw that the tested transformations were compatible in a sense related
to congruency, as their user-transformation-interchangeable coincided. Maybe this can be
exploited to make progress on �nding execution strategies.

7.3 Model Transformation Testing

Model transformations need to be validated just like other software artefacts. However,
model transformations also pose challenges that are speci�c to their domain and demand
specialized validation techniques [AW15]. Ab. Rahim and Whittle [AW15] classify the
research around such techniques into �ve categories: theorem proving, proving properties
with graph theory, applying model checking, evaluating metrics, and testing. We already
touched on quality assessment based on software metrics in Section 7.1. The contributions
of Chapter 5 fall into the last category: testing.
One stream of research considers techniques that establish a sense of test coverage.

For model transformations, it is more insightful to check how much of the transformed
metamodels has been covered, as opposed to checking line coverage of the transform-
ations [FSB04; WKC06]. However, this requires developers to establish which parts of
the metamodels should be part of the transformation in the �rst place—the so-called
‘e�ective metamodel’. Other works study how mutation testing can be brought to model
transformation testing [MBL06; DPV08; Tro+15]. These results are also relevant for the
test suite of the case study. To make the transformations comparable, we need to verify
that they implement the same behaviour. Establishing the test coverage of the acceptance
test suite helps understanding how complete it is.

The models between which transformations transform conform to a metamodel. We can
use the rules of the abstract and concrete syntax imposed by the metamodel to generate
inputs for testing model transformations. Various works have developed techniques based
on this idea [Bro+06; Lam07; SBM09; GC12; WAS14]. This is also relevant for the case study
acceptance test suite. Generated models could be used to verify that both transformation
implementations yield the same result for any input.

Many researchers have also presented test frameworks for the testing techniques they
propose. Such frameworks usually realize the presented technique in the context of
a speci�c model transformation tool [LZG05; Stu+07; DPV08; GP09]. The framework
presented in Section 5.3 is no di�erent: it enables the congruency-based acceptance test
approach in the context of Vitruvius.

65





8 Conclusion

In this thesis, I have lain the foundation for conducting a case study on the Commonalities
Language. The case study will provide empirical insights into the di�erences between
the model transformation programming languages that are available for the Vitruvius
framework. The case study will help �nding a good programmingmodel for the framework,
and, ultimately, contribute to the much-needed [Bad+18], better tool support for model-
driven engineering.
I started the thesis by presenting the design of the case study (Chapter 3). Using the

Goal-Question-Metric approach, I showed how the studied metrics are derived from the
study’s goals. I discussed why the design o�ers su�cient internal validity and construct
validity. I described why the studied case is relevant and can be considered a ‘critical case’.
Nevertheless, the external validity of the case study will be limited.

In Chapter 4, I introduced a novel property for bidirectional transformations: congruency.
It ensures that the two directions of a bidirectional transformation are, in a certain sense,
compatible. I showed how the property derives from intuitive expectations users have
for transformations and explained why it is realistic to expect congruency to hold for all
model transformations that are used for maintaining consistency of models with semantic
overlap. Congruency is not tied to the context of the case study. Instead, it can be added to
the toolbox of properties we have to assure that model transformations behave as expected.
In Chapter 7, I proved that congruency is similar, but not equivalent, to two properties
presented by Stevens [Ste12]. Compared to Stevens’ properties, congruency is easier to
test.
One practical use case of congruency was shown in Chapter 5, where I described a

test strategy for black box acceptance tests that check whether two inherently di�erent
model transformation implementations realize the same consistency speci�cation. The
test strategy will be used on the implementations for the case study. I listed and justi�ed
requirements for the test strategy, presented a framework with which the requirements
can be met, and showed how the framework meets the requirements. The insights from the
described test strategy, especially how to use congruency to reduce the test development
e�ort, can be applied to any test suite for bidirectional transformations. The accompanying
test framework is speci�c to the Vitruvius framework, but not speci�c to the case study. It
can, thus, be used for testing any transformation for the Vitruvius framework.

Finally, I showcased three improvements to the Commonalities Language in Chapter 5,
of which I have implemented two. The improvements are necessary to conduct the test
study. They also improve the usability of the Commonalities Language in general.

67



8 Conclusion

Future work based on this thesis should focus on three areas: The Commonalities Language,
the case study, and congruency.

Commonalities Language I have described that the Commonalities Language is not yet
ready to be meaningfully evaluated in a case study (Section 3.3) and have already presented
three improvements to the language (Chapter 6). While working on the case study, I found
the following areas that also need to be addressed before the case study can be conducted:

• The bidirectional operators for the Commonalities Language are currently not de�ned
as lenses. Hence, they cannot be combined and the Commonalities Language cur-
rently only allows to use at most one operator per mapping. The interfaces of
bidirectional operators should be changed to be that of a lens. Then the proposed
new syntax for bidirectional operators (Section 6.3) can be realized.

• The Commonalities Language currently forces every listed Participation Class to
exist before a Commonality is established. To implement use cases where some
participating objects are optional (like creating a component for a Java package,
without requiring the implementation class to exist, as we discussed in Chapter 4),
optional Participations should be implemented. The design for them is provided by
Gleitze [Gle17, p. 40 f.].

• It should be possible to de�ne Participations in the Commonalities Language that
are mapped 1:𝑛 to the Commonality, for a variable 𝑛 ∈ N0. Currently, only �xed 𝑛s
are supported. This is necessary, for example, to establish proper correspondences
between Commonality for object-oriented packages, and packages in Java, which
are implicitly de�ned by all compilation units that declare the same package.

• It should be possible to import values from models into the language, and use
them to create mappings between concrete values. This is useful, for example, to
specify directly in the language how enums and other special values map onto
each other. Currently, users are forced to create a new operator for each mapping,
which increases the lines of code that need to be written, introduces unnecessary
indirection, and hides the relevant logic.

Case Study The case study implementation should be �nalized for both the Reactions
Language and the Commonalities Language. The test strategy and framework I presented
in Chapter 5 will help to do this in a test-driven fashion. This will also ensure that the
remaining cases where the di�erent transformations in the Reactions Language contra-
dict each other are found. Afterwards, the case study can be conducted as described in
Chapter 3.

