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Abstract

KeY is a tool for formal veri�cation of speci�ed properties of Java programs. It works by
generating proof obligations from formal speci�cation and source code, and transforming
it into a set of �rst-order formulas afterwards. Due to the undecidability of �rst-order
logic it is a challenging problem to �nd a proof for this set of formulas.

Modern SMT solvers, such as Z3, provide highly optimized algorithms for exactly this
purpose. Therefore, translating (sub-)problems to SMT solvers has long been possible
from KeY. This approach resulted in a partial proof in KeY complemented by (possibly
multiple) SMT results. Since Z3 is able to produce proofs for its result, it is possible to
improve upon this: This thesis presents a replay technique that allows for reconstruction
of the proofs generated by Z3, such that the result is a closed proof in KeY and the SMT
results can be dropped. Systematic as well as engineering challenges are identi�ed and
solutions for them presented.
A prototypical implementation of the replay technique in KeY is provided. In the

evaluation part of this work, its capabilities as well as future potential is shown.
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Zusammenfassung

KeY dient zur formalen Veri�kation spezi�zierter Eigenschaften von Java-Programmen.
Dafür werden aus der formalen Spezi�kation sowie dem Programm-Code Beweisverp�ich-
tungen generiert. Diese werden dann Schritt für Schritt in eine Menge von Formeln der
Prädikatenlogik erster Stufe überführt. Da diese allerdings unentscheidbar ist, ist es eine
große Herausforderung, einen Beweis für diese Formelmenge zu �nden.
Moderne SMT-Solver, wie zum Beispiel Z3, sind genau auf diesen Anwendungszweck

hin optimiert. Daher ist schon lange in KeY die Möglichkeit eingebaut, (Teil-)Probleme
für SMT-Solver zu übersetzen. Das Ergebnis bei diesem Vorgehen ist ein partieller Beweis
in KeY, der von (möglicherweise mehreren) SMT-Antworten komplettiert wird. Da Z3
aber auch Beweise für seine Antworten liefern kann, gibt es hier Verbesserungspotential:
In dieser Thesis wird eine Technik zum Nachspielen der Z3 Beweise in KeY vorgestellt,
sodass man als Ergebnis einen geschlossenen Beweis in KeY erhält und die SMT-Antworten
verworfenwerden können. Herausforderungen sowohl systematischer als auch technischer
Natur werden identi�ziert and Lösungen dafür vogestellt.

Schließlich wird auch eine prototypische Implementierung der Technik zumNachspielen
der Beweise zur Verfügung gestellt. Im Evaluations-Teil der Arbeit wird die Leistungsfä-
higkeit dieser Implementierung sowie die zukün�gen Möglichkeiten erörtert.
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1 Introduction

1.1 Motivation

Computing devices are ubiquitous nowadays. From smartphones to cash cards, from tra�c
lights to cars and planes, from fridges to cardiac pacemakers: In our everyday life, we
rely heavily on them. Therefore, it is essential for our safety and security that they do not
fail or behave erroneously. With increasing computing power, the software running on
these devices also becomes more and more complex, raising the chance of bugs. Usually,
developers try to increase con�dence in the correctness of programs by extensively (and
automatically) testing them.

However, this can not prove the absence of bugs. For safety and security critical software,
it is therefore reasonable to apply formal methods to formally verify desired properties
of the software. As one tool in this area, the program veri�er KeY allows for formal
veri�cation of speci�ed properties of Java programs. The current work�ow in KeY is
as follows: When loading a Java program and its formal speci�cation, KeY generates a
proof obligation formula in dynamic logic, that is containing a Java program. The Java
program is then simpli�ed step-by-step, the state changes are collected in so called updates.
While KeY’s automatic built-in proof search is able to reliably perform these program
transformation steps, known as symbolic execution and update simpli�cation, it is not
equally good at �nding a proof for the resulting �rst-order problem. A reason for this is
certainly the much larger search space for such a proof. As a solution, the user can either
guide the prover by interactively applying rules in the graphical user interface of KeY, or
run the built-in translation of the problem to SMT solvers.

SMT (satis�ability modulo theories) solvers try to �nd a solution for the satis�ability of
a given formula, where a theory, that is, a set of axioms for some of the symbols, is given.
Examples of such theories are for example linear integer arithmetic or �xed-size bit-vectors.
Modern SMT solvers provide highly optimized procedures for deciding satis�ability of
quanti�er-free formula sets. However, as consequence of the incompleteness of �rst-order
logic, they can not contain decision procedures for formulas with quanti�ers in general.
Nonetheless, they very often succeed in �nding a solution by using quanti�er elimination
and heuristic instantiation.
When running such an SMT solver with input from KeY, the SMT solver is often able

to prove the given problem, even if KeY’s automatic proof search fails. This SMT result
would be applied to the proof, thereby closing it. While this approach is quite e�ective in
practice, there are disadvantages: First of all, the user has to trust the result of the SMT
solver, with no possibility to check it in KeY. Second, the information of how the problem
was solved, that is for example, which quanti�er instantiations or arithmetical reasoning
steps were needed, is opaque for the user. Finally, the resulting proof is partially in KeY’s
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1 Introduction

“language”, interwoven with “closed by SMT” annotations. When saving and reloading
such a proof, the SMT solver has to be run again to obtain a completely closed proof. Some
modern SMT solvers, such as Z3, are able to produce certi�cates (proofs and models) for
their result.

This thesis describes a replay technique for the proofs generated by Z3 within KeY. As
a result, a proof only in the format of KeY is obtained, where no more annotations as
described above are necessary.

1.2 Contributions

On the theoretical level, this work shows that it is possible to replay Z3 proofs in KeY. More
precisely, the thesis describes how the proofs Z3 generates when given the translation
of a proof obligation from KeY can be translated back into a closed proof in KeY. Various
challenges are identi�ed that are intrinsic for such a translation:

• Di�erent proof directions: Z3 produces proofs in a constructive direction starting
from leaves, while KeY deconstructs/simpli�es the proof obligation formula until
each branch can be closed.

• Equisatis�ability: It may occur in Z3 proofs, but no such notion is present in KeY.

• Skolemization: As consequence of the di�erent proof directions, for representing
skolem constants/functions the Hilbert choice operator 𝜖 has to be used.

• Di�erent type hierarchies: In Z3, all types are top level, while KeY features a nested
type hierarchy suited for veri�cation of Java programs. A particular challenge here
is how to axiomatize the type hierarchy in such a way that the resulting Z3 proofs
are replayable.

