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4Università Milano-Bicocca & INFN, Piazza della Scienza 3, Milano 20126, Italia

(Received 30 November 2020; accepted 9 February 2021; published 11 March 2021)

We discuss the infrared structure of processes with massive quarks in the initial state. It is well known
that, starting from next-to-next-to-leading order in perturbative QCD, such processes exhibit a violation of
the Bloch-Nordsieck theorem, in that the sum of real and virtual contributions to partonic cross sections
contains uncanceled infrared singularities. The main purpose of this paper is to present a simple physical
argument that elucidates the origin of these singularities and simplifies the derivation of infrared-singular
contributions to heavy-quark initiated cross sections.
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I. INTRODUCTION AND GENERAL
CONSIDERATIONS

The infrared structure of perturbative gauge theories is a
fascinating topic which received significant attention since
the early days of QCD [1,2]. In the 70s, the observation of
factorization of soft and collinear divergences in deep-
inelastic scattering [3,4] paved the way for a new under-
standing of the perturbative structure of gauge theories,
leading to the promotion of the naive parton model [5] to a
well-defined approximation rooted in a fully consistent
quantum theory of strong interactions.
Generalization of these results to the more complicated

case of hadron-hadron collisions [6–9] resulted in a better
understanding on the universal pattern of factorization and
cancellation of long-distance effects in perturbative QCD
calculations. This understanding was eventually distilled
into “theorems” [10–13] that state that (potential) loga-
rithmic sensitivity to long-distance effects is absent in
sufficiently inclusive observables in hard scattering proc-
esses. This remarkable fact is the foundation of modern
collider phenomenology as it allows us to provide first-
principles improvements of the theoretical description of
hadron collisions by refining predictions for partonic
scattering cross sections in QCD perturbation theory.
Given the prominence of these theorems in modern

collider physics, it is useful to inquire about their

limitations. Such a question, albeit being interesting in
its own right, may also have practical consequences for the
precision physics program at current and future colliders
by, e.g., informing us about ultimate limits in precision that
improvements in perturbative computations alone can
possibly provide.
Indeed, while the aforementioned theorems are very solid

in the case of lepton-lepton or lepton-hadron collisions, the
situation is more delicate in case of hadron-hadron colli-
sions; see, e.g., [11,13]. In fact, it was argued that, at
sufficiently high orders in perturbation theory, combining
real and virtual corrections within the framework of collinear
factorization may be insufficient to get rid of the infrared
sensitivity, even for inclusive observables [14–16].
For processes involving massless partons in the initial

state, our current understanding of the soft-collinear struc-
ture of QCD implies that these issues can only appear at
third or higher orders in QCD perturbation theory.1

However, the situation is very different if one considers
massive quarks in the initial state. In this case, it was
pointed out long ago that starting from second order in
QCD perturbation theory the sum of real and virtual
corrections is not free of infrared singularities. As a
consequence, “standard” perturbative calculations in this
case become insufficient beyond next-to-leading order,
even for the simplest partonic processes [19].
This problem received a lot of attention in the past [20], and

several formal ways of dealing with it have been proposed
[21]. The goal of this paper is to present a derivation of the
divergent contribution to the cross section of a process withPublished by the American Physical Society under the terms of
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1At third order, they are only relevant for processes involving a
nontrivial color structure [16–18].
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two heavy quarks in the initial state that, in our opinion, is
remarkably simple and physically transparent.
Our argument is inspired by recent work on infrared

subtraction schemes for higher order calculations [22,23]
and, in a nutshell, consists in connecting infrared singular
contributions of a process where infrared finiteness is
guaranteed to infrared singular contributions of a process
initiated by the collision of two massive quarks. In what
follows, we focus on the Drell-Yan process where a virtual
photon is produced in the collision of a quark and an
antiquark. The simplicity of this process allows us to
present our argument with a minimal amount of technical
overhead.
The remainder of this paper is organized as follows. In

Sec. II A, we show by an explicit computation that there are
no uncanceled infrared singularities at next-to-leading
order (NLO) QCD for the Drell-Yan process with massive
initial-state quarks and comment on the generalization of
this result to arbitrary processes. We also argue that the
absence of infrared singularities in the production process
qq̄ → V þ X at NLO QCD can be naturally understood if
the absence of infrared singularities in the decay process
V → qq̄þ X is taken for granted. In Sec. II B, we general-
ize this argument to the next-to-next-to-leading order
(NNLO) case and show that at NNLO there is only one
potential source of noncanceling soft singularities. In
Sec. III, we explicitly compute the infrared singular
contribution to the Drell-Yan cross section and comment
on the result. We conclude in Sec. IV. The analytic
continuation of the one-loop integrals required for our
analysis is discussed in the Appendix.

