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Abstract
Large-strain thermo-viscoelasticity is described in the framework of GENERIC.
To this end, a new material representation of the inelastic part of the dissipa-
tive bracket is proposed. The bracket form of GENERIC generates the governing
equations for large-strain thermo-viscoelasticity including the nonlinear evolu-
tion law for the internal variables associated with inelastic deformations. The
GENERIC formalism facilitates the free choice of the thermodynamic vari-
able. In particular, one may choose (i) the internal energy density, (ii) the
entropy density, or (iii) the absolute temperature as the thermodynamic vari-
able. A mixed finite element method is proposed for the discretization in space
which preserves the GENERIC form of the resulting semi-discrete evolution
equations. The GENERIC-consistent space discretization makes possible the
design of structure-preserving time-stepping schemes. The mid-point type dis-
cretization in time yields three alternative schemes. Depending on the specific
choice of the thermodynamic variable, these schemes are shown to be partially
structure-preserving. In addition to that, it is shown that a slight modifica-
tion of the mid-point type schemes yields fully structure-preserving schemes.
In particular, three alternative energy-momentum-entropy consistent schemes
are devised associated with the specific choice of the thermodynamic variable.
Numerical investigations are presented which confirm the theoretical findings
and shed light on the numerical stability of the newly developed schemes.
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1 INTRODUCTION

Structure-preserving time integration schemes, also known as geometric integrators, have been an active topic of research
in applied mathematics and computational mechanics for decades (see Leimkuhler and Reich1 and Hairer et al.2 for
a large number of contributions to the field). Geometric integrators are designed in such a way, that the numerical
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method respects the fundamental physics of the problem by preserving the geometric properties in a discrete setting.
Associated with the preservation of the geometric structure excellent long-term performance and numerical stability have
been reported. In the realm of Langragian/Hamiltonian mechanics, many geometric integrators can be gathered around
two classes: Variational integrators (see, e.g., Marsden and Ratiu,3 Lew et al.,4 and Lall and West5 for more details) and
energy-momentum integrators (see, e.g., LaBudde and Greenspan,6,7 Gonzalez,8 or Betsch9 for a comprehensive overview
of previous developments), and energy-decaying variants thereof; see Gebhardt et al.10 and references therein.

Numerous attempts have been made to extend structure-preserving schemes to the domain of
non-conservative mechanical systems, such as port-Hamiltonian systems,11 viscoelasticity,12,13 elastoplasticity,14 and
thermo-viscoelasticity.15-17 Unlike the Lagrangian/Hamiltonian case, these structure-preserving schemes do not emerge
from an unifying theory.

However, the GENERIC (General Equation for Non-Equilibrium Reversible-Irreversible Coupling) provides a
double-generator framework which expresses thermomechanical models of dissipative materials (or generalized standard
materials) in a unifying formalism. Its formulation is based on an additive decomposition of the time-evolution equations
into a reversible part and a dissipative part and can be seen as a natural extension of Hamiltonian mechanics to the dissi-
pative regime (see, e.g., Badlyan et al.18 for a relation to Port-Hamiltonian systems). Originally, the GENERIC framework
has been developed in the context of complex fluids19,20 (see Öttinger21 for a comprehensive account of the GENERIC
formalism).

An early application of the GENERIC formalism to finite strain thermo-elasticity is due to Hütter and Tervoort,22 albeit
in a Eulerian setting which is quite uncommon in solid mechanics. Later the Lagrangian setting has been used in Refer-
ences 23-25 to develop the GENERIC framework for non-isothermal solid mechanics. Moreover, Hütter and Svendsen23,24

prefer to use the absolute temperature as thermodynamic state variable, while in Mielke25 a special form of GENERIC is
devised which makes possible the free choice of the thermodynamic variable.

In the field of computational solid mechanics Romero26 was the first who recognized the great potential of
the GENERIC framework for the design of structure-preserving time-stepping schemes. Since the GENERIC frame-
work automatically ensures the thermodynamic admissibility of the time-evolution equations, it provides an ideal
starting point for the development of thermodynamically consistent (TC) integrators. In particular, TC integra-
tors comply with both the first and second law of thermodynamics, independent of the size of the time-step.
Therefore, TC integrators may also be termed “energy-entropy” integrators. If TC integrators further respect sym-
metries of the underlying mechanical system, they can be viewed as extension to the dissipative regime of
energy-momentum (EM) integrators previously developed for Hamiltonian systems with symmetry; see, for example,
References 8,27,28.

Consequently, GENERIC provides a solid theoretical foundation for the design of energy-momentum-entropy (EME)
methods, as shown, for example, in References 29-32 for entropy-based and in References 33-36 for temperature-based
formulations.

The construction of GENERIC-based structure-preserving numerical methods is not limited to EME methods. For
example, the so-called GENERIC integrators have been developed in References 37 and 38, which can be regarded as
extension of symplectic integrators for Hamiltonian systems to the realm of dissipative systems. Another example are
GENERIC-based structure-preserving numerical methods for neural networks.18

Considering the description of large strain thermoelasticity, a GENERIC-based weak form is derived in Betsch and
Schiebl39 which makes possible the free choice of thermodynamic state variable following the approach presented in
Mielke.25 It was shown in Betsch and Schiebl39 that application of the standard mid-point rule to the GENERIC-based
weak form already yields partially structure-preserving schemes. For example, choosing the internal energy density
as thermodynamic variable leads to an EM scheme, while the choice of entropy density yields a momentum-entropy
method.

However, despite of their (partially) structure-preserving properties, all of the mid-point type schemes considered in
Betsch and Schiebl39 cannot prevent numerical instabilities. This issue was resolved in Betsch and Schiebl40 by resorting
to a GENERIC-consistent space discretization followed by the application of partitioned discrete derivatives in the sense
of Gonzalez.41 The resulting EME schemes satisfy a specific Lyapunov-type stability estimate and thus do not exhibit any
numerical instabilities.

The main goal of the present work is to extend our previous work39,40 to the realm of thermo-viscoelasticity. In par-
ticular, we aim at a material formulation of isotropic large strain thermo-viscoelasticity which makes possible the free
choice of thermodynamic state variable. To this end, we build on previous work by Hütter and Svendsen24 who laid the
theoretical basis for the GENERIC description of thermo-viscoelasticity.
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The rest of this article is organized as follows. In Section 2, the bracket form of the GENERIC formalism is introduced
for thermo-viscoelasticity with heat conduction. In particular, in Section 3, a new material version of the inelastic dissi-
pative bracket is proposed, which makes possible the free choice of the thermodynamic variable. In Section 4, a mixed
finite element approach is proposed which yields a GENERIC-consistent semi-discrete form of the evolution equations.
The mid-point type discretization in time is dealt with in Section 5 leading to alternative (partially) structure-preserving
schemes. After the numerical investigations in Section 6, conclusions are drawn in Section 7.

2 GENERIC-BASED FORMULATION OF LARGE STRAIN
THERMO-VISCOELASTICITY

The present work relies on a material description of large strain thermo-viscoelasticity within the framework of
GENERIC. The developments presented herein extend our previous work39 on thermo-elasticity to the realm of inelastic
deformations. For more background on the GENERIC framework the reader is referred to Betsch and Schiebl39 and the
references therein. In the GENERIC framework, the time-evolution of any functional  is governed by

d
dt

= {, } + [,] . (1)

The evolution equation (1) is valid for closed systems in which the boundaries are disregarded. We consider a contin-
uum body with material points X=XAeA in the reference configuration  ⊂ R3 (Figure 1). The material coordinates XA

refer to canonical base vectors eA ∈ R3. Here and in the sequel, the summation convention applies to repeated indices.
Within the Lagrangian description of continuum mechanics the deformed configuration of the body at time t is character-
ized by the deformation map𝝋 ∶  ×  → R3, where  = [0,T] is the time interval of interest. Accordingly, the placement
at time t of the material point X ∈  is given by x=𝛗(X, t). The corresponding velocity field v ∶  ×  → R3 is defined
by v = 𝝋̇, where a superposed dot denotes the material time derivative. The deformation gradient is given by

F = 𝜕X𝝋, (2)

or, in components, (F)i⋅
⋅A = 𝜕xi∕𝜕XA. Furthermore, the right Cauchy-Green tensor reads

C = FTF. (3)

In the GENERIC (1), we consider functionals of the form

 = (𝝋,p, 𝜏,C−1
p ) = ∫

a(𝝋,F,p, 𝜏,C−1
p ) dV , (4)

where p = 𝜌v is the linear momentum density and 𝜌 ∶  → R+ is the mass density in the reference configuration.
Moreover, 𝜏 ∶  ×  → R is a generalized thermodynamic field which may be chosen from among three alternatives,

F I G U R E 1 Reference configuration  and deformed
configuration 𝝋(, t) at time t. For now the focus is on the
motion of isolated thermomechanically coupled solids.
That is, external tractions acting on the boundary as well
heat fluxes across the boundary are disregarded
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𝜏 ∈ {𝜃, 𝜂,u}. The three alternative fields are the absolute temperature 𝜃, the entropy density 𝜂, and the internal energy
density u.

To describe inelastic deformations, we make use of the internal variable C−1
p ∶  ×  → R3×3. Since we focus on

isotropic inelastic deformations, C−1
p is assumed to be symmetric, that is, (C−1

p )T = C−1
p . Therefore the density func-

tion a in (4) is subject to the same isotropic restrictions as the Helmholtz free energy function, to be introduced
in Section 3.

GENERIC (1) decouples reversible and irreversible processes. In particular, the Poisson bracket { ⋅ , ⋅ } is responsible
for reversible processes, while the dissipative (or friction) bracket [⋅ , ⋅] embodies irreversible processes. Accordingly, these
two brackets constitute fundamental entities of the GENERIC framework and shall be specified next. Since inelastic
deformations are purely irreversible, the Poisson bracket retains its thermo-elastic form (see Betsch and Schiebl39)

{,} = ∫

(
𝛿𝝋a + Div

(
𝛿𝝉a
𝜕𝜏𝜂

𝜕F𝜂

))
⋅ 𝛿pb −

(
𝛿𝝋b + Div

(
𝛿𝝉b
𝜕𝜏𝜂

𝜕F𝜂

))
⋅ 𝛿pa dV , (5)

where  and  are arbitrary functionals of the form (4). Furthermore, the functional derivatives in (5) are given by

𝛿𝝋a = 𝜕𝝋a − Div𝜕Fa,
𝛿pa = 𝜕pa,
𝛿𝝉a = 𝜕𝜏a,

𝛿C−1
p

a = 𝜕C−1
p

a. (6)

In (5), 𝜂 denotes the entropy density giving rise to the total entropy of the system

(𝝋, 𝜏,C−1
p ) = ∫

𝜂(F, 𝜏,C−1
p ) dV . (7)

The dissipative bracket for the thermo-viscoelastic problem at hand can be additively decomposed into a part due to
heat conduction and a part taking into account inelastic deformations:

[,] = [,]cond + [,]inel. (8)

In analogy to thermo-elasticity with heat conduction, the dissipative bracket accounting for heat conduction is given
by (see Betsch and Schiebl39)

[,]cond = ∫
∇
(
𝛿𝜏a

𝜕𝜏u

)
⋅ Θ2K∇

(
𝛿𝜏b

𝜕𝜏u

)
dV . (9)

Here, K = K(C, 𝜏) is the material conductivity tensor, for which we assume that KT =K and a : K : a≥ 0 holds for all
a ∈ R3. An important element of the GENERIC framework is that the absolute temperature takes the form

Θ(F, 𝜏,C−1
p ) =

𝜕𝜏u(F, 𝜏,C−1
p )

𝜕𝜏𝜂(F, 𝜏,C−1
p )

. (10)

In (9) and (10), u denotes the internal energy density which, together with the kinetic energy and the potential of dead
loads, constitutes the total energy of the system

(𝝋,p, 𝜏,C−1
p ) = ∫

(1
2
𝜌−1p ⋅ p + u(F, 𝜏,C−1

p ) − b ⋅ 𝝋
)

dV . (11)

Here, b ∶  → R3 represent prescribed body forces which, for simplicity, are assumed to be dead loads.
Concerning the contribution of inelastic deformations, we introduce the following form of the dissipative bracket (see

Section 3 for further details):

[,]inel = ∫
2
(
𝛿𝝉a
𝜕𝜏u

𝜕C−1
p

uC−1
p − 𝛿C−1

p
aC−1

p

)
∶ Θ ∶ 2

(
𝛿𝝉b
𝜕𝜏u

𝜕C−1
p

uC−1
p − 𝛿C−1

p
bC−1

p

)
dV . (12)
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The fourth-order inelastic material flow tensor has the properties T =  (major symmetry) and M ∶  ∶ M ≥ 0
(positive semi-definiteness) for all M given in (17).

