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Abstract We propose and analyse a numerical integrator that computes a low-
rank approximation to large time-dependent matrices that are either given explicitly
via their increments or are the unknown solution to a matrix differential equation.
Furthermore, the integrator is extended to the approximation of time-dependent ten-
sors by Tucker tensors of fixed multilinear rank. The proposed low-rank integrator
is different from the known projector-splitting integrator for dynamical low-rank ap-
proximation, but it retains the important robustness to small singular values that
has so far been known only for the projector-splitting integrator. The new integra-
tor also offers some potential advantages over the projector-splitting integrator: It
avoids the backward time integration substep of the projector-splitting integrator,
which is a potentially unstable substep for dissipative problems. It offers more par-
allelism, and it preserves symmetry or anti-symmetry of the matrix or tensor when
the differential equation does. Numerical experiments illustrate the behaviour of the
proposed integrator.

Keywords dynamical low-rank approximation · structure-preserving integrator ·
matrix and tensor differential equations · Tucker tensor format
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1 Introduction

For the approximation of huge time-dependent matrices (or tensors) that are the
solution to a matrix differential equation, dynamical low-rank approximation [11,
12] projects the right-hand side function of the differential equation to the tan-
gent space of matrices (or tensors) of a fixed rank at the current approximation.
This yields differential equations for the factors of an SVD-like decomposition of the
time-dependent low-rank approximation. The direct numerical integration of these
differential equations by standard methods such as explicit or implicit Runge–Kutta
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methods is highly problematic because in the typical presence of small singular val-
ues in the approximation, it leads to severe step size restrictions proportional to the
smallest nonzero singular value. This difficulty does not arise with the projector-
splitting integrator proposed in [15], which foregoes a direct time discretization of
the differential equations for the factors and instead splits the orthogonal projection
onto the tangent space, which is an alternating sum of subprojections. This approach
leads to an efficiently implementable integrator that is robust to small singular val-
ues [10,15]. It has been extended, together with its robustness properties, from the
matrix case to Tucker tensors in [14,17], to tensor trains / matrix product states in
[16,7], and to general tree tensor networks in [5].

In the present paper we propose and analyse a different integrator that is shown to
have the same robust error behaviour as the projector-splitting integrator. This new
integrator can apparently not be interpreted as a splitting integrator or be included
in another familiar class of integrators. Its substeps look formally similar to those of
the projector-splitting integrator but are arranged in a different, less sequential way.
Like in the projector-splitting integrator, the differential equations in the substeps
are linear if the original differential equation is linear, even though the projected
differential equation becomes nonlinear. The new integrator bears some similarity
also to the constant-mean-field integrator of [3] and the splitting integrator of [9].

Beyond the robustness to small singular values, the new integrator has some
favourable further properties that are not shared with the projector-splitting inte-
grator. Maybe most importantly, it has no backward time integration substep as in
the projector-splitting integrator. This appears advantageous in strongly dissipative
problems, where the backward time integration step represents an unstable substep.
Moreover, the new integrator has enhanced parallelism in its substeps, and in the
Tucker tensor case even a reduced serial computational cost. It preserves symme-
try or anti-symmetry of the matrix or tensor when the differential equation does. It
reduces to the (anti-)symmetry-preserving low-rank integrator of [4] in this case.

On the other hand, unlike the projector-splitting integrator it cannot be effi-
ciently extended to a time-reversible integrator. When applied to the time-dependent
Schrödinger equation (as an integrator for the MCTDH method of quantum molec-
ular dynamics; cf. [2,3,14]), the new integrator preserves the norm, but it has no
energy conservation as shown in [14] for the projector-splitting integrator.

In Section 2 we recapitulate dynamical low-rank approximation and the projector-
splitting integrator for the matrix case. We restate its exactness property and its
robust error bound.

In Section 3 we present the new low-rank matrix integrator and show that it has
the same exactness property and robust error bound as the matrix projector-splitting
integrator.

In Section 4 we recapitulate dynamical low-rank approximation by Tucker tensors
of fixed multilinear rank and the extension of the projector-splitting integrator to
the Tucker tensor case.

In Section 5 we present the new low-rank Tucker tensor integrator and show that
it has the same exactness property and robust error bound as the Tucker tensor
projector-splitting integrator.

In Section 6 we illustrate the behaviour of the new low-rank matrix and Tucker
tensor integrators by numerical experiments.
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While we describe the integrator for real matrices and tensors, the algorithm
and its properties extend in a straightforward way to complex matrices and tensors,
requiring only some care in using transposes U> versus adjoints U∗ = U>.

Throughout the paper, we use the convention to denote matrices by boldface
capital letters and tensors by italic capital letters.

2 Recap: the matrix projector-splitting integrator

Dynamical low-rank approximation of time-dependent matrices [11] replaces the ex-
act solution A(t) ∈ Rm×n of a (too large) matrix differential equation

.
A(t) = F(t,A(t)), A(t0) = A0 (1)

by the solution Y(t) ∈ Rm×n of rank r of the differential equation projected to the
tangent space of the manifold of rank-r matrices at the current approximation,

.
Y(t) = P(Y(t))F(t,Y(t)), Y(t0) = Y0, (2)

where the initial rank-r matrix Y0 is typically obtained from a truncated singular
value decomposition (SVD) of A0. (We note that F(t,Y) =

.
A(t) if A(t) is given

explicitly.) For the actual computation with rank-r matrices, they are represented
in a non-unique factorized SVD-like form

Y(t) = U(t)S(t)V(t)>, (3)

where the slim matrices U(t) ∈ Rm×r and V(t) ∈ Rn×r each have r orthonormal
columns, and the small matrix S(t) ∈ Rr×r is invertible.