II. DRELL-YAN PROCESS WITH INITIAL-STATE
MASSIVE QUARKS

We begin with the discussion of the infrared structure of
the process

qðp1Þ þ q̄ðp2Þ → VðpVÞ þ X; ð2:1Þ
where q, q̄ are massive quarks with p2

1 ¼ p2
2 ¼ m2

q and V is
a virtual photon2 with p2

V ¼ m2
V . Since there are no

massless partons in the initial state of this process, no
collinear renormalization of parton distribution functions is
required. The perturbative expansion of the partonic cross
section for this process reads

dσ ¼ dσLO þ dσNLO þ dσNNLO þOðα3sÞ: ð2:2Þ

A. Next-to-leading order

We start by considering NLO QCD contributions to the
cross section of the process in Eq. (2.1). We write them as

dσNLO ¼ dσV þ dσR: ð2:3Þ

The first term on the rhs of Eq. (2.3) represents UV-
renormalized contributions of one-loop virtual corrections.
It reads [24]

dσV¼
αsðμÞ
2π

�
−
2CF

ϵ

�
1

2v
ln

�
1−v
1þv

�
þ1

��
dσLOþdσV;fin;

ð2:4Þ

where ϵ ¼ ð4 − dÞ=2 and d is the dimensionality of space-
time. Also, CF ¼ 4=3 is the Casimir invariant of the SUð3Þ
gauge group of QCD, v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m4=ðp1 · p2Þ2

p
and dσV;fin

is finite in the ϵ → 0 limit. The 1=ϵ pole in Eq. (2.4) is of
infrared origin; it is well known that it is canceled by a
similar divergence in the real emission contribution dσR.
To illustrate this, consider the real emission process3

qðp1Þ þ q̄ðp2Þ → VðpVÞ þ gðpgÞ ð2:5Þ
and write

dσR ¼ 1

4J

Z
½dpV �½dpg�

X
jM0ðp1; p2;pV; pgÞj2

× ð2πÞdδdðp1 þ p2 − pV − pgÞ; ð2:6Þ
where J ¼ p1 · p2v is the flux factor, ½dpV;g� ¼
dd−1pV;g=ðð2πÞd−12EV;gÞ are the phase-space elements of
the virtual photon and the gluon, respectively, Σ indicates
the sum (average) over final-state (initial-state) colors and
polarizations, andM0 is the tree-level scattering amplitude
for the process Eq. (2.5). When the emitted gluon becomes
soft, Eg → 0, the matrix element jM0j2 scales as E−2

g , and
Eq. (2.6) develops a logarithmic singularity. To expose it,
we work in the partonic center-of-mass frame, separate the
integration over the gluon energy, and write

dσR ¼
Z

dEg

E1þ2ϵ
g

dΩðd−1Þ
g

2ð2πÞd−1 F
ðdÞ
g ðp1; p2; pV ;pgÞ; ð2:7Þ

where

FðdÞ
g ðp1;p2;pV ;pgÞ¼

1

4J
½dpV �E2

g

X
jM0ðp1;p2;pV;pgÞj2

×ð2πÞdδdðp1þp2−pV−pgÞ:
ð2:8Þ

To extract infrared divergences from Eq. (2.7), we write

dσR ¼
Z

Emax

0

dEg

E1þ2ϵ
g

dΩð3Þ
g

16π3
lim
Eg→0

½Fð4Þ
g ðp1; p2; pV ;pgÞ� þ dσfinR ;

ð2:9Þ

2Our argument applies verbatim for any (massive) color-
singlet final state V.

3We only consider the corrections to the qq̄ channel, since the
qg channel is infrared finite.
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where the second contribution is finite and the first one is
divergent. We rewrite it as

Z
Emax

0

dEg

E1þ2ϵ
g

dΩð3Þ
g

16π3
lim
Eg→0

½Fð4Þ
g ðp1;p2; pV ;pgÞ� ¼ dσdivR þ � � � ;

ð2:10Þ

where

dσdivR ¼ −
1

2ϵ

Z
dΩð3Þ

g

16π3
lim
Eg→0

½Fð4Þ
g ðp1; p2; pV ;pgÞ�;

ð2:11Þ

and the ellipses in Eq. (2.10) stand for finite terms.
To proceed further, we recall that in the soft limit

scattering amplitudes obey the well-known factorization
formula

M0ðp1; p2;pV; pgaÞ
≈ g2sεμJ

a;ð0Þ
μ ðp1; p2;pgÞM0ðp1; p2;pVÞ; ð2:12Þ

where εμ is the gluon polarization vector and a is its color
index. The tree-level soft current reads

