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Abstract: Rapeseed press cake (RPC), an oil pressing side product rich in protein and fiber, can be
combined with starch and valorized into directly expanded products using extrusion technology. The
mechanism of starch expansion has been studied in detail, but the impact of RPC on expansion behav-
ior is poorly understood. However, it can be linked to rheological and physicochemical properties and
is a key product quality parameter. Blends with different amounts of RPC (0, 10, 40 g/100 g) were
extruded at different barrel temperatures (100, 120, 140 ◦C) and moisture contents (24 or 29 g/100 g).
The initial, intermediate and final sectional, longitudinal and volumetric expansion indices (SEI, LEI,
VEI) were monitored directly, 10 s and 24 h after die exit to measure extrudate growth and shrink-
age. The viscous and elastic properties of the extruded blends were investigated in a closed cavity
rheometer. Starch and blends with 10 g/100 g RPC achieved a high initial SEI followed by significant
short-term shrinkage. Blends containing 40 g/100 g RPC did not show any initial expansion. With
increasing RPC content, the intermediate SEI decreased, but all samples reached a similar final SEI
due to time-dependent swelling of the RPC blends. With increasing RPC content, the elasticity of
the starch-based extruded samples significantly increased. Our study shows that comprehensive
control and understanding of expansion mechanisms can be achieved only by investigating all stages
of extrudate growth and shrinkage. We also found that the closed cavity rheometer is a powerful tool
to correlate the rheological properties and expansion mechanisms of biopolymers.

Keywords: canola; fiber; expansion; low-moisture extrusion; closed cavity rheometer; biopolymers;
plant protein; side stream

1. Introduction

Directly expanded snacks and cereals are often produced using low-moisture extrusion
technology [1]. Crucial quality characteristics of such extruded products include the
expansion properties that define the texture, giving a certain mouthfeel, bite firmness or
crunchiness. Starch is often the basis of extruded blends because its physicochemical and
rheological properties support expansion [2]. However, ingredients rich in protein and
fiber can be added to enhance the nutritional quality of extruded products [3]. The addition
of protein or fiber to starch has been associated with changes in the physicochemical and
rheological properties of the melt. The expansion properties are influenced strongly, but
can be controlled by adjusting the extrusion process conditions [4–7].

Press cakes—by-products of the oil or juice pressing process—were previously dis-
cussed as candidates for protein and fiber enrichment in foods [8,9]. In a number of
studies, press cakes were processed in blends with starch using extrusion technology to
generate sustainable and nutritious products. These press cakes significantly influenced
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the expansion of the products. Whereas sesame, hemp, bilberry, apple and blackcurrant
press cakes were shown to reduce the sectional expansion of starch-based extrudates at
even low concentrations (<25 g/100 g) [10–15], rapeseed press cake (RPC) was shown to
increase the sectional and volumetric expansion and reduce the longitudinal expansion
when added to potato starch at high concentrations (40–70 g/100 g) [16]. Although the
expansion properties could be linked to the rheological properties of the extruded products,
the correlations between material, process and product parameters were unclear. This
is because press cakes are multicomponent ingredients that make it difficult to attribute
changes in product performance to one specific impact factor.

In contrast to the expansion of blends such as starch/press cake, the expansion of pure
starch has been described comprehensively and involves several interacting steps [4,17–19].
When the hot melt exits the die at the end of the extruder barrel, a pressure drop occurs
due to the narrowing of the melt flow channel. The sudden loss of water vapor pres-
sure causes the flash evaporation of any moisture in the melt. Bubble growth occurs,
which is driven by the pressure difference between the water vapor bubbles and the sur-
rounding atmosphere [20]. The elasticity, viscosity and surface tension of the melt resists
bubble growth [21,22]. When the expansion growth phase is complete, initial shrinkage
occurs [22,23], often attributed to the elastic recoil of the matrix. The extrudate is fixed at a
certain diameter and porosity due to water evaporation, leading to a continuous decline
in the moisture content and temperature, both affecting the glass transition temperature.
When the glass transition temperature of the matrix falls, the matrix solidifies. Because
expansion is a rapid and dynamic process depending on several variables, it is challenging
to describe the expansion mechanism comprehensively.

Typically, expansion is described by expansion indices that are measured and cal-
culated based on the diameter and length of the extrudate in sectional and longitudinal
directions without relating it to the time of measurement. The sectional expansion index
(SEI) describes the radial growth of the extrudate, the longitudinal expansion index (LEI)
describes axial growth and the volumetric expansion index (VEI) is a combination of
growth in the radial and axial directions [24]. However, when the properties of extruded
products were characterized in previous studies, often only the final SEI was reported and
only a few studies, mainly using modeling techniques, investigated extrudate growth and
shrinkage separately [23,25].

The experimental studies of Horvat and Schuchmann [26] and Philipp et al. [27]
reported sectional expansion separately and investigated initial SEI and final SEI/LEI by
imaging the extrudate at the die exit. This revealed that the initial and final expansion
of starch-based blends differ, allowing the measurement of extrudate shrinkage. By also
measuring the SEI after 24 h, Horvat and Schuchmann [26] observed a second shrinkage
phase indicated by a time-dependent decrease in the SEI. Based on the online analysis
of the rheological properties of the melt, the elastic and viscous properties of the melt
were presumed to be associated with the initial growth of the extrudate, whereas the glass
transition temperature was correlated with the final fixation of the extrudate. Shrinkage
is only discussed in a limited number of previous studies and is often underestimated
in prediction models, especially in extrusion processes where the moisture content is
>25 g/100 g [26].