Congruency Studying congruency more deeply may reveal further useful results. For ex-
ample, we have seen in Chapter 5 that the di�erent transformations shared their user-trans-
formation-interchangeable changes. When building transformations networks, maybe
we can demand that all involved transformations are congruent and that any user-trans-
formation-interchangeable change of one transformation is also a user-transformation-
interchangeable change of the others. If the expectation could be met in realistic use

68



cases, it could help address the open problem of �nding a suitable transformation network
execution strategy [GKB21]. Generally speaking, congruency seems to be �exible enough
to be ful�lled in realistic transformations, while still being restricting enough to make use
of it.

Congruency should also be kept in mind when improving the Commonalities Language’s
design. When not using any operators, the Commonalities Language establishes congruent
bidirectional transformations between the concept metamodel and the concrete metamod-
els. The user-transformation-interchangeable changes are given by the minimal model
states of the concrete metamodels that su�ce to establish a Participation. It would be worth
investigating whether the transformations remain congruent when using operators. Here
it could pay o� that the Commonalities Language restricts its bidirectional operators to
lenses. Together with the insights we got from congruency and transformation networks,
one could perhaps even show that the Commonalities Language establishes transitively
congruent transformations—for a yet-to-be-de�ned meaning of the term.
Finally, it might be worth examining the di�erences between congruency and simply

matchingmore closely. Maybe simplymatching—a stronger property than congruency—also
always holds in practice. Example 7.1, which we used to di�erentiate the two properties,
does not seem like a practically relevant one. Stevens [Ste12] proved that simply matching
transformations are exactly the ones that can be obtained by putting two lenses ‘back to
back’. If this theorem could be carried over to the multidirectional case, it would have
interesting implications for the Commonalities Language: We would not have to store the
concept model any more. The concept model could then be a construct that only helps
developing multidirectional transformations, and is only instantiated ad-hoc at runtime
when executing the transformation.

While implementing the case study, it will be interesting to see whether all transforma-
tions are indeed congruent. This will add more empirical validation to the conjecture that
we can expect congruency of all bidirectional transformations used to keep models with
semantic overlap consistent.

69





Bibliography

[AK03] Colin Atkinson and Thomas Kühne. ‘Model-Driven Development: A Meta-
modeling Foundation’. In: IEEE Software 20.5 (2003), pp. 36–41. issn: 0740-
7459. doi: 10.1109/MS.2003.1231149.

[Ale+21] Aleksey Shipilev et al. Openjdk/Jmh. OpenJDK, 24th Mar. 2021. url: https:
//github.com/openjdk/jmh (visited on 11/04/2021).

[AOG16] D. Alic, S. Omanovic and V. Giedrimas. ‘Comparative Analysis of Functional
and Object-Oriented Programming’. In: 2016 39th International Convention
on Information and Communication Technology, Electronics and Microelec-
tronics (MIPRO). 2016 39th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO).
May 2016, pp. 667–672. doi: 10.1109/MIPRO.2016.7522224.

[ASB10] Colin Atkinson, Dietmar Stoll and Philipp Bostan. ‘Orthographic Software
Modeling: A Practical Approach to View-Based Development’. In: Evaluation
of Novel Approaches to Software Engineering. Ed. by Leszek A. Maciaszek,
César González-Pérez and Stefan Jablonski. Vol. 69. Communications in Com-
puter and Information Science. Berlin/Heidelberg: Springer, 2010, pp. 206–
219. isbn: 978-3-642-14819-4.

[AW15] Lukman Ab. Rahim and Jon Whittle. ‘A Survey of Approaches for Verifying
Model Transformations’. In: Software and Systems Modeling 14.2 (2015),
pp. 1003–1028. issn: 16191374. doi: 10.1007/s10270-013-0358-0.

[Bad+18] Omar Badreddin et al. ‘A Decade of Software Design andModeling: A Survey
to Uncover Trends of the Practice’. In: Proceedings of the 21th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems.
MODELS ’18. New York, NY, USA: Association for Computing Machinery,
14th Oct. 2018, pp. 245–255. isbn: 978-1-4503-4949-9. doi: 10.1145/3239372.
3239389.

[BCR02] Victor R. Basili, Gianluigi Caldiera and H. Dieter Rombach. ‘Goal Question
Metric (GQM) Approach’. In: Encyclopedia of Software Engineering. Ed. by
John J. Marciniak. In collab. with Rini van Solingen. 15th Jan. 2002. isbn:
978-0-471-02895-6. doi: 10.1002/0471028959.sof142.

[BP08] Cédric Brun and Alfonso Pierantonio. ‘Model Di�erences in the Eclipse
Modelling Framework’. In: European Journal for the Informatics Professional
9.2 (2nd Apr. 2008), pp. 29–34. issn: 1684-5285.

71

https://doi.org/10.1109/MS.2003.1231149
https://github.com/openjdk/jmh
https://github.com/openjdk/jmh
https://doi.org/10.1109/MIPRO.2016.7522224
https://doi.org/10.1007/s10270-013-0358-0
https://doi.org/10.1145/3239372.3239389
https://doi.org/10.1145/3239372.3239389
https://doi.org/10.1002/0471028959.sof142


Bibliography

[Bro+06] E. Brottier et al. ‘Metamodel-Based Test Generation for Model Transform-
ations: An Algorithm and a Tool’. In: 2006 17th International Symposium
on Software Reliability Engineering. 2006 17th International Symposium on
Software Reliability Engineering. Nov. 2006, pp. 85–94. doi: 10.1109/ISSRE.
2006.27.

[Bur+14] Erik Burger et al. ‘View-Based Model-Driven Software Development with
ModelJoin’. In: Software & SystemsModeling 15.2 (2014). Ed. by Robert France
and Bernhard Rumpe, pp. 472–496. issn: 1619-1374. doi: 10.1007/s10270-
014-0413-5.

[BW84] V. R. Basili and D. M. Weiss. ‘A Methodology for Collecting Valid Software
Engineering Data’. In: IEEE Transactions on Software Engineering SE-10.6
(Nov. 1984), pp. 728–738. issn: 1939-3520. doi: 10.1109/TSE.1984.5010301.

[CH06] Krzysztof Czarnecki and Simon Helsen. ‘Feature-Based Survey of Model
Transformation Approaches’. In: IBM Systems Journal 45.3 (2006), pp. 621–
645. issn: 0018-8670. doi: 10.1147/sj.453.0621. pmid: 15866344.

[Che17] Fei Chen. ‘Änderungsgetriebene Konsistenzhaltung zwischen UML-Klassen-
modellen und Java-Code’. Bachelor’s Thesis. Karlsruhe, Germany: Karls-
ruher Institut für Technologie (KIT), 24th May 2017.