The orthogonal tangent space projection P(Y) can be written explicitly as an al-
ternating sum of three subprojections onto the co-range, the intersection of co-range
and range, and the range of the rank-r matrix Y [11]. The projector-splitting inte-
grator of [15] splits the right-hand side of (2) according to the three subprojections
in the stated ordering and solves the subproblems consecutively in the usual way of a
Lie–Trotter or Strang splitting. This approach yields an efficient time-stepping algo-
rithm that updates the factors in the SVD-like decomposition of the rank-r matrices
in every time step, alternating between solving differential equations for matrices of
the dimension of the factor matrices and orthogonal decompositions of slim matrices.

One time step from t0 to t1 = t0 + h starting from a factored rank-r matrix
Y0 = U0S0V>0 proceeds as follows:

1. K-step : Update U0 → U1,S0 → Ŝ1
Integrate from t = t0 to t1 the m× r matrix differential equation

K̇(t) = F(t,K(t)V>0 )V0, K(t0) = U0S0.

Perform a QR factorization K(t1) = U1Ŝ1.
2. S-step : Update Ŝ1 → S̃0

Integrate from t = t0 to t1 the r × r matrix differential equation

Ṡ(t) = −U>1 F(t,U1S(t)V>0 )V0, S(t0) = Ŝ1,

and set S̃0 = S(t1).
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3. L-step : Update V0 → V1, S̃0 → S1
Integrate from t = t0 to t1 the n× r matrix differential equation

L̇(t) = F(t,U1L(t)>)>U1, L(t0) = V0S̃>0 .

Perform a QR factorization L(t1) = V1S>1 .

Then, the approximation after one time step is given by

Y1 = U1S1V>1 .

To proceed further, Y1 is taken as the starting value for the next step, and so on.
The projector-splitting integrator has very favourable properties. First, it repro-

duces rank-r matrices exactly.

Theorem 1 (Exactness property, [15, Theorem 4.1]) Let A(t) ∈ Rm×n be of
rank r for t0 ≤ t ≤ t1, so that A(t) has a factorization (3), A(t) = U(t)S(t)V(t)>.
Moreover, assume that the r× r matrices U(t1)>U(t0) and V(t1)>V(t0) are invert-
ible. With Y0 = A(t0), the projector-splitting integrator for

.
Y(t) = P(Y(t))

.
A(t) is

then exact: Y1 = A(t1).

Even more remarkable, the algorithm is robust to the presence of small singular
values of the solution or its approximation, as opposed to standard integrators ap-
plied to (2) or the equivalent differential equations for the factors U(t), S(t), V(t),
which contain a factor S(t)−1 on the right-hand sides [11, Prop. 2.1]. The appear-
ance of small singular values is ubiquitous in low-rank approximation, because the
smallest singular value retained in the approximation cannot be expected to be much
larger than the largest discarded singular value of the solution, which is required to
be small for good accuracy of the low-rank approximation.

Theorem 2 (Robust error bound, [10, Theorem 2.1]) Let A(t) denote the
solution of the matrix differential equation (1). Assume that the following conditions
hold in the Frobenius norm ‖ · ‖ = ‖ · ‖F :

1. F is Lipschitz-continuous and bounded: for all Y, Ỹ ∈ Rm×n and 0 ≤ t ≤ T ,

‖F(t,Y)− F(t, Ỹ)‖ ≤ L‖Y− Ỹ‖, ‖F(t,Y)‖ ≤ B .

2. The non-tangential part of F(t,Y) is ε-small:

‖(I− P(Y))F(t,Y)‖ ≤ ε

for all Y ∈M in a neighbourhood of A(t) and 0 ≤ t ≤ T .
3. The error in the initial value is δ-small:

‖Y0 −A0‖ ≤ δ.

Let Yn denote the rank-r approximation to A(tn) at tn = nh obtained after n steps
of the projector-splitting integrator with step-size h > 0. Then, the error satisfies for
all n with tn = nh ≤ T

‖Yn −A(tn)‖ ≤ c0δ + c1ε+ c2h,

where the constants ci only depend on L,B, and T . In particular, the constants are
independent of singular values of the exact or approximate solution.
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In [10, Section 2.6.3] it is shown that an inexact solution of the matrix differential
equations in the projector-splitting integrator leads to an additional error that is
bounded in terms of the local errors in the inexact substeps, again with constants
that do not depend on small singular values.

Numerical experiments with the matrix projector-splitting integrator and com-
parisons with standard numerical integrators are reported in [15,10].

3 A new robust low-rank matrix integrator

We now present a different integrator that has the same exactness and robustness
properties as the projector-splitting integrator but which differs in the following
favourable properties:

1. The solution of the differential equations for the m × r and n × r matrices can
be done in parallel, and also the two QR decompositions can be done in parallel.