Ja;ð0Þμ ðp1; p2;pgÞ ¼
X2
i¼1

Ta
i

pi;μ

pi · pg
; ð2:13Þ

where Ta
i is the color charge of particle i. In our case,

Ta
1 ¼ ta21 and Ta

2 ¼ −ta12, where taij is the matrix element
of an SUð3Þ algebra generator in the fundamental
representation.4 This immediately allows us to rewrite
Eq. (2.11) as

dσdivR ¼ Eik0ðp1; p2Þ × dσLO; ð2:14Þ

where

Eik0ðp1; p2Þ ¼ −
αsðμÞ
2π

CF

ϵ

Z
dΩ3;g

4π
E2
g

�
2ðp1 · p2Þ

ðp1 · pgÞðp2 · pgÞ

−
m2

q

ðp1 · pgÞ2
−

m2
q

ðp2 · pgÞ2
�
: ð2:15Þ

We parametrize momenta in Born kinematics as

p1;2 ¼ mV=2ð1; 0; 0;�βÞ, with β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

q=m2
V

q
and

pg ¼ Egð1; sin θ; 0; cos θÞ. A straightforward integration
over the gluon emission angle leads to

dσdivR ¼ αsðμÞ
2π

×
2CF

ϵ

�
1þ β2

2β
ln

�
1 − β

1þ β

�
þ 1

�
dσLO:

ð2:16Þ

The cancellation of soft singularities in the NLO cross
section can be observed upon combining dσV from
Eq. (2.4) and dσdivR from Eq. (2.16) and using the relation
between v and β, v ¼ 2β=ð1þ β2Þ, which implies

1þ β2

2β
ln
�
1 − β

1þ β

�
¼ 1

2v
ln
�
1 − v
1þ v

�
: ð2:17Þ

We also note that the cancellation of infrared divergences
occurs in a much broader context than what we discuss
here for the Drell-Yan process. Indeed, by considering a
generalization of Eq. (2.4) to 2 → n processes as described
in Ref. [24], and adapting Eq. (2.13) to this case, it is
straightforward to prove the cancellation of infrared diver-
gences for arbitrary processes with massive quarks in the
initial state.
We will now reanalyze the NLO case from a perspective

that will be helpful for deriving the infrared divergent
contribution to the NNLO cross section. To this end, instead
of considering the production process qq̄ → V þ X, we start
with its decay counterpart VðpVÞ → qðp1Þ þ q̄ðp2Þ þ X.
We use the optical theorem and obtain the total decay rate of
the above process from the imaginary part of the time-
ordered correlator of two vector currents. Since such
correlator cannot have infrared divergences, we conclude
that the decay rate is free of infrared singularities as well.
Writing the decay rate as the sum of virtual and real-
emission contributions, we conclude that dσdecayV þ dσdecayR is
infrared finite.
We now want to relate dσdecayV , dσdecayR to their counter-

parts in the production case Eqs. (2.4) and (2.6). For virtual
corrections, this relation is obvious. Indeed, one-loop
corrections to the γ� → qq̄ vertex are described by a single
form factor FV that only depends on the invariant mass of
the virtual photon m2

V .
5 Hence, this form factor is identical

for the production (qq̄ → γ�) and decay (γ� → qq̄) proc-
esses. We conclude that the infrared structure of the decay
rate dσdecayV and the production cross section dσV is the
same. Therefore,

dσdecayV ¼ FVðm2
V; ϵÞdσdecayLO þ � � � and

dσV ¼ FVðm2
V; ϵÞdσLO þ � � � ; ð2:18Þ

where the ellipses stand for finite contributions.
To make use of the finite nature of NLO corrections to

the decay as an explanation of why NLO corrections to the

4For more details on the color notation, see, e.g., [25].

5The dependence of the form factor on quark masses is not
relevant for this discussion.
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production are finite, we need to understand how the real
emission contribution to the decay rate changes when we
move heavy quarks into the initial state and the vector
boson into the final state which is required for calculating
the production cross section. Since we are only interested in
the divergent contribution to the cross section, we require
this crossing in the soft limit. We note that the tree-level soft
current Eq. (2.13) is homogeneous in the hard momenta
p1;2 (and it does not depend on the momenta of the color
singlet), so it does not change under the replacement
pi → −pi. Moreover, the phase space of the Born process
decouples from the eikonal factor and the gluon phase
space in the soft limit. It follows that

dσdecayR ¼ Eik0ðp1; p2Þ × dσdecayLO þ � � � and

dσR ¼ Eik0ðp1; p2Þ × dσLO þ � � � ; ð2:19Þ
where ellipses stand for finite contributions and the function
Eik0 is defined in Eq. (2.15). Since dσdecayV þ dσdecayR is
free of infrared divergences, it follows from Eqs (2.18)
and (2.19) that

FVðm2
V; ϵÞ þ Eik0ðp1; p2Þ ð2:20Þ

is infrared finite. Without any additional computation, this
ensures that the OðαsÞ contributions to the cross section of
qq̄ → V þ X with massive initial state quarks are finite as
well. In the next section, we generalize this analysis to next-
to-next-to-leading order.