[Cle+19] Anthony Cleve et al. ‘Multidirectional Transformations and Synchronisa-
tions (Dagstuhl Seminar 18491)’. In: Dagstuhl Reports 8.12 (2019), pp. 1–48.
issn: 2192-5283. doi: 10.4230/DagRep.8.12.1.

[Coh09] Mike Cohn. The Forgotten Layer of the Test Automation Pyramid. Mountain
Goat Software. 17th Dec. 2009. url: https://www.mountaingoatsoftware.
com/blog/the- forgotten- layer- of- the- test- automation- pyramid

(visited on 31/03/2021).
[DGC17] Zinovy Diskin, Abel Gómez and Jordi Cabot. ‘Traceability Mappings as

a Fundamental Instrument in Model Transformations’. In: Fundamental
Approaches to Software Engineering. Ed. by Marieke Huisman and Julia Rubin.
Springer Berlin Heidelberg, 2017, pp. 247–263. isbn: 978-3-662-54494-5. doi:
10.1007/978-3-662-54494-5_14.

[Di +17] Juri Di Rocco et al. ‘Consistency Recovery in Interactive Modeling’. In:
Proceedings of MODELS 2017 Satellite Event: EXE, Co-Located with ACM/IEEE
20th International Conference on Model Driven Engineering Languages and
Systems. Austin, TX, USA, 17th Sept. 2017, pp. 116–122. url: http://ceur-
ws.org/Vol-2019/exe_6.pdf.

[Dis+11] Zinovy Diskin et al. ‘From State- to Delta-Based Bidirectional Model Trans-
formations: The Symmetric Case’. In: Model Driven Engineering Languages
and Systems. Ed. by Jon Whittle, Tony Clark and Thomas Kühne. Springer
Berlin Heidelberg, 2011, pp. 304–318. isbn: 978-3-642-24485-8. doi: 10.1007/
978-3-642-24485-8_22.

72

https://doi.org/10.1109/ISSRE.2006.27
https://doi.org/10.1109/ISSRE.2006.27
https://doi.org/10.1007/s10270-014-0413-5
https://doi.org/10.1007/s10270-014-0413-5
https://doi.org/10.1109/TSE.1984.5010301
https://doi.org/10.1147/sj.453.0621
15866344
https://doi.org/10.4230/DagRep.8.12.1
https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
https://doi.org/10.1007/978-3-662-54494-5_14
http://ceur-ws.org/Vol-2019/exe_6.pdf
http://ceur-ws.org/Vol-2019/exe_6.pdf
https://doi.org/10.1007/978-3-642-24485-8_22
https://doi.org/10.1007/978-3-642-24485-8_22


[Dis08] Zinovy Diskin. ‘Algebraic Models for Bidirectional Model Synchronization’.
In: Model Driven Engineering Languages and Systems. Ed. by Krzysztof Czar-
necki et al. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2008, pp. 21–36. isbn: 978-3-540-87875-9. doi: 10.1007/978-3-540-87875-
9_2.

[Dis11] Zinovy Diskin. ‘Model Synchronization: Mappings, Tiles, and Categories’.
In: Generative and Transformational Techniques in Software Engineering III.
Ed. by João Fernandes et al. Vol. 6491. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2011, pp. 92–165. isbn: 978-3-642-18022-4. doi:
10.1007/978-3-642-18023-1_3.

[DKC07] D. P. Delorey, C. D. Knutson and S. Chun. ‘Do Programming Languages
A�ect Productivity? A Case Study Using Data from Open Source Projects’.
In: First International Workshop on Emerging Trends in FLOSS Research and
Development (FLOSS’07: ICSE Workshops 2007). First International Workshop
on Emerging Trends in FLOSS Research and Development (FLOSS’07: ICSE
Workshops 2007). May 2007, pp. 8–8. doi: 10.1109/FLOSS.2007.5.

[DPV08] Andrea Darabos, András Pataricza and Dániel Varró. ‘Towards Testing the
Implementation of Graph Transformations’. In: Electronic Notes in Theoret-
ical Computer Science. Proceedings of the Fifth International Workshop on
Graph Transformation and Visual Modeling Techniques (GT-VMT 2006) 211
(28th Apr. 2008), pp. 75–85. issn: 1571-0661. doi: 10.1016/j.entcs.2008.
04.031.

[DXC11] Zinovy Diskin, Yingfei Xiong and Krzysztof Czarnecki. ‘From State- to
Delta-Based Bidirectional Model Transformations: The Asymmetric Case’.
In: Journal of Object Technology 10 (2011), 6:1–25. issn: 1660-1769. doi:
10.5381/jot.2011.10.1.a6.

[Ehr21] Daniel Ehrenberg. Pipeline Operator. 9th Mar. 2021. url: https://tc39.es/
proposal-pipeline-operator (visited on 10/04/2021).

[F S21] F# Software Foundation. Operators (FSharp.Core). 3rd Mar. 2021. url: https:
/ / fsharp . github . io / fsharp - core - docs / reference / fsharp - core -

operators.html (visited on 10/04/2021).
[Fly06] Bent Flyvbjerg. ‘Five Misunderstandings About Case-Study Research’. In:

Qualitative Inquiry 12 (1st Apr. 2006), pp. 219–245. doi: 10.1177/1077800405284363.
[Fos+07] J. Nathan Foster et al. ‘Combinators for Bidirectional Tree Transformations:

A Linguistic Approach to the View-Update Problem’. In: ACM Transactions
on Programming Languages and Systems (TOPLAS) 29.3 (May 2007). issn:
0164-0925. doi: 10.1145/1232420.1232424.

[Fow12] Martin Fowler. TestPyramid. martinfowler.com. 1st May 2012. url: https:
//martinfowler.com/bliki/TestPyramid.html (visited on 31/03/2021).

[FP10] Martin Fowler and Rebecca Parsons.Domain Speci�c Languages. 1st. Addison-
Wesley, Reading, MA, USA, 2010. isbn: 0-321-71294-3 978-0-321-71294-3.

