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Abstract: With the development of low-cost, lightweight, integrated thermal infrared-multispectral
cameras, unmanned aerial systems (UAS) have recently become a flexible complement to eddy
covariance (EC) station methods for mapping surface energy fluxes of vegetated areas. These sensors
facilitate the measurement of several site characteristics in one flight (e.g., radiometric temperature,
vegetation indices, vegetation structure), which can be used alongside in-situ meteorology data to
provide spatially-distributed estimates of energy fluxes at very high resolution. Here we test one such
system (MicaSense Altum) integrated into an off-the-shelf long-range vertical take-off and landing
(VTOL) unmanned aerial vehicle, and apply and evaluate our method by comparing flux estimates
with EC-derived data, with specific and novel focus on heterogeneous vegetation communities at
three different sites in Germany. Firstly, we present an empirical method for calibrating airborne
radiometric temperature in standard units (K) using the Altum multispectral and thermal infrared
instrument. Then we provide detailed methods using the two-source energy balance model (TSEB) for
mapping net radiation (Rn), sensible (H), latent (LE) and ground (G) heat fluxes at <0.82 m resolution,
with root mean square errors (RMSE) less than 45, 37, 39, 52 W m−2 respectively. Converting to
radiometric temperature using our empirical method resulted in a 19% reduction in RMSE across
all fluxes compared to the standard conversion equation provided by the manufacturer. Our results
show the potential of this UAS for mapping energy fluxes at high resolution over large areas in
different conditions, but also highlight the need for further surveys of different vegetation types and
land uses.

Keywords: unmanned aerial system; UAS; eddy covariance; thermal infrared camera; energy balance;
TSEB; DTD; Altum; Trinity F90+; evapotranspiration

1. Introduction

Measuring the surface energy balance is an important task for improving our un-
derstanding of land-atmosphere interactions at a time when global climate is shifting
towards net warming [1–4]. The magnitude of warming/cooling through radiative and
non-radiative processes is related to land surface properties; for example, dense, tall
canopies tend to have relatively low-albedo which causes high energy influx to the sys-
tem (net radiation, Rn) [5,6]. Decreasing albedo in isolation can have a warming effect,
however it can be negated by structural properties such as leaf area index which promote
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transpiration/latent heat flux (LE) over sensible (H) and ground (G) heat effluxes [1,7,8].
This interplay between Rn, LE, H and G, as moderated by the type, physiology, structure
and distribution of vegetation that are present, can influence climate at all scales; from
the local scale where shade trees can reduce local temperatures (thus mitigating climatic
extremes in agroforestry settings [9]), to regional scale weather systems where the amount
and distribution of tree cover can influence precipitation patterns [6,10]. Therefore, the
accurate measurement of these fluxes over different land use and land cover types is of
great interest to food producers, climatologists and land/water resource managers alike.

Measuring energy fluxes at landscape scale is a non-trivial task. Perhaps the most
established technique is via Eddy Covariance (EC). EC stations typically compute Rn
using irradiation measurements from pyranometers/net radiometers, H and LE from
measuring the covariance between heat and moisture variance and turbulent mixing [11],
and G using soil heat flux plates [12]. The method requires integrating high frequency
(>10 Hz) gas flux and vertical eddy measurements over 30 min time steps to capture the
full range of eddies passing the sensors at different rates (i.e., small eddies move over
seconds, large-scale turbulence over minutes). EC stations are usually located in areas of
homogeneous vegetation classes within the upwind area (“fetch” or “footprint”) of the
tower. Therefore widespread networks of towers are required to capture the variety of
fluxes across different vegetation and land cover types which represent the landscape, such
as ICOS and TERENO [12,13].

Resistance energy balance models are sound methods used in remote sensing. They
rely on the collection of radiometric surface temperature (Trad) using thermal infrared (TIR)
sensors, to effectively cover the survey area of interest. Plant structural and meteorological
parameters and Trad are used as inputs to produce spatially distributed flux estimates.
Originally applied to satellite remote sensing data, a number of energy balance models
have been successfully adapted for use with very high resolution imagery, either from
manned piloted airborne platforms or Unmanned Aerial Systems (UAS). UAS refers to
remotely piloted/unmanned aerial vehicles (UAVs) with a sensor mounted on board. With
the recent technological advances in miniaturized cameras and navigation systems, UAS
are increasingly being used as a more cost-effective and flexible tool in mapping energy
and water fluxes, using models such as “mapping evapotranspiration with internalized
calibration”, METRIC [14,15], and Two Source Energy Balance model, TSEB [16–20]. To
date TSEB is one of the most widely-used spatially-distributed model [21], and has deliv-
ered accurate flux estimates using both satellite- and UAS-derived data, independent of
resolution [19], in a variety of settings [18,22–25].

Remote sensing can provide additional information to EC methods. Perhaps most
importantly, by using high resolution gridded data, remote sensing can be used to estimate
evapotranspiration over individual plants (or plant clusters) [18], and can capture fluxes
from different land cover types in one survey [23,26], although many studies have focused
on a single vegetation type for testing [21]. Furthermore, the resistance energy methods
produce spatially distributed estimates of soil heat fluxes, whereas the EC station ground
heat flux plates are fixed to one location, typically near the base of the station [12]. While
G can be extrapolated if the vegetation is homogenous, G may vary spatially during
in-situ land cover change events (e.g., harvest, mowing or leaf senescence). While the
UAS method is not restricted in range by the necessity for homogeneous land cover, the
range of the survey area is limited by battery life, local airspace restrictions and air laws,
and operations are limited to a narrow window of meteorological conditions (e.g., winds
below 9 m s−1). Some platforms have, however, surveyed very large areas in a single
flight [27,28]. Typically the reported accuracy of TIR cameras is low, meaning additional
control and evaluation steps are often taken to reduce errors caused by internal calibration
processes, variability in surface emissivity and atmospheric conditions [18,29,30]. Even
though spatially distributed resistance models can only estimate instantaneous fluxes at the
pixel scale (compared to EC stations which take measurements 24 h per day, collecting raw
data up to 20 times per second) it is still possible to extrapolate hourly/daily flux estimates
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using remote sensing data [26,31,32]. It should also be noted that some of the constraints of
the EC method also apply to the UAS method; both are restricted to flat terrain [13], are
limited by sub-optimal meteorological conditions, i.e., atmospheric stability can hinder
retrieval of turbulent fluxes [33,34], and both require expert knowledge and experience
to collect, process and analyse the data. Additionally, the TSEB model used to estimate
the UAS-derived energy fluxes, requires several underlying assumptions in addition to
the prerequisites of the EC method, e.g., flux-gradient similarity and accurate knowledge
of all non-turbulent surface energy-balance components, including storage terms, which
are difficult to measure and therefore often assumed negligible [35]. While UASs are often
cheaper than EC stations, they cannot replace EC stations because they provide the most
direct method of measuring all major fluxes, whereas UAS can only estimate Rn, H and
G, then assign the residual imbalance to LE [7]. Therefore EC methods provide an ideal
control for assessing the quality of UAS-derived fluxes [19,36].