To control all the expansion steps when protein/fiber-rich ingredients are added to
starch, a comprehensive understanding of material and process parameters during ex-
trusion is required. This is necessary to develop new products with designated product
characteristics. The addition of RPC to starch is likely to influence the growth and shrinkage
of the extrudate, a time-dependent mechanism that can be controlled by the moisture con-
tent and barrel temperature. Accordingly, we investigated the effect of two concentrations
of RPC on the effect of starch expansion, including growth and shrinkage, compared to
pure starch. We tested three relevant barrel temperatures and two moisture contents in
order to monitor the impact of process conditions on expansion. Expansion indices were
monitored directly after die exit by camera imaging, then 10 s later and 24 h later. Moreover,
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the rheological properties of the extruded samples were investigated under extrusion-like
conditions in a closed cavity rheometer. The impact of thermomechanical treatment during
extrusion on the elastic and viscous properties of the blends was observed and correlated
to growth and shrinkage during expansion. Furthermore, we investigated the extruder
response, indicated by the specific mechanical energy input (SME) as a measure of shear
stress and the product temperature as a measure of thermal energy input.

2. Materials and Methods
2.1. Raw Materials

Cold-pressed fiber-reduced rapeseed press cake (RPC) was kindly provided by Teuto-
burger Ölmühle (Ibbenbüren, Germany). After grinding the RPC using a Hosokawa 100
UPZ mill (Hosokawa Alpine, Augsburg, Germany) at 800/min equipped with a 0.5-mm
mesh screen, the particle size distribution (Dv0.5) was 261.1 ± 4.5 µm. Rapeseed peel
was separated (sieving and sifting) from RPC by the manufacturer, reducing the fiber
content compared to standard RPC varieties. Maize starch (MS) was provided by Ingredion
(Hamburg, Germany) and the Dv0.5 was 17.7 ± 0.14 µm. MS and RPC were investigated as
single ingredients and RPC/starch blends with ratios of 40/50 and 10/70 g/100 g wet basis
(w.b.). To achieve equal lipid (15.6 ± 0.6) and raw fiber (3.3 ± 0.1) contents (g/100 g dry
matter (d.m.) basis) in all blends, 5–10 g/100 g (w.b.) rapeseed peel and oil (Teutoburger
Ölmühle, Ibbenbüren, Germany) was added, giving blend compositions of 40/50/5/5 and
10/70/10/10 RPC/starch/peel/oil [16]. The rapeseed peel Dv0.5 was 418.9 ± 15.9 µm.

2.2. Chemical Analysis and Functional Properties

The moisture content of the materials and extrudates was determined according
to the German Food Act [28]. The protein content was analyzed based on the Dumas
method according to the German Food Act [28] using a TruMac N Protein Analyzer (LECO,
St. Joseph, MI, USA). The ash content was determined according to AOAC International
method 945.46 [29]. The crude fiber content was determined according to AOAC Interna-
tional method 962.09 [30]. The starch content was determined as previously described [31].
Water absorption (g/g) of the raw materials and extruded samples was analyzed accord-
ing to AACC method 56–20.01 and water solubility (%) was determined as previously
described [32]. The particle size of MS, RPC and RP was determined using a Malvern
Mastersizer S Long Bed Version 2.15 laser diffraction particle size analyzer (Malvern
Instruments, Malvern, UK) as previously described [33].

2.3. Low-Moisture Extrusion

A co-rotating twin-screw ZSK26Mc extruder (Coperion, Stuttgart, Germany) with
a L/D ratio of 25/1 was used for the preparation of expanded products. The extrusion
process was carried out at 10 kg/h constant mass flow rate of dry feed (mdry) and a
screw speed of 300 rpm [16]. The temperature of the last barrel segment (TBarrel) was
set to 100, 120 or 140 ◦C and the moisture content of the melt (Mmelt) was kept constant
at 24 or 29 g/100 g d.m. A round orifice die was used with a diameter of 4.5 mm. After
extrusion, samples were dried in a Thermo Scientific Heraeus UT 6760 hot air oven (Thermo
Electron LED, Langenselbold, Germany) at 40 ◦C for 24 h and ground to <0.5 mm particle
size using a Grindomix GM 200 knife mill (Retsch, Haan, Germany). Extruder responses
(pressure at die exit, torque and product temperature) were monitored throughout the
sample-taking period. The specific mechanical energy (SME) was calculated as previously
described [4,34]. Extrusion trials were carried out in duplicate.

2.4. Expansion Properties

Growth and shrinkage of extruded products in the radial and axial directions are often
expressed as sectional (SEI), longitudinal (LEI) and volumetric (VEI) expansion indices.
However, to account for all three main phases of expansion (growth directly after die exit,
first shrinkage and second shrinkage), new expansion indices have been defined. The
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initial sectional expansion was evaluated according to Horvat and Schuchmann [26] with
modifications. They proposed that the initial growth phase of starch-based extrudates
was finalized after 25–115 ms. Therefore, the initial sectional expansion was given as
SEI25–115ms. A CHDHX-801-RW 4K60 camera (GoPro, San Mateo, CA, USA) was placed at
the extruder die exit and the initial diameter of extrudate strains was determined via video
image analysis based on at least 20 images per recording. During recording, a scale paper
was placed at the die exit to determine the sectional diameter growth (Figure 1). The initial
sectional expansion (SEI25–115ms) was then calculated based on the extrudate diameter (DE)
and die diameter (DD) using Equation (1).

SEI =
(

DE

DD

)2
(1)
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Figure 1. Representative image of extrudate expansion and the method used to determine
expansion parameters.