73

https://doi.org/10.1007/978-3-540-87875-9_2
https://doi.org/10.1007/978-3-540-87875-9_2
https://doi.org/10.1007/978-3-642-18023-1_3
https://doi.org/10.1109/FLOSS.2007.5
https://doi.org/10.1016/j.entcs.2008.04.031
https://doi.org/10.1016/j.entcs.2008.04.031
https://doi.org/10.5381/jot.2011.10.1.a6
https://tc39.es/proposal-pipeline-operator
https://tc39.es/proposal-pipeline-operator
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-operators.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-operators.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-operators.html
https://doi.org/10.1177/1077800405284363
https://doi.org/10.1145/1232420.1232424
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/TestPyramid.html


Bibliography

[FR07] Robert France and Bernhard Rumpe. ‘Model-Driven Development of Com-
plex Software: A Research Roadmap’. In: 2007 Future of Software Engineering.
FOSE ’07. Washington, DC, USA: IEEE Computer Society, 2007, pp. 37–54.
isbn: 978-0-7695-2829-8. doi: 10.1109/FOSE.2007.14.

[FSB04] F. Fleurey, J. Steel and B. Baudry. ‘Validation in Model-Driven Engineering:
Testing Model Transformations’. In: Proceedings. 2004 First International
Workshop on Model, Design and Validation, 2004. Proceedings. 2004 First
International Workshop on Model, Design and Validation, 2004. Nov. 2004,
pp. 29–40. doi: 10.1109/MODEVA.2004.1425846.

[GC12] Carlos A. González and Jordi Cabot. ‘ATLTest: AWhite-Box Test Generation
Approach for ATL Transformations’. In:Model Driven Engineering Languages
and Systems. Ed. by Robert B. France et al. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2012, pp. 449–464. isbn: 978-3-642-33666-9.
doi: 10.1007/978-3-642-33666-9_29.

[GFS05] T. Gyimothy, R. Ferenc and I. Siket. ‘Empirical Validation of Object-Oriented
Metrics on Open Source Software for Fault Prediction’. In: IEEE Transactions
on Software Engineering 31.10 (Oct. 2005), pp. 897–910. issn: 1939-3520. doi:
10.1109/TSE.2005.112.

[GKB21] Joshua Gleitze, Heiko Klare and Erik Burger. ‘Finding a Universal Execution
Strategy for Model Transformation Networks’. In: Fundamental Approaches
to Software Engineering. Ed. by Esther Guerra andMariëlle Stoelinga. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2021,
pp. 87–107. isbn: 978-3-030-71500-7. doi: 10.1007/978-3-030-71500-7_5.

[Gle17] Joshua Gleitze. ‘A Declarative Language for Preserving Consistency of
Multiple Models’. Bachelor’s Thesis. Karlsruher Institut für Technologie
(KIT), 2017. doi: 10.5445/IR/1000076905.

[GMO09] Roy Grønmo, Birger Møller-Pedersen and Gøran K. Olsen. ‘Comparison of
Three Model Transformation Languages’. In: Model Driven Architecture -
Foundations and Applications. Ed. by Richard F. Paige, Alan Hartman and
Arend Rensink. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 2–
17. isbn: 978-3-642-02674-4. doi: 10.1007/978-3-642-02674-4_2.

[Gos+21] James Gosling et al. ‘The Java® Language Speci�cation’. In: (12th Feb. 2021),
p. 844. url: https://docs.oracle.com/javase/specs/jls/se16/jls16.
pdf (visited on 10/04/2021).

[GP09] Pau Giner and Vicente Pelechano. ‘Test-Driven Development of Model
Transformations’. In: Model Driven Engineering Languages and Systems.
Ed. by Andy Schürr and Bran Selic. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2009, pp. 748–752. isbn: 978-3-642-04425-0.
doi: 10.1007/978-3-642-04425-0_61.

[Hen20] Lukas Hennig. ‘Describing Consistency Relations of Multiple Models with
Commonalities’. Master’s Thesis. Karlsruhe, Germany: Karlsruher Institut
für Technologie (KIT), 2020.

74

https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/MODEVA.2004.1425846
https://doi.org/10.1007/978-3-642-33666-9_29
https://doi.org/10.1109/TSE.2005.112
https://doi.org/10.1007/978-3-030-71500-7_5
https://doi.org/10.5445/IR/1000076905
https://doi.org/10.1007/978-3-642-02674-4_2
https://docs.oracle.com/javase/specs/jls/se16/jls16.pdf
https://docs.oracle.com/javase/specs/jls/se16/jls16.pdf
https://doi.org/10.1007/978-3-642-04425-0_61


[Hic19] Rich Hickey. Clojure.Core - Clojure v1.10.2 API Documentation. 2019. url:
https://clojure.github.io/clojure/clojure.core-api.html (visited
on 10/04/2021).

[Hid+16] Soichiro Hidaka et al. ‘Feature-Based Classi�cation of Bidirectional Trans-
formation Approaches’. In: Software & Systems Modeling 15.3 (1st July 2016),
pp. 907–928. issn: 1619-1374. doi: 10.1007/s10270-014-0450-0.

[Hil+13] Stephan Hildebrandt et al. ‘A Survey of Triple Graph Grammar Tools’. In:
(1st Jan. 2013). doi: 10.14279/tuj.eceasst.57.865.

[ISO01] ISO/IEC. ISO/IEC 9126-1 Software Engineering — Product Quality — Part 1:
Quality Model. June 2001. url: https://www.iso.org/standard/22749.
html.

[ISO11] ISO/IEC. ISO/IEC 25010 Systems and Software Engineering — Systems and
Software Quality Requirements and Evaluation (SQuaRE) — System and Soft-
ware Quality Models. Mar. 2011. url: https://www.iso.org/standard/
35733.html.

[Kah+19] Na�seh Kahani et al. ‘Survey and Classi�cation of Model Transformation
Tools’. In: Software & Systems Modeling 18.4 (1st Aug. 2019), pp. 2361–2397.
issn: 1619-1374. doi: 10.1007/s10270-018-0665-6.

[Kap+09] Tim Kapteijns et al. ‘A Comparative Case Study of Model Driven Devel-
opment vs Traditional Development: The Tortoise or the Hare’. In: 4th
European Workshop on “From Code Centric to Model Centric Software En-
gineering: Practices, Implications and ROI”. Vol. WP09-07. CTIT Workshop
Proceedings Series. Enschede, Netherlands, 26th Apr. 2009, pp. 22–33.

[Kap+10] Lucia Kapová et al. ‘Evaluating Maintainability with CodeMetrics for Model-
to-Model Transformations’. In: Research into Practice – Reality and Gaps. Ed.
by George T. Heineman, Jan Kofron and Frantisek Plasil. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 151–166. isbn: 978-3-642-13821-8.