• Structurally di�erent terms: Some terms can not be translated in a one-to-one way,
for example since “and” is polyadic in Z3, but binary in KeY.

• Granularity of rules: Some proof rules of Z3 represent very coarse reasoning steps.

For all of these systematic challenges, solutions are presented.
Complementing the theoretical insights, the replay technique has been implemented as

prototype in KeY. Thereby, several implementation di�culties such as handling shared
terms, �nding the matching formulas during replay of the assertion rule, and using ifEx

as a replacement for the Hilbert choice operator 𝜖 , have been solved.
The insights provided by the evaluation are two-fold: First, it is shown that the imple-

mented technique actually works and can be useful for proving formulas where KeY fails
to �nd a proof. Second, it can be seen that there is currently great optimization potential
for making the implementation more e�cient, most notably by implementing caching of
terms and by exploiting sharing of sub-proofs in KeY.

2



1.3 Related Work

1.3 RelatedWork

While there are many SMT solvers that at least partially support the current SMT-LIB
standard 2.6 (Barrett et al., 2017), solvers with proof production capabilities are rare. In
general, the SMT community does not seem to focus much on proof generation. This can
be seen for example by the fact that, while there exist suggestions for a standard proof
format for SMT solvers (Stump, 2009; Besson et al., 2011), still none is accepted. Therefore,
at the moment each solver uses its own format. State of the art proof producing SMT
solvers are:

• CVC3 (Barrett and Tinelli, 2007) and it’s successor CVC4 (Barrett et al., 2011) (proof
support only for quanti�er free formulas)

• Z3 (de Moura and Bjørner, 2008a,b)

• PRINCESS (Rümmer, 2008a,b)

• veriT (Bouton et al., 2009)

For this work, Z3 is used, since among the presented solvers it seems to have the most
mature proof production capabilities.
Some work exists in the area of proof replay: Probably the �rst approach to replay

SMT proofs using a theorem prover is described in (Fontaine et al., 2006). Here, proofs
from haRVey (the predecessor of veriT) are replayed using Isabelle/HOL. However, the
technique is for quanti�er-free formulas only. A di�erent approach is used in (Reynolds
et al., 2010) and (Stump et al., 2012), where a conversion method from CVC3 proofs to the
“Logical Framework with Side Conditions” (LFSC) is described. Proofs given in this format
are afterwards checked by a dedicated checker. As already pointed out above, the CVC
family of SMT solvers provides proof generation only for quanti�er-free formulas. There
is also a tool called SMTCoq (Armand et al., 2011), which allows for checking proofs from
veriT and CVC4 inside the theorem prover Coq.

The work most similar to ours is (Böhme, 2009; Böhme, 2012), which describes a tech-
nique to check Z3’s proofs inside Isabelle/HOL. A signi�cant di�erence to our work is
that our proof obligations originate from KeY, are then translated to Z3, and the proofs
afterwards back to KeY. This imposes challenges such as type hierarchy translation that
were not present in their work. Nonetheless their existing formal description of a majority
of Z3’s proof rules made the work presented here much easier.

1.4 Outline

The thesis is structured as follows: In Chapter 2, introductions to the KeY system and Z3
are given. For the KeY part, this covers in particular its core logic JavaDL with the type
hierarchy in use as well as the sequent calculus used for reasoning. When introducing Z3,
special attention is drawn to its proof production features.

In Chapter 3, the theory of the replay technique is explained. After giving an overview of
the intended work�ow of the technique and clarifying notions, the theoretical challenges
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1 Introduction

for replay are discussed, presenting the solutions chosen for this work directly at hand. The
following section shows in detail how every Z3 proof rule is mapped to rule applications in
KeY. An explanation of the theoretical properties of the technique concludes the chapter.

Chapter 4 gives some implementation detail about the prototype and explains challenges
arising from an engineering point of view.

In Chapter 5, some experimental results from applying the implemented technique are
shown.
Chapter 6 concludes the thesis by summing up the contributions and lessons learned

and describing possible future work and alternative approaches that showed up during
the development of this thesis.
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2 Preliminaries

In this section, we give introductions to the KeY system and Z3. We focus on features used
for the work described later on in this thesis; mainly KeY’s type hierarchy, calculus and
Z3’s proof production facilities.

2.1 Introduction to the KeY System

The KeY system (Ahrendt et al., 2016) is a tool for formal veri�cation of Java programs
developed since 1998. Just recently, version 2.8 was released, featuring several new features
such as support for bounded sums, a �exible and con�gurable user interface, the ability to
save proofs including all their resources into a single bundle, and much more.
While there are other use cases beyond functional veri�cation that can be addressed

with KeY, such as veri�cation based test case generation or conducting information �ow
proofs, here we only describe functional speci�cation and veri�cation of Java programs.
To restrict that even more, while there is an API and also a command line interface to
some of the core functionality of KeY, we only consider veri�cation using the graphical
user interface, as it is clearly the most common use case for functional veri�cation and the
relevant feature of KeY for this thesis.

Type Hierarchy KeY’s underlying logic is Java Dynamic Logic (JavaDL). We refrain from
explaining syntax and semantics here and instead refer to (Ahrendt et al., 2016). Here we
give only a rough overview of features which are needed for the scope of this thesis.
The �rst order subset of JavaDL is called Java First-Order Logic (JavaFOL), which is

basically the well known �rst-order logic enriched with a type hierarchy suited for the
needs of Java program veri�cation. The mandatory type hierarchy of JavaFOL is shown
in Figure 2.1. It strongly depends on the type hierarchy of Java. There is a top level type
called Any that all other types are subtype of. The hierarchy consists of the following
parts:

1. A top level type (Any).

2. JavaFOL counterparts of Java’s primitive types (boolean, int). Note that the un-
bounded type int is used to capture Java’s �nite width integer types int, byte, short,
etc. Also, Java’s �oating point types �oat and double have no counterpart in JavaFOL,
since reasoning about them is not supported.

3. A type for the theory of sequences, which is included in JavaFOL (Seq).

4. Types for handling memory locations (Heap, Field, LocSet).

5



2 Preliminaries

Any

Object

... ...

Null

intboolean LocSet Seq Field Heap

Figure 2.1: The type hierarchy of KeY

5. Java’s object hierarchy (Object and subtypes). The dots indicate all object (and
interface) types present in Java, they are included in JavaFOL’s type hierarchy with
subtype relations as declared in Java. The type Null is subtype of every object type,
it has only a single element (null).

From a type theoretical perspective, the type hierarchy includes the universal type > at
the top of the hierarchy, as well as the empty type ⊥ at the bottom. We omit both here for
easier readability, and also for easier comparability with Figure 3.3.