Typically, thermal infrared cameras have a lower pixel resolution than standard RGB
and multispectral cameras, and as such the tie point-matching algorithms in photogramme-
try software (such as Agisoft Metashape and Pix4d) can only function well if there is very
high forward and sideward image overlap. This invariably limits the range of the UAV,
and consequently the size of the survey area. Some thermal camera manufacturers have
integrated an RGB or multispectral camera into the unit so that they have overlapping
field of views with the thermal camera [30]. Photogrammetry software can then use the
higher resolution optical bands to create accurate thermal orthomosaics. These systems
are advantageous because in one single flight a multitude of datasets can be collected (e.g.,
RGB orthomosaics, vegetation and soil indices, 3D point clouds, as well as radiometric
temperature). An example of this system is the Micasense Altum, which has been used
for a variety of purposes, including drainage mapping [37], high throughput plant pheno-
typing [38], bark beetle infestation mapping [39], and vineyard crop health [40]. Many of
the existing studies have used thermal infrared cameras mounted on multicopter UAVs,
while these platforms can be very versatile, their range can be very limited even without
accounting for high image overlap (typically < 20 hectares). The range of fixed wing UAVs
can be much greater, however there are operational limitations such as the requirement for
large open areas for landing and take-off. Some UASs developed in research institutions
(such as the very successful AggieAir system, by [28]) have comprehensive payload sen-
sors (e.g., short, medium, longwave sensors) impressive flight times, and collect scientific
standard datasets. Building this kind of system requires expert skills and experience, time,
resources and of course money, something not available to many researchers, land and
water managers. Several off-the-shelf (OTS) solutions are now on the market aiming to
address some of these limitations; some manufacturers have developed vertical take-off
and landing (VTOL) fixed wing aircraft which have the take-off and landing flexibility of
multicopters, as well as the range advantages of fixed-wing UAVs, with some including
integrated RGB/multispectral and thermal infrared cameras. To date few studies have
tested their ability to produce reliable and accurate energy flux estimates [21,30], and never
with a long-range VTOL UAS.

In summary, there is a wealth of continuous flux data from EC stations across the
globe at locations with different land cover types; however resolving the spatial variation
in fluxes in areas with mixed vegetation (i.e., heterogeneous plant communities, plant
canopy structures etc.) is more challenging. Here, UAS data has the potential to detect and
estimate energy and water flux variability at very high resolution, so that we may assess
how different land use practices can influence fluxes, the climate and hydrological cycle.
An important step in realizing this capability is to calibrate and validate UAS-based fluxes
using high-accuracy, directly measured fluxes from EC station in a variety of settings.

This study is the first to demonstrate the capabilities of a long-range, OTS UAS (Quan-
tum Systems Trinity F90+ and Micasense Altum) to map Rn, H, LE and G energy fluxes
over different land cover types and report its accuracy and limitations. We provide a de-
tailed methodology for producing energy balance model input datasets that is reproducible
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across multiple sites with different environmental conditions and plant communities, and
present error statistics based on control data from EC stations. Furthermore, we assess two
methods of mapping energy fluxes (Two Source Energy Balance Priestley-Taylor, and Dual
Time Difference) and report their correlation against three methods of closing the surface
energy balance in EC station data.

2. Materials and Methods
2.1. Methodological Overview

This paper demonstrates a methodology for producing high-resolution spatially dis-
tributed energy fluxes using an OTS unmanned aerial system. Fluxes derived from an EC
station were used to assess the accuracy of the UAS-derived fluxes by flying the UAS over
the “footprint” of the EC station, then comparing the spatially distributed fluxes within
the EC footprint with the reported EC estimates for the coincident time period. We use
the Two-Source Energy Balance (TSEB) model in this paper and briefly discuss how it
calculates the fluxes, however we have not modified the calculations that TSEB performs,
therefore a full description of the mechanics behind TSEB can be found in [18] or [7] or [20].
This section will sequentially detail the data collection, processing and evaluation methods
as summarized in Figure 1.
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Figure 1. Data collection and processing scheme for the production and assessment of spatially-distributed energy flux
estimates from the Trinity-Altum UAS.

2.2. Eddy Covariance Reference Datasets
2.2.1. Eddy Covariance Station Sites

Four different eddy covariance stations across three sites were used to test flux map-
ping using the UAS. Two EC stations are on grassland sites (Graswang, DE-Gwg [41], and
Fendt, DE-Fen [42], which are both operated and maintained by the Karlsruher Institut
für Technologie (KIT) network. Full details on the instrumentation can be found in [12].
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Mooseurach is a peat bog that was used for forestry until 2016. After several windfall
events and increasing bark beetle infestation, the area was cleared. Since then there has
been no further management on the area. In addition to the existing 30 m tower (Mooseu-
rach Tall), a 6 m tower (Mooseurach Small) was installed in the former main footprint. This
site is part of the ICOS Network [DE-Msr] [43,44], site details and information can be found
in Table 1.

Table 1. Details of the Eddy Covariance Station sites used in this study.

EC Station Name Elevation
(m AMSL) Location Vegetation Type Tower Height

(m)
Equipment Used for Flux

Measurements

Graswang 869 47.571312◦

11.031706◦ Grass, Trees 3 LI-7500 1, CSAT3 2, CNR4 3

Fendt 595 47.832905◦

11.060738◦ Grass 3 LI-7500 1, CSAT3 2, CNR4 3

Mooseurach Small 599 47.809127◦

11.457864◦ Grass, Shrub, Trees 6 LI-7200 1

CNR4 3, HS-50 4

Mooseurach Tall 599 47.809272◦

11.456149◦ Grass, Shrub, trees 30 LI-7500 1, CSAT3 2

1 Infrared gas analyser (LI-COR, Inc., Lincoln, NE, USA). 2 Sonic anemometer (Campbell Scientific Inc., Logan, UT, USA). 3 Pyranometer
for measuring net radiation (Kipp and Zonen B.V., Delft, The Netherlands). 4 Sonic anemometer (Gill Instruments Limited, Lymington,
Hampshire, UK).

2.2.2. EC Station data and Footprint Delineation

Flux data are calculated over 30 min intervals so that the full range of eddy sizes can be
measured. Flux data at Graswang and Fendt were calculated using TK3.1 [45–47], whereas
data from Mooseurach were calculated using the Eddy-Pro 7.04 by LI-COR Biosciences,
(LI-COR Inc., Lincoln, NE, USA). The EC stations at all sites provided supplementary
meteorological data, as well as irradiance data as input parameters for the TSEB model.