[Ker88] BrianW. Kernighan. The C Programming Language. Ed. by Dennis M. Ritchie.
2nd ed. Prentice Hall Professional Technical Reference, 1988. isbn: 0-13-
110370-9.

[KG19] Heiko Klare and Joshua Gleitze. ‘Commonalities for Preserving Consistency
of Multiple Models’. In: 2019 ACM/IEEE 22nd International Conference on
Model Driven Engineering Languages and Systems Companion (MODELS-C).
Sept. 2019, pp. 371–378. isbn: 978-1-72815-125-0. doi: 10.1109/MODELS-
C.2019.00058.

[Kla+20] Heiko Klare et al. ‘Enabling Consistency in View-Based SystemDevelopment
– The Vitruvius Approach’. In: Journal of Systems and Software (9th Sept.
2020), p. 110815. issn: 0164-1212. doi: 10.1016/j.jss.2020.110815.

[Kla17] Matthias Klatte. ‘Konsistenzhaltung zwischen UML- und PCM-Komponent-
enmodellen’. Bachelor’s Thesis. Karlsruhe, Germany: Karlsruher Institut für
Technologie (KIT), 13th June 2017.

75

https://clojure.github.io/clojure/clojure.core-api.html
https://doi.org/10.1007/s10270-014-0450-0
https://doi.org/10.14279/tuj.eceasst.57.865
https://www.iso.org/standard/22749.html
https://www.iso.org/standard/22749.html
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1109/MODELS-C.2019.00058
https://doi.org/10.1109/MODELS-C.2019.00058
https://doi.org/10.1016/j.jss.2020.110815


Bibliography

[Kol+14] Shekoufeh Kolahdouz-Rahimi et al. ‘Evaluation of Model Transformation
Approaches for Model Refactoring’. In: Science of Computer Programming 85
(June 2014), pp. 5–40. issn: 0167-6423. doi: 10.1016/j.scico.2013.07.013.

[KR16] Max E. Kramer and Kirill Rakhman. ‘Automated Inversion of Attribute Map-
pings in Bidirectional Model Transformations’. In: Proceedings of the 5th
International Workshop on Bidirectional Transformations (Bx 2016). Ed. by
Anthony Anjorin and Jeremy Gibbons. Vol. 1571. CEUR Workshop Pro-
ceedings. Eindhoven, The Netherlands: CEUR-WS.org, 2016, pp. 61–76. url:
http://ceur-ws.org/Vol-1571/.

[Kra+16] Max E. Kramer et al. ‘A Controlled Experiment Template for Evaluating the
Understandability ofModel Transformation Languages’. In: 2nd International
Workshop on Human Factors in Modeling. Ed. by Miguel Goulão. Vol. 1805.
Saint Malo, France: CEUR-WS, Aachen, Oct. 2016, pp. 11–18.

[Kra17] Max E. Kramer. ‘Speci�cation Languages for Preserving Consistency between
Models of Di�erent Languages’. Karlsruhe, Germany: Karlsruhe Institute of
Technology (KIT), 2017. doi: 10.5445/IR/1000069284.

[Lam07] Maher Lamari. ‘Towards an Automated Test Generation for the Veri�cation
of Model Transformations’. In: Proceedings of the 2007 ACM Symposium on
Applied Computing. SAC ’07. New York, NY, USA: Association for Computing
Machinery, 11th Mar. 2007, pp. 998–1005. isbn: 978-1-59593-480-2. doi:
10.1145/1244002.1244220.

[Lan17] Michael Langhammer. ‘Automated Coevolution of Source Code and Soft-
ware Architecture Models’. Karlsruhe, Germany: Karlsruher Institut für
Technologie (KIT), Feb. 2017. url: https://publikationen.bibliothek.
kit.edu/1000069366.

[Lip82] M. Lipow. ‘Number of Faults per Line of Code’. In: IEEE Transactions on
Software Engineering SE-8.4 (July 1982), pp. 437–439. issn: 1939-3520. doi:
10.1109/TSE.1982.235579.

[LZG05] Yuehua Lin, Jing Zhang and Je� Gray. ‘A Testing Framework for Model
Transformations’. In: Model-Driven Software Development. Ed. by Sami Bey-
deda, Matthias Book and Volker Gruhn. Berlin, Heidelberg: Springer, 2005,
pp. 219–236. isbn: 978-3-540-28554-0. doi: 10.1007/3-540-28554-7_10.

[MBL06] Jean-Marie Mottu, Benoit Baudry and Yves Le Traon. ‘Mutation Analysis
Testing for Model Transformations’. In: Model Driven Architecture – Founda-
tions and Applications. Ed. by Arend Rensink and Jos Warmer. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2006, pp. 376–390. isbn:
978-3-540-35910-4. doi: 10.1007/11787044_28.

[MCM12] Yulkeidi Martínez, Cristina Cachero and Santiago Meliá. ‘Evaluating the
Impact of a Model-Driven Web Engineering Approach on the Productivity
and the Satisfaction of Software Development Teams’. In: Web Engineering.
International Conference on Web Engineering. Lecture Notes in Computer

76

https://doi.org/10.1016/j.scico.2013.07.013
http://ceur-ws.org/Vol-1571/
https://doi.org/10.5445/IR/1000069284
https://doi.org/10.1145/1244002.1244220
https://publikationen.bibliothek.kit.edu/1000069366
https://publikationen.bibliothek.kit.edu/1000069366
https://doi.org/10.1109/TSE.1982.235579
https://doi.org/10.1007/3-540-28554-7_10
https://doi.org/10.1007/11787044_28


Science. Springer, Berlin, Heidelberg, 23rd July 2012, pp. 223–237. isbn: 978-
3-642-31752-1 978-3-642-31753-8. doi: 10.1007/978-3-642-31753-8_17.

[MCP14] Nuno Macedo, Alcino Cunha and Hugo Pacheco. ‘Towards a Framework for
Multi-Directional Model Transformations’. In: 3rd International Workshop
on Bidirectional Transformations. Vol. 1133. CEUR-WS.org. Athens, Greece,
Mar. 2014. url: http://haslab.uminho.pt/nmacedo/files/bx14mx.pdf
(visited on 05/10/2017).