It can be easily verified that the Poisson bracket (5) is skew-symmetric ({,} = −{,}), the dissipative bracket (12)
is symmetric ([,] = [,]) and further satisfies the non-negativity condition [,] ≥ 0. Moreover, the two brackets
satisfy the fundamental degeneracy (or non-interaction) conditions {,} = 0 and [, ] = 0. In conjunction with these
properties of the two brackets, GENERIC (1) ensures for closed systems (i) the conservation of total energy (d∕dt = 0),
and (ii) a non-decreasing total entropy (d∕dt ≥ 0). Due to these structural properties, the GENERIC-based formulation
offers an ideal starting point for the design of structure-preserving numerical methods.

2.1 Local evolution equations

We provide a short outline of the local evolution equations emanating from GENERIC (1). With regard to (1) the total
energy  generates the reversible contribution through the Poisson bracket {, }. Using expression (11) for the total
energy along with formulas (6) for the variational derivatives, Poisson bracket (5) yields

{, } = ∫

(
𝛿𝝋a + Div

(
𝛿𝝉a
𝜕𝜏𝜂

𝜕F𝜂

))
⋅ 𝜌−1p + (b + DivP) ⋅ 𝛿pa dV , (13)

where the first Piola-Kirchhoff stress tensor P = P(F, 𝜏,C−1
p ) takes the form

P = 𝜕Fu − Θ𝜕F𝜂. (14)

The irreversible contribution to GENERIC (1) is generated by the total entropy  through the dissipative bracket
[,]. Inserting expression (7) for the total entropy into the dissipative bracket (8) leads to

[,] = ∫
∇
(
𝛿𝜏a

𝜕𝜏u

)
⋅ Q dV + ∫

2
(
𝛿𝝉a
𝜕𝜏u

𝜕C−1
p

uC−1
p − 𝛿C−1

p
aC−1

p

)
∶  ∶ M dV , (15)

where the material heat flux vector Q = Q(F, 𝜏,C−1
p ) is given by

Q = Θ2K∇
( 1
Θ

)
= −K∇Θ (16)

and M = M(F, 𝜏,C−1
p ) denotes the material representation of the Mandel stress tensor, which takes the form

M = 2
(
𝜕C−1

p
u − Θ𝜕C−1

p
𝜂
)

C−1
p . (17)

It is important to realize that in (14), (16) and (17), Θ is the temperature field which has been introduced in (10). These
relationships are representative for the GENERIC-based formulation.

With regard to the left-hand side of GENERIC (1) and expression (4) for functional , the time derivative of  can be
written as

d
dt
 = ∫

(
𝛿𝝋a ⋅ 𝝋̇ + 𝛿pa ⋅ ṗ + 𝛿𝝉a𝜏̇ + 𝛿C−1

p
a ∶

̇
C−1

p

)
dV . (18)

In the last equation
̇

C−1
p stands for 𝜕C−1

p ∕𝜕t. Substituting (18), (13), and (15) into GENERIC (1), we arrive at

0 = ∫
𝛿𝝋a ⋅

(
𝝋̇ − 𝜌−1p

)
dV

+ ∫
𝛿pa ⋅ (ṗ − (b + DivP)) dV

+ ∫
𝛿𝜏a

(
𝜏̇ − 2

𝜕𝜏u

(
𝜕C−1

p
uC−1

p

)
∶  ∶ M

)
− Div

(
𝛿𝜏a

𝜕𝜏𝜂
𝜕F𝜂

)
⋅ 𝜌−1p − ∇

(
𝛿𝜏a
𝜕𝜏u

)
⋅ Q dV

+ ∫
𝛿C−1

p
a ∶

(
̇

C−1
p + 2

[
 ∶ M

]
C−1

p

)
dV . (19)
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This equation has to hold for arbitrary functionals  of the form (4). Standard arguments now lead to the local
evolution equations emanating from GENERIC (1):

𝝋̇ = 𝜌−1p,
ṗ = b + DivP,

𝜏̇ = 2
𝜕𝜏u

(
𝜕C−1

p
uC−1

p

)
∶  ∶ M − 1

𝜕𝜏𝜂
𝜕F𝜂 ∶ ∇(𝜌−1p) − 1

𝜕𝜏u
DivQ,

̇
C−1

p = −2
(
 ∶ M

)
C−1

p . (20)

We stress again that in the above formulas the first Piola-Kirchhoff stress tensor P, the Mandel stress tensor M and
the heat flux vector Q are given by formulas (14), (17), and (16), respectively.

2.2 GENERIC-based weak form of the IBVP

Starting from the GENERIC-based local evolution equations (20), we deduce the weak form of the initial boundary value
problem (IBVP) pertaining to finite-strain thermo-viscoelasticity. To this end, we decompose the boundary 𝜕 of the
continuum body into a displacement boundary 𝜕𝜑, on which 𝝋 = 𝝋, and a traction boundary 𝜕𝜎, on which PN = t,
where 𝝋 and t are prescribed functions for t ≥ 0 (Figure 2). Moreover, 𝜕𝜑 ∪ 𝜕𝜎 = 𝜕 and 𝜕𝜑 ∩ 𝜕𝜎 = ∅. Similarly, for
the thermal part, we consider the subsets of the boundary 𝜕𝜏 and 𝜕q, with the properties 𝜕𝜏 ∪ 𝜕q = 𝜕 and 𝜕𝜏 ∩
𝜕q = ∅ (Figure 3). The thermodynamic variable is prescribed on 𝜕𝜏, that is, 𝜏 = 𝜏, whereas the heat flux is prescribed
on 𝜕q, that is, Q ⋅ N = q. Both 𝜏 and q are assumed to be given for t ≥ 0. We aim at the determination of the motion
𝝋 ∶  ×  → R3, the linear momentum p ∶  ×  → R3, the thermodynamic variable 𝜏 ∶  ×  → R, and the inelastic
deformation C−1

p ∶  ×  → R3×3. The unknown fields are subject to initial conditions of the form 𝛗(⋅ , 0)=X, p(⋅, 0) =
𝜌V0, 𝜏(⋅, 0) = 𝜏 ini and C−1

p (⋅, 0) = I in . Here, V0 is a prescribed material velocity field, and 𝜏 ini is a prescribed field of the
thermodynamic variable 𝜏 ∈ {𝜃, 𝜂,u}. The unknown fields are determined by applying a space-time discretization to the
weak form of the IBVP at hand.

The weak form of the IBVP can be obtained by scalar multiplying the local evolution Eqs. 20 by suitable test functions
and subsequently integrating over domain . The standard procedure yields

0 = ∫
w𝝋 ⋅ (𝝋̇ − v) dV

+ ∫
(
wp ⋅ (𝜌v̇ − b) + P ∶ ∇wp

)
dV − ∫𝜕𝜎wp ⋅ t dA

+ ∫
w𝜏

(
𝜏̇ − 2

𝜕𝜏u

(
𝜕C−1

p
uC−1

p

)
∶  ∶ M + 1

𝜕𝜏𝜂
𝜕F𝜂 ∶ ∇v

)
dV

− ∫
∇
(

w𝜏

𝜕𝜏u

)
⋅ Q dV + ∫𝜕q

w𝜏

𝜕𝜏u
q dA

+ ∫
wC−1

p
∶
(

̇
C−1

p + 2
(
 ∶ M

)
C−1

p

)
dV , (21)

F I G U R E 2 Mechanical part of the IBVP. Note
that t = PN denotes prescribed external Piola
tractions acting on the current boundary expressed
per unit area of the reference boundary 𝜕𝜎
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F I G U R E 3 Thermal part of the IBVP.
Note that q = Q ⋅ N is the prescribed rate of heat
transfer across the current boundary expressed
per unit area of the reference boundary 𝜕q

where the velocity field v = 𝜌−1p has been introduced. In weak form (21), w𝝋,wp ∶  → R3, w𝜏 ∶  → R and wC−1
p

∶
 → R3×3 are test functions that have to satisfy the boundary conditions w𝛗 = 0 and wp = 0 on 𝜕𝜑, and w𝜏 = 0 on 𝜕𝜏.

2.3 Balance laws

We verify the pertinent balance laws of the IBVP at hand. For that purpose it suffices to consider the pure Neumann
problem (i.e., 𝜕𝜎 = 𝜕q = 𝜕). We start with the total linear momentum of the continuum body defined by L = ∫p dV .
Choosing (w𝝋,wp,w𝜏 ,wC−1

p
) = (0, 𝝃, 0, 0), where 𝝃 ∈ R3 is arbitrary but constant, weak form (21) leads to

𝝃 ⋅
dL
dt

= 𝝃 ⋅
(
∫

b dV + ∫𝜕t dA
)
. (22)

Due to the arbitrariness of 𝝃 ∈ R3, (22) coincides with the balance law for linear momentum. Note that the parentheses
on the right-hand side of (22) contain the resultant external force exerted on the continuum body (see also Figure 2).

The total angular momentum relative to the origin of the inertial frame is defined by J = ∫𝝋 × p dV . Choosing
(w𝝋,wp,w𝜏 ,wC−1

p
) = (p × 𝝃, 𝝃 × 𝝋, 0, 0), weak form (21) yields

𝝃 ⋅
dJ
dt

= 𝝃 ⋅
(
∫

𝝋 × b dV + ∫𝜕𝝋 × t dA
)
. (23)

Note that the symmetry condition FPT =PFT has been employed. Since 𝝃 ∈ R3 is arbitrary, (23) corresponds to the
balance of angular momentum. The parentheses on the right-hand side of (23) contain the resultant external torque about
the origin (see also Figure 2).

Next, we substitute (w𝝋,wp,w𝜏 ,wC−1
p
) = (−b, 𝜌−1p, 𝜕𝜏u, 𝜕C−1

p
u) into weak form (21). A straightforward calculation

leads to the balance law for total energy

d
dt∫

(1
2
𝜌−1p ⋅ p + u

)
dV = ∫

b ⋅ 𝝋̇ dV + ∫𝜕
(
𝜌−1p ⋅ t − q

)
dA. (24)

We choose (w𝝋,wp,w𝜏 ,wC−1
p
) = (0, 𝜌−1p, 𝜕𝜏𝜂, 𝜕C−1

p
𝜂) concerning the balance of entropy in weak form (21) to obtain

0 = ∫
(
𝜕F𝜂 ∶ Ḟ + 𝜕𝜏𝜂𝜏̇ + 2𝜕C−1

p
𝜂 ∶

((
 ∶ M

)
C−1

p
)
− 2

(
𝜕C−1

p
uC−1

p

)
∶  ∶ M

)
dV

+ ∫
𝜕C−1

p
𝜂 ∶

̇
C−1

p − ∇
(
𝜕𝜏𝜂

𝜕𝜏u

)
⋅ Q dV + ∫𝜕

𝜕𝜏𝜂

𝜕𝜏u
q dA

= ∫

(
dη
dt

− 1
Θ

M ∶  ∶ M − ∇
( 1
Θ

)
⋅ Θ2K∇

( 1
Θ

))
dV + ∫𝜕

1
Θ

q dA.
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Here, use has been made of formula (10) for the temperature along with expressions (16) for the material heat flux
vector and (17) for the Mandel stress tensor, respectively. The above equation can be rewritten as

d
dt

+ ∫𝜕
1
Θ

q dA = ∫
∇
( 1
Θ

)
⋅ Θ2K∇

( 1
Θ

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=cond≥0

+ 1
Θ

M ∶  ∶ M
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=inel≥0

dV ≥ 0, (25)

where inel is the local production of entropy due to inelastic deformations and cond is the local production of entropy
due to heat conduction. The last equation corresponds to the Clausius-Duhem form of the second law of thermodynamics
(see, for example, Gonzalez and Stuart,42 Sec. 5).