B. Next-to-next-to-leading order contributions
to the production cross section

Consider the NNLO QCD contributions to the cross
section of the production process qq̄ → V þ X. In full
analogy to the NLO case discussed in the previous section,
we split dσNNLO into double-virtual, double-real, and real-
virtual contributions,

dσNNLO ¼ dσVV þ dσRR þ dσRV: ð2:21Þ
In this equation, the double-virtual term dσVV is propor-
tional to the two-loop form factor for the qq̄ → V process.
The double-real term dσRR is proportional to the tree-level
matrix element for the process

qðp1Þ þ q̄ðp2Þ → VðpVÞ þ fiðpiÞ þ fjðpjÞ; ð2:22Þ
where ðfj; fjÞ ∈ fðg; gÞ; ðqi; q̄jÞg and qi is a generic
(massive or massless) quark. Finally, the real-virtual con-
tribution dσRV is proportional to the one-loop matrix
element for the process

qðp1Þ þ q̄ðp2Þ → VðpVÞ þ gðpgÞ: ð2:23Þ
In principle, one can study the infrared structure of the

various contributions at this perturbative order by extending
the NLO analysis presented at the beginning of the previous
section to one order higher. However, it is much easier

and more transparent to reuse the connection between the
production and decay processes as was done at the end of
the previous section. For this reason, we consider the
NNLO QCD contributions to the decay process
V → qq̄þ X, which is finite, and write

dσdecayNNLO ¼ dσdecayVV þ dσdecayRR þ dσdecayRV : ð2:24Þ

We then compare each contribution to its counterpart in the
production case. The results of this comparison can be
summarized as follows:
(a) All infrared singularities of the double-virtual contri-

butions come from the one- and two-loop Vqq̄ form
factors. Since the form factor is the same for the V →
qþ q̄ and qþ q̄ → V processes, the infrared structure
of dσdecayVV and dσVV is identical.

(b) In the double-real contribution, infrared singularities
appear when either one or two final state gluons
become soft, or when a massless final state quark
pair becomes soft. The case of one-gluon emission is
described by the tree-level current Eq. (2.13). The
emission of two soft partons is described by a double-
soft current [26] that is homogeneous in the momenta
of the external hard partons. Similar to the NLO case
described above, this implies that the infrared structure
of dσdecayRR and dσRR is identical.

(c) The real-virtual contribution contains both explicit 1=ϵ
infrared poles in the qq̄ → V þ g one-loop amplitude
and implicit singularities that only appear after inte-
grating over the soft region of the gluon phase space.
As long as the gluon is hard, this integration does not
introduce any divergence and only explicit singular-
ities are relevant. These singularities cancel against
single soft-gluon emission in the double-real contri-
bution along the lines of the NLO case described in the
previous section. As we explained there, this cancel-
lation occurs for both the production and the decay
processes.
The only contribution that we still need to discuss is

a one-loop correction to the emission of a soft gluon.
In this case, we cannot invoke the crossing argument
to conclude that the production and decay processes
share the same infrared structure because the analytic
structure of loop amplitudes is nontrivial and care is
needed to relate the production and decay cases.

Hence, we conclude that the infrared structure of the
production and decay processes is identical, except for
possible contributions that originate from crossing the
V → qþ q̄þ g one-loop amplitude into the qþ q̄ →
V þ g one, in the kinematic configuration where g is soft.
Since the total rate for V → qþ q̄þ X is finite, this implies
that the only potential noncanceling infrared singularities in
qþ q̄ → V þ X at NNLO must be related to this crossing.
Below we show that the analytic continuation from decay
to production kinematics is indeed nontrivial, and that it
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leads to an uncanceled 1=ϵ infrared singularity in the
production cross section.6

III. THE ONE-LOOP SOFT CURRENT
AND ITS CROSSING

In this section,we studyone-loop corrections to soft-gluon
emission. More precisely, following the discussion in the
previous section, we investigate whether additional infrared
divergences can be generated by crossing the one-loop
decay amplitude M1ðpV ;p1; p2; pgÞ into the amplitude
M1ðp1; p2;pV; pgÞ that describes the production process.
Similar to the tree-level case Eq. (2.12), the one-loop

amplitude M1 also factorizes in the soft limit7

M1ðpV ;p1;p2;pgÞ≈g2sεμ½Ja;ð0Þμ ðp1;p2;pgÞM1ðpV ;p1;p2Þ
þg2sJ

a;ð1Þ
μ ðp1;p2;pgÞM0ðpV ;p1;p2Þ�:

ð3:1Þ

We stress that M1 in the above equation is the scattering
amplitude of the decay process and we intend to get the
production amplitude by crossing.