Sequent Calculus The calculus used for reasoning in KeY is the sequent calculus. A
sequent is of the form1 𝜙1, . . . , 𝜙𝑛 ` 𝜓1, . . . ,𝜓𝑚 , the left hand side of the turnstile is called
antecedent and the right hand side succedent. This intuitively has the following semantics: If
all the formulas 𝜙1, . . . , 𝜙𝑛 hold, it is to show that at least one𝜓𝑖 holds for any 𝑖 ∈ {1, . . . ,𝑚}
to prove the sequent valid. The sequent calculus decomposes complex formulas into simpler
ones by applying inference rules. More than 1500 rules are available, which can be grouped
into four di�erent categories:

1. Nonprogram rules are used to handle statements about a single state without modali-
ties.

2. Symbolic execution rules transform a program inside a modality into updates and
case distinctions.

1Note that in KeY, instead of the turnstile `, the sequent arrow =⇒ is used.
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2.1 Introduction to the KeY System

3. Update simpli�cation rules are used for applying updates to formulas and simplifying
them, thus e�ectively transforming formulas about multiple states into formulas
about a single state.

4. Rules for program abstraction and modularization, for example rules for handling
loop invariants and method calls.

Calculus rules are of the following form:

𝑃1 . . . 𝑃𝑛 ruleName
𝐶

The 𝑃𝑖 are called premises, 𝐶 is called conclusion of the rule. Note that in this thesis, all
names of KeY rules are displayed in italic font. Rules are applied bottom up, which means
that rules with more than one premise split the proof into multiple branches. A proof is
closed if all branches are closed, a branch can be closed by applying one of the following
closing rules:

closeTrue
Γ ` > closeFalse

Γ,⊥ `
close

Γ, 𝜙 ` 𝜙

Figure 2.2: Closing rules of KeY

Γ stands for any set of formulas here. Note that while there could be formulas on the right
hand side of the turnstile, their negation could be included in Γ. Therefore, we only show
Γ here to keep the presentation as clean as possible. In addition, instead of Γ ∪ {𝜙} we
write Γ, 𝜙 .

All rules presented here and used later during the thesis are nonprogram rules (category
1), since symbolic execution and update simpli�cation typically are handled by the auto-
matic proof search algorithm of KeY without any problems or required user interactions.
First of all, Figure 2.3 shows propositional rules of KeY. The most notable rule here is the
cut rule, which allows for arbitrary case distinctions. This rule will play an important role
later.

Γ, 𝜙,𝜓 `
andLeft

Γ, 𝜙 ∧𝜓 `

Γ ` 𝜙 Γ ` 𝜓
andRight

Γ ` 𝜙 ∧𝜓

Γ, 𝜙 ` Γ,𝜓 `
orLeft

Γ, 𝜙 ∨𝜓 `

Γ ` 𝜙,𝜓
orRight

Γ ` 𝜙 ∨𝜓

Γ ` 𝜙
notLeft

Γ,¬𝜙 `

Γ, 𝜙 `
notRight

Γ ` ¬𝜙

Γ, 𝜙 ` Γ ` 𝜙
cut

Γ `
for a ground formula 𝜙

Figure 2.3: Propositional calculus rules of KeY

7



2 Preliminaries

KeY allows for skolemization of quanti�ers with two rules: allLeft and exRight as
shown in Figure 2.4. The term [𝑥/𝑐]𝜙 denotes a substitution of all free occurrences of
𝑥 in 𝜙 by 𝑐 . In the skolemization rules, 𝑐 denotes a fresh constant. Note that using this
technique, KeY only uses skolem constants, since the freshly introduced symbol does not
depend on anything. Instantiation of quanti�ers can be done via allLeft and exRight,

Γ,∀𝑥 . 𝜙, [𝑥/𝑡]𝜙 `
allLeft

Γ,∀𝑥 . 𝜙 `
for any ground term 𝑡

Γ ` [𝑥/𝑐]𝜙
allRight

Γ ` ∀𝑥 . 𝜙
where 𝑐 is a fresh constant

∀𝑥 . 𝜙  𝜙 all_unused

if 𝑥 does not occur free in 𝜙

Γ, [𝑥/𝑐]𝜙 `
exLeft

Γ, ∃𝑥 . 𝜙 `
where 𝑐 is a fresh constant

Γ ` ∃𝑥 . 𝜙, [𝑥/𝑡]𝜙
exRight

Γ ` ∃𝑥 . 𝜙
for any ground term 𝑡

¬∀𝑥 . 𝜙  ∃𝑥 . ¬𝜙 nnf_NotAll

Figure 2.4: Quanti�er rules of KeY

under the condition that the instantiation term 𝑡 does not contain free variables. Unused
universal quanti�ers can be eliminated via all_unused (of course, there is also the dual
rule for existential quanti�ers). In addition, many rules are available to bring formulas
into negation normal form (NNF). We just want to show nnf_NotAll, which allows to
shift a negation to the inside of a quanti�er (DeMorgan’s Law). Note that all_unused and
nnf_NotAll are not classical calculus rules, but rewrite rules that allow for replacing the
term on the left by that on the right anywhere on the sequent. In KeY, calculus rules
and rewrite rules (possibly with conditions) can be expressed as so called taclets. With
this, reasoning rules can be formulated in a concise way. In addition, it allows the user to
provide hints (heuristics) to the automatic proof search strategy in which proof situations
a rule should be used.
For reasoning about equality = and equivalence↔, the rules shown in Figure 2.5 are

available. Note that there is currently no rule corresponding to eqSymm for symmetry of
equivalence.

𝜙 ↔ 𝜓  > eq_eq 𝑡 = 𝑡  > eqClose

𝑠 = 𝑡  𝑡 = 𝑠 eqSymm

Figure 2.5: Congruence rules of KeY
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2.1 Introduction to the KeY System

For a known equality 𝑠 = 𝑡 of two terms 𝑠 and 𝑡 , one can replace an occurrence of 𝑠 by 𝑡 in
any formula by using the rule applyEq. One could want to do the same for equivalence:
Replace 𝜙 by𝜓 if 𝜙 ↔ 𝜓 is present on the left hand side of the sequent. However, there is
no such rule as applyEquiv in KeY. Instead, there is the rule insert_eqv_lr (or insert_eqv_rl
for the reverse direction), which creates a new rule insert_eqv2. Afterwards, this newly
added rule can be used to replace occurrences of 𝜙 . In this thesis, we abbreviate these two
steps and use the hypothetical rule applyEquiv.