3 INELASTIC PART OF THE DISSIPATIVE BRACKET

The present model for large strain thermo-viscoelasticity relies on the introduction of the internal variable C−1
p ∶  ×

 → R3×3, whose time-evolution accounts for local inelastic deformations. Following Reese and Govindjee,43 C−1
p can be

associated with the multiplicative decomposition of the deformation gradient44

F = FeFp (26)

into an elastic part Fe and an inelastic (or viscous) part Fp. Decomposition (26) gives rise to the relationship

Cp = FT
p Fp. (27)

The restriction to the isotropic case implies that the free energy takes the separable form (see, for example Reese and
Govindjee45)

Ψ = Ψ(F, 𝜏,C−1
p ) = Ψeq(F, 𝜏) + Ψneq(F, 𝜏,C−1

p ), (28)

where Ψeq is the equilibrium part and Ψneq is the non-equilibrium part.
Since inelastic deformations are purely irreversible in nature, they lead to a contribution to the dissipative bracket in

GENERIC (1), cf. (8). To derive the inelastic dissipative bracket (12), we resort to the dissipative bracket derived in Hütter
and Svendsen24 within a temperature-based framework for GENERIC. In particular, Hütter and Svendsen24 consider
functionals of the form

A(𝝋,p, 𝜃,Fp) = ∫
a(𝝋,F,p, 𝜃,Fp) dV , (29)

with associated density function a(𝝋,F,p, 𝜃,Fp). The inelastic dissipative bracket from Hütter and Svendsen24 is given by

[
A,B

]
inel = ∫

(
𝛿𝛉a
𝜕𝜃u

𝜕Fp u − 𝛿Fp a
)

∶ ΘN ∶

(
𝛿𝛉b
𝜕𝜃u

𝜕Fp u − 𝛿Fp b

)
dV , (30)

where u(F, 𝜃,Fp) is the internal energy density and N is a fourth-order inelastic flow tensor which has the properties
NT =N (major symmetry) and A : N : A≥ 0 for all A ∈ R3×3. In components, these properties read

(N)𝛼⋅𝛽⋅⋅I⋅J = (N)𝛽⋅𝛼⋅⋅J⋅I and (A)⋅I𝛼⋅ (N)𝛼⋅ 𝛽⋅⋅I⋅J (A)⋅J𝛽⋅ ≥ 0. (31)

As has been shown in Hütter and Svendsen,24 inelastic dissipative bracket (30) comes along with the flow rule

Ḟp = −N ∶ 𝚺,

where
𝚺 = 𝜕Fp u − Θ𝜕Fpη.

In the last equation, η(F, 𝜃,Fp) is the entropy density of the temperature-based formulation.
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3.1 Change of variables

We perform a change of variables to transform the inelastic bracket (30) to the present setting which is based on func-
tionals of the form (4). In particular, to link the current density functions a(𝝋,F,p, 𝜏,C−1

p ) to those in (29), we express the
generalized thermodynamic variable 𝜏 ∈ {𝜃, 𝜂,u} in terms of the temperature by inverting relation (10) to get

𝜏 = 𝜏(F, 𝜃,C−1
p ). (32)

Moreover, relation (27) implies

C−1
p = F−1

p F−T
p . (33)

Now, the two density functions under consideration can be connected through

a(𝝋,F,p, 𝜃,Fp) = a(𝝋,F,p, 𝜏(F, 𝜃,C−1
p ),C−1

p ),

where relationships (32) and (33) are employed on the right-hand side of the last equation. A straightforward application
of the chain rule to the last equation yields

𝜕𝜃a = 𝜕𝜏a𝜕𝜃𝜏
𝜕Fp a = 𝜕Fp a + 𝜕𝜏a𝜕Fp𝜏. (34)

Note that 𝛿𝜃a = 𝜕𝜃a, and 𝛿Fp a = 𝜕Fp a. Furthermore, with regard to (10) and (32) we have 𝜃 = Θ(F, 𝜏(F, 𝜃,C−1
p ),C−1

p ),
from which follows that

1 = 𝜕𝜃Θ = 𝜕𝜏Θ𝜕𝜃𝜏,
0 = 𝜕FpΘ = 𝜕𝜏Θ𝜕Fp𝜏 + 𝜕FpΘ.

We thus obtain

𝜕𝜃𝜏 =
1
𝜕𝜏Θ

,

𝜕Fp𝜏 = −
𝜕FpΘ
𝜕𝜏Θ

. (35)

Substituting from (35) into (34) yields

𝜕𝜃a = 𝜕𝜏a
𝜕𝜏Θ

,

𝜕Fp a = 𝜕Fp a − 𝜕𝜏a
𝜕𝜏Θ

𝜕FpΘ. (36)

Note that 𝛿𝝉a = 𝜕𝜏a and 𝛿Fp a = 𝜕Fp a. Making use of (36), the terms in the parenthesis of (30) can be rewritten as

𝛿𝜃a
𝜕𝜃u

𝜕Fp u − 𝛿Fp a = 𝛿𝝉a
𝜕𝜏u

𝜕Fp u − 𝛿Fp a. (37)

Taking into account the relationship

𝜕Fp a = −2F−T
p 𝜕C−1

p
aC−1

p , (38)

the inelastic dissipative bracket (30) can be recast in the form

[,]inel = ∫
2
(
𝛿𝝉a
𝜕𝜏u

𝜕C−1
p

uC−1
p − 𝛿C−1

p
aC−1

p

)
∶ Θ ∶ 2

(
𝛿𝝉b
𝜕𝜏u

𝜕C−1
p

uC−1
p − 𝛿C−1

p
bC−1

p

)
dV .
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This bracket coincides with the one introduced in (12). Note that in the above formula, 𝛿C−1
p

a = 𝜕C−1
p

a. Moreover,  is
the material form of the fourth-order flow tensor N in (30). In components,

( )I⋅K⋅
⋅J⋅L = (F−1

p )I⋅
⋅𝛼(F−1

p )K⋅
⋅𝛾 (N)𝛼⋅𝛾⋅⋅J⋅L . (39)

Accordingly, the material flow tensor inherits symmetry and positive semi-definiteness. That is, in components,

( )I⋅K⋅
⋅J⋅L = ( )K⋅I⋅

⋅L⋅J and (M)⋅JI⋅ ( )I⋅K⋅
⋅J⋅L (M)⋅LK⋅ ≥ 0 (40)

for all M introduced in (17). As has been shown in Section 2.1, the above inelastic dissipative bracket gives rise to flow
rules of the form (cf. (20)4)

̇
C−1

p = −2
(
 ∶ M

)
C−1

p . (41)

It is worth noting that this flow rule can be viewed as material version of the viscoelastic evolution equation

vbe = −2
(


−1 ∶ 𝝉neq)be, (42)

derived in Reese and Govindjee43,45 and applied in, for example, Budday et al.46 In the last equation, be = FeFe
T =

FC−1
p FT, vbe = F

̇
C−1

p FT, 𝝉neq = 2F𝜕CΨneqFT, and 
−1 is an isotropic, positive definite fourth-order tensor. Using these

relationships, flow rule (42) can be recast in the form

̇
C−1

p = −2F−1 (−1 ∶
(
F−TMFT))FC−1

p , (43)

where the relation

2C𝜕CΨneq = 2𝜕C−1
p
ΨneqC−1

p = M

has been employed. Note that in the last equation, definition (17) of the Mandel stress tensor has been taken into account.
Comparing (43) with present flow rule (41), leads to the conclusion that the respective fourth-order flow tensors are
related by

( )I⋅K⋅
⋅J⋅L = (F−1)I⋅

⋅a(F)b⋅
⋅J (F

−1)K⋅
⋅c (F)d⋅

⋅L(
−1)a⋅c⋅

⋅b⋅d.

We further remark that the present viscoelastic evolution equation (41) can also be brought into the form

Ċp = 2Cp ∶ M.

This version of the viscoelastic evolution equation has been used in Krüger et al.;29 see also Groß et al.16 Thus we con-
clude that the newly proposed inelastic dissipative bracket (12) gives rise to evolution equations for the internal variables
that have been previously developed in the context of finite deformation thermo-viscoelasticity.

4 DISCRETIZATION IN SPACE

Concerning the space discretization of the present GENERIC-based formulation, we essentially apply an isoparametric
finite element approach (see, for example, Hughes47). Our main goal is to achieve a GENERIC-consistent space dis-
cretization in the sense of Betsch and Schiebl.40 In particular, a GENERIC-consistent space discretization ensures that
the discrete formulation inherits the fundamental balance laws for both the energy and the entropy from the underlying
continuous formulation (cf. Section 2.3).

We first restate the governing equations of the IBVP to be discretized in space and time. With regard to the
GENERIC-based weak form (21), we consider the following set of equations:

0 = 𝝋̇ − v,

0 =
̇

C−1
p + 2

(
 ∶ M

)
C−1

p ,
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0 =∫
wu𝜏 (𝜕𝜏u − u𝜏) dV ,

0 =∫
w𝜂𝜏 (𝜕𝜏𝜂 − 𝜂𝜏) dV ,

0 =∫
(
wp ⋅ (𝜌v̇ − b) + P ∶ ∇wp

)
dV − ∫𝜕𝜎wp ⋅ t dA,

0 =∫
w𝜏

(
𝜏̇ − 2

u𝜏

(
𝜕C−1

p
uC−1

p

)
∶  ∶ M + 1

𝜂𝜏
𝜕F𝜂 ∶ ∇v

)
dV

− ∫
∇
(

w𝜏

u𝜏

)
⋅ Q dV + ∫𝜕q

w𝜏

u𝜏
q dA dV . (44)

Here, the first equation represents the local form of the kinematic relationship 𝝋̇ = v, while the second equation is
the viscoelastic evolution equation. The third and fourth equation serve the purpose to introduce the new fields u𝜏 and
𝜂𝜏 . This procedure facilitates a mixed finite element approach which turns out to be crucial for a GENERIC-consistent
discrete formulation. Due to the arbitrariness of the test functions wu𝜏 and w𝜂𝜏 , (44)3 and (44)4 impose the conditions
u𝜏 = 𝜕𝜏u and 𝜂𝜏 = 𝜕𝜏𝜂, respectively. Moreover,

P = 𝜕Fu − Θ𝜕F𝜂,

M = 2
(
𝜕C−1

p
u − Θ𝜕C−1

p
𝜂
)

C−1
p (45)

are the GENERIC-specific representations of the first Piola-Kirchhoff stress tensor and the material Mandel stress tensor
previously introduced in (14) and (17), respectively. Similarly, the material heat flux vector Q has been introduced in (16).
We emphasize again that the GENERIC-based formulation is based on expression (10) for the temperature field. In the
present mixed formulation this implies

Θ = u𝜏
𝜂𝜏
. (46)

The finite element method is based on finite-dimensional approximations of the following quantities

𝝋h = Naqa,

vh = Nava,

𝜏h = Na𝜏a, (47)

and

uh
𝜏 = Na(u𝜏)a,

𝜂h
𝜏 = Na(𝜂𝜏)a. (48)

As before, the summation convention applies, where a= 1, … , N, and N denotes the total number of nodes in the
finite element mesh. Moreover, Na ∶  → R are the nodal shape functions with associated nodal values qa, va ∈ R3

and 𝜏a, (u𝜏)a, (𝜂𝜏)a ∈ R. Analogous approximations are used for the test functions wu𝜏 ,w𝜂𝜏 ,wp, and w𝜏 , denoted by
wh

u𝜏 ,w
h
𝜂𝜏
,wh

p, and wh
𝜏 .