[MHS05] Marjan Mernik, Jan Heering and Anthony M. Sloane. ‘When and How to
Develop Domain-Speci�c Languages’. In: ACM Computing Surveys 37.4 (Dec.
2005), pp. 316–344. issn: 0360-0300. doi: 10.1145/1118890.1118892.

[MJC17] Nuno Macedo, Tiago Jorge and Alcino Cunha. ‘A Feature-Based Classi-
�cation of Model Repair Approaches’. In: IEEE Transactions on Software
Engineering 43.7 (July 2017), pp. 615–640. issn: 0098-5589. doi: 10.1109/
TSE.2016.2620145.

[MV06] Tom Mens and Pieter Van Gorp. ‘A Taxonomy of Model Transformation’.
In: Electronic Notes in Theoretical Computer Science. Proceedings of the
International Workshop on Graph and Model Transformation (GraMoT
2005) 152 (27th Mar. 2006), pp. 125–142. issn: 1571-0661. doi: 10.1016/j.
entcs.2005.10.021.

[NER01] Bashar Nuseibeh, Steve Easterbrook and Alessandra Russo. ‘Making Incon-
sistency Respectable in Software Development’. In: Journal of Systems and
Software 58.2 (1st Sept. 2001), pp. 171–180. issn: 0164-1212. doi: 10.1016/
S0164-1212(01)00036-X.

[NF15] S. Nanz and C. A. Furia. ‘A Comparative Study of Programming Languages
in Rosetta Code’. In: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering. 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering. Vol. 1. May 2015, pp. 778–788. doi: 10.1109/ICSE.
2015.90.

[Obj15] ObjectManagement Group (OMG).OMGUni�edModeling Language™ (OMG
UML). version 2.5. Mar. 2015. url: http://www.omg.org/spec/UML/2.5
(visited on 15/05/2017).

[Ode+06] Martin Odersky et al. Identi�ers, Names & Scopes | Scala 2.13. Scala Lan-
guage Speci�cation. Mar. 2006. url: https://scala- lang.org/files/
archive/spec/2.13/02-identifiers-names-and-scopes.html (visited on
06/04/2021).

[Ore+13] Fernando Orejas et al. ‘On Propagation-Based Concurrent Model Synchron-
ization’. In: Electronic Communications of the EASST 57.0 (0 16th Sept. 2013).
issn: 1863-2122. doi: 10.14279/tuj.eceasst.57.871.

[Reu+16] Ralf H. Reussner et al. Modeling and Simulating Software Architectures –
The Palladio Approach. Cambridge, MA: MIT Press, Oct. 2016. 408 pp. isbn:
978-0-262-03476-0. url: http://mitpress.mit.edu/books/modeling-and-
simulating-software-architectures.

77

https://doi.org/10.1007/978-3-642-31753-8_17
http://haslab.uminho.pt/nmacedo/files/bx14mx.pdf
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1109/TSE.2016.2620145
https://doi.org/10.1109/TSE.2016.2620145
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/S0164-1212(01)00036-X
https://doi.org/10.1016/S0164-1212(01)00036-X
https://doi.org/10.1109/ICSE.2015.90
https://doi.org/10.1109/ICSE.2015.90
http://www.omg.org/spec/UML/2.5
https://scala-lang.org/files/archive/spec/2.13/02-identifiers-names-and-scopes.html
https://scala-lang.org/files/archive/spec/2.13/02-identifiers-names-and-scopes.html
https://doi.org/10.14279/tuj.eceasst.57.871
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures


Bibliography

[RPD90] Francesca Rossi, Charles Petrie and Vasant Dhar. ‘On the Equivalence of
Constraint Satisfaction Problems’. In: In Proceedings of the 9th European
Conference on Arti�cial Intelligence. 1990, pp. 550–556.

[RRA17] G Ramesh, T V Rajini Kanth and A Ananda Rao. ‘Metrics for Consistency
Checking in Object Oriented Model Transformations’. In: Computer Model-
ling & New Technologies 21.2 (29th Mar. 2017), pp. 29–36.

[SBM09] Sagar Sen, Benoit Baudry and Jean-Marie Mottu. ‘Automatic Model Genera-
tion Strategies for Model Transformation Testing’. In: Theory and Practice of
Model Transformations. Ed. by Richard F. Paige. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2009, pp. 148–164. isbn: 978-3-642-
02408-5. doi: 10.1007/978-3-642-02408-5_11.

[Sch06] Douglas C. Schmidt. ‘Guest Editor’s Introduction: Model-Driven Engineer-
ing’. In: Computer 39.2 (Feb. 2006), pp. 25–31. issn: 0018-9162. doi: 10.1109/
MC.2006.58.

[Sel03] Bran Selic. ‘The Pragmatics ofModel-DrivenDevelopment’. In: IEEE Software
20.5 (Sept.-Oct. 2003), pp. 19–25. issn: 0740-7459. doi: 10.1109/MS.2003.
1231146.

[SK03] R. Subramanyam and M. S. Krishnan. ‘Empirical Analysis of CK Metrics
for Object-Oriented Design Complexity: Implications for Software Defects’.
In: IEEE Transactions on Software Engineering 29.4 (Apr. 2003), pp. 297–310.
issn: 1939-3520. doi: 10.1109/TSE.2003.1191795.

[SKZ14] Leila Samimi-Dehkordi, Alireza Khalilian and Bahman Zamani. ‘Program-
ming Language Criteria for Model Transformation Evaluation’. In: 2014 4th
International Conference on Computer and Knowledge Engineering (ICCKE).
30th Oct. 2014, pp. 370–375. doi: 10.1109/ICCKE.2014.6993469.

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. Wien: Springer Verlag, 1973.
isbn: 3-211-81106-0.

[Ste+17] Petr Stefan et al. ‘Unit Testing Performance in Java Projects: Are We There
Yet?’ In: Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering. ICPE ’17. New York, NY, USA: Association for
Computing Machinery, 17th Apr. 2017, pp. 401–412. isbn: 978-1-4503-4404-
3. doi: 10.1145/3030207.3030226.

[Ste10] Perdita Stevens. ‘Bidirectional Model Transformations in QVT: Semantic
Issues and Open Questions’. In: Software & Systems Modeling 9.1 (1st Jan.
2010), p. 7. issn: 1619-1366, 1619-1374. doi: 10.1007/s10270-008-0109-9.