The tree-level current Ja;ð0Þμ is given in Eq. (2.13); as
discussed in Secs. II A, II B, it leads to the same infrared
divergences in the production and decay cases. Hence, we
only need to focus on the second term on the right-hand
side of Eq. (3.1) that describes the one-loop correction to
the soft current.

To compute the one-loop soft current Ja;ð1Þμ , one needs to
consider the non-Abelian part of the diagrams shown in
Fig. 1, in the limit where both virtual and real gluons are
soft [27]. The result reads

Ja;ð1Þ;μðp1; p2;pgÞ

¼ ifabc
X
i;j¼1
i≠j

2

Tb
i T

c
j

�
pμ
i

pi · pg
−

pμ
j

pj · pg

�
gð1Þij ðϵ; pg;pi; pjÞ

¼ gð1Þ12 ðϵ; pg;p1; p2ÞCAJa;ð0Þ;μðp1; p2;pgÞ; ð3:2Þ

where fabc are the SUð3Þ structure constants and gð1Þij is a

function that will be specified later. We stress that Ja;ð1Þμ is
purely non-Abelian. This feature is expected because in an
Abelian theory the tree-level soft current does not receive
corrections. Since, as we argued at the beginning of this
section, Eq. (3.2) provides the only source of noncanceling
soft singularities for the process qq̄ → V þ X with massive
initial particles, we recover the classic result that in the
Abelian (e.g., QED) case the NNLO cross section for the
collision of two massive partons is infrared finite.
We continue with the non-Abelian case. Following the

argument of Sec. II B, we investigate whether Eq. (3.2)
leads to the same infrared structure for the decay and
production processes. Since Ja;ð0Þ;μ is invariant under
p1;2 → −p1;2, any potential difference must come from

the crossing of gð1Þ12 . It is easy to see that, at NNLO, only the

real part of gð1Þ12 contributes to the cross section; for

this reason, we investigate the behavior of ℜ½gð1Þ12 � under
p1;2 → −p1;2 transformation.
It is instructive to consider first the case of massless

quarks. For mq ¼ 0, the function gð1Þ12 reads [27]

gð1Þ12 ðϵ; pg;p1; p2Þ ¼ −
1

16π2
1

ϵ2
Γ3ð1 − ϵÞΓ2ð1þ ϵÞ

Γð1 − 2ϵÞ

×

� ð−s12 − iδÞ
ð−s1g − iδÞð−s2g − iδÞ

�
ϵ

; ð3:3Þ

with sij ¼ 2pi · pj. This implies

ℜ½gð1Þ12 ðϵ; pg;−p1;−p2Þ� ¼ ℜ½gð1Þ12 ðϵ; pg;p1; p2Þ�: ð3:4Þ

The argument of Sec. II B then allows us to reproduce the
standard result that for massless quarks the cross section for
the process qþ q̄ → V is free from soft singularities
at NNLO.8

We continue with the case mq ≠ 0. In this case, we

follow Ref. [28] and write gð1Þ12 as

FIG. 1. Diagrams contributing to the one-loop soft current. i and j are hard eikonal lines, pg and k are soft; see text for details.

6We note that similar arguments suggest that other partonic
channels, i.e., qg and gg, are infrared finite.

7In this equation, gs is the bare strong coupling. Since we are
interested in infrared effects, we do not discuss renormalization.

8To remove initial-state collinear singularities, one still needs
to redefine parton distribution functions in the case of massless
particles collisions.
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gð1Þ12 ðϵ; pg;p1; p2Þ ¼
X3
i¼1

fiðpg;p1; p2ÞMiðϵ; pg;p1; p2Þ; ð3:5Þ

where Mi are defined as

M1ðϵ; pg;p1; p2Þ ¼
Z

ddk
ð2πÞd

1

½k2 þ iδ�½ðkþ pgÞ2 þ iδ�½−2p2 · kþ iδ� ;

M2ðϵ; pg;p1; p2Þ ¼
Z

ddk
ð2πÞd

1

½k2 þ iδ�½2p1 · kþ 2p1 · pg þ iδ�½−2p2 · kþ iδ� ;