In what follows, we summarize the space-discrete version of (44). Nodal collocation of kinematic equation (44)1
yields

q̇a = va, (49)

for a= 1, … , N. Viscoelastic evolution equation (44)2 is collocated at the integration points Xg ∈  used for the numerical
evaluation of the volume integrals in (44). Accordingly,

(
̇

C−1
p )g = −2

(
 g ∶ Mg

)
(C−1

p )g, (50)
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for g= 1, … , G, where G denotes the total number of integration points. Here and in the sequel, index g indicates
evaluation at the integration point Xg ∈ . For example,

(C−1
p )g = C−1

p (Xg, t),

Mg = 2
(
𝜕C−1

p
ug − Θg𝜕C−1

p
𝜂g

)
(C−1

p )g, (51)

where
ug = u

(
Fh

g , 𝜏
h
g , (C−1

p )g
)
,

𝜂g =𝜂
(
Fh

g , 𝜏
h
g , (C−1

p )g
)
, (52)

are the internal energy and entropy densities at point Xg. Furthermore, the discrete deformation gradient at Xg, Fh
g , and

the discrete generalized thermal variable, 𝜏h
g , follow from (47)1,3 and thus take the form

Fh
g = qa(t)⊗ ∇Na(Xg),
𝜏h

g = Na(Xg)𝜏a(t). (53)

Similarly, the discrete temperature at Xg follows from (46) and is given by

Θg =
(uh
𝜏 )g

(𝜂h
𝜏 )g

(54)

where, in view of interpolations (48), (uh
𝜏 )g = uh

𝜏 (Xg, t) and (𝜂h
𝜏 )g = 𝜂h

𝜏 (Xg, t). In the discrete setting, the fields uh
𝜏 and 𝜂h

𝜏

are determined through (44)3,4. In particular, inserting the approximations (48) along with the corresponding formulas
for wh

u𝜏 ,w
h
𝜂𝜏

into (44)3,4, we obtain

0 =
G∑

g=1
Na(Xg)

(
𝜕𝜏ug − Nb(Xg)(u𝜏)b

)
wg,

0 =
G∑

g=1
Na(Xg)

(
𝜕𝜏𝜂g − Nb(Xg)(u𝜏)b

)
wg, (55)

for a= 1, … , N. To calculate the spatial integrals, appropriate numerical quadrature formulas of the form

∫
f (X) dV ≈

G∑
g=1

f (Xg)wg (56)

have been applied to obtain (55).* Here, wg play the role of generalized weighting coefficients resulting from the specific
quadrature rule along with the isoparametric description of reference domain . Now, (55)1 can be solved for the nodal
quantities (u𝜏)a, a= 1, … , N. To this end, we introduce the components Hab of the positive definite Gram matrix [Hab],

Hab =
G∑

g=1
Na(Xg)Nb(Xg)wg, (57)

so that (55)1 can be rewritten as

Hab(u𝜏)b =
G∑

g=1
Na(Xg)𝜕𝜏ugwg. (58)

The components Hab of the inverse Gram matrix, [Hab]= [Hab]−1, satisfy the relationship

HabHbc = 𝛿c
a, (59)

*The summation over g will always be stated explicitly, so that the summation convention does not apply to index g.
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where 𝛿c
a denotes the Kronecker delta. Now, interpolation formula (48)1 along with (58) lead to the result

uh
𝜏 = NaHab

G∑
g=1

Nb(Xg)𝜕𝜏ugwg, (60)

which will be utilized below. Similarly, interpolation formula (48)2 in conjunction with (55)2 yield the result

𝜂h
𝜏 = NaHab

G∑
g=1

Nb(Xg)𝜕𝜏𝜂gwg. (61)

Next, we turn to the discretization of (44)5, which can be done in a straightforward way to obtain

Mabv̇b −
G∑

g=1
Na(Xg)bgwg +

G∑
g=1

Pg∇Na(Xg)wg = 0. (62)

For simplicity, we have neglected the contribution of the external tractions which could be easily added to the above
equation. In the above equation, first Piola-Kirchhoff stress tensor Pg at point Xg ∈  is given by

Pg = 𝜕Fug − Θg𝜕F𝜂g. (63)

Moreover, in (62), the components Mab of the mass matrix are given by

Mab =
G∑

g=1
𝜌(Xg)Na(Xg)Nb(Xg)wg. (64)

We further introduce nodal momentum vectors pa conjugate to nodal position vectors qa through the standard relation

pa = Mabva. (65)

Eventually, we consider the space-discrete version of (44)6. Straight-forward application of our approach yields

0 = Hab𝜏̇b −
G∑

g=1

2Na(Xg)
(uh
𝜏 )g

(
𝜕C−1

p
ug(C−1

p )g

)
∶  g ∶ Mgwg

+ vc ⋅
G∑

g=1

Na(Xg)
(𝜂h
𝜏 )g

𝜕F𝜂g∇Nc(Xg)wg −
G∑

g=1
∇

(
Na(Xg)
(uh
𝜏 )g

)
⋅ Qgwg, (66)

where the material heat flux vector Qg at point Xg ∈  is given by

Qg = Θ2
gKg∇

(
(𝜂h
𝜏 )g

(uh
𝜏 )g

)
.

For simplicity, in the space-discrete evolution equation (66) for the generalized nodal thermal variable 𝜏b, the term
accounting for heat transfer across the boundary has been neglected. To summarize, the resulting evolution equations for
the space-discrete system at hand can be written in the form

q̇a =Mabpb,

ṗa =
G∑

g=1
Na(Xg)bgwg −

G∑
g=1

Pg∇Na(Xg)wg,

𝜏̇a =Hab

G∑
g=1

2Nb(Xg)
(uh
𝜏 )g

(
𝜕C−1

p
ug(C−1

p )g

)
∶  g ∶ Mgwg



14 SCHIEBL and BETSCH

− vc ⋅ Hab

G∑
g=1

Nb(Xg)
(𝜂h
𝜏 )g

𝜕F𝜂g∇Nc(Xg)wg + Hab

G∑
g=1

∇

(
Nb(Xg)
(uh
𝜏 )g

)
Qgwg,

(
̇

C−1
p )g = −2

(
 g ∶ Mg

)
(C−1

p )g, (67)

for 1, … , N and 1, … , G. In (67)1, Mab stands for the components of the inverse mass matrix satisfying MabMbc = 𝛿c
a.

The set of Equation (67) constitutes nonlinear first-order ordinary differential equations for the determination of the
unknowns which can be collected in the state vector

z =
(
q1, … qN ,p1, … pN , 𝜏1, … 𝜏N , (C−1

p )AB
1 , … (C−1

p )AB
G
)
. (68)

In the sequel, state vector (68) will be viewed as column vector. In particular, this implies that the six independent
components (C−1

p )AB
g , g= 1, … , G, of the internal variable (C−1

p )g (at quadrature point Xg) are arranged in a column vector.
The set of evolution equations (67) fits into the GENERIC framework for discrete systems, as shown next.

4.1 GENERIC-consistent space discretization

Our discretization approach presented above is GENERIC-consistent in the sense of Betsch and Schiebl40 and thus can
be framed in the context of GENERIC for discrete systems. To see this, the set of evolution equation (67) needs to be put
into the form

ż = L∇(z) + M∇(z). (69)

Here, the focus is again on closed systems in which the boundary contributions are disregarded. In analogy to (1), the
time-evolution of the state vector is decomposed additively into a reversible part generated by the total energy  and an
irreversible part generated by the total entropy  . Poisson matrix L needs be skew-symmetric, while friction matrix M
needs be symmetric positive semi-definite.

In the above equation, the total energy of the discrete system under consideration is given by

(z) = 1
2

Mabpa ⋅ pb +
G∑

g=1

[
u
(
Fh

g , 𝜏
h
g , (C−1

p )g
)
− qaNa(Xg)b(Xg)

]
wg. (70)

This is the space-discrete version of total energy (11). Similarly, the space-discrete version of total entropy (7) takes
the form

(z) =
G∑

g=1
𝜂
(
Fh

g , 𝜏
h
g , (C−1

p )g
)

wg. (71)

To get the gradient of the total energy, ∇(z), we consider the derivative of (70) with respect to time. Accordingly, the
left-hand side of (70) yields

d
dt
(z) = 𝜕qa ⋅ q̇a + 𝜕pa ⋅ ṗa + 𝜕𝜏a ⋅ 𝜏̇a +

G∑
g=1
𝜕(C−1

p )AB
g
 (

̇
C−1

p )AB
g , (72)

while the right-hand side of (70) gives

d
dt
(z) = ṗa ⋅ pbMab + q̇a ⋅

G∑
g=1

[
𝜕Fug∇Na(Xg) − Na(Xg)b(Xg)

]
wg

+ 𝜏̇a

G∑
g=1

Na(Xg)𝜕𝜏ugwg +
G∑

g=1
wg𝜕C−1

p
ug ∶ (

̇
C−1

p )g. (73)
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Comparing (72) with (73) yields the following expressions for the respective derivatives of the total energy

𝜕qa =
G∑

g=1

[
𝜕Fug∇Na(Xg) − Na(Xg)b(Xg)

]
wg,

𝜕pa = Mabpb,

𝜕𝜏a =
G∑

g=1
Na(Xg)𝜕𝜏ugwg,

𝜕
𝜕(C−1

p )AB
g

= wg
𝜕ug

𝜕(C−1
p )AB

. (74)

In particular, inserting from (74)3 into (60), we obtain the important relationship

uh
𝜏 = NaHab𝜕𝜏b . (75)

Similarly, the derivatives of total entropy (71) take the form

𝜕qa =
G∑

g=1
𝜕F𝜂g∇Na(Xg)wg,

𝜕pa = 0,

𝜕𝜏a =
G∑

g=1
Na(Xg)𝜕𝜏𝜂gwg,

𝜕
𝜕(C−1

p )AB
g

= wg
𝜕𝜂g

𝜕(C−1
p )AB

. (76)

Inserting from (76)3 into (61), we obtain

𝜂h
𝜏 = NaHab𝜕𝜏b . (77)

Now, guided by discrete GENERIC (69), the evolution equations in (67) can be recast. In particular, taking into account
(74)2, kinematic relation (67)1 can be rewritten as

q̇a = 𝜕pa . (78)

Next, evolution equation (67)2 for the nodal momentum vectors together with (63) and (54) yields

ṗa = −
G∑

g=1

[
𝜕Fug∇Na(Xg) − Na(Xg)b(Xg)

]
wg +

G∑
g=1

(uh
𝜏 )g

(𝜂h
𝜏 )g

𝜕F𝜂g∇Na(Xg)wg.

Taking into account (74)1 and (75), we obtain

ṗa = −𝜕qa + 𝜕𝜏b Hbc

G∑
g=1

Nc(Xg)
(𝜂h
𝜏 )g

𝜕F𝜂g∇Na(Xg)wg. (79)

Concerning the evolution of the nodal thermal variable 𝜏a, (67)3 along with (51)2, (54), and (77) lead to

𝜏̇a = Hab

G∑
g=1

4Nb(Xg)Nc(Xg)
(uh
𝜏 )g(𝜂h

𝜏 )g

(
𝜕C−1

p
ug(C−1

p )g

)
∶  g ∶

(
𝜕C−1

p
ug(C−1

p )g

)
wg Hcd𝜕𝜏d

− Hab

G∑
g=1

4Nb(Xg)
(𝜂h
𝜏 )g

(
𝜕C−1

p
𝜂g(C−1

p )g

)
∶  g ∶

(
𝜕C−1

p
ug(C−1

p )g

)
wg
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− 𝜕pc ⋅ Hab

G∑
g=1

Nb(Xg)
(𝜂h
𝜏 )g

𝜕F𝜂g∇Nc(Xg)wg

+ Hab

G∑
g=1

Θ2
g∇

(
Nb(Xg)
(uh
𝜏 )g

)
⋅ Kg∇

(
Nc(Xg)
(uh
𝜏 )g

)
wg Hcd𝜕𝜏d . (80)

Eventually, evolution equation (67)4 for the internal variable, together with (51)2, (54), and (77) result in

(
̇

C−1
p )g = −

4Na(Xg)
(𝜂h
𝜏 )g

(
 g ∶

(
𝜕C−1

p
ug(C−1

p )g

))
(C−1

p )g Hab𝜕𝜏b
+ 4Θg

(
 g ∶

(
𝜕C−1

p
𝜂g(C−1

p )g

))
(C−1

p )g. (81)

Next, we aim at introducing relation (76)4 into the last term of (81). To this end, we introduce the fourth-order tensor
 with components

()ABIJ = (C−1
p )CB( )A⋅I⋅

⋅C⋅K(C
−1
p )JK . (82)

Note that  enjoys major symmetry, ()ABIJ = ()IJAB, due to the major symmetry of the material flow tensor 
and the symmetry of C−1

p . Now, (81) can be recast in index form

(
̇

C−1
p )AB

g = −4()ABIJ
g

𝜕ug

𝜕(C−1
p )IJ

Na(Xg)
(𝜂h
𝜏 )g

Hab 𝜕𝜏b + 4
Θg

wg
()ABIJ

g
𝜕

𝜕(C−1
p )IJ

g
. (83)