Footprint delineation provides a spatial component to EC station-based flux estimates
so that UAS and EC station-based methods are comparable. For Graswang and Fendt,
TK3.1 enables the user to produce a footprint estimation as a spatial probability distribution
(in ASCII format) for each 30 min time step using the model by [34]. The performance
of the model from [34] that has been used for this study was evaluated by [48] for the
Graswang site by a series of controlled tracer release experiments. The results of this study
show that it produces realistic footprint estimates. At least for this measurement height and
this surface type, the Kormann and Meixner model also agrees well with newer models,
such as the FFP model of [49].

Each footprint raster was produced at 1 m resolution, andwas subset using the 98th

percentile because this value consistently produced footprints which largely covered the
areas in which the EC stations were situated, and was therefore estimated to provide a
representative area in which the mean instantaneous fluxes were estimated from the UAS
data (Figure 2).

For Mooseurach, footprint extent estimates are provided in the Eddy-Pro outputs,
which include footprint peaks, wind direction, 10, 30, 70, 90% distances. As the weather on
the day of the UAS survey was relatively stable with very low wind speeds the footprint
statistics were not available for many time steps, so the Mooseurach Small footprint was
averaged as a 100 m buffer around the station, and the Mooseurach Tall footprint was
delineated using the wind direction limits for the survey period, and maximum distance
which overlapped the UAS survey area.
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2.3. EC Station Energy Balance Closure

Net radiation (R) is the product of all incoming and outgoing short- and long-wave
radiation, and during daytime defines the total energy flux entering the land surface system
(minus reflection and emission back into the atmosphere). This energy has three main
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fates; sensible heat flux (H), the transfer of energy from surface to air (advection) and
is transported by convection, latent heat flux (LE), the energy used for evaporation and
transpiration of water (or evapotranspiration, ET), and ground heat flux (G), the energy
exchange through conduction into the ground heat storage [6,50]. The surface energy
balance is summarised by the following equation:

Rn = H + LE + G + Imb (1)

where Rn is net radiation, H is the sensible heat flux, LE is the latent heat flux, G is the
ground heat flux and Imb refers to an imbalance, which is a residual term if the energy
balance is not closed (all in W m−2). EC stations measure each individual flux using
instrumentation, which often leads to a lack of closure in surface energy balance (Imb) [51].
This can be caused by instrumental errors, errors in the processing chain (pertaining
to averaging and flux correction methods), and additional terms that are not measured
(canopy heat storage, biochemical storage, horizontal advection, and water pumping by
plants) as covered in detail by [52]. To ensure comparability between EC and UAS-derived
fluxes and to close the energy balance, we applied four different treatments to the EC
station H and LE fluxes, [19,52]:

1. No correction
2. Increased H and LE to close the energy balance, but maintain the Bowen Ratio (H/LE)
3. Added the residual imbalance flux to H, and used uncorrected LE
4. Added the residual imbalance flux to LE, and used uncorrected H

2.4. Unmanned Aerial System
2.4.1. Unmanned Aerial Vehicle

We used the Trinity F90+ (Quantum-Systems GmbH, Gilching, Germany), an off-
the-shelf (OTS) vertical take-off and landing (VTOL) UAV, with a maximum payload of
500 g. Its VTOL capabilities mean the minimum-required take-off and landing area is
approximately 10 m × 10 m; from this small area the UAV launches/lands vertically in
“copter-mode”, then transitions to horizontal flight once clear of nearby obstacles. With its
optimal 17 ms−1 airspeed, the Trinity F90+ has a maximum flight time of 90 min, meaning
it can cover an area of around 150 ha per flight at 100 m above ground level (with 76%
sideward image overlap). Flight missions are designed using QBase v2.2.21 software, which
links the transmitter, UAS and ground station together via 2.4 GHz wireless connection.
QBase has a global digital terrain model and high resolution satellite imagery which allows
for precise and safe horizontal and vertical flight path planning. The user can also set up
flight spacing and payload sensor triggering to achieve a desired forward and sideward
image overlap. The OTS UAS includes a GNSS base station (iBASE, Quantum Systems
GmbH, Gilching, Germany) for post processing kinematics (PPK), which can be used to
differentially correct image geotags, improving positional accuracy and Structure From
Motion (SfM) processing times.

2.4.2. Sensors

We used two airborne sensor payloads for this study (Table 2); the Micasense Altum
(Seattle, WA, USA) to produce multispectral (MS) and radiometric temperature orthomo-
saics and a canopy height model (CHM) for Graswang, and a Sony RX1RII RGB camera
to produce a CHM for Mooseurach using structure from motion techniques. The Altum
has five high-resolution multispectral bands (blue, green, red, red edge and near infrared)
and an integrated long-wave thermal infrared (TIR) sensor (based on the FLIR Lepton)
which is aligned with the MS sensors. The Altum has a separate Downward Light Sensor
(DLS2, Micasense, Seattle, WA, USA) to provide multispectral calibration information in
changing light conditions. The TIR sensor recalibrates every 5 min or when a 2 K change in
temperature occurs. The reported accuracy is +/− 5 K with a thermal sensitivity of <50 mK.
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Table 2. Specifications of the two sensors used in this paper.

Sensor Bands
Image

Resolution
(Pixels)

Sensor
Size (mm)

Focal
Length
(mm)

Field of
View (◦)

Centre
Wavelength

(nm)
Band Width

(nm)
GSD at 100 m
Altitude (m)

Micasense
Altum

Blue

2064 × 1544 7.12 × 5.33 8 48 × 37

475 32

0.04
Green 560 27
Red 668 16

Red-edge 717 12
Near Infrared 840 57

Thermal Infrared 160 × 120 1.92 × 1.44 1.77 57 × 44 11,000 60 0.67
Sony RX1RII RGB 7952 × 5304 35.9 × 24 35 63 NA NA 0.01

2.4.3. Surveys and Flight Parameters

In all, 30 flight surveys (with multiple surveys per flight) were conducted between 20
July 2020 and 20 October 2020, and a summary of the flight details can be found in Table 3.
Local air navigation regulations limit the flight altitude to 100 m above ground level (AGL),
and within visual line of sight. The UAV flies fully autonomously with terrain following
capabilities, and maintains its airspeed and updates its heading in real-time to compensate
for changes in wind direction and strength. The Altum and Sony have a maximum
trigger rate of 1 Hz, and as such the maximum forward overlap that can be achieved is
76 and 78% respectively (maintaining 100 m altitude, and a forward airspeed of 17 ms−1).
Side overlap was set to 75% in all cases, to ensure good quality tie point matching in
orthomosaic production. Changes in groundspeed can lead to changes in the forward image
overlap (i.e., maintaining airspeed, flying downwind/upwind would increase/decrease
the groundspeed, and reduce/increase forward overlap). Therefore, when winds aloft were
above 2 ms−1 (in the forecast) the UAS flight lines were set perpendicular to the prevailing
wind direction. A period of 30 min for acclimatization (leaving the Altum powered on
but not capturing images) is recommended before flying. For calibration of multispectral
bands, images of the Altum calibration panel were taken before and after each flight from
a height of around 1 m, with the panel clear of shadows.