M3ðϵ; pg;p1; p2Þ ¼
Z

ddk
ð2πÞd

1

½k2 þ iδ�½ðkþ pgÞ2 þ iδ�½2p1 · kþ 2p2 · pg þ iδ�½−2p2 · kþ iδ� ; ð3:6Þ

and fi are rational functions of pi · pj; pi · pg. Since gð1Þ12

has to be computed using eikonal vertices [27], it follows
that

f1ðpg;−p1;−p2Þ ¼ −f1ðpg;p1; p2Þ;
f2;3ðpg;−p1;−p2Þ ¼ f2;3ðpg;p1; p2Þ: ð3:7Þ

The explicit form of fi can be found in Ref. [28], but it is
not needed for our argument.
Using Eqs. (3.5)–(3.7), one can show by analytic

continuation of the Mj integrals that the function gð1Þ12

changes in the following way:

gð1Þ12 ðϵ; pg;−p1;−p2Þ ¼ e−2iϵπgð1Þ12 ðϵ; pg;p1; p2Þ: ð3:8Þ

This is worked out explicitly in the Appendix. To proceed

further, we write the (decay) function gð1Þ12 as

gð1Þ12 ðϵ; pg;p1; p2Þ ¼
αs
2π

E−2ϵ
g

X∞
k¼−2

½rk þ i · ik�ϵk; ð3:9Þ

with r and i real and i−2 ¼ 0; see the Appendix. Using
Eqs. (3.8) and (3.9), we can then write the difference
between the real parts of the functions g12 required to
describe the production and the decay processes as

ℜ½gð1Þ12 ðϵ; pg;−p1;−p2Þ� −ℜ½gð1Þ12 ðϵ; pg;p1; p2Þ�

¼ αs
2π

				 s12
s1gs2g

				
ϵ

½−2π2 · r−2 þ 2π · i−1 þOðϵÞ�: ð3:10Þ

Since the real part of gð1Þ12 at order Oðϵ0Þ contributes to
divergences of the cross section or decay rate at order 1=ϵ,
the argument presented in Sec. II B implies that the second
line of Eq. (3.10) gives rise to a noncanceling infrared
divergence in the NNLO cross section for the qþ q̄ → V
process with massive quarks in the initial state.

This noncanceled singularity is controlled by the coef-
ficients r−2 and i−1. They can be immediately obtained by
matching Eq. (3.1) to the universal expression for the
infrared poles of one-loop amplitudes [24]. We obtain

r−2 ¼ −
1

2
; i−1 ¼ π

�
1

2v
− 1

�
; ð3:11Þ

with v defined immediately after Eq. (2.4). We work in the
center-of-mass frame of the two quarks and rewrite
Eq. (3.10) as

ℜ
h
gð1Þ12 ðϵ;pg;−p1;−p2Þ

i

¼ℜ½gð1Þ12 ðϵ; pg;p1; p2Þ� þ
αs
2π

E−2ϵ
g

��
1− v
v

�
π2 þOðϵÞ

�
:

ð3:12Þ

To find the contribution of the last term in Eq. (3.12) to the
cross section, we note that the soft current at one loop is
proportional to the tree-level one, cf. Eq. (3.2). As a
consequence, we can read off the required result directly
from Eq. (2.16) that describes the NLO calculation.9

Therefore, we write the real-virtual contribution to the
decay process as

dσdecayRV ¼ Eik1ðp1; p2Þ × dσdecayLO þ � � � ; ð3:13Þ

where the ellipses stand for finite contributions. The
real-virtual contribution to the production process is given
by

dσRV ¼ Eik1ð−p1;−p2Þ × dσLO

¼ Eik1ðp1; p2Þ × dσLO þ Δ½dσdivRV� þ � � � : ð3:14Þ

9Note that the additional E−2ϵ
g factor in Eq. (3.12) would give

rise to an extra factor 1=2 compared to the NLO case. This is
compensated however by the factor of 2 in 2ℜ½M0M�

1�.
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The second term in the rhs of Eq. (3.14) is the additional
divergent contribution to the production cross section
caused by a nontrivial analytic continuation of soft loop
integrals upon crossing. It reads

Δ½dσdivRV� ¼
�
αsðμÞ
2π

�
2 2CACFπ

2

ϵ

�
1

2v
ln

�
1 − v
1þ v

�
þ 1

�

×

�
1 − v
v

�
dσLO: ð3:15Þ

Thanks to the argument presented in Sec. II B, we conclude
that the cross section for qq̄ → V þ X with massive quarks
in the initial state contains noncanceling infrared diver-
gence given by Δ½dσdivRV�. Therefore,

dσNNLO ¼ Δ½dσdivRV� þ � � �

¼
�
αsðμÞ
2π

�
2 2CACFπ

2

ϵ

�
1

2v
ln

�
1 − v
1þ v

�
þ 1

�

×

�
1 − v
v

�
dσLO þ � � � ; ð3:16Þ

where the ellipses stand for finite contributions to the
NNLO cross section. Equation (3.16) describes the viola-
tion of Bloch-Nordsieck cancellations [29] in the case when
two massive quarks collide. It coincides with the expression
derived in Refs. [19–21].
We now comment on the result Eq. (3.16). First, we

note that in the massless case v → 1 and the divergence
disappears. A simple generalization of this result to the
collision of two quarks with unequal masses shows
that Eq. (3.16) remains valid provided that v ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