Intermediate sectional expansion (SEI10s) was determined by measuring the diam-
eter of extrudate strains with a digital caliper exactly 10 s after exiting the die. At least
10 extrudate strains were measured. Furthermore, the weight (gravimetrically) and length
(digital caliper) of extrudate strains taken over a period of 10 s was monitored in order to
calculate the intermediate longitudinal (LEI10s) and volumetric expansion (VEI10s). Longi-
tudinal expansion is usually described as the ratio of the velocity of extrudate (vE) after die
exit and the velocity of the melt (vM) inside the die (Equation (2)).

LEI =
vE

vM
(2)

vM can be calculated from the total given feed rate (
.

QM) and the cross-sectional area of
the die (Sdie) using Equation (3). The density of the melt was presumed to be 1.400 kg/m3

as reported in previous studies [35].

vM =

.
QM
Sdie

(3)

The intermediate volumetric expansion (VEI10s) was calculated as the product of SEI10s
and LEI10s. Final sectional expansion (SEI24h) of the extrudate strains was determined
using a digital caliper after drying the extrudates for 24 h at 40 ◦C. At least 10 extrudate
strains representing each blend and process setting were analyzed. The dry matter of the
dried extrudates was measured according to the German Food Act [28]. The samples were
milled to <500 µm for further analysis.
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2.5. Rheological Properties

For thermomechanical treatment, we used an RPA elite closed-cavity rheometer (TA
Instruments, New Castle, DE, USA). Because the cavity can be pressurized (4.5 MPa) and
sealed, the device allows the analysis of low-moisture samples at elevated temperatures
without water vaporization or slippage [36]. Before each test, the moisture content of
dried and milled extruded samples was determined [28] and adjusted to 24 or 29 g/100 g
(d.m.) by mixing the powdered materials with deionized water in a Thermomix (Vorwerk,
Wuppertal, Germany). To ensure homogenous water distribution, samples were incubated
in a refrigerator (4 ◦C) for at least 8 h. For rheological analysis, samples were brought to
room temperature and 6.0 ± 0.1 g samples were placed on the cone for each test. Each test
was carried out at least in duplicate. The impact of extrusion on the rheological properties
of the samples was evaluated by treating extruded samples for 10 s at a shear rate of
.
γPre = 31 s−1, before maintaining a constant measurement shear rate of

.
γM = 0.1 s−1 for

8 min (corresponding to a deformation of 1% and a frequency of 1 Hz). The pre-treatment
and measurement temperatures (TPre and TM) were equally set to 100, 120 or 140 ◦C,
corresponding to the barrel temperature (TBarrel) applied during extrusion. The rheological
parameters storage and loss modulus G’ and G” were calculated based on the torque
recorded by a transducer in the upper cone of the device [37].

3. Results
3.1. Chemical Composition

Table 1 shows the chemical composition of RPC, RP, MS and the blends. The protein
content of RPC was significantly higher compared to that of RP, but the raw fiber content
and particle size were significantly lower. The starch content of RPC and RP was low and
the purity of MS was very high, as indicated by the starch content of >99 g/100 g. With
increasing RPC content, the protein and starch content of the blends decreased.

Table 1. Chemical composition and particle size of rapeseed press cake (RPC), rapeseed peel (RP), maize starch (MS) and
the mixtures of starch with 10 and 40 g/100 g (w.b.) RPC. DM = dry matter.

Raw Material
(g/100 g)

DM
(g/100 g)

Protein × 6.25
(%DM)

Lipid
(%DM)

Raw Fiber
(%DM)

Ash
(%DM)

Starch
(%DM)

Particle Size
d50.3 (µm)

RPC 95.1 ± 0.03 38.2 ± 0.30 23.4 ± 0.90 4.7 ± 0.03 7.3 ± 0.02 3.00 ± 0.02 261.1 ± 4.5
RP 93.6 ± 0.18 15.7 ± 0.08 25.5 ± 1.12 29.4 ± 0.31 4.1 ± 0.03 4.39 ± 0.03 418.9 ± 15.9
MS 92.3 ± 0.23 n.a. n.a. n.a. n.a. 99.58 ± 0.01

Calculated Chemical Composition (g/100 g)
50MS/40RPC 90.86 ± 0.12 16.0 * 15.6 * 3.4 * n.a. 49.98 ± 0.00 n.a.
70MS/10RPC 91.23 ± 0.11 5.4 * 14.9 * 3.4 * n.a. 69.25 ± 0.01 n.a.

* Calculated based on the analyzed chemical composition of raw materials. n.a. = not analyzed.

3.2. Expansion
3.2.1. Sectional Expansion

Figure 2 shows the effect of RPC on the initial, intermediate and final SEI of extruded
MS and MS/RPC blends. The SEI15–25ms of MS was significantly higher than the SEI10sec
and SEI24h at TBarrel = 140 ◦C, but there was no significant difference between SEI10sec and
SEI24h. When 10 g/100 g RPC was added to the starch, the SEI15–25ms was significantly
higher than the SEI10s and SEI24h. However, when 40 g/100 g RPC was present, no initial
expansion was observed, but the SEI increased over time and was highest after 24 h.