2. The differential equation for the small r× r matrix is solved forward in time, not
backwards.

3. The integrator preserves (skew-)symmetry if the differential equation does.

While item 1. can clearly speed up the computation, item 2. is of interest for strongly
dissipative problems, for which the S-step in the projector-splitting algorithm with
the minus sign in the differential equations is an unstable substep of the algorithm.
This does not appear in the new algorithm. We mention that in [1], the problem
of the backward substep for parabolic problems has recently been addressed in a
different way.

On the other hand, contrary to the projector-splitting integrator, there is ap-
parently no efficient way to construct a time-reversible integrator from this new
integrator.

3.1 Formulation of the algorithm

One time step of integration from time t0 to t1 = t0 +h starting from a factored rank-
r matrix Y0 = U0S0V>0 computes an updated rank-r factorization Y1 = U1S1V>1
as follows.

1. Update U0 → U1 and V0 → V1 in parallel:

K-step: Integrate from t = t0 to t1 the m× r matrix differential equation

K̇(t) = F(t,K(t)V>0 )V0, K(t0) = U0S0.

Perform a QR factorization K(t1) = U1R1 and compute the r × r matrix M =
U>1 U0.

L-step : Integrate from t = t0 to t1 the n× r matrix differential equation

L̇(t) = F(t,U0L(t)>)>U0, L(t0) = V0S>0 .

Perform a QR factorization L(t1) = V1R̃1 and compute the r × r matrix N =
V>1 V0.
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2. Update S0 → S1 :

S-step : Integrate from t = t0 to t1 the r × r matrix differential equation

Ṡ(t) = U>1 F(t,U1S(t)V>1 )V1, S(t0) = MS0N>,

and set S1 = S(t1).

The m×r, n×r and r×r matrix differential equations in the substeps are solved
approximately using a standard integrator, e.g., an explicit or implicit Runge–Kutta
method or an exponential integrator when F is dominantly linear.

We note that the L-step equals the K-step for the transposed function G(t,Y) =
F(t,Y>)> and transposed starting values. Unlike the projector-splitting algorithm,
the triangular factors of the QR-decompositions are not reused. The S-step can be
viewed as a Galerkin method for the differential equation (1) in the space of matri-
ces U1SV>1 generated by the updated basis matrices. In contrast to the projector-
splitting integrator, there is no minus sign on the right-hand side of the differential
equation for S(t). We further note that U1 of the new integrator is identical to U1
of the projector-splitting integrator, but V1 is in general different.

Remark 1 There exists a modification where all three differential equations for K,
L and S can be solved in parallel. That variant solves the K- and L-steps as above,
but in the S-step it solves instead the r × r matrix differential equation

Ṡ(t) = U>0 F(t,U0S(t)V>0 )V0, S(t0) = S0

and finally sets
S1 = M−> S(t1) N−1.

This modified integrator can be shown to have the same exactness property as proved
below for the integrator formulated above, and also a similar robust error bound
under the condition that the inverses of the matrices M and N are bounded by a
constant. This condition can, however, be guaranteed only for step sizes that are small
in comparison to the smallest nonzero singular value. In our numerical experiments
this method did not behave as reliably as the method proposed above, and despite
its interesting properties it will therefore not be further discussed in the following.

3.2 Exactness property and robust error bound

We will prove the following remarkable results for the integrator of Section 3.1.

Theorem 3 The exactness property of Theorem 1 holds verbatim also for the new
integrator.

Theorem 4 The robust error bound of Theorem 2 holds verbatim also for the new
integrator.

As in [10, Section 2.6.3], it can be further shown that an inexact solution of
the matrix differential equations in the projector-splitting integrator leads to an
additional error that is bounded in terms of the local errors in the inexact substeps,
again with constants that do not depend on small singular values.
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3.3 Proof of Theorem 3

For the proof of Theorem 3 we need the following auxiliary result, which extends an
analogous result in [4] for symmetric matrices.

Lemma 1 Let A(t) ∈ Rm×n be of rank r for t0 ≤ t ≤ t1, so that A(t) has a
factorization (3), A(t) = U(t)S(t)V(t)>. Moreover, assume that the r × r matrix
V(t1)>V(t0) is invertible. Then,

U1U>1 A(t1) = A(t1).

Proof The solution of the K-step at time t1 is

K(t1) = A(t0)V0 +
(
A(t1)−A(t0)

)
V0 = A(t1)V0.

Hence,
K(t1) = U(t1)

[
S(t1)(V(t1)>V(t0))

]
.

By assumption, the factor in big square brackets is invertible. Computing a QR-
decomposition of this term, we have

K(t1) = U(t1)QR ,

where Q ∈ Rr×r is an orthogonal matrix and R ∈ Rr×r is invertible and upper
triangular. The QR-factorization of K(t1) thus yields

U1 = U(t1)Q ∈ Rm×r.