Altogether, evolution equation (67) pertaining to the state variables of the discrete system at hand can be recast in the
form

q̇a = 𝜕pa ,
ṗa = −𝜕qa + la⋅

⋅b 𝜕𝜏b ,
𝜏̇a = −(lb⋅

⋅a)T 𝜕pb + mab 𝜕𝜏b +
G∑

g=1
mIJ

g,a
𝜕

𝜕(C−1
p )IJ

g
,

(
̇

C−1
p )AB

g = mAB
g,b 𝜕𝜏b + mABIJ

g
𝜕

𝜕(C−1
p )IJ

g
, (84)

where

la⋅
⋅b = Hbc

G∑
g=1

Nc
g

(𝜂h
𝜏 )g
𝜕F𝜂g∇Na

g wg,

mab = Hac

G∑
g=1

Θ2
g∇

(
Nc

g

(uh
𝜏 )g

)
⋅ Kg∇

(
Nd

g

(uh
𝜏 )g

)
wg Hdb

+ Hac

G∑
g=1

4Nc
gNd

g

(uh
𝜏 )g(𝜂h

𝜏 )g

𝜕ug

𝜕(C−1
p )AB

()ABIJ
g

𝜕ug

𝜕(C−1
p )IJ

wg Hdb,

mAB
g,b = −4()ABIJ

g
𝜕ug

𝜕(C−1
p )IJ

Na
g

(𝜂h
𝜏 )g

Hab,

mABIJ
g = 4

Θg

wg
()ABIJ

g . (85)

For simplicity of exposition, in (85), Na
g = Na(Xg). Note that the properties mab =mba and mABIJ

g = mIJAB
g hold.
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Now, evolution equations (84) give rise to specific forms of Poisson matrix L and friction matrix M in GENERIC (69).
In particular, the Poisson matrix takes the form

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 I 0 0

−I 0
[
la⋅
⋅b

]
0

0
[
−lb⋅

⋅a

]T
0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (86)

where I is the identity matrix (with appropriate dimension corresponding to the partitioning of the state vector (68)), and
matrix [la⋅

⋅b] consists of vectors la⋅
⋅b defined in (85)1. Specifically, we have

[
la⋅
⋅b

]
=
⎡⎢⎢⎢⎣

l1⋅
⋅1 … l1⋅

⋅N

⋮ ⋱ ⋮

lN⋅
⋅1 … lN⋅

⋅N

⎤⎥⎥⎥⎦ . (87)

It can be observed that Poisson matrix (86) is skew-symmetric. Furthermore, the friction matrix is given by

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0
[

mab

] [
mIJ

g,a

]
0 0

[
mAB

g,b

]T [
mABIJ

g

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (88)

Here, the block matrices [mab] ∈ RN×N , [mIJ
g,b] ∈ RN×6G, and [mABIJ

g ] contain the components defined in (85)2− 4 and
take the form

[
mab

]
=
⎡⎢⎢⎢⎣

m11 … m1N

⋮ ⋱ ⋮

mN1 … mNN

⎤⎥⎥⎥⎦ ,
[

mIJ
g,a

]
=
⎡⎢⎢⎢⎣

[mIJ
1,1] … [mIJ

G,1]
⋮ ⋱ ⋮

[mIJ
1,N] … [mIJ

G,N]

⎤⎥⎥⎥⎦
and

[
mABIJ

g

]
=
⎡⎢⎢⎢⎣
[mABIJ

1 ] … 0
⋮ ⋱ ⋮

0 … [mABIJ
G ]

⎤⎥⎥⎥⎦ .
Note that the last matrix is block-diagonal and symmetric. It can be easily observed that friction matrix (88) is

symmetric and positive semi-definite.
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4.2 Conservation properties

We next verify the conservation properties of the semi-discrete formulation of the closed system dealt with in Section 4.1.
Since the evolution equations pertaining to the semi-discrete formulation can be brought into GENERIC form (69), (i)
conservation of total energy, and (ii) non-decreasing total entropy are automatically satisfied. To see this, we first consider
the time-derivative of the total energy,

d
dt
(z) = ∇(z)ż

= ∇(z)L∇(z) + ∇(z)M∇(z), (89)

where (69) has been used. The first term on the right-hand side of the last equation vanishes due to the skew-symmetry
of Poisson matrix (86). The second term vanishes too, since the non-interaction condition

M∇(z) = 0 (90)

holds. The last equation can be easily verified by a straight-forward calculation. Accordingly, (89) yields the conservation
law d∕dt = 0. Similarly, the time-derivative of the total entropy yields

d
dt
(z) = ∇(z)ż

= ∇(z)L∇(z) + ∇(z)M∇(z). (91)

It can be verified by a straight-forward calculation that the second non-interaction condition

L∇(z) = 0 (92)

is satisfied. In addition to that, the positive semi-definiteness of friction matrix (88) implies the result d∕dt ≥ 0. In par-
ticular, this result represents the semi-discrete version of (25) (apart from the boundary term in (25) originating from heat
flux across the boundary). Thus, the total entropy of the closed system at hand is non-decreasing, due to the irreversible
nature of heat conduction and visco-elastic deformations.

Since the material response is assumed to be frame-indifferent (or objective), specific symmetry properties are inher-
ent to the discrete system under consideration. In particular, invariance under rigid rotations implies satisfaction of the
following conditions (see Appendix A for further details):

0 = qa × 𝜕qa ,
0 = qa × la

b , (93)

for all b= 1, … , N. We tacitly assume that no resultant external torque is acting on the system (i.e., the right-hand side
of (23) is assumed to vanish). The semi-discrete version of the angular momentum relative to the origin is given by

Jh = ∫
𝜌𝝋h × vh dV = qa × pa, (94)

where formulas (47)1,2 along with definition (65) of the nodal momentum vectors pa have been used. The time-derivative
of (94) reads

d
dt

Jh = q̇a × pa + qa × ṗa

= Mabpb × pa + qa ×
(
−𝜕qa + la

b 𝜕𝜏b) (95)

where (67)1 and (84)2 have been used. Now the right-hand side of the last equation vanishes due to (i) the symmetry of
Mab together with the skew-symmetry of the vector cross product, and (ii) symmetry conditions (93). Result dJh/dt = 0
implies conservation of total angular momentum.
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4.3 Choice of the thermodynamic variable

We shortly outline the impact of the specific choice of the thermodynamic variable, 𝜏 ∈ {𝜃, 𝜂,u}, on the structure of
GENERIC (69). For simplicity, in this section we neglect body forces, that is, b= 0 and still focus on closed systems.

Choosing the internal energy density as thermodynamic variable, that is, 𝜏 = u, the total energy (70) takes a
particularly simple form given by

̂(z) = 1
2

Mabpa ⋅ pb +
G∑

g=1
uh

g wg (96)

As before, uh
g stands for uh(Xg, t). In particular, interpolation formula (53)2 gives rise to uh

g = Na(Xg)ua(t). The
derivatives of the total energy in (74) simplify to

𝜕qa ̂ = 0,

𝜕pa ̂ = Mabpb,

𝜕ua ̂ =
G∑

g=1
Na(Xg)wg,

𝜕̂
𝜕(C−1

p )AB
g

= 0. (97)

Consequently,

d
dt
̂(z) = ∇̂(z)ż

= Mabpa ⋅ ṗb +
G∑

g=1
Na(Xg)u̇awg. (98)

Moreover, for the choice 𝜏 = u friction matrix (88) attains a particularly simple block-diagonal form, since mAB
g,b = 0,

and coefficients mab only contain contributions due to heat conduction (cf. (85)).
Choosing the internal entropy density as thermodynamic variable, that is, 𝜏 = 𝜂, yields a particularly simple form of

the total entropy (71) given by

̃(z) =
G∑

g=1
𝜂h

g wg, (99)

where interpolation formula (53)2 gives rise to 𝜂h
g = Na(Xg)𝜂a(t). Consequently, the derivatives of the total entropy in (76)

simplify to
𝜕qa ̃ = 0,
𝜕pa ̃ = 0,

𝜕𝜂a ̃ =
G∑

g=1
Na(Xg)wg,

𝜕̃
𝜕(C−1

p )AB
g

= 0. (100)

Thus
d
dt
̃(z) = ∇̃(z)ż

=
G∑

g=1
Na(Xg)𝜂̇awg. (101)

Moreover, the choice 𝜏 = 𝜂 leads to la
b = 0 (see (85)), so that Poisson matrix (86) yields a particularly simple form.
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In contrast to the above considerations, selecting the total temperature as thermodynamic variable, that is, 𝜏 = 𝜃,
essentially does not lead to any simplifications. We eventually remark that these conclusions also affect the discretization
in time, which will be treated next.

5 DISCRETIZATION IN TIME

We now turn to the discretization in time of the semi-discrete GENERIC-consistent evolution equations derived in
Section 4.1. To this end, we focus on a representative time interval [tn, tn+ 1] with corresponding time-step size Δt =
tn+1 − tn. We aim at second-order accurate, implicit time-stepping schemes based on the mid-point rule. Application of
the mid-point rule to (69) yields

zn+1 − zn = ΔtL(zn+ 1
2
)∇(zn+ 1

2
) + ΔtM(zn+ 1

2
)∇(zn+ 1

2
). (102)

Here, zn stands for the discrete vector of state variables at time tn, and

zn+ 1
2
= 1

2
(zn + zn+1) .

Provided that the state variables zn are given, the state variables zn+ 1 can be determined by solving (102).

5.1 Partially structure-preserving schemes

Next, we check whether, or under what conditions, structure-preserving properties hold in the discrete setting. In this
connection, we shall see that the specific choice of the thermodynamic variable 𝜏 ∈ {𝜃, 𝜂,u} plays a crucial role. It can be
easily verified that non-interaction conditions (90) and (92) are still satisfied in the sense that

M(zn+ 1
2
)∇(zn+ 1

2
) = 0

L(zn+ 1
2
)∇(zn+ 1

2
) = 0 (103)

To see whether the fundamental balance laws are correctly reproduced in the discrete formulation, we proceed along
the lines of the time-continuous formulation in Section 4.2. In particular, concerning the balance of energy, similar to
(89), we consider

∇(zn+ 1
2
) ⋅ (zn+1 − zn)

= Δt∇(zn+ 1
2
) ⋅ L(zn+ 1

2
)∇(zn+ 1

2
) + Δt∇(zn+ 1

2
) ⋅ M(zn+ 1

2
)∇(zn+ 1

2
),

where (102) has been used. In analogy to the time-continuous case the right-hand side of the above equation vanishes
due to the skew-symmetry of L(zn+ 1

2
) and non-interaction condition (103)1. Thus

∇(zn+ 1
2
) ⋅ (zn+1 − zn) = 0.

On the other side,

∇(zn+ 1
2
) ⋅ (zn+1 − zn) ≠ (zn+1) − (zn) (104)

in general. This inequality complies with the well-known fact that the mid-point rule is not capable to conserve non-
linear first integrals in general. However, there exists the exceptional case related to the choice 𝜏 = u, for which (104)
turns into an equality. This is due to the fact that for 𝜏 = u the total energy takes the form (96) and thus ̂(z) is merely
quadratic. Since the mid-point rule preserves quadratic first integrals (see Leimkuhler,1 Sec. 4.4.2), the choice 𝜏 = u yields
a structure-preserving scheme which is capable to conserve total energy.
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Concerning the evolution of total entropy, guided by (91), we consider

∇(zn+ 1
2
) ⋅ (zn+1 − zn)

= Δt∇(zn+ 1
2
) ⋅ L(zn+ 1

2
)∇(zn+ 1

2
) + Δt∇(zn+ 1

2
) ⋅ M(zn+ 1

2
)∇(zn+ 1

2
),

where again (102) has been used. Employing non-interaction condition (103)2, we obtain

∇(zn+ 1
2
) ⋅ (zn+1 − zn) = Δt∇(zn+ 1

2
) ⋅ M(zn+ 1

2
)∇(zn+ 1

2
) ≥ 0, (105)

where the positive semi-definiteness of friction matrix M(zn+ 1
2
) has been taken as a basis. On the other hand, in analogy

to (104), we have

∇(zn+ 1
2
) ⋅ (zn+1 − zn) ≠ (zn+1) − (zn). (106)

This implies that, despite the encouraging result (105), the mid-point scheme in general does not guarantee a
non-decreasing entropy. However, there again is an exception related to the choice 𝜏 = 𝜂. For this particular case, the
total entropy takes the form (99) and thus ̃(z) is merely linear. Accordingly, the choice 𝜏 = 𝜂 turns inequality (106)
into an equality and the entropy-based mid-point scheme is therefore capable to correctly reproduce the second law of
thermodynamics in the discrete setting.