Figure 3 shows the impact of RPC on the SEI10s of MS and MS/RPC blends extruded
with a moisture content of 24 g/100 g (Figure 3a) or 29 g/100 g (Figure 3b). MS achieved
the highest SEI10s regardless of TBarrel whereas the addition of RPC caused the SEI10s to
decrease. However, the SEI10s of MS declined as the moisture content increased, whereas
the moisture content had a negligible effect on the SEI10s of blends containing RPC. In
the MS/RPC40 blend, the SEI10s increased along with the TBarrel and the effect was more
pronounced at the lower moisture content. A similar phenomenon was observed for
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MS/RPC10 when the moisture content was 24 g/100 g. The variability of SEI10s for MS
extruded at TBarrel = 100 ◦C can be attributed to the irregular oscillating surface of the
extrudates. This effect has been described as the “shark skin” phenomenon and can be
attributed to stick-slip mechanisms between the melt and the inner surface of the die.
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Figure 2. Initial, intermediate and final sectional expansion indices (SEI25–115ms, SEI10s, SEI24h) of
maize starch (MS) extruded as a pure component or in blends with 10 or 40 g/100 g (w.b.) rapeseed
press cake (RPC). Samples were processed at a barrel temperature (TBarrel) of 140 ◦C, a mass flow rate
(mdry) of 10 kg/h, a moisture content (Mmelt) of 24 g/100 g (d.m.) and a screw speed (n) of 300 rpm.
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Figure 3. Intermediate sectional expansion index (SEI10s) of maize starch (MS) extruded as a pure component or in blends
with 10 or 40 g/100 g (w.b.) rapeseed press cake (RPC). Samples were processed at a barrel temperature (TBarrel) of 100,
120 or 140 ◦C, a mass flow rate (mdry) of 10 kg/h, a moisture content (Mmelt) of (a) 24 g/100 g (d.m.) or (b) 29 g/100 g (d.m.)
and a screw speed (n) of 300 rpm.
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3.2.2. Longitudinal and Volumetric Expansion

Figure 4 shows how RPC influences the LEI10s and VEI10s of MS and MS/RPC blends
at different TBarrel values. When the moisture content during extrusion was 29 g/100 g at a
TBarrel of 120 or 140 ◦C, the LEI10s and VEI10s of MS were higher than the corresponding
values for the RPC blends. At TBarrel = 100 ◦C, MS and MS/RPC40 were similar in terms of
LEI10s, but the LEI10s of MS/RPC10 was lower. Furthermore, MS/RPC10 and MS/RPC40
were similar in terms of VEI10s but MS achieved a higher VEI10s than MS/RPC10 and
MS/RPC40. With increasing TBarrel, the LEI10s of MS increased and the VEI10s of MS
peaked at TBarrel = 140 ◦C. For MS/RPC10, TBarrel had a negligible effect on the LEI10s and
VEI10s. For MS/RPC40, the highest LEI10s was observed at TBarrel = 100 ◦C and decreased
with increasing TBarrel, but did not differ when comparing TBarrel values of 120 and 140 ◦C.
The VEI10s of MS/RPC40 was not significantly influenced by TBarrel.
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Figure 4. Effect of the barrel temperature (TBarrel = 100, 120 or 140 ◦C) and rapeseed press cake (RPC)
content (0, 10 or 40 g/100 g (w.b.)) on maize starch (MS) extruded at 29 g/100 g (d.m.) moisture
content. RPC is plotted against intermediate longitudinal expansion (LEI10s, filled symbols) and
intermediate volumetric expansion (VEI10s, empty symbols).

3.3. Impact of Extrusion Treatment on Viscous and Elastic Properties of Starch/RPC Blends

Figure 5 shows the impact of time, pre-treatment and measurement temperature
(TPre, TM) on the viscous and elastic properties of MS and MS/RPC blends extruded
at various barrel temperatures. Due to flash evaporation, we assume that the product
temperature (Section 3.4) rapidly declines to 100 ◦C after die exit. Therefore, a measurement
temperature of 100 ◦C was applied to all samples to investigate the rheological properties
of the melts immediately after leaving the die.

At a TPre and TM of 100 ◦C, the G’ and G” of MS extruded at 100 or 140 ◦C did
not change over time, whereas the G’ and G” of MS/RPC10 and MS/RPC40 were far
higher compared to MS and the curve progression indicated that G’ increases over time. In
MS/RPC10 and MS/RPC40, the increase in G’ and G” was higher when the TBarrel was
100 ◦C rather than 140 ◦C. Increasing the TPre and TM to 140 ◦C reduced the G’ and G” of
all samples and the G’ and G” of MS were again lower than the corresponding values for
MS/RPC10 and MS/RPC40. The G’ curve progression was similar for MS/RPC10 and
MS/RPC40, except when TBarrel was set to 140 ◦C and TPre and TM were set to 100 ◦C,
in which case MS/RPC40 achieved a higher G’ than MS/RPC10. MS/RPC40 achieved a
significantly higher G” than MS/RPC10 at all temperatures.
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Figure 6 shows the G’ of MS and MS/RPC blends as an effect of TBarrel after mea-
surement for 1 min at 100 ◦C. TBarrel did not affect the G’ of MS, but G’ decreased with
increasing TBarrel in the RPC blends. Increasing the TBarrel from 100 to 120 ◦C caused a de-
cline in G’ for both MS/RPC10 and MS/RPC40, but this effect was significantly greater for
MS/RPC10. The addition of RPC generally caused G’ to increase significantly regardless of
TBarrel. At TBarrel = 100 ◦C, there was no significant difference between the G’ of MS/RPC10
and MS/RPC40.
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Figure 5. Storage modulus G’ (a,c) and loss modulus G” (b,d) (kPa) as a function of treatment time (min), pre-treatment and
measurement temperature (TPre, TM) of maize starch (MS) and maize starch blended with 10 or 40 g/100 g (w.b.) rapeseed
press cake (RPC) rehydrated to a moisture content of 24 g/100 g (d.m.). The samples were extruded at a moisture content of
24 g/100 g (d.m.) and barrel temperatures (TBarrel) of 100 or 140 ◦C.