To conclude,

U1U>1 A(t1) = U(t1)QQ>U(t1)>A(t1) = U(t1)U(t1)>A(t1) = A(t1),

which is the stated result. ut

Proof (of Theorem 3) Since the L-step is the K-step for the transposed matrix A(t)>,
which has the same rank as A(t), it follows from Lemma 1 that

U1U>1 A(t1) = A(t1), V1V>1 A(t1)> = A(t1)>. (4)

The integrator yields in the S-step

S1 = U>1 Y0V1 + U>1 (A(t1)−A(t0))V1 = U>1 A(t1)V1,

since Y0 = A(t0). The result after a time step of the new integrator is

Y1 = U1S1V>1 = U1U>1 A(t1)(V1V>1 ) = A(t1),

where the last equality holds because of (4). ut
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3.4 Proof of Theorem 4

Under the assumptions of Theorem 2, we introduce the quantity

ϑ := (4eLhBL+ 9BL)h2 + (3eLh + 4)εh+ eLhδ , (5)

which is the local error bound of the projector-splitting integrator after one time
step, as proved in [10, Theorem 2.1].

Lemma 2 Let A1 be the solution at time t1 = t0 + h of the full problem (1) with
initial condition A0. Assume that conditions 1.- 3. of Theorem 2 are fulfilled. Then,

‖U1U>1 A1 −A1‖ ≤ ϑ.

Proof The result is proved in the course of the proof of Lemma 1 in [4]. We give the
proof here for the convenience of the reader. The local error analysis in [10] shows
that the r× n matrix Z = Sps

1 Vps,>
1 , where Sps

1 and Vps
1 are the matrices computed

in the third substep of the projector-splitting algorithm, satisfies

‖U1Z−A1‖ ≤ ϑ.

The square of the left-hand side can be split into two terms:

‖U1Z−A1‖2 = ‖U1Z−U1U>1 A1 + U1U>1 A1 −A1‖2

= ‖U1U>1 (U1Z−A1) + (I−U1U>1 )A1‖2

= ‖U1U>1 (U1Z−A1)‖2 + ‖(I−U1U>1 )A1‖2.

Hence,
‖U1U>1 (U1Z−A1)‖2 + ‖(I−U1U>1 )A1‖2 ≤ ϑ2.

This yields the stated result for the second term. ut

Lemma 3 Let A1, U1 and V1 be defined as above. The following estimate holds:

‖U1U>1 A1V1V>1 −A1‖ ≤ 2ϑ.

Proof The L-step is the K-step for the transposed function G(t,Y) = F(t,Y>)>,
which again fulfills conditions 1.- 3. of Theorem 2. Conditions 1. and 3. hold because
of the invariance of the Frobenius norm under transposition. Condition 2. holds
because

‖(I− P(Y))G(t,Y)‖ = ‖(I− P(Y>))F(t,Y>)‖ ≤ ε,

where we used the identity P(Y)Z> =
[
P(Y>)Z

]>. From Lemma 2 we thus have

‖U1U>1 A1 −A1‖ ≤ ϑ,
‖V1V>1 A>1 −A>1 ‖ ≤ ϑ.

(6)

This implies that

‖U1U>1 A1V1V>1 −A1‖ ≤ ‖U1U>1 A1V1V>1 −A1V1V>1 + A1V1V>1 −A1‖
≤ ‖U1U>1 A1V1V>1 −A1V1V>1 ‖+ ‖A1V1V>1 −A1‖
≤ ‖
(
U1U>1 A1 −A1

)
V1V>1 ‖+ ‖V1V>1 A>1 −A>1 ‖

≤ ‖U1U>1 A1 −A1‖ · ‖V1V>1 ‖2 + ‖V1V>1 A>1 −A>1 ‖.

Since ‖V1V>1 ‖2 = 1, the result follows from (6). ut
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In the following lemma, we show that the approximation given after one time step
is O(h(h+ ε)) close to the solution of system (1) when the starting values coincide.

Lemma 4 (Local Error) If A0 = Y0, the following local error bound holds:

‖Y1 −A1‖ ≤ h(ĉ1ε+ ĉ2h),

where the constants only depend on L and B and a bound of the step size. In par-
ticular, the constants are independent of singular values of the exact or approximate
solution.

Proof With a few crucial modifications, the proof is similar to that of [4, Lemma 2].
We report here the full proof for completeness and convenience of the reader. By the
identity Y1 = U1S1V>1 and Lemma 3 we have that

‖Y1 −A1‖ ≤ ‖Y1 −U1U>1 A1V1V>1 ‖+ ‖U1U>1 A1V1V>1 −A1‖
≤ ‖U1(S1 −U>1 A1V1)V>1 ‖+ 2ϑ
= ‖S1 −U>1 A1V1‖+ 2ϑ.

The analysis of the local error thus reduces to estimating ‖S1 −U>1 A1V1‖. To this
end, we introduce the following quantity: for t0 ≤ t ≤ t1,

S̃(t) := U>1 A(t)V1.

We write

A(t) = U1U>1 A(t)V1V>1 +
(
A(t)−U1U>1 A(t)V1V>1

)
= U1S̃(t)V>1 + R(t),

where R(t) denotes the term in big brackets. Lemma 3 and the bound B of F yield,
for t0 ≤ t ≤ t1,

‖A(t)−A(t1)‖ ≤
∫ t1

t0

‖
.
A(s)‖ ds =

∫ t1

t0

‖F(s,A(s))‖ ds ≤ Bh.

Hence the remainder term is bounded by

‖R(t)‖ ≤ ‖R(t)−R(t1)‖+ ‖R(t1)‖ ≤ 2Bh+ 2ϑ.