Table 3. Summary of flight times, simple meteorology, and number of images acquired per flight (note that this refers to the
number of 6-band images).

Location Date Time Duration
(Minutes) Weather

Air
Temperature

(◦C)

Survey Area
Overpasses

Images
Taken

Average
Flying Height

(m AGL)

Graswang 20 July 2020
12:00 20 Sunny 25.8 1 382

10012:30 20 Sunny 26.0 1 566
13:30 40 Sun/cloud 26.4 2 863

Graswang 15 September 2020

07:15 40 Sunny 18.0 2 818

120
10:00 40 Sunny 25.9 2 756
11:30 40 Sunny 27.9 2 775
13:30 40 Sun/cloud 28.0 2 754

Fendt 17 September 2020

07:30 30 Overcast 19.9 1 837

110

08:30 30 Overcast 21.0 1 842
10:30 40 Sunny 21.0 2 738
11:15 20 Sunny 24.5 1 482
12:30 40 Sunny 26.1 2 757
13:30 40 Sunny 26.3 2 893

Mooseurach 20 October 2020

08:00 30 Sunny 0.9 1 672

100
10:30 60 Overcast 10.8 2 667
11:30 60 Overcast 11.0 2 970
13:00 30 Sunny 14.3 2 962
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2.4.4. Orthomosaic and Point Cloud Production

Altum images were pre-processed in QBase, where individual image geotagging
data were differentially corrected using the iBase PPK procedure, and saved to a text file.
Preprocessing of Altum imagery (e.g., vignetting, dark pixels and radiometric correction)
is applied to each image in Agisoft Metashape (St Petersburg, Russia). We used Metashape
to create orthomosaics, individual orthophotos and point clouds. Multispectral bands were
calibrated within Metashape using the pre- and post-flight Altum calibration panel images
and DLS2 data if the conditions were sunny or overcast. Two orthomosaics were produced
for each overpass of the survey area, one each at the native resolutions of the multispectral
and thermal infrared bands. Point clouds were generated from RGB images taken using
the Sony RX1RII.

2.5. Spatially Distributed Energy Fluxes
2.5.1. Two Source Energy Balance Model

Here we provide a brief overview of TSEB as the full details (including equations) have
been previously published in [7,18]. The Two Source Energy Balance model (TSEB) was
developed by [7] and builds on the Shuttleworth-Wallace dual source energy model [53],
by deriving both soil and canopy components of LE and H, i.e., having the ability of
partitioning soil evaporation from plant canopy transpiration, rather than just the bulk
surface fluxes. TSEB equations are solved at the pixel level using a set of gridded and
single value inputs.

Gridded radiometric surface temperature (measured from the UAS), zenith viewing
angle and leaf area index are used to calculate component canopy and soil temperature Tc
and Ts (Equation (2)):

σT4
rad(θ) = fc(θ)σTc4 + [1 − fc(θ)]σTs4 (2)

where f c(θ) equates to the vegetation fraction cover at the sensor viewing angle and can
be calculated from the leaf area index (LAI) and clumping factor (Ω), (Equation (3)):

fc(θ) = 1 − exp
(
−0.5ΩLAI

cosθ

)
(3)

The soil and canopy energy budgets are calculated from Tc and Ts separately
(Equations (4)–(8)):

Rns = Hs + LEs + G (4)

Rnc = Hc + LEc (5)

Hs = ρcp(Ts − Tac)/rs (6)

Hc = ρcp(Tc − Tac)/rx (7)

LEc = αPT fg
∆

∆ + γ
Rnc (8)

The differences in Tc and Ts and the air temperature, Tac drive canopy/soil sensible
heat fluxes (Hc and Hs), and are moderated by resistance to heat transfer between the
canopy-atmosphere (rx), and soil-atmosphere (rs) [54]. The first TSEB variant used in this
paper solves both Tc, Ts, and Hc, Hs using as a first estimate a potential transpiration
(LEc) based on the Priestley-Taylor (PT) equation (αPT) and the fraction of LAI that is
green (fg) (Equation (8)) after which the model iteratively increases Tc and decreases Ts (in
Equations (2), (4)–(7)) to find realistic values which would lead to non-negative latent heat
values during daytime. Terms ∆ and γ refer to the slope of the saturation vapour pressure
versus temperature and psychrometric constant respectively [55]. Resistances are in turn
a function of surface roughness (approximately 0.125 canopy height) [20,56,57]. TSEB-PT
then apportions LE as the residual of Rn and H. TSEB-DTD (dual-time difference) is the
second TSEB variant used in this paper. DTD works in much the same way as TSEB-PT
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to estimate Tc and Ts, however H is solved using two gridded Trad layers, and two air
temperature values, with one measurement taken up to 1.5 h after sunrise when the values
for Hc and Hs are minimal, and the other during the day. This method has previously
reduced errors caused by atmospheric transmission and emissivity variations in a variety
of settings [18].

2.5.2. Overview of Inputs

The TSEB models were implemented through the pyTSEB packages which are freely
available via the GitHub repository at https://github.com/hectornieto/pyTSEB (accessed
on 20 November 2020), and a full description of the input parameters can be found in the
supporting literature at https://pytseb.readthedocs.io/en/latest/index.html (accessed on
20 November 2019). Input data can be provided as single values or rasters, and a full list of
parameters and their sources in this study is given in Table 4. TSEB calculations for trees
involved modification of four input parameters because it is assumed that air temperature
and wind speed are measured sensitively higher than the target canopy; therefore wind
speed and air temperature measurements were driven to 100 m above the ground. Hence
the air temperature and wind speed were modified according to the adiabatic lapse rate
and wind profile function respectively [58]. All raster inputs must have the same extent
and resolution, and were processed at the native resolution of the TIR band (which varied
between 0.67–0.81 m depending the survey flight heights), and the processing methods are
detailed in the following sections.

Table 4. Input parameters for pyTSEB used in this study. Here effective leaf area index (eLAI) describes leaf area index
estimates made using indirect, optical techniques such as with a LICOR plant canopy analyser. Input type refers to single
values (SV) or spatially distributed (raster).