3.4. Extruder Response

Table 2 summarizes the extruder responses (pressure at die, product temperature,
torque and SME) as a function of RPC content and TBarrel. At TBarrel = 100 and 120 ◦C,
the pressure at the die and product temperature increased in the order MS, MS/RPC40,
MS/RPC10. At TBarrel = 140 ◦C, MS reached the highest product temperature and MS/RPC10
reached the highest pressure at the die (followed by MS) whereas MS/RPC40 reached a
comparatively low pressure at the die. The SME, a function of torque, was highest for MS
and decreased significantly (p < 0.05) with increasing RPC content regardless of TBarrel.
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Figure 6. Storage modulus G‘ (kPa) after 1 min treatment time (TT) as a function of rapeseed press
cake (RPC) content (0, 10 or 40 g/100 g (w.b.)) and barrel temperature (TBarrel = 100, 120, 140 ◦C) of
extruded maize starch (MS) blends. Samples extruded and rehydrated to 24 g/100 g (d.m.) moisture
content; pre-treatment and measurement temperature (TPre, TM) 100 ◦C. Mean values with different
superscript letters indicate significant differences (p < 0.05) based on a one-way analysis of variance
(ANOVA). Means were compared using Tukey’s honest significance test.

Table 2. Extruder response parameters (pressure at the die, product temperature, torque and specific mechanical en-
ergy input (SME)) as a function of barrel temperature (TBarrel = 100, 120, 140 ◦C) of maize starch (MS) blended with
10 or 40 g/100 g (w.b.) rapeseed press cake (RPC) extruded at a moisture content of 24 g/100 g (d.m.).

Sample Barrel Temperature
TBarrel (◦C)

Pressure at the Die
(bar)

Product Temperature
(◦C) Torque (%) SME (Wh/kg)

MS 100 5.88 ± 0.62 a 91.87 ± 0.83 a 29.77 ± 0.48 a 12.16 ± 0.2 a

MS/RPC10 100 15.07 ± 2.50 b 111.34 ± 1.56 b 17.93 ± 1.63 b 6.94 ± 0.63 b

MS/RPC40 100 8.47 ± 0.79 c 105.98 ± 0.45 c 11.84 ± 0.71 c 4.66 ± 0.23 c

MS 120 5.66 ± 0.07 a 119.00 ± 0.50 a 30.73 ± 0.41 a 12.75 ± 0.17 a

MS/RPC10 120 13.12 ± 3.73 b 121.63 ± 1.63 a 13.47 ± 1.40 b 5.22 ± 0.45 b

MS/RPC40 120 6.99 ± 0.11 c 114.07 ± 0.13 b 11.12 ± 0.16 b 4.38 ± 0.06 b

MS 140 9.42 ± 0.12 a 135.47 ± 2.47 a 27.43 ± 0.58 a 11.67 ± 3.7 a

MS/RPC10 140 11.09 ± 3.92 b 131.38 ± 1.32 a 12.44 ± 1.68 b 4.81 ± 0.65 b

MS/RPC40 140 4.36 ± 0.67 c 124.14 ± 0.29 b 9.44 ± 0.28 c 3.71 ± 0.11 b

Mean values with different superscript letters within one column and barrel temperature indicate significant differences (p < 0.05) based on
a one-way analysis of variance (ANOVA). When appropriate, means are compared using Tukey’s honest significance test.

The high SME of MS compared to RPC blends can be attributed to the less compact
structure generated by fibrous RPC components, which have a larger particle size than
MS, distributed in the starch matrix. These insoluble fibers may also explain the higher
pressure at the die of MS/RPC10 compared to MS and MS/RPC40. The fibers might
be solubilized during extrusion, resulting in a high water binding and holding capacity
leading to swelling and a higher pressure build up at the die exit (Sections 4.1 and 4.4). The
dry matter content of extruded samples is shown in Table 3 as a function of the applied
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moisture content during extrusion. Due to the drying of the extrudates after extrusion, the
dry matter content of all samples was >90 g/100 g. Regardless of TBarrel, samples extruded
at lower moisture contents featured higher dry matter contents after drying.

Table 3. Effect of barrel temperature (TBarrel = 100, 120, 140 ◦C) and the addition of rapeseed press
cake (RPC) (0, 10, 40 g/100 g (w.b.)) to maize starch (MS) extruded at 24 or 29 g/100 g (d.m.) moisture
content on dry matter content (g/100 g) after drying extrudates for 24 h at 40 ◦C.

Blend Dry Matter after Drying (g/100 g) Dry Matter after Drying (g/100 g)
Mmelt = 24 g/100 g Mmelt = 29 g/100 g

TBarrel = 100 ◦C
MS 95.45 ± 0.89 a 90.00 ± 1.10 a

MS/RC10 97.18 ± 1.29 b 92.17 ± 0.94 b

MS/RC40 95.94 ± 1.14 a 92.45 ± 1.64 b

TBarrel = 120 ◦C
MS 93.22 ± 1.76 a 90.40 ± 1.22 a

MS/RC10 92.56 ± 0.98 a 92.49 ± 1.51 b

MS/RC40 93.97 ± 0.87 a 91.47 ± 2.11 b

TBarrel = 140 ◦C
MS 91.34 ± 2.22 a 89.90 ± 0.08 a

MS/RC10 96.36 ± 2.15 b 92.39 ± 1.75 b

MS/RC40 93.69 ± 0.99 c 90.97 ± 1.35 a

Mean values with different superscript letters within one column and barrel temperature indicate significant
differences (p < 0.05) based on a one-way analysis of variance (ANOVA). When appropriate, means were compared
using Tukey’s honest significance test.