[Ste12] Perdita Stevens. ‘Observations Relating to the Equivalences Induced on
Model Sets by Beidirectional Transformations’. In: Electronic Communica-
tions of the EASST 49.0 (0 12th July 2012). issn: 1863-2122. doi: 10.14279/
tuj.eceasst.49.714.

78

https://doi.org/10.1007/978-3-642-02408-5_11
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1109/TSE.2003.1191795
https://doi.org/10.1109/ICCKE.2014.6993469
https://doi.org/10.1145/3030207.3030226
https://doi.org/10.1007/s10270-008-0109-9
https://doi.org/10.14279/tuj.eceasst.49.714
https://doi.org/10.14279/tuj.eceasst.49.714


[Ste17] Perdita Stevens. ‘Bidirectional Transformations in the Large’. In: ACM/IEEE
20th International Conference on Model Driven Engineering Languages
and Systems. 12th June 2017. isbn: 978-1-5386-3492-9. doi: 10.1109/MODELS.
2017.8.

[Ste18] Perdita Stevens. ‘Towards Sound, Optimal, and Flexible Building from Mega-
models’. In: Proceedings of the 21th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems. Copenhagen, Denmark:
ACM, 2018, pp. 301–311. isbn: 978-1-4503-4949-9. doi: 10.1145/3239372.
3239378.

[Stu+07] I. Stuermer et al. ‘Systematic Testing of Model-Based Code Generators’. In:
IEEE Transactions on Software Engineering 33.9 (Sept. 2007), pp. 622–634.
issn: 1939-3520. doi: 10.1109/TSE.2007.70708.

[Sym18] Torsten Syma. ‘Multi-Model Consistency through Transitive Combination
of Binary Transformations’. Master’s Thesis. Karlsruher Institut für Techno-
logie (KIT), 2018. doi: 10.5445/IR/1000104128.

[TA15] Frank Trollmann and Sahin Albayrak. ‘Extending Model to Model Trans-
formation Results from Triple Graph Grammars to Multiple Models’. In:
Theory and Practice of Model Transformations. Ed. by Dimitris Kolovos and
Manuel Wimmer. Lecture Notes in Computer Science. Cham: Springer In-
ternational Publishing, 2015, pp. 214–229. isbn: 978-3-319-21155-8. doi:
10.1007/978-3-319-21155-8_16.

[TA16] Frank Trollmann and Sahin Albayrak. ‘Extending Model Synchronization
Results from Triple Graph Grammars to Multiple Models’. In: Theory and
Practice of Model Transformations. International Conference on Theory and
Practice of Model Transformations. Springer, Cham, 4th July 2016, pp. 91–
106. doi: 10.1007/978-3-319-42064-6_7.

[Tho76] Ken Thompson. ‘The UNIX Command Language’. In: Structured Program-
ming (1976).

[Tro+15] Javier Troya et al. ‘Towards Systematic Mutations for and with ATL Model
Transformations’. In: 8th IEEE International Conference on Software Testing,
Veri�cation and Validation Workshops (ICSTW 2015). IEEE, Apr. 2015, pp. 1–
10. doi: 10.1109/ICSTW.2015.7107455.

[vALvdB09] Marcel F. van Amstel, Christian F. J. Lange andMark G. J. van den Brand. ‘Us-
ing Metrics for Assessing the Quality of ASF+SDF Model Transformations’.
In: Theory and Practice of Model Transformations. Ed. by Richard F. Paige. Lec-
ture Notes in Computer Science. Berlin, Heidelberg: Springer, 2009, pp. 239–
248. isbn: 978-3-642-02408-5. doi: 10.1007/978-3-642-02408-5_17.

[vAms+11] Marcel F. van Amstel et al. ‘Quality Assessment of ATL Model Transform-
ations Using Metrics’. In: CEUR Workshop Proceedings. Vol. 711. CEUR-
WS.org, 2011. url: https://research.tue.nl/nl/publications/quality-
assessment-of-atl-model-transformations-using-metrics(b777d090-

8eee-4796-8ad0-8e88a0850b43).html (visited on 14/04/2021).

79

https://doi.org/10.1109/MODELS.2017.8
https://doi.org/10.1109/MODELS.2017.8
https://doi.org/10.1145/3239372.3239378
https://doi.org/10.1145/3239372.3239378
https://doi.org/10.1109/TSE.2007.70708
https://doi.org/10.5445/IR/1000104128
https://doi.org/10.1007/978-3-319-21155-8_16
https://doi.org/10.1007/978-3-319-42064-6_7
https://doi.org/10.1109/ICSTW.2015.7107455
https://doi.org/10.1007/978-3-642-02408-5_17
https://research.tue.nl/nl/publications/quality-assessment-of-atl-model-transformations-using-metrics(b777d090-8eee-4796-8ad0-8e88a0850b43).html
https://research.tue.nl/nl/publications/quality-assessment-of-atl-model-transformations-using-metrics(b777d090-8eee-4796-8ad0-8e88a0850b43).html
https://research.tue.nl/nl/publications/quality-assessment-of-atl-model-transformations-using-metrics(b777d090-8eee-4796-8ad0-8e88a0850b43).html


Bibliography

[Völ13] Markus Völter.DSL Engineering: Designing, Implementing and Using Domain-
Speci�c Languages. CreateSpace Independent Publishing Platform, 23rd Jan.
2013. 558 pp. isbn: 978-1-4812-1858-0. url: http://voelter.de/dslbook/
markusvoelter-dslengineering-1.0.pdf.

[VS06] Markus Völter and Thomas Stahl. Model-Driven Software Development –
Technology, Engineering, Management. Chichester, England: John Wiley &
Sons, Ltd, 2006. isbn: 978-0-470-02570-3.

[WAS14] Martin Wieber, Anthony Anjorin and Andy Schürr. ‘On the Usage of TGGs
for Automated Model Transformation Testing’. In: Theory and Practice of
Model Transformations. Ed. by Davide Di Ruscio and Dániel Varró. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2014,
pp. 1–16. isbn: 978-3-319-08789-4. doi: 10.1007/978-3-319-08789-4_1.

[Wer16] Dominik Werle. ‘A Declarative Language for Bidirectional Model Consist-
ency’. Master’s Thesis. Karlsruhe, Germany: Karlsruhe Institute of Techno-
logy (KIT), 2016.