It follows that F(t,A(t)) can be written as

F(t,A(t)) = F(t,U1S̃(t)V>1 + R(t))

= F(t,U1S̃(t)V>1 ) + D(t)

with the defect

D(t) := F(t,U1S̃(t)V>1 + R(t))− F(t,U1S̃(t)V>1 ).

With the Lipschitz constant L of F, the defect is bounded by

‖D(t)‖ ≤ L‖R(t)‖ ≤ 2L(Bh+ ϑ).
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We compare the two differential equations

˙̃S(t) = U>1 F(t,U1S̃(t)V>1 )V1 + U>1 D(t)V1, S̃(t0) = U>1 Y0V1,

Ṡ(t) = U>1 F(t,U1S(t)V>1 )V1, S(t0) = U>1 Y0V1.

By construction, the solution of the first differential equation at time t1 is S̃(t1) =
U>1 A1V1. The solution of the second differential equation is S1 as given by the
S-step of the integrator. With the Gronwall inequality we obtain

‖S1 −U>1 A1V1‖ ≤
∫ t1

t0

eL(t1−s) ‖D(s)‖ ds ≤ eLh 2L(Bh+ ϑ)h.

The result now follows using the definition of ϑ. ut

Using the Lipschitz continuity of the function F, we pass from the local to the
global errors by the standard argument of Lady Windermere’s fan [8, Section II.3]
and thus conclude the proof of Theorem 7.

3.5 Symmetric and skew-symmetric low-rank matrices

We now assume that the right-hand side function in (1) is such that one of the
following conditions holds,

F(t,Y>)> = F(t,Y) for all Y ∈ Rn×n (7)

or
F(t,Y>)> = −F(t,−Y) for all Y ∈ Rn×n. (8)

Under these conditions, solutions to (1) with symmetric or skew-symmetric initial
data remain symmetric or skew-symmetric, respectively, for all times. We also have
preservation of (skew-)symmetry for the new integrator, which does not hold for the
projector-splitting integrator.

Theorem 5 Let Y0 = U0S0U>0 ∈ Rn×n be symmetric or skew-symmetric and
assume that the function F satisfies property (7) or (8), respectively. Then, the ap-
proximation Y1 obtained after one time step of the new integrator is symmetric or
skew-symmetric, respectively.

Proof Let us just consider the skew-symmetric case (8). (The symmetric case is anal-
ogous.) The L-step is the K-step for the transposed function G(t,Y) = F(t,Y>)>,
and so the skew-symmetry of S0 and property (8) imply that L(t1) = −K(t1), which
further yields V1 = U1 and M = N. These identities show that the initial value and
the right-hand side function of the differential equation for S(t) are skew-symmetric,
which implies that S(t) and hence S1 are still skew-symmetric. Altogether, the algo-
rithm gives us the skew-symmetric result Y1 = U1S1U>1 . ut

Under condition (7) or (8), the new integrator coincides with the (skew)-symmetry
preserving low-rank matrix integrator of [4].
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4 Recap: the Tucker tensor projector-splitting integrator

The solution A(t) ∈ Rn1×···×nd of a tensor differential equation
.
A(t) = F (t, A(t)), A(0) = A0 (9)

is approximated by the solution Y (t) ∈ Rn1×···×nd of multilinear rank r = (r1, . . . , rd)
of the differential equation projected to the tangent space of the manifold of rank-r
tensors at the current approximation ([12], cf. also [2]),

.
Y (t) = P(Y (t))F (t, Y (t)), Y (t0) = Y0, (10)

where Y0 is a rank-r approximation to A0. Tensors Y (t) of multilinear rank r are
represented in the Tucker form [6], written here in a notation following [13]:

Y (t) = C(t) Xd
i=1 Ui(t), (11)

i.e., yi1,...,id(t) =
∑

j1,...,jd

cj1,...,jd(t)ui1,j1 (t) . . . uid,jd(t),

where the slim basis matrices Ui ∈ Rni×ri have orthonormal columns and the smaller
core tensor C(t) ∈ Rr1×···×rd is of full multilinear rank r.

The orthogonal tangent space projection P(Y ) is given as an alternating sum
of 2d − 1 subprojections [14], and like in the matrix case, a projector-splitting in-
tegrator with favourable properties can be formulated and efficiently implemented
[14,17]. The algorithm runs through the modes i = 1, . . . , d and solves differen-
tial equations for matrices of the dimension of the slim basis matrices and for the
core tensor, alternating with orthogonalizations of slim matrices. Like the matrix
projector-splitting integrator, also the Tucker tensor projector-splitting integrator
has the exactness property and a robust error bound independently of small singular
values of matricizations of the core tensor [17, Theorems 4.1 and 5.1].

5 A new robust low-rank Tucker tensor integrator

The low-rank numerical integrator defined in Section 3 for the matrix case extends in
a natural way to the Tucker tensor format, and this extension still has the exactness
property and robust error bounds that are independent of small singular values of
matricizations of the core tensor.

In comparison with the Tucker integrator of [14] and [17], the new Tucker tensor
integrator has the following favourable properties:

1. The solution of the differential equations for the ni × ri matrices can be done in
parallel for i = 1, . . . , d, and also the QR decompositions can be done in parallel.