3.5. Water Absorption Index and Water Solubility Index

The water absorption and water solubility indices (WAI and WSI) of non-extruded
and extruded starch and starch/RPC blends are compared in Figure 7. The WAI and WSI
of starch-based blends were highly dependent on the extrusion process conditions. Overall,
the WAI of all samples was relatively low. The WAI of MS was highest for the non-extruded
samples and decreased with increasing TBarrel, whereas the WSI was lowest for the non-
extruded samples and increased with increasing TBarrel. The WAI and WSI of RPC blends
showed the opposite trend. The WAI of RPC blends was low for the non-extruded samples
and increased with increasing TBarrel, whereas the WSI was highest for the non-extruded
samples and declined with increasing TBarrel. These effects probably reflect the presence of
rapeseed fiber and protein in the RPC blends as discussed in Section 4.4.
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Figure 7. Water absorption and solubility. (a) Water absorption index (WAI) and (b) water solubility index (WSI) as a
function of barrel temperature (TBarrel = 100, 120, 140 ◦C) of maize starch (MS) blended with 10 or 40 g/100 g (w.b.) rapeseed
press cake (RPC) extruded at 29 g/100 g (d.m.) moisture content. Lines have been added for visual clarity.
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4. Discussion
4.1. Correlation between Sectional Expansion Properties and Rheological Properties

The rheological properties of blends play an important role in extrudate growth
and shrinkage [6,17,38]. Whereas the storage modulus represents the elastic properties
of a material, the loss modulus is linked to the viscous properties. The structuring of
materials during expansion has been correlated to elastic material properties in previous
studies [6,17,38,39]. The addition of RPC changed the viscous and elastic properties of
the starch- based blends (Section 3.3), specifically affecting the pressure and the product
temperature at the die exit during extrusion (Table 2). These parameters synergistically
affect not only the degree of expansion, but the direction (radial, axial) and preservation
(shrinkage) of expansion (Figure 2).

RPC blends extruded at TBarrel = 100–140 ◦C achieved greater elasticity than MS, pos-
sibly reflecting the intermediate expansion, SEI10s (Figures 5 and 6). The G’ of MS/RPC10
was higher than that of MS, resulting in greater elastic recoil and more pronounced shrink-
age, thus, in turn, reducing the SEI10s. Furthermore, the G’ of MS/RPC40 extruded at
TBarrel = 140 ◦C was significantly higher than that of MS/RPC10 after 1 min treatment time
at 100 ◦C (Figure 6). This might explain the large difference in SEI25–115ms between blends
containing 10 and 40 g/100 RPC. A certain amount of elasticity is required to allow bubble
growth and stabilize the vapor bubbles in the matrix, as seen for MS/RPC10. However,
previous studies revealed that high extensional forces are caused by the pressure drop at
the extruder barrel; thus, the vapor bubbles are subjected to forces beyond their elastic
limits [40]. Accordingly, blends containing 40 g/100 g RPC exceeded the threshold for
vapor bubble stabilization in the melt. Blends containing 10 or 40 g/100 g RPC contained
equal amounts of lipid and raw fiber, but the protein content increased in line with the RPC
content. The increase of G’ and G” over time was highest when the blends were extruded
at TBarrel = 100 ◦C (Section 3.3). This indicates that at TBarrel = 100 ◦C the rapeseed proteins
in the blends are not fully polymerized and are still reactive after extrusion treatment. This
may explain the more pronounced effect of TBarrel on the SEI10s of MS/RPC40.

In addition to the effect of rapeseed proteins on the initial expansion process, the
lower SEI10s of RPC blends compared to MS may reflect the presence of insoluble dietary
fiber originating from the RPC. Previous results show that once a critical concentration of
insoluble fibers has been reached in extruded blends, sectional expansion is often limited,
although this has only been investigated based on the final SEI [41]. The fibers originating
from RPC can align themselves in the direction of flow, strengthening the expanding melt,
increasing its mechanical resistance in the axial direction and creating an anisotropic matrix
structure [42]. This in turn can limit sectional expansion, because the structural anisotropy
inhibits the biaxial extensional properties of the extruded blends [21]. A lower SEI10s in
the presence of RPC (Figure 3) agrees with previous studies investigating the effect of
oilseed and juice press cakes on sectional expansion [10–14,43,44]. However, these studies
monitored the final SEI of the extrudates at an unknown time point, so the results cannot
be compared directly and, in our study, may be linked to SEI 24h.

The high SEI25–115ms of MS/RPC10 (Figure 2) may also be linked to the presence of
insoluble fiber. The raw fiber content of MS/RPC10 and MS/RPC40 was kept constant by
adding 10 and 5 g/100 g (w.b.) rapeseed peel, respectively (Section 2.1). Rapeseed peel
consists of >80 g/100 g (d.m.) insoluble dietary fiber [16], so MS/RPC10 contains higher
amounts of insoluble fiber than MS/RPC40. Previous studies reported that the addition
of insoluble fiber (i.e., wheat bran, corn bran, brewer’s spent grain, cauliflower, soy and
sugar beet fiber) led to cellular structures with smaller air cell sizes but a higher cell den-
sity [41]. The authors attributed this effect to more pronounced nucleation in the extruder.
Therefore, we assume that insoluble rapeseed fibers in MS/RPC10 promoted nucleation
and a consequently rapid expansion directly after die exit. Vapor-driven expansion is
predominantly influenced by expansion in the sectional direction and has been used as an
indirect measure of bubble growth rate [23]. Moreover, a large amount of insoluble dietary
fiber, as found in MS/RPC10, may promote the swelling of the extrudate at the die exit
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due to the solubilization of insoluble fibers [45]. This would increase the moisture binding
capacity of the melt and the SEI25–115ms. The high water absorption of MS/RPC10 extruded
at TBarrel = 140 ◦C supports these assumptions (Sections 3.5 and 4.4).