We eventually verify that all mid-point-based schemes under consideration are capable to conserve angular momen-
tum. The incremental change of angular momentum (94) can be written in the form

Jh
n+1 − Jh

n = qan+ 1
2
×
(
pa

n+1 − pa
n+1
)
− pa

n+ 1
2

×
(

qan+1
− qan

)
. (107)

Mid-point scheme (102) gives rise to

qan+1
− qan

= ΔtMabpb
n+ 1

2

,

pa
n+1 − pa

n+1 = Δt
(
−𝜕qa(zn+ 1

2
) + la

b(zn+ 1
2
) 𝜕𝜏b(zn+ 1

2
)
)
. (108)

Inserting from (108) into (107) yields

Jh
n+1 − Jh

n = Δtqan+ 1
2
×
(
−𝜕qa(zn+ 1

2
) + la

b(zn+ 1
2
) 𝜕𝜏b(zn+ 1

2
)
)
− ΔtMabpa

n+ 1
2

× pb
n+ 1

2

. (109)

Symmetry conditions (93) imply

0 = qan+ 1
2
× 𝜕qa(zn+ 1

2
),

0 = qan+ 1
2
× la

b(zn+ 1
2
). (110)

Inserting from (110) into (109) and taking into account the symmetry of Mab together with the skew-symmetry of the
vector product leads to the result Jh

n+1 = Jh
n.

To summarize, depending on the choice for the thermodynamic variable we get three alternative mid-point schemes
which are partially structure-preserving. Correspondingly, the resulting schemes are denoted by (EM)u (EM scheme
related to 𝜏 = u), (ME)𝜂 (momentum-entropy scheme associated with 𝜏 = 𝜂), and M𝜃 (momentum scheme related to
𝜏 = 𝜃).

5.2 Fully structure-preserving schemes

In this section, we show that one specific modification of the three alternative mid-point-based schemes considered
above turns all of them into EME schemes. That is, independent of the choice of 𝜏 ∈ {𝜃, 𝜂,u}, all scheme are (i)
thermodynamically consistent in the sense that they obey discrete versions of the two fundamental laws of
thermodynamics, and (ii) capable to conserve angular momentum.
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To reach this goal, the aforementioned modification of the mid-point integrator should (i) maintain the
structure-preserving properties (103), and (ii) ensure that inequalities (104) and (106) are turned into equalities for gen-
eral nonlinear functions (z) and (z). For that purpose, we resort to the notion of discrete derivative introduced in
Gonzalez.41 In particular, we replace the mid-point derivatives∇(zn+ 1

2
) and∇(zn+ 1

2
) by discrete derivatives d(zn, zn+1)

and d(zn, zn+1), respectively. Accordingly, starting with the discrete derivatives of the total energy, based on (74), we
introduce the discrete derivatives

dqa =
G∑

g=1

[
dFug∇Na(Xg) − Na(Xg)b(Xg)

]
wg,

dpa = Mabpb
n+ 1

2

,

d𝜏a =
G∑

g=1
Na(Xg)d𝜏ugwg,

d
d(C−1

p )AB
g

= wg
dug

d(C−1
p )AB

. (111)

where the discrete derivatives of the internal energy density function u(F, 𝜏,C−1
p ) are denoted by du∕d(C−1

p )AB, d𝜏u, and

dFu = 2Fn+ 1
2
dCu, (112)

respectively. In the last equation, the frame-indifferent representation of the internal energy density has been accounted
for (see Appendix A). We refer to Appendix B for the specific definitions of the discrete derivatives dCu, d𝜏u, and
du∕d(C−1

p )AB, respectively.
Similarly, the discrete derivatives of the total entropy rely on the application of the discrete derivative to the internal

entropy density. That is, based on (76), we introduce

dqa =
G∑

g=1
dF𝜂g∇Na(Xg)wg,

dpa = 0,

d𝜏a =
G∑

g=1
Na(Xg)d𝜏𝜂gwg,

d
d(C−1

p )AB
g

= wg
d𝜂g

d(C−1
p )AB

. (113)

where the discrete derivatives of the internal entropy density function 𝜂(F, 𝜏,C−1
p ) are denoted by d𝜂∕d(C−1

p )AB, d𝜏𝜂, and

dF𝜂 = 2Fn+ 1
2
dC𝜂, (114)

respectively (see Appendix B for further details). In addition to (111) and (113), the derivatives of u and 𝜂 contained
in Poisson matrix (86) and friction matrix (88) need to be replaced by the corresponding discrete derivatives. The thus
obtained discrete versions of the Poisson and friction matrix are denoted by L(zn, zn+ 1) and M(zn, zn+ 1), respectively.
These modifications to mid-point integrator (102) yield fully structure-preserving EME schemes of the form

zn+1 − zn = ΔtL(zn, zn+1)d(zn, zn+1) + ΔtM(zn, zn+1)d(zn, zn+1). (115)

It is important to note that the above-described modifications of the mid-point rule retain the crucial non-interaction
and symmetry conditions. In particular, non-interaction conditions (103) are now replaced by

M(zn, zn+1)d(zn, zn+1) = 0,
L(zn, zn+1)d(zn, zn+1) = 0, (116)

while symmetry conditions (110) are replaced by
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0 = qan+ 1
2
× dqa(zn, zn+1),

0 = qan+ 1
2
× la

b(zn, zn+1). (117)

Note that la
b has been introduced in (85)1. Accordingly, following the present procedure, the discrete derivatives dF𝜂

and d𝜏𝜂 are used in (85)1, to get la
b(zn, zn+1).

The so-called directionality property of the (partitioned) discrete derivatives (cf. Gonzalez41) ensures that inequalities
(104) and (106) are now replaced by the equalities

d(zn, zn+1) ⋅ (zn+1 − zn) = (zn+1) − (zn),
d(zn, zn+1) ⋅ (zn+1 − zn) = (zn+1) − (zn). (118)

Note that directionality properties (118) are also verified in Appendix B.
The new schemes are indeed fully structure-preserving, independent of the choice for 𝜏 ∈ {𝜃, 𝜂,u}. This can be shown

in a straightforward manner by following the steps in Section 5.1. For obvious reasons, the new EME consistent schemes
are abbreviated with (EME)𝜃 , (EME)𝜂 , and (EME)u.

6 NUMERICAL INVESTIGATIONS

In this section, the alternative mid-point type schemes newly developed in the present work are applied to representa-
tive numerical examples dealing with finite strain thermo-viscoelastodynamics. Depending on the specific choice for the
thermodynamic variable 𝜏 ∈ {𝜃, 𝜂,u}, the following methods are applied:

Variable 𝝉 = u 𝝉 = 𝜼 𝝉 = 𝜽

Section 5.1 (EM)u (ME)𝜂 (M)𝜃

Section 5.2 (EME)u (EME)𝜂 (EME)𝜃

In the numerical investigations, we shall focus on momentum maps associated with symmetries of the mechanical
system at hand, and the balance laws associated with the two fundamental laws of thermodynamics. In this connection,
we also consider the functional

 =  − 𝜃0 . (119)

According to Gurtin,48 for certain types of environments,  is a natural Lyapunov function and thus qualifies as
estimate for the numerical stability of the schemes under consideration.

In each time step, the schemes emanating from (102) and (115) generate a system of nonlinear algebraic equations
for the determination of the state variables zn+ 1. To this end, we apply a Multilevel-Newton algorithm;† see Hartmann49

and references therein for more details.

6.1 Material model

In order to particularize the Helmholtz free energy density (28) used in the numerical examples, we start from a
temperature-based description. In particular, we consider

𝜓(C, 𝜃,C−1
p ) = 𝜓eq(C, 𝜃) + 𝜓neq(C, 𝜃,C−1

p ),
𝜓eq(C, 𝜃) = 𝜓1(C) + 𝜓2(𝜃) − (𝜃 − 𝜃0)𝜓3(J),

𝜓neq(C, 𝜃,C−1
p ) = 𝜓1,visc(C,C−1

p ), (120)

†In the numerical examples the local Newton tolerance refers to the solution of the material evolution equations while the global Newton tolerance
refers to the solution of the whole system, cf. Tables 1 and 2.
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where

𝜓1(C) = 𝜇

2

(
C ∶ I − 3 − 2 log J − 2

3
(J − 1)2

)
+ Wvol(J),

𝜓1,visc(C,C−1
p ) = 𝜇e

2

(
C ∶ C−1

p − 3 − 2 log Je −
2
3
(Je − 1)2

)
+ Wvol,visc(Je),

𝜓2(𝜃) = c
(
𝜃 − 𝜃0 − 𝜃 log(𝜃∕𝜃0)

)
,

𝜓3(J) = 3𝛽Wvol(J),

Wvol(J) =
𝜆 + 2

3
𝜇

4
(
(log J)2 + (J − 1)2) ,

Wvol,visc(Je) =
𝜆e + 2

3
𝜇e

4
(
(log Je)2 + (Je − 1)2) . (121)

Here, J =
√

det C is the determinant of the deformation gradient, Je =
√

det(CC−1
p ) and 𝜇, 𝜇e, 𝜆, and 𝜆e are prescribed

parameters, c> 0 is the specific heat capacity at constant deformation, 𝛽 is the coefficient of thermal expansion, and 𝜃0
is the reference temperature. We refer to Betsch and Schiebl39 and the references therein for a detailed investigation of
the thermoelastic part of the specific Helmholtz free energy density (120). Further, for the viscoelastic part, we refer to
Groß15 and the references therein. For simplicity, we assume incompressible material behavior. Quasi-incompressible
material models for finite strain thermo-viscoelasticy are considered in, for example, References 50 and 51. It is now
a straightforward exercise to calculate further quantities emanating from (120), depending on the specific choice
for the thermodynamic variable 𝜏 ∈ {u, 𝜃, 𝜂} (see also Betsch and Schiebl39 for additional details). In particular, the
temperature-based formulation yields

𝜂(C, 𝜃,C−1
p ) = c log(𝜃∕𝜃0) + 𝜓3(J),

u(C, 𝜃,C−1
p ) = 𝜓1(C) + 𝜓1,visc(C,C−1

p ) + c(𝜃 − 𝜃0) + 𝜃0𝜓3(J).

The formulation based on the entropy density gives

𝜂̃(C, 𝜂,C−1
p ) = 𝜂,

ũ(C, 𝜂,C−1
p ) = 𝜓1(C) + 𝜓1,visc(C,C−1

p ) + c
(
𝜃0e

𝜂−𝜓3(J)
c − 𝜃0

)
+ 𝜃0𝜓3(J).

Moreover, the formulation based on the internal energy density leads to

𝜂(C,u,C−1
p ) = c log

(
1 +

u − 𝜓1(C) − 𝜓1,visc(C,C−1
p )

c𝜃0
− 𝜓3(J)

c

)
+ 𝜓3(J),

û(C,u,C−1
p ) = u.

Concerning the constitutive equation for the material heat flux vector, we assume thermally isotropic material, with
material conductivity tensor given by

K = kJC−1. (122)

Here, k is a prescribed coefficient of thermal conductivity and, as before, J =
√

det(C). Finally, the constitutive
equation for the isotropic fourth-order material inelastic flow tensor is given by (see Groß and Betsch12 or Reese
and Govindjee43 and references therein for the spatial representation of the isotropic fourth-order inelastic flow
tensor)

 = 1
2𝜈D

([
C−1 ⊙ I

]
C − 1

3
I⊗ I

)
+ 1

9𝜈V
I⊗ I, (123)

where 𝜈D > 0 and 𝜈V > 0 represent the deviatoric and volumetric viscosities, respectively, and where (A⊙ B)A⋅CD
⋅B⋅⋅ =

1
2

[
(A)AC

⋅⋅ (B)⋅DB⋅ + (A)AD
⋅⋅ (B)⋅CB⋅

]
.
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6.2 Flying L-shaped block

The first numerical example deals with the L-shaped block depicted in Figure 4.
The spatial discretization of the block relies on 117 tri-linear finite elements leading to 224 nodes. The initial temper-

ature field is varying linearly over the height (x3 direction) of the block. In particular, at x3 = 0, the initial temperature is
prescribed as 𝜃a, while at x3 = h, the temperature is prescribed as 𝜃b. The whole block is assumed to be thermally insu-
lated (q = 0 on 𝜕q = 𝜕). Starting at rest, Piola traction vectors ta and tb are acting on two parts of the boundary surface
of the block (Figure 4). The external loads are applied in the form of a hat function over time. In particular, the traction
vectors are given by

ta = −tb = f (t)
⎛⎜⎜⎜⎝
256∕9
512∕9
768∕9

⎞⎟⎟⎟⎠Pa, f (t) =
⎧⎪⎨⎪⎩

t for 0s ≤ t ≤ 2s
4 − t for 2s ≤ t ≤ 4s
0 for t > 4s.