Main Input Input Type Unit Source Sensor

View Zenith Angle SV ◦ Default = 0
Surface temperature Raster K UAV Radiometrically calibrated TIR Altum

Processing mask Raster Land Cover Map Altum & RX1
Effective Leaf Area Index Raster m2/m2 eLAI and Land Cover Map LI-COR LAI2200

Vegetation Fractional Cover Raster 0–1 Default = 1 Altum
Canopy Height Raster m DSM-DTM RX1RII

Canopy Height/Width ratio SV m m−1 Default = 1
Green Fraction SV 0–1 NDVI map Altum

Latitude/longitude SV ◦ Centroid of survey area GNSS
Altitude SV m (AMSL) Centroid of survey area GNSS

Solar zenith angle SV ◦ Estimated by pyTSEB
Solar azimuth angle SV ◦ Estimated by pyTSEB

Day of year SV Day Julian day
Standardised Longitude/Time SV h Decimal solar time

Air temperature SV K EC station Thermometer
Wind speed SV m s−1 EC station Sonic anemometer

Atmospheric pressure SV Pa EC instrument Barometer
Vapor pressure SV Pa Calculated from RH and air temperature

Incoming SW irradiance SV W m−2 EC station or hand held instrument Pyranometer
Incoming LW irradiance SV W m−2 EC station

2.5.3. Radiometric Surface Temperature

Given the reported uncertainty of the Altum TIR band was relatively high (±5 K), we
performed a control experiment using a ground-based Apogee SI220 Infrared Radiometer
(Apogee Instruments, inc, Logan, UT, USA) to evaluate the Altum’s accuracy and precision
when in flight. The Apogee radiometer has a measurement uncertainty of ± 0.2 K and
is designed to measure canopy surface Trad. At each site, the Apogee radiometer was
mounted on a tripod around 2 m from the ground, and aimed at the centre of an 8 m × 8 m
control area of homogeneous grass. The control area is large enough to compensate for

https://github.com/hectornieto/pyTSEB
https://pytseb.readthedocs.io/en/latest/index.html
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the “spot size effect” whereby radiometric temperature errors are increased when the
number of pixels covering an object is less than 10 × 10 [59]. At a flight altitude of 100 m
AGL, the ground sampling distance (GSD) of the Altum TIR band is around 0.7 m thus
negating the spot size effect. Grass is also an ideal target material because of its high
estimated emissivity (>0.97) [60], abundance and because it is representative of surface
material whose temperature is measured in this study. The Apogee-Altum comparison
across different sites, times of the day, air and surface temperatures is a simple method
of correcting for errors brought about by atmospheric transmission, differences in target
emissivity, different viewing angles, and changing air temperatures (which may affect
instrument calibration. Data were logged every 20 s using an Arduino Uno (Arduino,
Sommerville, MA, USA) with an SD card and a real-time clock module.

After “bundle adjustment” in orthomosaic production in Agisoft Metashapes, we
exported individual orthophotos (images which have been orientated and georeferenced)
that covered the temperature control area. For each orthophoto, the average digital number
(DN) pixel value was extracted for the temperature control area, and the timestamp was
extracted using the ij_tiff package [61] in R [62]. The orthophoto timestamp was then used
to find the closest Apogee radiometer measurement, and the corresponding temperature
was recorded. We used a linear regression analysis to examine the relationship between
DN in the TIR band and Apogee-derived surface temperature. The slope and intercept
values from this analysis were used to convert DN to K for all Trad inputs, and the results
can be found in Section 3.1.

As a point of comparison, we also use the published Micasense equation (Equation (9))
to produce Trad inputs for the TSEB models, and these results are summarised in Section 3.2,
and in Appendix A Figures A3 and A5, Tables A1 and A2.

Trad(K) = 0.01DN (9)

where Trad is observed radiometric temperature, and DN is the digital number.

2.5.4. Canopy Height Model (CHM)

Canopy height is an important parameter for calculating roughness length within
TSEB. To create a CHM, point clouds were made in Agisoft Metashapes from very high res-
olution (<2 cm GSD) RGB images taken from the Sony RX1RII camera. As all of our survey
sites were mostly flat (a prerequisite of EC station siting), it was relatively easy to produce
a digital terrain model (DTM): Point clouds were firstly cleaned, filtered and decimated in
CloudCompare [63], then ground-classified and normalised using LASground (step size
20 m) [64]. The LidR package [65] in R was then used to produce a gap-filled CHM.

Much of the area was dense or mowed grass, which produced unrealistic canopy
height values because the actual canopy height in these areas is near the sensitivity of
photogrammetric point clouds. For these areas, we measured the grass height by hand
using a ruler and applied a standard grass height value to each land cover type using the
Land Cover Map, detailed in the following section.

2.5.5. Land Cover Map (LCM) and Vegetation Masks

From the Altum images we produced orthomosaics with 5 optical and 1 thermal band
in the native resolution of the thermal band. For each UAS survey the orthomosaic was
stacked with the CHM as a 7 band input for a random forest classifier. Random Forest was
chosen because it is robust against outliers, and the input datasets require minimal pre-
processing [66]. These data were processed in R [62] using the method and code provided
in [67] as a template. At least 5 polygons per land cover class were created as bounding
areas for training/testing points, which filled each polygon at density of 1 per pixel. We
used 10 folds for cross-validation. The training/testing datasets were split 70/30 (e.g.,
there were 4086/1748, 4587/1965, 2535/1083 training/testing points for Graswang, Fendt
and Mooseurach respectively), and using 500 trees, classification accuracies were all >95%.
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The LCMs were used to create building and shadow masks, as well as vegetation
masks for the calculation of fluxes individually for each vegetation type.

2.5.6. Leaf Area Index (LAI)

We sampled the LAI of each vegetation type using a LI-COR LAI 2200 plant canopy
analyser (LI-COR Inc., Lincoln, NE, USA). We made several LAI sample measurements ac-
cording to the manufacturer’s guidance, and used “above canopy” measurements to correct
for changing sky conditions. For mowed grass it was not possible to accurately measure
LAI, and thus we predicted LAI based on published LAI-grass height relationship [68].

2.5.7. Green Fraction

The orthomosaics produced at the native resolution of the Altum’s multispectral bands
(approx. 0.05 m GSD) were used to create a normalized difference vegetation index layer
(NDVI). The green fraction layer was calculated as the proportion of the ~0.67–0.81 m pixel
covered by 0.05 m NDVI pixels with a value greater than 0.5.

2.6. EC Station-UAS Flux Comparisons

TSEB model outputs for each individual vegetation class were merged for each survey
flight, and the Rn, H, LE, and G values within the corresponding footprint were averaged.
These UAS-derived flux values (W m−2) were compared to the uncorrected and corrected
(for energy balance closure) fluxes estimated by the EC station. The EC stations report flux
estimate quality control flags for each 30 min integration period which are based on the
outcomes of two meteorological tests, the “steady state” and “turbulence” tests, and are
both described in [69]. They reflect the confidence of flux estimates based on meteorology
(e.g., atmospheric stability) and whether the assumptions used in the eddy covariance
methods are violated. High quality flags indicate data suitable for research, moderate
flags indicate data suitable for long-term analyses only, and low quality data should not be
used for research purposes [69]. Here, only the highest quality flux data were included in
this study.