[WHR14] John Whittle, John Hutchinson and Mark Rounce�eld. ‘The State of Practice
in Model-Driven Engineering’. In: IEEE Software 31.3 (May 2014), pp. 79–85.
issn: 0740-7459. doi: 10.1109/MS.2013.65.

[WKC06] J. Wang, S.- Kim and D. Carrington. ‘Verifying Metamodel Coverage of
Model Transformations’. In: Australian Software Engineering Conference
(ASWEC’06). Australian Software Engineering Conference (ASWEC’06).
Apr. 2006, 10 pp.–282. doi: 10.1109/ASWEC.2006.55.

[Woh+12] Claes Wohlin et al. Experimentation in Software Engineering. Berlin, Heidel-
berg: Springer, 2012. 236 pp. isbn: 978-3-642-29043-5.

[Xio+13] Yingfei Xiong et al. ‘Synchronizing Concurrent Model Updates Based on
Bidirectional Transformation’. In: Software & Systems Modeling 12.1 (1st Feb.
2013), pp. 89–104. issn: 1619-1366, 1619-1374. doi: 10.1007/s10270-010-
0187-3.

[Yin13] Robert K. Yin. Case Study Research: Design and Methods. 5th ed. SAGE
Publications, Inc, 10th May 2013. 312 pp. isbn: 978-1-4522-4256-9.

80

http://voelter.de/dslbook/markusvoelter-dslengineering-1.0.pdf
http://voelter.de/dslbook/markusvoelter-dslengineering-1.0.pdf
https://doi.org/10.1007/978-3-319-08789-4_1
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1109/ASWEC.2006.55
https://doi.org/10.1007/s10270-010-0187-3
https://doi.org/10.1007/s10270-010-0187-3

	Introduction
	Foundations
	Domain-Specific Languages
	Model-Driven Software Development
	Model Consistency
	Model Transformations
	The Commonalities Approach
	The Vitruvius Framework

	A Case Study Evaluating the Commonalities Language
	Goals and Design
	The Selected Consistency Preservation Case
	Methodology
	Validity

	Congruent Bidirectional Transformations
	Relationship to the Consistency Relation
	Evaluation

	A Test Strategy for Different Implementations of a Consistency Specification
	Black Box Acceptance Tests
	Exploiting Congruency
	A Test Framework for the Test Strategy

	Improvements to the Commonalities Language
	Consistent Syntax for Renaming Participations
	Simplified Operator Imports
	Clearer Syntax for Operator Chains

	Related Work
	Evaluating Model Transformation Languages
	Properties of Model Transformations
	Model Transformation Testing

	Conclusion
	Bibliography
	MA_AurelienPepin_Final_.pdf
	Abstract
	Zusammenfassung
	Résumé
	Introduction
	Motivation
	Goal of the thesis
	Structure of the thesis

	Foundations
	Models, Metamodels, Model Transformations
	Models
	Metamodels
	Model Transformations

	Model-Driven Software Development
	The Ecore Meta-metamodel
	The Object Constraint Language
	Transformation Languages

	Formal Foundations of Models
	Formal Metamodels
	Formal Models and Instances

	Model Consistency Preservation
	Consistency Relations
	Model Transformations for Consistency Relations
	Multi-Model Consistency Preservation

	Constraint Satisfaction
	Constraint Networks
	Constraint Graphs and Hypergraphs

	Automated Deduction
	First-Order Logic
	Satisfiability Modulo Theories


	Consistency Preservation
	Description of Consistency Relations
	Consistency Relation Graph
	Consistency Rule
	Consistency Specification

	Consistency with QVT-R
	Structure of a QVT-R Specification
	Imports
	Relational Transformations
	Relations
	Relation Domains
	Expressions and Conditions

	From QVT-R to Consistency Rules
	From Domain Pattern to Condition on a Metaclass
	From Domain to Condition on a Metaclass Tuple
	From Transformation to Consistency Rule


	Principles of Decomposition
	Introduction to the Decomposition Procedure
	Equivalent Consistency Specifications
	Complexity of Consistency Specifications

	Means of Decomposition of Specifications
	Independent Consistency Subgraphs
	Totally Redundant Consistency Relations
	Partially Redundant Consistency Relations
	Towards a Decomposition Procedure

	Formal Properties
	Conservativeness
	Usefulness


	Decomposition Procedure
	Tractable Consistency Relations
	Two Aspects of Consistency Specifications
	Metagraph
	Metagraphs and Constraint Networks

	Outline of the Decomposition Procedure
	From Consistency Specification to Metagraph
	Inputs of the Procedure
	Recursive Construction of QVT-R Concepts
	Translation of Global Aspects of Specifications
	Translation of Local Aspects of Specifications

	From Metagraph To Decomposition
	Metagraph Dual
	Independent Subsets of Meta-Edges
	Generation of Combinations of Meta-Edges
	Detection of Redundant Rules


	Constraint Translation
	Symbolic Computation for OCL and QVT-R
	Automation of the Decomposition Procedure
	Choosing an Approach for Constraint Translation
	Theorem Proving for Decomposition

	Primitive Datatypes
	Data Structures
	Collection Literals
	Collections from Role Names

	Operations
	Arithmetic Operations
	Boolean Operations
	Conversion Operations
	Equality Operators
	Order Relations and Extrema
	Collections Operations
	String Operations
	Untranslatable Operations


	Evaluation
	Methodology
	Addressing Research Questions
	Evaluation Material

	Functional Correctness
	Finding Existing Tree-Like Specifications
	Unaltered Consistency Specifications

	Applicability
	Example Scenarios
	Execution Results
	Threats to Validity

	Discussion and Further Evaluation
	Benefits
	Limitations
	Further Evaluation


	Related Work
	Model Consistency Preservation
	Approaches for Consistency
	Multi-Model Consistency Preservation
	Model Transformation Decomposition and Composition

	Formalization of QVT-R
	Formal Techniques for Transformation Languages
	Automated Techniques
	Interactive Techniques
	Model Finding


	Conclusion and Future Work
	Conclusion
	Future Work
	Extension to Other Constructs
	Extension to Other Symbolic Computation Tools
	Extension to Other Contexts


	Bibliography
	Appendix: Translation of OCL Operations
	Arithmetic Operations
	Boolean Operations
	Conversion Operations
	Equality Operators
	Order Relations and Extrema
	Collection Operations
	Operations For Collections
	Operations For Sequences
	Operations For Sets

	String Operations

	CC-BY_Vermerk_A4_2017_4.0_EN.pdf