In addition to all the rules presented above, there are rules that can help the user as well
as the automatic proof search by hiding formulas considered super�uous for the proof
(hideLeft and hideRight in Figure 2.6). To leave the completeness of the calculus intact,
applying one of these rules introduces a new one to the calculus to re-insert the hidden
formula. To shorten proofs, the rules replace_known_left and replace_known_right serve

Γ, `
hideLeft

Γ, 𝜙 `
This rule introduces a new taclet that
re-introduces the hidden formula 𝜙 .

𝜙  > replace_known_left

under the condition that 𝜙 occurs top
level on the left side of the sequent

Γ `
hideRight

Γ ` 𝜙
This rule introduces a new taclet that
re-introduces the hidden formula 𝜙 .

𝜙  ⊥ replace_known_right

under the condition that 𝜙 occurs top
level on the right side of the sequent

Figure 2.6: Other rules available in KeY

to replace formulas that appear top level on the sequent by true or false, depending on
the side of the sequent they appear. These two rules are rewrite rules with conditions: 𝜙
has to occur top level on the sequent. Finally, there is a family of boolean simpli�cation
rules for all boolean connectives, where one parameter is true or false. While these are all
di�erent rules in KeY, for brevity we want to refer to all of them as simplify.

> ∧ 𝜙  𝜙 > ∨ 𝜙  > > ↔ 𝜙  𝜙

⊥ ∧ 𝜙  ⊥ ⊥ ∨ 𝜙  𝜙 ⊥ ↔ 𝜙  ¬𝜙
𝜙 ∧ > 𝜙 𝜙 ∨ > > 𝜙 ↔ > 𝜙

𝜙 ∧ ⊥ ⊥ 𝜙 ∨ ⊥ 𝜙 𝜙 ↔ ⊥ ¬𝜙

Figure 2.7: Propositional simpli�cation rules in KeY (all called simplify in this thesis)

2The insert_eqv_lr/rl rules are only manually applicable, since KeY typically handles equivalence by
splitting it into two implications.
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2 Preliminaries

Figure 2.8: The presented proof obligation formula after loading the SumAndMax example
in the KeY GUI

Workflow for Functional Verification using the GUI For functional veri�cation of Java
programs, the work�ow is as follows: The Java source code is annotated with a formal
speci�cation in the Java Modeling Language (JML). Code and speci�cation are then given
to KeY as input. From that, KeY generates a proof obligation, which is a formula of dynamic
logic:

𝜙 → 〈𝑝〉 𝜓
𝜙 is the precondition (translated from JML), p is the program, and𝜓 is the postcondition.
Intuitively, the above formula states that if the precondition holds, then after (terminating)
execution of the program the postcondition holds. Figure 2.8 shows the graphical user
interface of KeY after loading the SumAndMax example shipped with KeY. The goal is now
to show the validity of this formula in KeY. On an abstract level, the proof consist of the
following steps: The proof obligation formula is a real dynamic logic formula with usually
one modality. First of all, the program inside the modality is reduced step by step, a process
called symbolic execution (rules of category 2 and 4 from above). During this, usually case
distinctions in the proof are made, splitting it up into multiple sub-goals. The state changes
which result from assignments to variables are captured using so called updates, which
describe transitions between states. In comparison to the standard weakest precondition
calculus, this technique with updates has the advantage of allowing for symbolic execution
in a forward way, making the proof much easier to read and understand for humans. After
the symbolic execution is �nished, all branches of the proof contain no more modalities.
Next, the updates are simpli�ed and �nally removed, which results in a pure �rst order
problem without updates or modalities (rules of category 3). While symbolic execution
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2.2 Introduction to Z3

and update simpli�cation usually are straight forward, this �rst order part of the proof is
a real challenge and the main focus of this thesis.

SMT Integration KeY has a built-in proof search technique that is often able to �nd the
necessary rule applications from the rules presented above (and much more rules which
are not shown here), and thus to close the proof. However, since the search space is
large, often it does not �nd a proof, which may happen for example when quanti�er
instantiations are needed. One solution is to apply proof rules interactively, provided that
the user has enough understanding to �nd useful rule applications. Another approach
is to use modern SMT solvers which are often able to �nd a proof even if the built-in
proof search algorithm of KeY fails. Therefore, a translation from KeY sequents to SMT
solvers has long been part of KeY, currently there is ongoing work in modernizing and
modularizing it. For generality, the SMT translation uses the SMTLIB format, which is the
standard interchange format for SMT input. Currently, the solvers Z3, CVC3, Simplify,
and Yices are supported.
If the SMT solver could prove the problem valid, the goal in KeY would be marked as

closed. Note that the SMT translation is under-approximating in the sense that formulas
containing updates or modalities are not translated at all. Therefore calling the SMT solver
when such are present very likely does not lead to a successful veri�cation attempt. In the
graphical user interface, the user gets a warning in this situation.

2.2 Introduction to Z3

Z3 is a state of the art SMT solver developed by Microsoft Research. Since 2015, the code
is available at GitHub3 under the MIT license. Z3 incorporates a decision procedure for
quanti�er free formulas combined from theories such as arrays, uninterpreted functions,
bit-vectors, arithmetic, and more. While the general decision problem for quanti�er-free
formulas is undecidable, Z3 manages to �nd results for many formulas arising in practice.
Input can be given to Z3 in the SMT-LIB standard format or by using one of the APIs

available for various programming languages, such as C, C++, Java, Python, and OCamL.
Alongside the general SMT solver, various specialized solvers are included, for exam-

ple for purely propositional formulas, or NLSat for nonlinear-arithmetic (as shown in
Figure 2.9). Users can �ne-tune the solver to their needs by using tactics.
The core of Z3’s generic SMT solver consists of a theory solver for uninterpreted

functions with equality, a DPLL based SAT solver with clause learning (CDCL), and
separate specialized theory solvers. It works by applying a DPLL(T) style “ping pong game”
between SAT solver and theory solvers. The theory solver for equality and uninterpreted
functions (EUF) is integrated with the SAT solver. An overview of the architecture of Z3’s
SMT solver is shown in Figure 2.10.
As stated above, Z3 does not contain a decision procedure for arbitrary �rst-order

formulas with quanti�ers, as �rst-order logic is not decidable in theory. However, it is still
able to decide satis�ability for many formulas containing quanti�ers using the following

3https://github.com/Z3Prover/z3/
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Figure 2.9: Overall system architecture of Z3 (from (Bjørner et al., 2019))

Figure 2.10: Architecture of Z3’s SMT core solver (from (Bjørner et al., 2019)

12



2.2 Introduction to Z3

techniques: First of all, Z3 provides a heuristic mechanism called E-matching. It is based
on patterns, which are annotations given by the user in the input �le. These patterns
provide hints to the solver what could be useful instantiations of the quanti�ed variables.
While this approach is quite e�ective in practice, it is incomplete. Therefore, there is a
complementing approach called Model-based Quanti�er Instantiation (MBQI). MBQI works
by producing a candidate model from the quanti�er free part of the given problem and
checking it. If it does not satisfy the problem with quanti�ers, it is iteratively re�ned.
When queried about the satis�ability of a set of formulas, Z3 may give one of three

possible results:

• If Z3 found a model for the formula set, it prints sat. The model can be retrieved by
get-model.