The effect of fibers on sectional expansion appears to be concentration dependent and
strongly influenced by the applied process conditions [21]. In previous studies, the addition
of fiber to materials with a low moisture content resulted in the significant restriction of
final sectional expansion. However, when the moisture content was higher (>20 g/100 g),
as in the current study, the presence of fibers in the blends had a limited effect on the final
expansion ratio [46]. The similar SEI24h of MS and RPC blends supports these findings.
The large SEI25–115ms of MS/RPC10 extruded at TBarrel = 140 ◦C was accompanied by a
lower mechanical energy input, a lower product temperature and a higher pressure at the
die compared to MS and MS/RPC40 (Section 3.4). An increase in pressure due to a lower
SME and product temperature has been reported previously and may have encouraged
the more pronounced initial radial expansion of MS/RPC10 [47].

Although the stages of expansion are described elsewhere as exclusively growth
followed by shrinkage [26], the RPC blends in our study increased in diameter within
the time of 10 s and 24 h after die exit. This effect was probably initiated by the high
swelling potential of rapeseed fibers, allowing them to bind the moisture in the melt during
processing and leading to a gradual increase in the diameter of the extrudate strains over
time. Thus far, the effect of extrudate shrinkage during post-processing (e.g., drying and
storage) has received little attention from researchers and is underestimated in expansion
prediction models, although it is a critical parameter for final product quality [26].

4.2. Sectional Expansion Properties and Glass Transition Temperature

The observed expansion properties of extruded starch and starch/RPC blends may
also be related to the glass transition temperature (TG) of the blends. Intermediate sectional
expansion, determined by measuring the extrudate strain diameter 10 s after die exit, can
be linked to exceeding the TG required for the solidification of the matrix [27,48]. The
higher SEI10s of MS compared to RPC blends can be linked to a possible decrease in TG
due to the addition of RPC.

The TG of maize starch is 20–60 ◦C with a moisture content of 25–50 g/100 g [49].
Gelatinized starch, generated by thermomechanical treatment during extrusion, has an
even lower TG of <15 ◦C with a moisture content >25 g/100 g [49]. The TG of several plant
proteins has also been reported. Barley proteins have a TG of 30 ◦C with a moisture content
of 15 g/100 g [50]. Gluten was reported to show a TG of 70 ◦C at a moisture content of
12.5 g/100 g, as determined by differential scanning calorimetry, whereas dynamic mechan-
ical thermal analysis of gluten conditioned to >25 g/100 g moisture content resulted in a TG
of <10 ◦C [51]. The TG of soy protein was ~40 ◦C at a moisture content of 15 g/100 g [51]
and freeze-dried canola protein isolates had a TG of 50–65 ◦C [52].

When plant-based components were added to starch in extrusion studies, the TG
decreased in line with the content of plant material, as seen for pea starch blends with an
increasing pea protein content [53]. Based on these findings, it is likely that the addition
of RPC led to a lower TG compared to starch (possibly below room temperature), such
that no complete solidification of RPC extrudates occurred before drying. MS, presumably,
passed the TG and solidified when it was brought to room temperature shortly after die
exit, resulting in no significant difference between the SEI10s and SEI24h. Although room
temperature was ~23 ◦C during extrusion, previous studies suggest that the first stage of
solidification of extrudates begins at 30–45 ◦C above TG [26].

Generally, TG decreases with increasing moisture content. During drying, constant
moisture loss increased the TG of RPC blends such that the TG may have been reached at
an unknown point during the 24 h period, explaining the increased diameter of MS/RPC10
and MS/RPC40 extrudates over time. The lower TG with increasing moisture contents also
explains the lower SEI10s of MS with increasing moisture content. With a higher TG, the
extrudate solidifies at an earlier stage of shrinkage and a larger diameter.
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In previous studies, the first shrinkage of starch was attributed to elastic recovery or
water vapor condensation inside a vapor cell, generating a negative pressure difference.
In parallel, the sudden moisture loss leads to a decrease in temperature, which in turn
increases the viscosity of the matrix. During drying, further moisture loss and lower
temperatures were reported to facilitate the crossing of the TG to initiate a second decrease
in the extrudate diameter [26]. However, we did not observe a second shrinkage stage for
MS in this study, which can be attributed to differences in the chemical composition and
physicochemical material properties compared to previous studies. The starch content of
the MS we used was 99.06 ± 0.01 g/100 g, whereas Horvat and Schuchmann [26] used corn
grits with a starch content of 58 g/100 g. Therefore, the TG as well as elastic and viscous
properties may differ considerably resulting in a different shrinkage mechanism.

4.3. Correlation between Longitudinal Expansion and Rheological Properties

The longitudinal expansion properties of starch-based melts have been associated
with their viscous properties [17,24,54]. The viscosity of the melt in turn affects the pressure
at the die. The lower LEI10s of MS/RPC10 extruded at 29 g/100 g was accompanied by a
higher SEI25–115ms, in agreement with previous reports [55]. At TBarrel = 100 ◦C, MS/RPC10
generated a higher pressure at the die than MS/RPC40 and MS, which behaved similarly
to each other (Section 3.4). A low pressure at the die is related to increased longitudinal
expansion, because a shallow pressure gradient between the inside and outside of the barrel
achieves the water vapor pressure shortly after die exit and no distinct bubble growth is
observed [56].