2. No differential equations are solved backward in time. No differential equations
for ri × ri matrices need to be solved.

3. The integrator preserves (anti-)symmetry if the differential equation does.

On the other hand, in contrast to the projector-splitting Tucker integrator there is
apparently no efficient way to construct a time-reversible integrator from this new
Tucker integrator.
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5.1 Formulation of the algorithm

One time step of integration from time t0 to t1 = t0 + h starting from a Tucker
tensor of multilinear rank (r1, . . . , rd) in factorized form, Y0 = C0 Xd

i=1 U0
i , computes

an updated Tucker tensor of multilinear rank (r1, . . . , rd) in factorized form, Y1 =
C1 Xd

i=1 U1
i , in the following way:

1. Update the basis matrices U0
i → U1

i for i = 1, . . . , d in parallel:

Perform a QR factorization of the transposed i-mode matricization of the core
tensor:

Mati(C0)> = QiS
0,>
i .

With V0,>
i = Q>i

⊗d
j 6=i U

0,>
j ∈ Rri×n¬i (which yields Mati(Y0) = U0

iS0
iV

0,>
i )

and the matrix function Fi(t, ·) := Mati ◦F (t, ·) ◦Teni, integrate from t = t0 to
t1 the ni × ri matrix differential equation

K̇i(t) = Fi(t,Ki(t)V0,>
i )V0

i , Ki(t0) = U0
iS0

i .

Perform a QR factorization Ki(t1) = U1
iR1

i and compute the ri × ri matrix
Mi = U1,>

i U0
i .

2. Update the core tensor C0 → C1:

Integrate from t = t0 to t1 the r1 × · · · × rd tensor differential equation

Ċ(t) = F
(
t, C(t) Xd

i=1 U1
i

)
Xd
i=1 U1,>

i , C(t0) = C0 Xd
i=1 Mi

and set C1 = C(t1).

To continue in time, we take Y1 as starting value for the next step and perform
another step of the integrator.

We observe that, in contrast to the Tucker integrators of [17,14], the factors
Ui ∈ Rni×ri are updated simultaneously for i = 1, . . . , d.

5.2 Exactness property

The following result extends the exactness results of Theorem 3 and [17, Theorem
4.1] to the new Tucker tensor integrator.

Theorem 6 (Exactness property) Let A(t) = C(t) Xd
i=1 Ui(t) be of multilin-

ear rank (r1, . . . , rd) for t0 ≤ t ≤ t1. Moreover, assume that the ri × ri matrix
Ui(t1)>Ui(t0) is invertible for each i = 1, . . . , d. With Y0 = A(t0), the new Tucker
integrator with rank (r1, . . . , rd) for

.
Y (t) = P(Y (t))

.
A(t) with starting value Y0 =

A(t0) is then exact: Y1 = A(t1).

Proof For each i = 1, . . . , d, we apply Lemma 1 to Mati(
.
A(t))

Mati(A(t1)×i U1
iU

1,>
i ) = U1

iU
1,>
i Mati(A(t1)) = Mati(A(t1)).

We tensorize in the i-th mode and obtain

A(t1)×i U1
iU

1,>
i = A(t1), i = 1, . . . , d .
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With Y0 = A(t0) we obtain from the second substep of the algorithm

Y1 = C1 Xd
i=1 U1

i

=
(
Y0 Xd

i=1 U1,>
i + (A(t1)−A(t0)) Xd

i=1 U1,>
i

)
Xd
i=1 U1

i

=
(
A(t1) Xd

i=1 U1,>
i

)
Xd
i=1 U1

i

= A(t1) Xd
i=1 U1

iU
1,>
i = A(t1) ,

which proves the exactness. ut

5.3 Robust error bound

The robust error bounds from Theorem 4 and [17, Theorem 5.1] extend to the new
Tucker tensor integrator as follows. The norm ‖B‖ of a tensor B used here is the
Euclidean norm of the vector of entries of B.

Theorem 7 (Robust error bound) Let A(t) denote the solution of the tensor
differential equation (9). Assume the following:

1. F is Lipschitz-continuous and bounded.
2. The non-tangential part of F (t, Y ) is ε-small:

‖(I − P(Y ))F (t, Y )‖ ≤ ε

for all Y of multilinear rank (r1, . . . , rd) in a neighbourhood of A(t) and 0 ≤ t ≤
T .

3. The error in the initial value is δ-small:

‖Y0 −A0‖ ≤ δ.

Let Yn denote the approximation of multinear rank (r1, . . . , rd) to A(tn) at tn = nh
obtained after n steps of the new Tucker integrator with step-size h > 0. Then, the
error satisfies for all n with tn = nh ≤ T

‖Yn −A(tn)‖ ≤ c0δ + c1ε+ c2h,

where the constants ci only depend on the Lipschitz constant L and bound B of
F , on T , and on the dimension d. In particular, the constants are independent of
singular values of matricizations of the exact or approximate solution.

The proof of Theorem 7 proceeds similar to the proof of Theorem 4 for the matrix
case. We begin with two key lemmas and are then in a position to analyse the local
error produced after one time step. We denote the solution value at t1 by A1. The
basis matrix computed in the first part of the integrator is denoted by U1

i for each
i = 1, . . . , d.