• If Z3 is able to prove the formula set unsatis�able, it prints unsat. If proof produc-
tion had been enabled by (set-option :produce-proofs true), the proof can be
retrieved via get-proof.

• It may be the case that Z3 is not able to �nd a solution for (un-)satis�ability of the
input formulas. In this case, it prints unknown.

2.2.1 Proof Production

Note that Z3’s proof production in general is not documented very well, for example, for
many rules there is only a single sentence of text roughly describing what the proof rule is
intended to mean. The descriptions presented here have partly been taken from the work
of Sascha Böhme (Böhme, 2009; Böhme, 2012), and the rest carefully reverse-engineered
from the papers describing Z3 (de Moura and Bjørner, 2008b; Bjørner et al., 2019), its sparse
documentation, Z3’s source code, and experimenting with Z3 and studying the produced
proofs.
Z3 produces proofs of unsatis�ability, deducing ⊥ from a set of assertions. Due to

the CDCL(T) nature of Z3’s solver, proofs are natural deduction style proofs: The SAT
core uses unit resolution and a few other propositional rules, while for con�ict clauses
from clause learning are handled via lemma and hypothesis. The congruence closure
implementation (for solving EUF) may introduce the rules refl, symm, trans, monotonicity,
and commutativity. The theory solvers only give very coarse proofs, resulting only in a
single rule application (th-lemma or rewrite). For quanti�er instantiation, a single rule
quant-inst exists, skolemization steps are justi�ed by the sk rule. In addition, there are
some rules used to justify simpli�cation and normalization steps, for example push-quant,
pull-quant, der, nnf-pos, nnf-neg, and def-axiom. Finally, some rules compress multiple
steps, such as rewrite* or trans*. In total, there are 42 rules that may occur in a Z3 proof.

Z3 prints proofs is terms of sort Proof in the usual SMT-LIB pre�x notation. Proof rules
are presented as functions, taking proofs for premises of the rule and producing a proof
for the formula given as last parameter:

rulename : Proof × . . . × Proof × Formula → Proof
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For example,𝑚𝑝 (𝑝, 𝑞, 𝜙) denotes a proof for 𝜙 , where 𝑝 is a proof term for𝜓 → 𝜙 and 𝑞 is
a proof for𝜓 . For readability and easy comparison to the rules of KeY from the previous
section, we present the rules using Gentzen style sequents. To facilitate distinction between
KeY and Z3 rules and proof trees, all Z3 rule names in this thesis are displayed in typewriter
font.

Propositional Rules The rules in this paragraph are produced by the SAT part of the
CDCL(T) solver. The most simple rule produces a proof for true (true-axiom). The rules
asserted and goal are used as leaf rules by Z3 to create a proof for an assertion given
as input by the user. While they are semantically equal, goal is intended to retain “the
distinction between goals and assumptions in proof objects” (de Moura and Bjørner, 2008b).
Note that, however, it is not clear to the us what this should mean. The goal rule did
neither occur in any of the proofs produced while experimenting with Z3 nor could any
example be found in any of the sources describing proof production.

true-axiom
Γ ` >

asserted
Γ, 𝜙 ` 𝜙 goal

Γ, 𝜙 ` 𝜙

The rules hypothesis and lemma are closely connected: While the former introduces any
formula as hypothesis to the proof, the latter is used to justify this assumption: The lemma
rule states that a refutation can be constructed from the literals 𝐿1, . . . , 𝐿𝑛 , therefore, it can
be concluded that at least one of them does not hold.

hypothesis
Γ, 𝜙 ` 𝜙

Γ, 𝐿1, . . . , 𝐿𝑛 ` ⊥
lemma

Γ ` ¬𝐿1 ∨ . . . ∨ ¬𝐿𝑛
where Γ does not contain
any 𝐿𝑖 for 𝑖 ∈ {1, . . . , 𝑛}

The core rule produced by the SAT solver is unit-resolution, which justi�es multiple
unit resolution steps at once:

Γ `
∧

𝑖∈𝐼𝑠
𝐿𝑖 〈𝑖 ∈ 𝐼𝑠 | Γ𝑖 ` ¬𝐿𝑖〉

unit-resolution
Γ ∪

⋃
𝑖∈𝐼𝑠

Γ𝑖 `
∨

𝑖∈𝐼\𝐼𝑠
𝐿𝑖

where 𝐼 = {1, . . . , 𝑛}, 𝐼𝑠 ⊆ 𝐼

The modus ponens rule is as expected. Note that denotes either→, ↔, or ∼.

Γ1 ` 𝜙 Γ2 ` 𝜙  𝜓
mp

Γ1, Γ2 ` 𝜓

The rules iff-true and iff-false may be used for basic propositional transformations,
while the iff∼ rule can be used to weaken a proposition by replacing equivalence by
equisatis�ability:

Γ ` 𝜙
iff-true

Γ ` 𝜙 ↔ >
Γ ` ¬𝜙

iff-false
Γ ` 𝜙 ↔ ⊥

Γ ` 𝜙 ↔ 𝜓
iff∼

Γ ` 𝜙 ∼ 𝜓
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and-elim and not-or-elim both weaken a proposition by selecting one of a set of literals:

Γ ` 𝐿1 ∧ . . . ∧ 𝐿𝑛
and-elim

Γ ` 𝐿𝑖
Γ ` ¬(𝐿1 ∨ . . . ∨ 𝐿𝑛)

not-or-elim
Γ ` ¬𝐿𝑖

Congruence Rules The EUF solver (congruence closure) may introduce the following
rules for justifying either re�exivity, symmetry, or transitivity of any of the relations =,
↔, or ∼. As abbreviation, ' is used to denote any of them.

refl
Γ ` 𝑡 ' 𝑡

Γ ` 𝑡1 ' 𝑡2
symm

Γ ` 𝑡2 ' 𝑡1

Γ1 ` 𝑡1 ' 𝑡2 Γ2 ` 𝑡2 ' 𝑡3
trans

Γ1, Γ2 ` 𝑡1 ' 𝑡3

The trans* rule can be used to compress multiple symmetry and transitivity rule applica-
tions. The conclusion is deduced by applying symmetry and transitivity to the premises
in any order and direction.