The higher LEI10s of MS/RPC40 compared to MS/RPC10, especially when samples
were extruded at TBarrel = 100 ◦C, is linked to the rheological properties of the blends. We
were also able to relate longitudinal expansion to the viscous properties of the melt, as
previously reported [17]. Furthermore, the G” of extruded MS/RPC40 was far larger than
that of MS and MS/RPC10, presumably leading to the higher LEI10s (Section 3.3). This
effect was more pronounced when the barrel and measurement temperature was 100 ◦C
rather than 140 ◦C.

The higher LEI10s of MS with increasing TBarrel can be attributed to the effect of TBarrel
on viscosity. A higher TBarrel reduces the viscosity of the melt, allowing the melt to reach a
higher velocity outside the die and thus encouraging longitudinal expansion. High radial
expansion, as seen for MS with a lower moisture content, reduces the velocity of the melt
outside the die, leading to a comparatively small LEI.

4.4. Water Absorption and Water Solubility

Some studies report that the WAI of starch increases with thermomechanical treatment
due to gelatinization, the breakage of intramolecular and intermolecular bonds and the
exposed hydroxyl groups that can form hydrogen bonds with water [57]. However, this
effect was not observed in our study. We assume that the relatively high moisture content in
our study generated resistant starch due to the better nucleation and elongation of amylose
and amylopectin chains. This effect can induce recrystallization or retrogradation leading
to the formation of hydrogen bond-stabilized dense starch structures, reducing the WAI of
extruded starch [58].

The increasing WAI of RPC blends can be attributed to the solubilization of insol-
uble dietary fiber by thermomechanical treatment. A high water binding capacity for
extruded fiber-rich biopolymers was also reported in previous studies of lupin fiber [45],
wheat bran [59], orange pomace [60], carrot residues [61] and barley meal [62]. Fet-
zer et al. [63] reported cellulose, hemicellulose and lignin contents of 6.8 ± 0.6, 3.9 ± 0.6 and
11.4 ± 0.1 g/100 g d.m., respectively, for cold-pressed RPC. The solubilization of hemicel-
lulose and pectin-like polymers, which are present in RPC, was particularly well correlated
with higher water-binding capacity [64,65].

The lower WSI of RPC blends compared to starch may reflect the presence of rapeseed
proteins. At TBarrel = 100 and 120 ◦C, the WSI of MS/RPC10 was higher than that of
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MS/RPC40. This indicates that the larger protein content of MS/RPC40 may encourage
rapeseed proteins that are soluble in their native state to denature, unfold and form new
bonds due to thermomechanical treatment, which reduces their solubility in water.

The increasing WSI of MS with increasing TBarrel may be related to the separation of
amylose and amylopectin chains from an extendable matrix, thus increasing the solubil-
ity [57]. Previous studies reported a higher WSI for fully gelatinized MS and indicated
that a moisture content of 28–30 g/100 g during extrusion promotes a maximum degree of
gelatinization [66]. Therefore, we assume that the process conditions in our study led to
the full gelatinization of starch resulting in a higher WSI.

5. Conclusions

In this study, we used image processing to investigate the expansion dynamics (initial,
intermediate and final expansion) of starch-based blends enriched with RPC, in order to
determine the effect of different RPC contents and process conditions on the rheological
properties, expansion, extruder response and physicochemical parameters of directly
expanded products. We tested two RPC contents (10 and 40 g/100 g) in addition to pure
MS at three barrel temperatures (100, 120, 140 ◦C) and two moisture contents (24 and
29 g/100 g). A closed cavity rheometer simulating extrusion conditions was used to
investigate the rheological properties of the starch/press cake blends after extrusion.

The expansion of starch was initially high but was dominated by severe shrinkage
shortly after die exit. Blends containing 10 g/100 g RPC achieved the highest initial sectional
growth followed by substantial short-term shrinkage, but the diameter increased over the
next 24 h. The high initial expansion was associated with the potential solubilization of
inert rapeseed fibers, conferring much greater water binding and holding capacity and
thus promoting swelling at the die exit. The large shrinkage rate in blends with 10 g/100 g
RPC was linked to the greater elasticity observed in post-extrusion rheological analysis,
initiating elastic recoil after die exit. Blends containing 40 g/100 g RPC exhibited no initial
growth, but increased in diameter over a period of 24 h.

Our study revealed that it is important to monitor the initial growth and shrinkage
rate of extrudates in addition to the final expansion in order to draw correlations with
underlying rheological and/or physicochemical material properties. We also confirmed
that that the closed cavity rheometer is a powerful tool that can be used to correlate the
rheological properties of biopolymers with the expansion mechanism.
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Abbreviations
d.m. Dry matter (g/100g)
LEI Longitudinal expansion index
n.a. Not analysed
Mmelt Moisture content of melt (g/100 g)
Mdry Mass flow rate of dry feed (kg/h)
MS Maize starch
RO Rapeseed oil
RP Rapeseed peel
RPC Rapeseed press cake
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SEI Sectional expansion index
SME Specific mechanical energy (Wh/kg)
T Temperature (◦C)
TBarrel Barrel temperature (◦C)
TM Measurement temperature (◦C)
TPre Pre-treatment temperature (◦C)
VEI Volumetric expansion index
WAI Water absorption index
w.b. Wet basis (g/100 g)
WSI Water solubility index
.
γPre Pre-treatment shear stress (s−1)
.
γM Measurement shear stress (s−1)
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