Lemma 5 For each i = 1, . . . , d, the function Fi(t, ·) := Mati ◦F (t, ·)◦Teni fulfills
Conditions 1. - 2. of Theorem 2, and the initial matrix Y0

(i) = Mati(Y0) fulfills
Condition 3. of that theorem.
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Proof For each i = 1 . . . d, it holds that for Y(i) = Mati(Y ),

‖Fi(t,Y(i))‖ = ‖F (t, Y )‖.

The boundedness and Lipschitz condition of the matrix-valued function Fi follows
from the boundedness and Lipschitz condition of the tensor-valued function F .

Condition 2. follows with the help of the correspondingly defined projection

Pi(Y(i)) := Mati ◦ P(Y ) ◦ Teni for Y(i) = Mati(Y ),

which is an orthogonal projection onto a subspace of the tangent space at Y(i) of
the manifold of rank-ri matrices of dimension ni × n¬i. Denoting the orthogonal
projection onto this tangent space by P(i)(Y(i)), we thus have

‖
(
I−P(i)(Y(i))

)
Fi(t,Y(i))‖ ≤ ‖

(
I−Pi(Y(i))

)
Fi(t,Y(i))‖ = ‖(I−P(Y ))F (t, Y )‖ ≤ ε.

Condition 3. holds due to the invariance of the Frobenius norm under matricization,

‖Y0
(i) −Mati(A0)‖ = ‖Mati(Y0 −A0)‖ = ‖Y0 −A0‖ ≤ δ,

and so we obtain the stated result. ut

Lemma 6 The following estimate holds with ϑ of (5):

‖A1 Xd
i=1 U1

iU
1,>
i −A1‖ ≤ d ϑ,

where c only depends on d and a bound for hL.

Proof From Lemma 5 and Lemma 2,

‖U1
iU

1,>
i Mati(A1)−Mati(A1)‖ ≤ ϑ, i = 1, . . . , d.

The norm is invariant under tensorization and so the bound is equivalent to

‖A1 ×i U1
iU

1,>
i −A1‖ ≤ ϑ, i = 1, . . . , d.

To conclude, we observe

‖A1 Xd
i=1 U1

iU
1,>
i −A1‖

≤ ‖A1 Xd
i=1 U1

iU
1,>
i −A1 Xd−1

i=1 U1
iU

1,>
i +A1 Xd−1

i=1 U1
iU

1,>
i −A1‖

≤ ‖A1 Xd
i=1 U1

iU
1,>
i −A1 Xd−1

i=1 U1
iU

1,>
i ‖+ ‖A1 Xd−1

i=1 U1
iU

1,>
i −A1‖

≤ ‖(A1 ×d U1
iU

1,>
i −A1) Xd−1

i=1 U1
iU

1,>
i ‖+ ‖A1 Xd−1

i=1 U1
iU

1,>
i −A1‖

≤ ‖A1 ×d U1
iU

1,>
i −A1‖+ ‖A1 Xd−1

i=1 U1
iU

1,>
i −A1‖

≤ ϑ+ ‖A1 Xd−1
i=1 U1

iU
1,>
i −A1‖,

and the result follows by an iteration of this argument. ut

We are now in a position to analyse the local error produced after one time step
of the integrator.
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Lemma 7 (Local error) If A0 = Y0, the following local error bound holds for the
new Tucker tensor integrator:

‖Y1 −A1‖ ≤ ĉ h(BLh+ ε),

where ĉ only depends on d and a bound of hL. In particular, the constant is inde-
pendent of singular values of the exact or approximate solution.

We omit the proof because, up to minor modifications analogous to those in the
proof of Lemma 4, the result follows as in [4, Section 5.3] on using the two previous
lemmas.

Using the Lipschitz continuity of the function F , we pass from the local to the
global errors by the standard argument of Lady Windermere’s fan [8, Section II.3]
and thus conclude the proof of Theorem 7.

5.4 Symmetric and anti-symmetric low-rank Tucker tensors

For permutations σ ∈ Sd, we use the notation σ(Y ) =
(
yiσ(1),...,iσ(d)

)
for tensors

Y = (yi1,...,id) ∈ Rn×···×n of order d. A tensor Y is called symmetric if σ(Y ) = Y for
all σ ∈ Sd, and is called anti-symmetric if σ(Y ) = (−1)sign(σ) Y for all σ ∈ Sd.

We now assume that the right-hand side function in (9) is such that one of the
following conditions holds: For all permutations σ ∈ Sd and all tensors Y ∈ Rn×···×n
of order d,

σ
(
F (t, σ(Y ))

)
= F (t, Y ) (12)

or
σ
(
F (t, σ(Y ))

)
= (−1)sign(σ) F (t, Y ) (13)

Under these conditions, solutions to (1) with symmetric or anti-symmetric initial
data remain symmetric or anti-symmetric, respectively, for all times. We also have
preservation of (anti-)symmetry for the new integrator, which does not hold for the
projector-splitting integrator.

Theorem 8 Let Y0 be symmetric or anti-symmetric and assume that the function
F satisfies property (12) or (13), respectively. Then, the approximation Y1 obtained
after one time step of the new integrator is symmetric or anti-symmetric, respectively.