1m
2
2=ðp1p2Þ2

p
. It follows that the divergence in

Eq. (3.16) disappears if only one quark in the initial state is
massive.
Moreover, Eq. (3.15) implies that the noncanceling

infrared divergences in cross sections with massive quarks
in the initial state are power suppressed,

Δ½dσdivRV� ∼O
�
m4

q

m4
V

�
dσLO: ð3:17Þ

This behavior is compatible with classic arguments about
factorization; see, e.g., Ref. [30] for a review. In fact, a
small mass of the quark in the initial state probes the
sensitivity of the partonic cross section to long-distance
physics. The result Eq. (3.17) then informs us that at the
level of logarithmic sensitivity to long-distance effects,
the partonic cross section is certainly infrared finite. The
noncancellation of infrared divergences at the level of
power corrections, as indicated in Eq. (3.17), simply shows
that an understanding of factorization for higher twist or, in
general, power corrections is required to make calculations
with initial-state massive partons self-consistent.

IV. CONCLUSION

It is well known [19–21] that partonic cross sections
computed with massive quarks in the initial state are not
infrared finite starting from next-to-next-to-leading order in
QCD perturbation theory. We rederived this result in a
manner that we find simple and transparent.
The gist of our approach is the relation between infrared-

divergent contributions to the manifestly finite decay
process V → qq̄þ X and the production process qq̄ →
V þ X that can be studied using analytic continuation. We
have explicitly shown that while for the massless case this
analytic continuation is harmless through NNLO, the
situation is different in a massive theory. There the phase
from the analytic continuation of the one-loop soft current
combines with a nontrivial imaginary part in the one-loop
amplitude and gives rise to an observable effect in the cross
section. Our derivation provides a concrete and simple
example of problems that one encounters when an analog
of a quantummechanical Coulomb phase manifests itself in
massive non-Abelian gauge theories. In fact, it is relatively
easy to show that the offending phase is related to a
particular double-particle massive cut that encapsulates the
long-distance interaction between two incoming massive
partons; see, e.g., [24].
Before concluding, we briefly discuss the phenomeno-

logical implications of the above results. One may argue
that in collider phenomenology one does encounter proc-
esses involving massive initial state quarks, e.g., bb̄ → H
and similar. In fact, impressive machinery has been
developed for dealing with such processes [31,32].
However, in such cases, one always starts with initial state
gluons that subsequently split into a heavy bb̄ pair. It is
important that massive quarks that originate in such a
splitting and participate in the hard scattering process after
that are always off-shell. Hence, the average off-shellness
of initial state quarks that originate from the gluon splitting
g → qq̄ provides a natural infrared cutoff for processes
initiated by massive quarks. For this reason, the infrared
divergence shown in Eq. (3.16) can never appear in a
realistic setup.
Nevertheless, computations with massive quarks in the

initial state can, perhaps, be used to test the sensitivity of
partonic cross sections to infrared energy scales that the
quark masses may represent. For example, one may wonder
to what extent the masses of the colliding quarks affect the
transverse momentum distributions of Z and W bosons at
low p⊥—a question, that may be quite relevant for the
determination of the W boson mass at the LHC. Our
discussion suggests that, since one starts being sensitive to
the off-shellness of quarks only at Oðm4

q=m4
VÞ, it should be

possible to develop a framework where one keeps track of
terms of order p⊥=mq ∼ 1

10 but neglects contributions of

10For work in this direction, see, e.g., Refs. [33].

NONCANCELLATION OF INFRARED SINGULARITIES IN … PHYS. REV. D 103, 054013 (2021)

054013-7



order m4
q=m4

V and beyond. We leave this investigation, as
well as the study of its potential phenomenological appli-
cations, for the future.
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APPENDIX: ANALYTIC CONTINUATION OF
THE ONE-LOOP INTEGRALS

In this appendix, we explicitly compute the analytic
continuation of the three integrals Mi given in Eq. (3.6)
under the p1;2 → −p1;2 transformation. We start with
decay kinematics, cf. Fig. 1. Since sij ¼ 2pi · pj, we find
that under the p1;2 → −p1;2 transformation, s1g → −s1g,
s2g → −s2g, and s12 → s12. Therefore, to understand how
the integrals change under analytic continuation, we only
need to study their dependence on s1g; s2g.
This is most easily achieved if we employ the Feynman-

Schwinger parametrization for the integrals M1;…;3. To
derive a suitable representation, we start with the identity