Γ1 ` 𝑡1 ' 𝑡2 . . . Γ𝑛 ` 𝑡𝑛−1 ' 𝑡𝑛
trans*

Γ1, . . . , Γ𝑛 ` 𝑡𝑖 ' 𝑡 𝑗
for any 𝑖, 𝑗 ∈ 1, . . . , 𝑛, 𝑖 ≠ 𝑗

In addition, for any commutative relation �, the following rule may be used:

Γ ` (𝑡1 � 𝑡2 ' 𝑠1 � 𝑠2)
commutatitity

Γ ` (𝑡2 � 𝑡1 ' 𝑠2 � 𝑠1)

For any congruence relation 𝑓 , the following rule is available:

Γ1 ` 𝑡1 ' 𝑠1 . . . Γ𝑛 ` 𝑡𝑛 ' 𝑠𝑛
monotonicity

Γ1, . . . , Γ𝑛 ` 𝑓 (𝑡1, . . . , 𝑡𝑛) ' 𝑓 (𝑠1, . . . , 𝑠𝑛)

Note that if 𝑡𝑖 ' 𝑠𝑖 for any 𝑖 ∈ {1, . . . , 𝑛}, this re�exivity premise is omitted to save space.

Quantifier Rules Despite the name, this rule should not be confused with the classical
quanti�er introduction rules of natural deduction. This can already seen by the fact that
the rule can be used with 𝑄 either being ∀ or ∃. In the premise, 𝑥 are free variables,
which can be considered implicitly bound by a universal quanti�er (for more details, see
Section 3.2). Therefore, the rule actually roughly means deducing global from point-wise
equisatis�ability.

Γ ` 𝜙 (𝑥) ∼ 𝜓 (𝑥)
quant-intro

Γ ` 𝑄𝑥. 𝜙 (𝑥) ∼ 𝑄𝑥. 𝜓 (𝑥)
In the current version this rule is always followed by proof-bind4, which converts a proof
for a formula 𝜙 (𝑥) with free variables 𝑥 to a proof of 𝜆 𝑥 . 𝜙 (𝑥). So, it is actually not a
real calculus rule, but a binder, binding “free” variables in the whole subtree of the proof
pending from it. This makes understanding the proof easier, since one gets an explicit list
of variables which are considered “free” from there.
4Versions prior to 4.8.1 (October 2018) had real free variables not bound anywhere. In these versions,
proof-bind was not present, the variables were silently free from this point in proof tree.
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The rule inst∀ is used to instantiate multiple quanti�ed variables 𝑥 with terms 𝑡 . It is
presented as an axiom containing an implication transformed to CNF:

quant-inst
Γ ` ¬(∀𝑥 . 𝜙 (𝑥)) ∨ 𝜙 (𝑡)

Skolemization is done by the sk rule, which actually has two forms, one for the existential
and one for the negated universal quanti�er. Since one could normalize the latter form by
pushing the negation to the inside of the quanti�er and changing it to an existential one,
the only di�erence is that 𝜙 is preceded by an additional negation in this form. As in the
other quanti�er rules, multiple variables can be skolemized in a single rule application.
Another important thing to note here is that 𝑦 are free variables (more precisely, those
are bound by a proof-bind rule closer towards the root of the proof). Consequently, it is
necessary to skolemize using fresh function symbols depending on these free variables. It
is also worth noting that since the formula on the right hand side of the equisatis�ability
sign ∼ contains additional function symbols compared to that on the left hand side, both
formulas are equisatis�able, but not equivalent.

sk∃
Γ ` (∃𝑥 . 𝜙 (𝑦, 𝑥)) ∼ 𝜙 (𝑦, 𝑓 (𝑦))

sk¬∀
Γ ` ¬(∀𝑥 . 𝜙 (𝑦, 𝑥)) ∼ ¬𝜙 (𝑦, 𝑓 (𝑦))

Finally, if the formula 𝜙 does not depend on bound variables 𝑦1, . . . , 𝑦𝑚, these can be
removed from the quanti�er using elim-unused:

elim-unused
Γ ` ∀(𝑥1 . . . 𝑥𝑛 𝑦1 . . . 𝑦𝑚) . 𝜙 (𝑥1, . . . , 𝑥𝑛) ↔ ∀(𝑥1 . . . 𝑥𝑛). 𝜙 (𝑥1, . . . , 𝑥𝑛)

Theory Rules Before starting the actual “ping-pong game” between CDCL SAT solver and
theory solvers, Z3 may use a simpli�er to apply rewriting steps to terms. These rewriting
steps may be propositional or theory-speci�c and are presented as axioms. Examples for
possible axioms are 𝜙 ∨ ⊥ ↔ 𝜙 or 𝑥 + 0 = 𝑥 . The following three cases of rewrite may
occur, where always the top level symbol of t is interpreted (∨ and + in the example).

rewrite
Γ ` 𝑡 = 𝑠

rewrite
Γ ` 𝑡 ∼ 𝑠

rewrite
Γ ` 𝑡 ↔ 𝑠

During the “ping-pong” between SAT solver and theory solvers, facts produced from
the latter are introduced via the th-lemma rule. In contrast to the rewrite rule, Z3 may
give some additional information about the used theory and the nature of the lemma
(in our examples, more often no information was given). For example, arith may be
given for the theory of arithmetic and farkas for Farkas’ lemma or triangle-eq for
𝑡1 = 𝑡2 ↔ 𝑡1 ≤ 𝑡2 ∧ 𝑡2 ≤ 𝑡1. However, no complete list of theory lemmas is given in
documentation.

th-lemma (𝑇 -tautology)
Γ ` 𝜙
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In addition to the use as axiom, the theory lemma rule can be used to deduce ⊥ from a set
of hypotheses (undocumented in API). This use case is tailored to the �t the lemma rule
already presented above.

Γ ` 𝐿1 . . . Γ ` 𝐿𝑛
th-lemma

Γ, 𝐿1, . . . , 𝐿𝑛 ` ⊥

Other Rules Four of Z3’ rules can not easily be presented as a single calculus rule, as they
consist of a set of schemata:

• For distributing conjunctions over disjunctions or vice versa, the distributivity

rule is used. This rule contains multiple schemata, since conjunction and disjunction
are polyadic in Z3 and may thus have an arbitrary number of parameters.