(124)

Table 1 provides a summary of the data used in the simulations. During the loading phase (t ≤ 4s) the time step size for
all simulations is Δt = 0.05, such that all systems start from the same energy- and entropy level directly after vanishing
external loads. No Dirichlet boundary conditions are applied. Since in the initial loading phase the external forces are
equilibrated, the total linear momentum of the block is a conserved quantity. In addition to that, after the loading phase
(t ≥ 4s) no external torque is acting on the block.

Consequently, the total angular momentum is conserved as well. All of the integrators under consideration are capa-
ble to exactly conserve both momentum maps (up to numerical round-off), independent of the chosen time step. This
can be observed from Figure 5, where representative numerical results of the EM integrator (EM)u are shown. After
the loading phase, the total energy must be a conserved quantity. As expected, the (EM)u scheme does exactly repro-
duce this conservation law (up to numerical round-off); see Figure 6. In contrary, the schemes (M)𝜃 and (ME)𝜂 are not
capable of conserving the total energy for larger time step sizes. Depending on the time step size, both schemes tend to
increase the energy which can be observed from Figure 7. Typically, such energy blow-ups eventually lead to a failure of
the iterative (Newton-Raphson) solution procedure. In the diagrams, the break down of the simulation is indicated by
vertical lines.

Regardless of the capability of the (EM)u scheme to conserve the total energy, the simulation still breaks down at about
the same point in time as the break down of (M)𝜃 and (ME)𝜂 occurs. The numerical instability of (EM)u is accompanied
by a nonphysical decrease of the total entropy as can be observed from Figure 8. Although not as pronounced as (EM)u,
(M)𝜃 occasionally yields an incremental decrease of the total entropy (Figure 8). However, the total entropy ought to be
a non-decreasing function of time. In contrast to (EM)u and (M)𝜃 , (ME)𝜂 is capable to correctly adhere to the second law
of thermodynamics, independent of the time step (Figure 9). Indeed, in each time step, the total entropy does increase,
as can be observed from Figure 9.

F I G U R E 4 L-shaped block: Discretized block with initial temperature distribution and mechanical boundary conditions (left), load
function over time (right)
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T A B L E 1 L-shaped block: Data used in the simulations

Lamé parameters 𝜇 997.5 Pa Geometry

𝜆 4544 Pa

𝜇e 49.875 Pa

𝜆e 272.2 Pa

Specific heat capacity c 100 JK−1m−3

Expansion coefficient 𝛽 2.233 ⋅ 10−4 K−1

Thermal conductivity k 10 WK−1m−1

Viscosities 𝜈D 500 Jsm−3

𝜈V 100 Jsm−3

Ref. temperature 𝜃0 293.15 K

Mass density 𝜌 100 kgm−3

Initial temperature 𝜃a 290 K

𝜃b 360 K

Geometry h 10 m

b 3 m

Newton tolerance global 𝜀g 10−8 −

Newton tolerance local 𝜀l 10−9 −

Simulation duration T 300 s

Time step Δt 0.05, 0.5, 0.6 s

F I G U R E 5 L-shaped block: Algorithmic conservation of linear momentum (EM)u scheme (left), Total discrete angular momentum
(EM)u scheme (right)
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F I G U R E 6 L-shaped block: Total energy (EM)u scheme (left), Incremental change of total energy (EM)u scheme (right)

F I G U R E 7 L-shaped block: Total energy (M)𝜃 scheme (left), Total energy (ME)𝜂 scheme (right)

F I G U R E 8 L-shaped block: Total entropy (EM)u scheme (left), Total entropy (M)𝜃 scheme (right)
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F I G U R E 9 L-shaped block: total entropy (ME)𝜂 scheme (left), Incremental change of total entropy (ME)𝜂 scheme (right)

The incremental change of total entropy of the closed system at hand is related to heat conduction and inelastic
deformations. For the mid-point rule, it can be directly calculated from (105). A straightforward calculation taking into
account friction matrix (88) yields

n+1 − n ≈ Δt

( G∑
g=1

g
cond

|||n+ 1
2

wg + g
inel
|||n+ 1

2

wg

)
, (125)

where

g
cond

|||n+ 1
2

= (Θgn+ 1
2
)2∇

(
1

Θgn+ 1
2

)
⋅ Kgn+ 1

2
∇

(
1

Θgn+ 1
2

)
,

g
inel
|||n+ 1

2

= 1
Θgn+ 1

2

Mgn+ 1
2
∶  gn+ 1

2
∶ Mgn+ 1

2
.

Note that (125) can be viewed as discrete version of (25). Accordingly, for sufficiently small time steps, the incremental
change of total entropy can be calculated for the mid-point schemes from (125). Similarly, for the EME schemes, the
incremental change of total entropy can be calculated from (118)2. The two contributions to the discrete evolution of the
incremental change of total entropy are visualized in Figures 10 and 11.

After the loading phase, the environment of the present example can be characterized as thermally perfect in
the sense of Gurtin.48 Thus  defined in (119) plays the role of a Lyapunov function that has to decrease with
time (Figure 12). However, the partially structure-preserving schemes (EM)u, (ME)𝜂 , and (M)𝜃 do not correctly repro-
duce this behavior, as can be seen from Figures 13 and 14. That is, depending on the time step and the duration
of the simulation, all of the schemes inevitably exhibit numerical instabilities characterized by increasing values
of .

Only the EME schemes developed in Section 5.2 completely reproduce the required behavior and thus can
prevent numerical instabilities. This can be concluded from Figures 12 and 14, where the results of (EME)𝜂
are shown. The corresponding results of (EME)𝜃 and (EME)u are practically indistinguishable from those
of (EME)𝜂 .

Eventually, the motion of the L-shaped block is illustrated in Figure 15 with snapshots at successive points in time. In
addition to that, the distribution of the temperature over the block is shown.
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F I G U R E 10 L-shaped block: Contributions to incremental change of entropy (EM)u scheme (left) and contributions to incremental
change of entropy (M)𝜃 scheme (right)

F I G U R E 11 L-shaped block: Contributions to incremental change of entropy (ME)𝜂 scheme

F I G U R E 12 L-shaped block: Total energy (EME)𝜂 scheme (left) and total entropy (EME)𝜂 scheme (right)
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F I G U R E 13 L-shaped block: Lyapunov function (EM)u scheme (left) and Lyapunov function (M)𝜃 scheme (right)

F I G U R E 14 L-shaped block: Lyapunov function (ME)𝜂 scheme (left) and Lyapunov function (EME)𝜂 scheme (right)

F I G U R E 15 L-shaped block: Snapshots of the motion along with the temperature distribution over the block at
t ∈ {0, 40, 80, 120, 160, 200, 240, 280}s, obtained with the (EM)u scheme and time step Δt=0.05s



SCHIEBL and BETSCH 31

F I G U R E 16 Rotating disk: Initial configuration and thermal boundary conditions (left) and function f (t) for the prescribed heat flow
over part of the boundary surface (right)

6.3 Rotating disk

The second example deals with a rotating disk subjected to prescribed heat flow over part of the boundary sur-
face (Figure 16). The spatial discretization of the disk is based on 200 tri-linear finite elements leading to a total of
360 nodes.

The initial velocity distribution over the disk results from a prescribed angular velocity 𝝎0 ∈ R3 and is
given by

v0(X) = 𝝎0 × X, 𝝎0 =
⎛⎜⎜⎜⎝
1
1
1

⎞⎟⎟⎟⎠
1
s
.

The initial temperature of the disk is homogeneously distributed and equal to the reference temperature 𝜃0. In an initial
period of time, t ∈ [0, 4]s, heat flow is prescribed over one quarter of the lateral boundary surface (Figure 16). In particular,
the heat flow into the disk is described by

q = −2000W
𝜋m2 f (t), f (t) =

{
sin( 𝜋

4s
t) for 0 ≤ t ≤ 4s

0 for t > 4s.

A plot of function f (t) can be found in Figure 16. The rest of the boundary surface of the disk is assumed to be thermally
insulated (q = 0). Note that the prescribed heat flow vanishes after t = 4s. For t> 4s, the complete boundary surface of
the disk is assumed to be thermally insulated (q = 0 on 𝜕q = 𝜕). Then the environment of the disk is thermally per-
fect in the sense of Gurtin.48 A summary of the data used in the simulations of the rotating disk can be found in Table 2.
During the loading phase (t ≤ 4s) the time step size for all simulations is Δt = 0.04, such that all systems start from the
same energy and entropy level directly after vanishing external loads. Due to the fact that neither external loads act
on the disk, nor displacement boundary conditions are imposed, the mechanical system at hand has translational and
rotational symmetry. Consequently, the corresponding momentum maps are first integrals of the motion. All integrators
under consideration are capable to conserve the respective momentum map. Representative numerical results are shown
in Figure 17.
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T A B L E 2 Rotating disk: Data used in the simulations

Material parameters 𝜆 3000 Pa Geometry

𝜇 750 Pa

𝜇e 120 Pa

𝜆e 37.5 Pa

Specific heat capacity c 150 JK−1m−3

Expansion coefficient 𝛽 1 ⋅ 10−4 K−1

Thermal conductivity k 20 WK−1m−1

Viscosities 𝜈D 50 Jsm−3

𝜈V 10 Jsm−3

Ref. temperature 𝜃0 293.15 K

Mass density 𝜌 8.93 kgm−3

Radius r 0.8 m

R 2 m

Thickness t 0.4 m

Newton tolerance global 𝜀g 10−8 −

Newton tolerance local 𝜀l 10−9 −

Simulation time T 30 s

Time step Δt 0.04, 0.08, 0.1 s

Since heat flow into the system is prescribed in the initial time period [0, 4]s, the total energy is expected to increase.
For t> 4s, the system is closed and the total energy should stay constant. Again the (EM)u scheme is capable to correctly
reproduce the first law (Figure 18).

However, despite the algorithmic energy conservation (for t> 4s), the (EM)u scheme is not devoid of numerical insta-
bilities, depending on the time step. The corresponding point in time of the break down of the simulation is indicated
with a vertical line in the diagrams. At about the same points in time, (ME)𝜂 and (M)𝜃 break down as well (Figure 19).
For these schemes the break down is accompanied by a sudden increase of the total energy leading to the divergence of
the Newton-Raphson iterations. For the considered duration of the simulation (t ∈ [0, 30]s), a time step of Δt = 0.04s is
small enough to retain numerical stability of the three partially structure-preserving schemes at hand. The EME schemes
developed in Section 5.2 do not lead to any numerical instabilities even for the large time step Δt = 0.1s. In particu-
lar, all of the EME schemes are capable to conserve the total energy for t> 0.4s. This is shown exemplarily for (EME)𝜂
in Figure 24.

Due to the prescribed heat flow into the disk, the total entropy of the disk is expected to increase in the initial
time period [0, 4]s. For t> 4s, the system is closed and the total entropy should be a non-decreasing function of time.
The (EM)u scheme does not correctly reproduce the second law as can be seen from Figure 20. Accordingly, the diver-
gence of the iterative solution procedure is accompanied by a nonphysical decrease of the total entropy. The (M)𝜃 closely
adheres to the second law as can be observed from Figure 20. As expected, the (ME)𝜂 scheme is capable to exactly sat-
isfy the second law, independent of the time step. This can be observed from Figure 21. In particular, Figure 21(right)
confirms that the change per time step of the total entropy is always positive. As expected all of the EME schemes are
capable to correctly reproduce the non-decreasing evolution of the total entropy. This is shown exemplarily for (EME)𝜂
in Figure 24.