3. Results and Discussion
3.1. Conversion Factor for Altum Thermal Infrared Band

Here we produce a study-specific conversion factor based on a linear regression
between Altum TIR DN taken during UAS flights, and ground control measurements
taken using an Apogee Infrared Radiometer (Figure 3). In total we made 146 control
measurements, with surface temperatures ranging between −4.4 and 30.7 ◦C (Apogee
measurements). When Altum DN is converted to Kelvin using Equation (9) (recommended
by Micasense) and compared to Apogee measurements, the root mean square error (RMSE)
is 3.4 K, with an accuracy (bias) of 3.1 K, and precision (standard deviation) of 1.5 K.
Using the equation in Figure 3 to convert from DN to Kelvin, the RMSE = 2.0 K, mean
bias = 0.7 K and standard deviation = 1.9 K. We show that using this simple method, it
was possible to reduce systematic bias and overall error in our radiometric temperature
datasets. The coefficients used in this study may not be applicable to other surveys
using the Altum under different conditions. Further surveys at a range of temperatures
and atmospheric conditions comparing these two datasets may yield more robust and
representative coefficients, however this work only corrects some of the errors caused by
the conditions specific to our surveys. While it is not possible to ascertain the exact causes
of the errors, this correction serves as a simple atmospheric correction whereby different
influencing factors (e.g., atmospheric, flight parameters and viewing angles) between
flights have been corrected.
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3.2. UAS vs. EC Station Flux Estimates

In total 22 UAS-EC comparisons are made, as eight 30 min EC flux estimates were
flagged as low quality due to uncertainties in flux estimates, or footprint estimates, and
were not suitable for comparison. We tested two variants of the Two Source Energy Balance
model, TSEB-PT (Priestley Taylor) and TSEB-DTD (Dual Time Difference). Firstly we
compare uncorrected EC station fluxes with TSEB outputs, and secondly corrected EC
fluxes using three different methods to close the energy balance, namely by;

1. adding imbalance residuals (Imb) to H (Res_H) and using uncorrected LE;
2. adding imbalance residuals (Imb) to LE (Res_LE) and using uncorrected H;
3. by maintaining the Bowen Ratio (BR);

We principally use the study-specific conversion factor from Section 3.1 to produce
radiometric temperature inputs for TSEB (in K), but also show resultant TSEB outputs
using the standard conversion factor (Equation (9)), and compare these to the EC control
flux estimates.

When assessing the performance of the UAS vs. EC flux estimates, we consider the
overall error using RMSE (<50 W m−2 is considered ideal [70]) calculated, the mean bias
(which can be corrected), the standard deviation (indicating the random error), and the
regression coefficients which signal the predictive strength of the relationship (a slope
of 1 indicates a 1:1 scaling relationship, and R2 reflects the magnitude of the residuals
compared to the regression line). The UAS and EC data are treated as “predicted” vs.
“observed” respectively, and are plotted on the X and Y axes in regression plots accord-
ingly [71]. We provide further analysis by examining fluxes from individual flights against
EC flux time series.

The Trinity-Altum UAS produced very high quality thermal orthomosaics of our sur-
vey areas, with little blurring and very few artefacts, even in turbulent or gusty conditions.
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The TSEB outputs are also high-quality, an example of which can be seen in Figure 4, and
in Appendix A Figures A1 and A2.
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TSEB-PT estimates of RnUAS were in closer agreement with RnEC than the DTD meth-
ods, with RMSE <50 W m−2 across all sites (Table 5, Figure 5). The DTD method aims to
reduce biases in H and G caused by errors in remote sensing of Trad (e.g., atmospheric trans-
mission and/or inconsistencies in emissivity), and here DTD did provide more accurate
and precise estimates of HUAS than PT. While the GEC-GUAS correlation was closer to unity
(slope = 0.60 vs. 0.39) using the DTD method, errors were still quite high (>50 W m−2)
owing to the larger bias. The DTD method was more successful in reducing biases in HUAS
than GUAS. This was also observed when we used the lower-accuracy Trad inputs (using
Equation (9)) for TSEB; both HUAS and GUAS from the DTD model had improved slopes,
R2, and significant P-values compared to PT model outputs (Figure A3, errors are reported
in Table A1). LEUAS and uncorrected LEEC are not comparable (Figure 5), which reflects
the differences in energy balance closure between EC and UAS-based methods where TSEB
forces closure by adding imbalance residuals to LEUAS.

Table 5. Statistics describing the relationship two TSEB models and uncorrected EC flux estimates.

Flux Model Location with Highest Errors
RMSE Mean Bias Standard Deviation

(W m−2)

Rn

DTD

Graswang 53.0 35.2 40.8
H Mooseurach 23.1 −10.8 21.0
LE Mooseurach 121.6 103.7 65.2
G Mooseurach 56.3 53.5 17.9

Rn

PT

Graswang 44.9 29.4 34.7
H Mooseurach 36.1 −26.2 25.4
LE Mooseurach 128.1 112.0 63.6
G Mooseurach 51.6 45.1 25.7
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linear regression coefficients are coloured to match their flux type. The green dotted line shows unity and p-values show the
significance of the linear regressions.

Both TSEB models produced estimates of RnUAS in close agreement with RnEC
throughout the day, with a tendency to over/underestimate in grassland/woodland re-
growth sites (Fendt and Graswang/Mooseurach) (Figure 6). Diurnal changes in RnEC
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are closely matched by RnUAS with a maximum error of 111 W m−2 at the Graswang site
in September, which can be explained by the presence of cumulus clouds intermittently
obscuring the sun after midday. This confirms an operational limitation in the UAS tech-
nique, whereby homogenous cloud cover is more likely to yield flux estimates which are
consistent with EC station measurements, and is in agreement with [19].
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Figure 6. Time series plots of uncorrected Rn, H, LE and G from both the EC and UAS. The data
were collected on (a) 17 September 2020, (b) 20 July 2020, (c) 15 September 2020 and (d,e) 20 October
2020. Grey points indicate where UAS-EC comparisons were not possible due to low quality EC-
flux estimates.

GUAS was consistently higher than GEC and agreement is considered poor because the
errors across all sites and times were high (RMSE > 50 W m−2). It should be noted that GEC
is measured at the EC station site only within a radius of ca. 5 m (i.e., not estimated for the
wider area within the EC station footprint) [12], and therefore spatially distributed GUAS
are less comparable than other fluxes, especially where there is a difference in land cover
across the survey site (e.g., grass vs. mowed grass). We investigated whether extracting the
TSEB estimates of G from within a 5 m buffer of the EC station (compared to the EC station
footprint) yields better agreement with EC station estimates (Figure A4), however there
was no significant difference between G estimates (using the 5 m buffer vs. EC footprint)
for both the DTD (t = 0.88, degrees of freedom = 40.66, p-value = 0.39) and PT (t = 0.97,
d.f. = 49.43, p-value = 0.34) TSEB methods. The RMSE was actually higher when using the
5 m buffer to extract G rather than the EC footprint for both DTD (RMSE = 61.3 vs. 52.3)
and PT (RMSE = 60.2 vs. 51.8). For both TSEB models, the greatest errors were observed at
Graswang in September and July. These results highlight a potential weakness in TSEB,
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where G is estimated as a function of Rns, indicating further work is required comparing
GUAS and GEC in different meteorological and environmental conditions. GEC estimates in
this study should be treated with caution as the in-situ soil measurements used to estimate
GEC may not be high-quality.