• For conversion to CNF, Z3 uses Tseitin’s conversion. However, instead of introducing
fresh names for sub-formulas, as usually done in Tseitin’s conversion, Z3 uses the
sub-formula itself as name, that is, it treats them atomically. This is called implicit
quotation. To justify the steps of the Tseitin conversion, the rule def-axiom is used.
This rule can introduce various axioms for various propositional tautologies into the
proof, a non-complete list is given in (Böhme, 2012).

• The rules nnf-pos and nnf-neg are used to construct proofs of transformation to
negation normal form of a formula. Similar to def-axiom, they consist of multiple
schemata.

Finally, there are 11 rules that only occur in rare situations or when speci�c options in Z3
are set (during our experiments with Z3, neither of these rules were encountered):

• There is also an undef “rule” to represent an invalid/null proof.

• For compressing multiple rewrite steps into one, the rule rewrite* is used. However,
it is only used if certain options are set to true (for converting bit-vectors to boolean
or for contextual simpli�cation).

• The push-quant and pull-quant rules can be used to move quanti�ers from inside
of functions to the outside, for example to distribute universal quanti�ers over
conjunctions.

• der (destructive equality resolution) and hyper-resolve represent simpli�cation
steps that can be composed of several other rule applications.

• According to the sparse documentation, def-intro and apply-def rules could be
used to introduce an abbreviation for a term, and dually to insert the original term
for its abbreviation. Since this is exactly what is done in nearly all proof examples by
using the let binder, it seems that these two rules have been replaced by the more
general concept with let (let binders can be used to share terms as well as whole
subtrees of a proof).
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• The rules assumption-add, lemma-add, redundant-del, and clause-trail, are used
for clausal proofs, which is an alternative proof mode of Z3’s core solver “SMT”.
Clausal proofs must be enabled explicitly by setting an option, however, for the
examples tested, the produced proof did not di�er if this �ag was set.
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3.1 Overview

The starting point for our replay technique is a sequent in KeY, where only �rst-order
formulas are present. This means that all modalities (and thus, Java programs) have been
removed by �nishing symbolic execution as well as update simpli�cation. Without loss of
generality, we assume that there is only a single formula, which is on the right hand side,
present in the sequent. We may assume this because the sequent Γ ` Δ with formula sets
Γ and Δ could be encoded into a sequent with only a single formula1:

`
∧
𝛾𝑖∈Γ

(¬𝛾𝑖) ∧
∧
𝛿𝑖∈Δ

𝛿𝑖

KeY is concerned with the question if a formula is valid. Z3, on the other hand, can only
check for (un-)satis�ability of formulas. However, there is a well-known relation between
these two problems:

𝜙 is valid i� ¬𝜙 is unsatis�able

For a sequent ` 𝜙 , the idea is to query Z3 for satis�ability of ¬𝜙 . As shown in Figure 3.1,
Z3 gives one of three possible results: For a timeout, it returns unkown (3a). If the formula
is not valid (and Z3 had enough time), Z3 returns sat and a model, that is, a satisfying
assignment of the variables in the input formula (3b). In this case, one may run the
counterexample generator in KeY to get a hint which part of speci�cation or code was
wrong. If the original formula 𝜙 is valid, Z3 returns unsat. Until now, the user could apply
the result to the branch in KeY, thus closing it. However, there was no possibility to check
the result of Z3 nor to examine inside the KeY GUI how it was produced.

Z3 is able to output certi�cates for unsatis�ability (“proofs”). The idea is to use these and
replay them using KeY’s calculus rules. As a �rst step, proof production must be enabled
in Z3 by adding (set-option :produce-proofs true) to the SMT-LIB input �le. With
that, Z3 produces a proof of unsatis�ability (3c). To this proof we apply a replay engine
implementing the technique described in this chapter, which transforms the unsatis�ability
proof for ¬𝜙 in Z3 format into a validity proof for 𝜙 in KeY.

3.2 Clarifying Notions

Before explaining the actual replay technique, we have to clarify some notions. Since the
replay technique is meant to be applied if the formula only refers to a single state (that is,
1In practice, the sequent does not have to be encoded, since Z3 can be given a set of formulas as input.
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KeY
replay
engine

counterexample
generator

1. 𝜙 valid?

Z3 �

2. ¬𝜙 satis�able?

3a. unknown3b. sat + model

3c. unsat + proof

Figure 3.1: Overview of the intended work�ow of the technique. The contributions of
this thesis are in the “backward” translation (3c) and partly in the “forward”
translation (2).

after symbolic execution and update simpli�cation have been executed, see Section 2.1),
we omit all features of dynamic logic here. However, the necessary changes for dynamic
logic are identical to that described in (Ahrendt et al., 2016).

Type Hierarchy A type hierarchy is a pair T = (TSym, v), where TSym is a set of type
symbols, the subtype relation v is a re�exive and transitive relation on TSym. In addition,
there are two designated type symbols, the empty type ⊥ ∈ TSym and the universal type
> ∈ TSym, with ⊥ v 𝐴 v > for all types 𝐴 ∈ TSym.

Signature A signature Σ is a triple (FSym, PSym, VSym) of function symbols FSym,
predicate symbols PSym, and variables VSym. Each of them has argument and result types
as expected.

Universe A universe is a pair (𝐷, 𝛿), where D is a set and 𝛿 : 𝐷 → 𝑇𝑆𝑦𝑚 \ {⊥} such that
for every 𝐴 ∈ TSym the set 𝐷𝐴 = {𝑑 ∈ 𝐷 |𝛿 (𝑑) v 𝐴} is non-empty.

First-Order Structure A �rst-order structure M consists of a domain (𝐷, 𝛿) and an inter-
pretation such that 𝐼 (𝑓 ) is a function from𝐷𝐴1× . . .×𝐷𝐴𝑛 into𝐷𝐴 for 𝑓 : 𝐴1× . . .×𝐴𝑛 → 𝐴

in FSym, 𝐼 (𝑝) is a subset 𝐷𝐴1 × . . . ×𝐷𝐴𝑛 for 𝑝 (𝐴1, . . . , 𝐴𝑛) in PSym, 𝐼 (=) = {(𝑑,𝑑) |𝑑 ∈ 𝐷}.

Variable Assignment A variable assignment is a function 𝛽 : 𝑉𝑆𝑦𝑚 → 𝐷 such that
𝛽 (𝑣) ∈ 𝐷𝐴 for 𝑣 : 𝐴 ∈ VSym.