In addition, the two contributions to the discrete evolution of the incremental change of total entropy, see (125), are
visualized in Figures 22 and 23 for the mid-point-based schemes. Most of the contribution is due to conduction of heat,
only about 5.9% is due to inelastic deformations in the present example (Figure 24).

To shed further light on the numerical stability of the present schemes, we consider the Lyapunov function 
defined in (119). For t> 4s the system is closed and the function  should decrease with time. As expected, the partially
structure-preserving schemes (EM)u, (ME)𝜂 , and (M)𝜃 in general do not correctly reproduce this behavior, depending on
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F I G U R E 17 Rotating disk: Algorithmic conservation of linear momentum (EM)𝜂 scheme (left) and total discrete angular momentum
(EM)𝜂 scheme (right)

F I G U R E 18 Rotating disk: Total energy (EM)u scheme (left) and incremental change of total energy (EM)u scheme (right)

F I G U R E 19 Rotating disk: Total energy (M)𝜃 scheme (left) and total energy (ME)𝜂 scheme (right)



34 SCHIEBL and BETSCH

F I G U R E 20 Rotating disk: Total entropy (EM)u scheme (left) and total entropy (M)𝜃 scheme (right)

F I G U R E 21 Rotating disk: Total entropy (ME)𝜂 scheme (left), and incremental change of total entropy (ME)𝜂 scheme (right)

F I G U R E 22 Rotating disk: Contributions to incremental change of entropy (EM)u scheme (left) and contributions to incremental
change of entropy (M)𝜃 scheme (right)
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F I G U R E 23 Rotating disk: Contributions to incremental change of entropy (ME)𝜂 scheme

F I G U R E 24 Rotating disk: Total energy (EME)𝜂 scheme (left), and total entropy (EME)𝜂 scheme (right)

F I G U R E 25 Rotating disk: Lyapunov function (EM)u scheme (left) and Lyapunov function (M)𝜃 scheme (right)
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F I G U R E 26 Rotating disk: Lyapunov function (ME)𝜂 scheme and Lyapunov function (EME)𝜂 scheme (right)

275.00

296.67

318.33

340.00

F I G U R E 27 Rotating disk: Snapshots of the motion along with the temperature distribution over the block at
t ∈ {0, 4, 8, 12, 16, 20, 24, 28}s, obtained with the (ME)𝜂 scheme and time step Δt=0.04s

the size of the time step and the duration of the simulation (Figures 25 and 26). In particular, it can be seen that the
smallest time step, Δt = 0.04s, yields a stable numerical simulation, at least in the considered time interval [0, 30]s. How-
ever, for larger time steps Δt = 0.08s and Δt = 0.1s, the numerical instability of each scheme becomes visible through the
increase of. Again the fully structure-preserving EME schemes developed in Section 5.2 provide enhanced numerical
stability. All of them lead to a steadily decreasing , independent of the time step size. This is shown exemplarily for EME
in Figure 26.

Eventually, the motion of the disk is illustrated in Figure 27 with snapshots at successive points in time. In addition
to that, the distribution of the temperature over the disk is shown.

7 CONCLUSIONS

Starting from a GENERIC-based formulation of large-strain thermo-viscoelasticity, we have developed alternative
structure-preserving schemes based on the implicit mid-point rule. Depending on the choice of the thermodynamic
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variable, already the plain mid-point rule yields partially structure-preserving schemes (see Section 5.1). Despite this,
these schemes cannot prevent from numerical instabilities as has been shown in the numerical examples. Specifically,
choosing the internal energy density as thermodynamic variable leads to an EM scheme (called (EM)u). For Hamilto-
nian mechanical systems, EM schemes typically provide enhanced numerical stability. However, this situation does no
extend to thermomechanically coupled dissipative systems. Here, EME schemes such as those developed in Section 5.2
are required to prevent numerical instabilities.

The three EME schemes newly proposed in the present work essentially rely on the following features:

• The underlying GENERIC formulation in bracket form (Section 2) leads to characteristic expressions such as (14) and
(17) for the first Piola-Kirchhoff stress tensor and the Mandel stress tensor, respectively.

• The transformation properties of the GENERIC description facilitate the use of alternative thermodynamic variables
such as the absolute temperature, the internal energy density, and the entropy density used in the present work.

• The newly proposed material form of the inelastic dissipative bracket (Section 3) makes possible to include into
the GENERIC formulation often used nonlinear evolution laws for the internal variables associated with inelastic
deformations.

• The mixed finite element discretization in space (Section 4) has been shown to be GENERIC-consistent. This means
that the evolution equations for the state variables of the semi-discrete system fit into the GENERIC framework for
discrete systems. This is an essential prerequisite for the development of fully structure-preserving EME schemes.
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APPENDIX A. ROTATIONAL SYMMETRY

Due to invariance under superposed rigid rotations, the present problem satisfies symmetry properties (93). To see this,
we consider a rotation tensor Q𝜀 = exp(𝜀𝝃̂), expressed through the Rodrigues formula.3 Here, 𝜀 is a scalar parameter and
𝝃̂ is a skew-symmetric tensor with associated vector 𝝃 ∈ R3, such that 𝝃̂a = 𝝃 × a for all a ∈ R3. Now, a superposed rigid
motion gives rise to rotated nodal position vectors

q𝜀a = Q𝜀qa. (A1)

Note that q0
a = qa and d

d𝜀
Q𝜀|||𝜀=0

= 𝝃̂. Nodal pattern (A1) of the rigidly rotated discrete system gives rise to the
corresponding expression for the discrete deformation gradient (cf. (53)1)

Fh,𝜀 = q𝜀a ⊗ ∇Na = Q𝜀Fh. (A2)

Furthermore, the corresponding right Cauchy-Green deformation tensor follows from (3) and is given by

Ch,𝜀 = (Fh,𝜀T )Fh,𝜀 = Ch, (A3)

where property (Q𝜀)T = (Q𝜀)−1 of the rotation tensor has been taken into account. A frame-indifferent formulation implies
that the internal energy density takes the form u(F, 𝜏,C−1

p ) = u(C, 𝜏,C−1
p ). Thus, taking the derivative of u(Fh,𝜀, 𝜏,C−1

p ) =
u(Ch, 𝜏,C−1

p ) with respect to parameter 𝜀 and subsequently setting 𝜀= 0 yields

0 = d
d𝜀
||||𝜀=0

u
(

Fh,𝜀
g , 𝜏h

g , (C−1
p )g

)
= 𝜕Fug ∶

d
d𝜀
||||𝜀=0

q𝜀a ⊗ ∇Na
g

= 𝜕Fug ∶
(
𝝃̂qa ⊗ ∇Na

g

)
=
(
𝝃 × qa

)
⋅ 𝜕Fug∇Na

g

= 𝝃 ⋅
(
qa × 𝜕Fug∇Na

g
)
, (A4)

where ug is given by (52)1. Due to the arbitrariness of 𝝃 ∈ R3 (and vanishing body forces), the last equation coincides with
symmetry condition (93)1, that is

qa × 𝜕qa = 0.

Note that this condition holds as well for the specific choice 𝜏 = u, due to (97)1.
Similarly, symmetry condition (93)2 results from the frame-indifference of the entropy density function 𝜂(F, 𝜏,C−1

p ) =
𝜂(C, 𝜏,C−1

p ), or from (100)1 in the case 𝜏 = 𝜂.
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APPENDIX B. DISCRETE DERIVATIVES

This appendix provides the specific definitions of the discrete derivatives dCu, d𝜏u, and du∕d(C−1
p ). To this end, we resort

to the notion of “partitioned discrete derivative” introduced in Gonzalez.41 Accordingly, with regard to the internal energy
density u(C, 𝜏,C−1

p ), we introduce the discrete derivative

dCu = 1
2
(
DCu(•, 𝜏n+1,C−1

pn+1
) + DCu(•, 𝜏n,C−1

pn
)
)
, (B1)

where

DCu(•, 𝜏,C−1
p ) = 𝜕Cu(Cn+ 1

2
, 𝜏,C−1

p )

+
u(Cn+1, 𝜏,C−1

p ) − u(Cn, 𝜏,C−1
p ) − 𝜕Cu(Cn+ 1

2
, 𝜏,C−1

p ) ∶ ΔC

ΔC ∶ ΔC
ΔC.

Here, ΔC = Cn+1 − Cn. Furthermore, we have

d𝜏u = 1
2
(
D𝜏u(Cn, •,C−1

pn+1
) + D𝜏u(Cn+1, •,C−1

pn
)
)
, (B2)

where

D𝜏u(C, •,C−1
p ) =

u(C, 𝜏n+1,C−1
p ) − u(C, 𝜏n,C−1

p )
Δ𝜏

,

and Δ𝜏 = 𝜏n+1 − 𝜏n. Eventually,

du
dC−1

p
= 1

2

(
DC−1

p
u(Cn+1, 𝜏n+1, •) + DC−1

p
u(Cn, 𝜏n, •)

)
, (B3)

where

DC−1
p

u(C, 𝜏, •) = 𝜕C−1
p

u(C, 𝜏,C−1
pn+ 1

2
)

+
u(C, 𝜏,C−1

pn+1
) − u(C, 𝜏,C−1

pn
) − 𝜕C−1

p
u(C, 𝜏,C−1

pn+ 1
2
) ∶ ΔC−1

p

ΔC−1
p ∶ ΔC−1

p
ΔC−1

p ,

and ΔC−1
p = C−1

pn+1
− C−1

pn
. Analogous expressions are used for the discrete derivatives of the entropy density 𝜂(C, 𝜏,C−1

p ).
Note that the above expressions for the discrete derivatives are typically evaluated in the integration points g∈ {1, … , G}.

Next, we verify directionality property (118)1. For that purpose, we make use of the discrete derivatives of the total
energy introduced in (111), to obtain

d(zn, zn+1) ⋅ (zn+1 − zn)

= dqa ⋅
(

qan+1
− qan

)
+ dpa ⋅

(
pa

n+1 − pa
n
)

+ d𝜏a (𝜏an+1 − 𝜏an

)
+

G∑
g=1

d
d(C−1

p )AB
g

(
(C−1

p )AB
gn+1

− (C−1
p )AB

gn

)
=

G∑
g=1

wg

(
2Fgn+ 1

2
dCug∇Na

g

)
⋅
(

qan+1
− qan

)
+ Mabpb

n+ 1
2

⋅
(
pa

n+1 − pa
n
)

+
G∑

g=1
wgNa

g d𝜏ug
(
𝜏an+1 − 𝜏an

)
+

G∑
g=1

wg
dug

dC−1
p

∶
(
(C−1

p )gn+1 − (C−1
p )gn

)
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=
G∑

g=1
wgdCug ∶

(
Ch

gn+1
− Ch

gn

)
+ n+1 − n

+
G∑

g=1
wgd𝜏ug

(
𝜏h

gn+1
− 𝜏h

gn

)
+

G∑
g=1

wg
dug

dC−1
p

∶
(
(C−1

p )gn+1 − (C−1
p )gn

)
.

Note that, for simplicity, body forces have been neglected in the above equations. Moreover, the total kinetic energy
of the semi-discrete system at time tn is given by

n = 1
2

Mabpa
n ⋅ pb

n.

Now, making use of expressions (B1), (B2), and (B3), for the discrete derivatives dCu, d𝜏u, and du∕d(C−1
p ), respectively,

it can be shown by a straightforward calculation that

dCug ∶
(
Ch

gn+1
− Ch

gn

)
+ d𝜏ug

(
𝜏h

gn+1
− 𝜏h

gn

)
+

dug

dC−1
p

∶
(
(C−1

p )gn+1 − (C−1
p )gn

)
= ugn+1 − ugn .

Note that expression ug has been introduced in (52). Correspondingly, ugn stands for the internal energy density at
point Xg and time tn. That is, ugn = u

(
Ch

gn
, 𝜏h

gn
, (C−1

p )gn

)
. Upon introduction of the total internal energy of the semi-discrete

system at time tn,

n =
G∑

g=1
wgugn ,

we eventually obtain the result

d(zn, zn+1) ⋅ (zn+1 − zn) = n+1 − n,

where the total energy of the semi-discrete system at time tn is given by

n = n + n.

The validity of the second directionality property (118)2 can be shown in an analogous way.