The best correlation between UAS and corrected EC flux estimates was from the
Res_LE method of closing the surface energy balance (whereby all imbalance residuals
are assigned to LE, and uncorrected H is used) (Table 6). As TSEB explicitly calculates
HUAS, this an encouraging result, particularly for TSEB-DTD, RMSE, standard deviation
and mean bias were all low, with a slight tendency for underestimated LEUAS and HUAS
compared to EC data. Although the spread of the data were similar (both methods had
R2 ≈ 0.8), the regression coefficients were closer to unity using the DTD method (Figure 7).
This finding is in agreement with [72] who compared EC estimates with lysimeters at
an alpine grassland site (similar to Graswang), but in contrast to [20] who found closer
UAS-EC agreement using the BR method at the Fendt site used in this study. Using the BR
energy balance closure method, both DTD and PT methods estimated H poorly, but RMSE,
accuracy and precision were all similar. The Res_H method of energy balance closure
yielded the worst agreements between EC and UAS datasets, most likely because TSEB
explicitly estimates H using the temperature gradient between Ta and Tc/Ts (as derived
from Trad) [7]. When errors in Trad were introduced to the TSEB models (using Equation (9)),
the UAS-EC correlations become highly insignificant using the PT method, however some
improvements are observed in LE using the DTD method (Figure A5, Table A2). It should
be noted here that the larger errors in radiometric temperature erroneously shift the energy
fluxes from a LE- to a H-dominated system because Ts and Tc become hotter than Ta.

Figure 8 shows how UAS and corrected EC flux estimates vary at different sites across
the day. For the two grassland sites (Graswang_Sept and Fendt) both LEUAS and LEEC,
and HUAS and HEC agree very closely, especially when Res_LE method is used to close the
EC energy balance. The agreement at Mooseurach is worse for the Res_LE method (with
large under/overestimates of LE/H) than the BR method. The atmospheric conditions
were stable on the day of the survey, leading to a number of low-quality flux readings
from the EC stations. However, on aggregate using all data (including low quality flux
data) the mean LEUAS values for the small and tall tower footprints (233 and 231 W m−2)
were similar to the mean LEEC values using the BR closure method (219 and 255 W m−2).
There are a number of possible explanations for poor agreement at Mooseurach, firstly
atmospheric stability suppresses turbulent fluxes and can cause errors both in EC and
TSEB estimates [33,48]. Secondly, on the day of the survey the average difference between
air and surface temperature was 0.4 K; as the temperature gradient between the air and Ts
and Tc drive the sensible heat flux, errors are more likely when this differential is low [7].
Thirdly, at this time of the year many of the shrubs and trees were losing their leaves, while
we made every effort to measure LAI using the LICOR LAI 2200 plant canopy analyser, we
had to manually adjust the LAI to account for biases caused by the lack of green leaves [73].
As TSEB is very sensitive to LAI, this could be a significant source of error [23,74]. Fourthly,
the site was water-logged, which may be problematic for TSEB because the model has
not been tested in water-logged or flooded conditions, therefore the assumed relationship
between Rns and G may not apply here, which may increase errors in G estimates. Lastly,
the vegetation structure is very complex at this site which may increase the influence of
processes which are not accounted for in either TSEB or EC station estimates/measurements
(including canopy heat storage, biochemical canopy storage, and horizontal advection [35]),
and further surveys under a variety of plant growth and meteorological conditions would
help understand the capabilities of this UAS for flux mapping in heterogeneous vegetated
areas. Despite the low sample size in Mooseurach, we include these data in the ensemble
to demonstrate how site surveys with completely different vegetation and meteorological
characteristics can be compared using the equipment and same methodology.
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The findings of this paper highlight an important limitation in comparing UAS and EC
flux estimates. Both TSEB models force energy balance closure by assigning all residuals
(after G and H have been calculated) to LE, whereas the EC station balance is rarely closed,
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and so requires a closure method to allow comparability with UAS estimates. The literature
has shown that the most accurate EC energy balance closure methods vary with different
sites/site conditions [35]; EC vs. lysimeter comparisons show better performance in the
Res_LE in an alpine grassland [72], whereas in different pre-alpine grasslands the BR
method outperforms [52,75]. In previous remote sensing-EC comparisons, both methods
have also been adopted (see [76,77] for Res_LE, and [19,22] for BR methods. Here we show
that Res_LE produces consistently lower errors across all sites than BR (Table 7), owing to
a better regression slope (closer to 1) for both H and LE (Figure 7e,f versus a and b). This
result could be expected given that this EC energy balance closure method mirrors that
of TSEB, but perhaps the conclusion to be drawn is that while the EC station method is a
robust control method because it directly measures fluxes and reports uncertainty (usually
in the form of a quality control flag, and or percentage uncertainty), the EC energy balance
closure method itself is subject to uncertainty, and therefore the EC-UAS agreements should
be treated cautiously.

Table 6. Statistics describing the relationship between different combinations of two TSEB model and three EC energy
balance closure methods. Combined RMSE combines the errors for both LE and H fluxes.

Flux EC Correction Type Model Location with
Highest Errors

RMSE Combined RMSE Mean Bias Standard Deviation

(W m−2)

H BR DTD Mooseurach 77.4 75.5 −46.1 64.0
LE Mooseurach 73.1 −62.8 38.4

H BR PT Mooseurach 79.0 71.9 −56.4 56.6
LE Fendt 64.0 52.7 37.1

H Res_H DTD Mooseurach 153.9 138.7 −122.0 96.6
LE Mooseurach 121.6 103.7 65.2

H Res_H PT Mooseurach 153.7 141.5 −127.7 25.4
LE Fendt 128.1 112.0 63.6

H Res_LE DTD Graswang 23.1 31.9 −10.8 21.0
LE Mooseurach 38.7 −7.5 39.0

H Res_LE PT Fendt 36.1 39.5 −26.2 25.4
LE Mooseurach 42.6 10.5 42.3

Both TSEB methods yielded low errors in conjunction with Res_LE (Table 6) and there
was no significant difference in residuals for LE and H between DTD and LE (Welch Two
Sample t-test; t = −0.009, d.f. = 237.84, p-value = 0.99). However, the regression coefficients
were more favorable for both LE and H using the DTD method (Figure 7). These slight
benefits in using DTD show that it may not be worth the additional logistical challenges
involved in collecting the data for DTD, whereby a UAS survey must be conducted shortly
after sunrise [18], however further work (at more sites, under a range of conditions) is
necessary to support this.