1

A1A2…An
¼ ΓðnÞ

Yn
i¼1

Z
∞

0

dxi
δð1 −P

n
j¼1 xjÞ

½Pn
i¼1 Aixi�n

¼ ΓðnÞ
�Yn

i∉Σ

Z
∞

0

dxi

��Y
i∈Σ

Z
1

0

dxi

�
δð1 −P

j∈ΣxjÞ
½Pn

i¼1 Aixi�n
; ðA1Þ

where Σ represents an arbitrary subset of f1; 2;…; ng [34]. For each integralsMi, we choose the set Σi such that it contains
the Feynman parameter that is employed for the propagator 1=ð−2p2 · kþ iδÞ, i.e., Σ ¼ f3g for M1 and M2 and Σ ¼ f4g
for M3. We find

M1ðϵ; pg;p1; p2Þ ¼ −G1ðϵÞ
Y2
i¼1

Z
∞

0

dxi
ðx1 þ x2Þ−1þ2ϵ

½m2 − s2gx2 − iδ�1þϵ ;

M2ðϵ; pg;p1; p2Þ ¼ −G2ðϵÞ
Y2
i¼1

Z
∞

0

dxi
x−1þ2ϵ
1

½m2ð1þ x22Þ − s1gx1x2 − s12x2 − iδ�1þϵ

M3ðϵ; pg;p1; p2Þ ¼ −G3ðϵÞ
Y3
i¼1

Z
∞

0

dxi
ðx1 þ x2Þ2ϵ

½m2ð1þ x23Þ − s1gx1x3 − s12x3 − s2gx2 − iδ�2þϵ ; ðA2Þ

where the explicit form of the GiðϵÞ is irrelevant in what follows.
It is straightforward to study the dependence of the integrals on s1g and s2g using Eq. (A2). We begin with M1. By

rescaling xi → xi=ð−s2g − iδÞ for i ¼ 1, 2, we find

M1ðϵ; pg;p1; p2Þ ¼ −G1ðϵÞð−s2g − iδÞ−1−2ϵ
Y2
i¼1

Z
∞

0

dxi
ðx1 þ x2Þ−1þ2ϵ

ðm2 þ x2Þ1þϵ ; ðA3Þ

so that the entire dependence on s2g factorizes

M1ðϵ; pg;p1; p2Þ ∝ ð−s2g − iδÞ−1−2ϵ ¼ −js2gj−1−2ϵe2iπϵ:
ðA4Þ

This implies

M1ðϵ; pg;−p1;−p2Þ ∝ js2gj−1−2ϵ; ðA5Þ
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and therefore

M1ðϵ; pg;−p1;−p2Þ ¼ −M1ðϵ; pg;p1; p2Þe−2iπϵ: ðA6Þ

Furthermore, we note that Eq. (A3) implies that in the soft
limit

M1ðϵ; pg;p1; p2Þ ∼ E−2ϵ
g : ðA7Þ

We analyze the integralM2 in a similar way. In this case,
it is sufficient to rescale x1 → x1=ð−s1g − iδÞ to find

M2ðϵ; pg;p1; p2Þ ¼ G2ðϵÞð−s1g − iδÞ−2ϵ
Y2
i¼1

Z
∞

0

dxi

×
x−1þ2ϵ
1

½m2ð1þ x22Þ þ x1x2 − s12x2 − iδ�1þϵ :

ðA8Þ

Hence, the dependence of M2 on p1 is governed by the
following factor:

M2ðϵ; pg;p1; p2Þ ∝ ð−s1g − iδÞ−2ϵ: ðA9Þ

Finally, we discuss M3. In this case, we rescale
xi → xi=ð−sig − iδÞ, where we stress that the rescaling is
different for the two variables. We obtain

M3ðϵ; pg;p1; p2Þ

¼ −G3ðϵÞ
Y3
i¼1

Z
∞

0

dxi

×
ð x1
−s1g−iδ

þ x2
−s2g−iδ

Þ2ϵ
½m2ð1þ x23Þ þ x2 − s12x3 þ x2x3 − iδ�2þϵ : ðA10Þ

Similarly to what was discussed for M1, Eqs. (A9) and
(A10) imply

M2;3ðϵ; pg;−p1;−p2Þ ¼ M2;3ðϵ; pg;p1; p2Þe−2iπϵ ðA11Þ

and

M2;3ðϵ; pg;p1; p2Þ ∼ E−2ϵ
g : ðA12Þ

Finally, we note that Eq. (3.5) along with Eqs (3.7), (A6),
(A7), (A11), and (A12) implies that

gð1Þ12 ðϵ; pg;−p1;−p2Þ ¼ e−2iϵπgð1Þ12 ðϵ; pg;p1; p2Þ ðA13Þ

and

gð1Þ12 ðϵ; pg;p1; p2Þ ¼
αs
2π

E−2ϵ
g

X∞
k¼−2

½rk þ i · ik�ϵk; ðA14Þ

with rk and ik analytic in Eg. These formulas are used in the
main body of the paper to explain the appearance of
noncanceling infrared divergencies in collisions of two
massive quarks.
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