The simple proof is similar to the matrix case and is therefore omitted.
Under condition (12) or (13), the new integrator coincides with the (anti)-symmetry

preserving low-rank Tucker tensor integrator of [4].

6 Numerical Experiments

In this section, we present results of different numerical experiments. The experi-
ments were done using Matlab R2017a software with TensorLab package v3.0 [18].
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Fig. 1 Comparison of the explicit Runge Kutta method (left) and the proposed new integrator
(right) for different approximation ranks and step sizes in the case of a given time-dependent
matrix.

6.1 Robustness with respect to small singular values

In the first example, the time-dependent matrix is given explicitly as

A(t) =
(
etW1

)
etD

(
etW2

)>
, 0 ≤ t ≤ 1 .

The matrix D ∈ RN×N is diagonal with entries dj = 2−j . The matrices W1 ∈ RN×N
and W2 ∈ RN×N are skew-symmetric and randomly generated. We note that et2−j
are the singular values of A(t). We choose N = 100 and final time T = 1. We compare
the new low-rank integrator presented in Section 3 with a numerical solution obtained
with the classical fourth-order explicit Runge-Kutta method applied to the system
of differential equations for dynamical low-rank approximation as derived in [11].

The numerical results for different ranks are shown in Figure 1. In contrast to
the Runge–Kutta method, the new low-rank integrator does not require a step-size
restriction in the presence of small singular values. The same favourable behaviour
was shown for the projector-splitting integrator in [10].

6.2 Error behaviour

In the second example, we integrate a (non-stiff) discrete Schrödinger equation in
imaginary time,

Ẏ = −H[Y ], Y (t0) = C0 Xd
i=1 U0

i .

Here,

H[Y ] = −1
2

d∑
j=1

(
Y ×j D

)
+ Y Xd

i=1 Vcos ∈ RN×···×N ,

D = tridiag(−1, 2,−1) ∈ RN×N ,

Vcos := diag{1− cos(2πj
N

)}, j = −N/2, . . . , N/2− 1 .
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Fig. 2 First twelve singular values of the reference solution at time T = 0.1 and approxi-
mation errors for different ranks, time-integration methods in the substeps of the new matrix
integrator, and step-sizes for the matrix differential equation (d = 2).

The function H arises from the Hamiltonian H = − 1
2∆discrete +V (x) on a equidistant

space grid with the torsional potential V (x1, . . . , xd) =
∏d
i=1(1− cos(xi)).

For each i = 1, . . . , d, the orthonormal matrices U0
i ∈ RN×N are randomly

generated. The core tensor C0 ∈ RN×N×N has only non-zero diagonal elements set
equal to (C0)jjj = 10−j for j = 1, . . . N in the case d = 3, and analogously in the
matrix case d = 2.

The reference solution was computed with the Matlab solver ode45 and stringent
tolerance parameters {’RelTol’, 1e-10, ’AbsTol’, 1e-10} . The differential equa-
tions appearing in the definition of a step of the new matrix and Tucker integrators
have all been solved either with a single step of a second- or fourth-order explicit
Runge–Kutta method.
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Fig. 3 First twelve singular values of the matricisization in first mode of the reference solution
at time T = 0.1 and approximation errors for different multi-linear ranks, time-integration
methods in the substeps of the new fixed-rank Tucker tensor integrator and step-sizes for the
tensor differential equation (d = 3).
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We choose N = 100, final time T = 0.1 and d = 2, 3. The multi-linear rank
is chosen such that r1 = r2 = · · · = rd. The singular values of the matricization
in the first mode of the reference solution and the absolute errors ‖Yn − A(tn)‖F
at time tn = T of the approximate solutions for different ranks, calculated with
different step-sizes and different time integration methods, are shown in Figure 2
for the matrix case(d = 2), and in Figure 3 for the tensor case(d = 3). The figures
clearly show that solving the substeps with higher accuracy allows us to take larger
step-sizes to achieve a prescribed error.

6.3 Comparison with the matrix projector-splitting integrator over different ranks

In the last example, we compare the matrix projector splitting integrator with the
new matrix integrator of Section 3. Here, the complex case is considered: in the
definition of the sub-problems appearing in the new matrix integrator, it is sufficient
to replace the transpose with the conjugate transpose.

We consider a Schrödinger equation as in [10, Section 4.3],

i∂tu(x, t) = −1
2∆u(x, t) + 1

2x
>Axu(x, t), x ∈ R2, t > 0,

u(x, 0) = π−
1
2 exp

(1
2x

2
1 + 1

2(x2 − 1)2),
A =

(
2 −1
−1 3

)
.

The problem is discretized with a Fourier collocation method with a grid of N ×N
points; the solution is essentially supported within Ω = [−7.5, 7.5]2. We choose the
final time T = 5 and N = 128, which makes the problem moderately stiff. First,
we compute a reference solution with an Arnoldi method and a tiny time-step size
h = 10−4. Then, for each rank from 1 until 20, we compute a low-rank approximation
with the matrix projector splitting integrator and the new matrix integrator. The
lower-dimensional sub-problems appearing in the definition of the two integrators
are solved with an Arnoldi method and time-step size h = 0.005. For each rank, the
absolute error in Frobenius norm of the two given approximations at the final time
T = 5, with respect to the reference solution, are shown in Figure 4.
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