While the EC stations report measurement uncertainty, the TSEB methodology does
not. This study produces error statistics for TSEB flux estimates that could be used as a
foundation to quantify uncertainty and error propagation in future UAS-derived estimates,
which may be important if the TSEB is used to bridge the scale gap between EC- and
satellite-based measurements.

A clear path for further work is to collect more data using this UAS at non-grassland
sites. Grassland sites are ideal systems for testing the UAS because the vegetation com-
munities are simple, access is easy and flights can be conducted safely with a low risk of
striking obstacles. We found that the errors were higher at the more complex regrowth
woodland site (Mooseurach) compared to the grassland sites, however given the small
sample size and EC quality control flags, it is unclear as to whether these errors are caused
by the vegetation complexity, the non-ideal stable meteorological conditions [78], or instru-
mentation errors. Further surveys at this site at more active times of the year (e.g., high
summer) would enable further inter-site comparison, and a more robust test of the UAS.
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The network of ICOS EC stations is distributed over many different land cover types, and
given the long range of the UAS, many more EC-UAS comparisons could be made.
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Table 7. Site level error statistics for the two TSEB models, and the two most appropriate EC energy
balance correction methods, Res_LE and BR.

Location Model

BR Res_LE
RMSE Mean Bias RMSE Mean Bias

(W m−2)
Graswang

DTD

59.1 19.3 51.6 38.4
Fendt 48.6 −2.8 33.2 16.6

Mooseurach 97.4 −46.1 53.0 −11.7
All sites 75.3 −5.0 44.7 17.6

Graswang

PT

50.9 26.8 47.4 24.9
Fendt 56.6 −19.9 37.8 16

Mooseurach 87.2 −7.9 49.5 −11.4
All sites 71.9 17.7 44.2 14.7

Converting from DN to radiometric temperature using our empirical method resulted
in a 19% reduction in RMSE across all fluxes (and 20%, 28%, 17%, and 15% reductions
for Rn, H, LE and G respectively), compared to the standard conversion factor. While we
made important steps in correcting radiometric bias in the thermal infrared data, further
improvements could be made by performing radiometric calibration using a black body
reference source [29]. However, the method employed in this paper shows that reasonable



Remote Sens. 2021, 13, 1286 21 of 28

environmental and atmospheric corrections can be applied without the use of a blackbody
reference source in a controlled environment.

The UAS used in this study has the added benefits of providing spatially distributed
estimates at very high resolution. This can enable researchers to discern how differences in
vegetation types (e.g., forest vs. shrub vs. grass), phenotypes (of cropped systems), and
land use practices (e.g., the use of different fertilisers) can influence the surface energy
balance (and water usage). The system could be used as a low-cost complement to the EC
station and can help resolve small-scale variability within the modelled footprint, however
it is worth noting that the EC station methods are better suited to long term measurements,
rather than mapping instantaneous fluxes. Given the flexibility and long range of the UAS,
it can also be used to bridge the scale gap between EC station and satellite-derived fluxes
and/or for precision agriculture practices.

4. Conclusions

This study has successfully demonstrated the application of an off-the-shelf unmanned
aerial system (e.g., Trinity F90+ and Micasense Altum) for reproducing eddy covariance
station-derived energy flux estimates using the Two-Source Energy Balance Model. Util-
ising the long flight time and range of the UAS, we demonstrate the potential for these
systems to be used to spatially map fluxes over heterogeneous land use/cover types.
Comparisons of UAS- and eddy covariance- (industry standard) derived flux estimates,
indicated good agreement between the two methodologies with errors <50 W m−2 for Rn,
LE and H. Furthermore, the UAS method provides new and additional spatial information
to EC flux estimates. We also demonstrate the importance of proper and appropriate
UAS thermal sensor calibration, and its impact on derived fluxes estimates; specifically
achieving 19% improvement in accuracies using a simple field-based calibration step.

Areas for future work should include increasing the range and diversity of land cover
types; as well as the potential for upscaling this work from EC and UAS to satellite derived
flux estimates. In addition, given the low errors in LE estimates, it could be further adapted
to high-resolution evapotranspiration mapping, particularly in water-scarce agricultural
settings which rely on irrigation.
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Figure A3. Energy flux comparisons using uncorrected EC station (observed) and UAS-derived (modelled) data using the
manufacturer’s radiometric temperature conversion factor (Equation (9)). Here two TSEB methods are tested, (a) Dual Time
Difference (DTD) and (b) Priestly-Taylor (PT). Standard error is shaded in grey and linear regression coefficients are coloured
to match their flux type. The green dotted line shows unity and p-values show the significance of the linear regressions.
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Table A1. The standard Micasense conversion factor (Equation (9)) was used to derive radiometric temperature. Here errors
are computed by comparing TSEB flux outputs with uncorrected EC station flux data.

Flux Model
RMSE Mean Bias Standard Deviation

(W m−2)

Rn

DTD

64.6 51.2 40.6
H 28.9 4.4 29.3
LE 119.4 97.3 71.2
G 64.6 61.9 19.2

Rn

PT

56.1 44.5 35.1
H 50.2 −41.5 28.9
LE 150.0 134.3 35.1
G 60.5 54.0 27.9
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Figure A4. Ground heat fluxes measured by the EC station ground heat flux plates, and estimated by (a) TSEB-DTD (n = 44)
and (b) PT (n = 52). Here we test two different extraction methods, taking the pixel mean within a 5 m buffer around the EC
station (the area closest to the ground heat flux plates), versus using the EC station footprint.

Table A2. The standard Micasense conversion factor (Equation (9)) was used to derive radiometric temperature. Here errors are
computed by comparing TSEB flux outputs with EC station flux data, whereby the energy balanced is closed using three different
methods (see Section 3.2 for a summary).

Flux EC Correction Type Model
RMSE Combined RMSE Mean Bias Standard Deviation

(W m−2)

H
BR DTD

73.2
73.6

−31.2 68.1
LE 74.1 −63.8 39.1

H
BR PT

94.6
90.0

−71.9 62.9
LE 85.1 74.3 42.6

H
Res_H DTD

145.3
133.0

−108.0 100
LE 119.4 97.3 71.2

H
Res_H PT

170.7
160.7

−144.0 92.8
LE 150.0 134.3 68.5

H
Res_LE DTD

28.9
39.4

4.4 29.3
LE 47.7 −15.2 46.5

H
Res_LE PT

50.2
50.9

−41.5 28.9
LE 51.5 31.7 41.5
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Figure A5. Resultant TSEB model outputs using inputs derived from the manufacturer’s DN-radiometric temperature
conversion factor. We present UAV- and EC-derived (modelled vs. observed) energy fluxes using three methods to close
the surface energy balance in EC data. (a,b) shows BR = maintaining the Bowen Ratio, (c,d) shows Res_H = attributing all
residuals to H and maintaining uncorrected LE, and Res_LE in (e,f) is the opposite of Res_H. Green dotted line represents
unity and p-values show the significances of the linear regression.
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