Validity In KeY, the problem that is treated is that of validity of a formula 𝜙 :

𝜙 is valid i� for all M and all 𝛽 : (M , 𝛽) |= 𝜙
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Satisfiability Z3, on the other hand, is concerned with showing satis�ability:

𝜙 is satis�able i� there is any M and any 𝛽 such that: (M , 𝛽) |= 𝜙

Equisatisfiability Of special interest is Z3’s notion of equisatis�ability: According to
de Moura and Bjørner (2008b), two formulas 𝜙 and 𝜓 are equisatis�able, if they are
equivalent when closed by second order existential quanti�cation of skolem constants and
functions:

𝜙 (𝑥) ∼ 𝜓 (𝑦) i� for all 𝛽 : there is anyM1 : (M1, 𝛽) |= 𝜙 (𝑥)
i� there is anyM2 : (M2, 𝛽) |= 𝜓 (𝑦)

𝑥 = (𝑥1, . . . , 𝑥𝑛) and 𝑦 = (𝑦1, . . . , 𝑦𝑚) are multiple free variables here. It is important to
note that the variable assignment 𝛽 is the same for 𝜙 and𝜓 .

3.3 Challenges

There are various challenges when translating a proof from Z3 to KeY. All challenges
described in this section are systematic, that is, they are owed to the nature of both proof
systems, and must thus be managed by every replay technique. The di�culty of the
last two problems in this section, correctly translating the type hierarchy (Section 3.3.4)
and di�erent structures of terms (Section 3.3.5), is heavily in�uenced by the “forward”
translation from KeY to Z3.

3.3.1 Proof Directions

Proof trees in KeY are built from the root towards the leaves: The proof obligation formula
is decomposed into (possibly multiple) simpler formulas, splitting the proof by case distinc-
tions if necessary, until �nally each branch can be closed by one of the three closing rules
shown in Section 2.1. In contrast to that, Z3 produces proofs in the opposite direction:
It starts at the proof leaves with the user provided assertions, hypotheses, and several
axiomatic rules, combining them step by step until �nally a refutation is produced. When
trying to replay Z3 proofs in KeY, this di�erence in proof direction is quite challenging:

In a �rst attempt, one could try to replay a proof by adding all formulas which Z3 had
available as assertions to KeY, and then applying rules in the same way as Z3 does to
combine the assertions until a refutation is reached. However, Z3’s quanti�er introduction
rule (Figure 2.4) can not be replayed this way, since it would require to add leaves with
formulas containing free variables. However, KeY does not have a notion of formulas with
free variables. It would be possible to close such formulas by adding universal quanti�ers,
though, one would introduce many additional quanti�ers (for every leaf formula) that is
above a quant-intro rule in the Z3 proof.

The approach taken in this work replays a Z3 proof starting from its root and working
towards the leaves. However, to match Z3’s inference direction, we locally invert the proof
direction of KeY with the help of its cut rule. Figure 3.2 shows the generic scheme used
to replay most rules. For a rule with premises 𝜙1, . . . , 𝜙𝑛 and conclusion𝜓 , the following
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Γ1 ` 𝜙1 . . . Γ𝑛 ` 𝜙𝑛
rulename

Γ1, . . . , Γ𝑛 ` 𝜓

is replayed as

𝐿

Γ1, . . . , Γ𝑛, 𝜙1, . . . , 𝜙𝑛 ` 𝜓
andLeft

...
andLeft

Γ1, . . . , Γ𝑛, 𝜙1 ∧ . . . ∧ 𝜙𝑛 ` 𝜓

𝑅1

Γ1 ` 𝜙1 . . .

𝑅𝑛

Γ𝑛 ` 𝜙𝑛 andRight
...

andRight
Γ1, . . . , Γ𝑛 ` 𝜙1 ∧ . . . ∧ 𝜙𝑛 hideRight
Γ1, . . . , Γ𝑛 ` 𝜙1 ∧ . . . ∧ 𝜙𝑛,𝜓 cut

Γ1, . . . , Γ𝑛 ` 𝜓

Figure 3.2: Generic replay scheme for most rules

replay steps are applied: First, the conjunction of all premises is “added” to the sequent
using KeY’s cut rule. On the left branch, we apply andLeft multiple times to split the cut
formula. 𝐿 denotes a sub-tree of the proof where we have to justify that the conclusion𝜓
really follows from the premises 𝜙1, . . . , 𝜙𝑛 of the rule. The concrete steps depend on the
rule that is replayed.
In the right branch, the validity of the premises has to be shown. Therefore, the

conclusion of the original rule 𝜓 is hidden (it is irrelevant here) and afterwards the
conjunction is split into the original premises. Replay continues in the sub-proofs𝑅1, . . . , 𝑅𝑛 ,
where the premises of the original rule are justi�ed.

3.3.2 Replacing Equisatisfiability

In Z3 proofs, the equisatis�ability relation ∼ may occur in proofs (for example in the
skolemization rules, see Section 2.2.1). In KeY, it has no direct counterpart. Therefore,
we follow the approach of (Böhme, 2012) and replace equisatis�ability by equivalence.
This is possible if the skolemization rules are replayed in a way that their conclusion is
an equivalence rather than an equisatis�ability, which is described in the next section.
Doing so one can prove by induction that equisatis�ability can be removed: The only rules
other introducing it besides the skolem rules are re� and i�∼, where the formulas are also
equivalent. All other rules contain equisatis�ability only if their premises contain it also.
Therefore we are allowed to replace equisatis�ability ∼ by equivalence ↔ in all formulas.

3.3.3 Skolemization

Replay of the skolemization rules provides multiple challenges. In Z3, a term may contain
free variables. Note that in newer Z3 versions, these variables are bound by the proof-bind
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rule respectively the lambda binder in a whole subtree of the proof, which however is
semantically the same as if they were free. Free variables can be considered implicitly
bound by a universal quanti�er due to Z3’s notion of equisatis�ability (see Section 3.2).
When applying the skolem rule to a term with free variables, the newly introduced skolem
symbol may depend on them. Therefore, the fresh skolem symbol must be a function of
these free variables.

In contrast to that, KeY has no notion of free variables in formulas. The available
skolemization rules (allLeft/exRight, see Figure 2.4) can only be applied if their quanti�ers
are top level in the formula (that is, surrounded existential/universal quanti�ers have to
be instantiated/skolemized �rst).

Another obstacle is a consequence of the di�erent proof directions of Z3 and KeY: In Z3’s
proof format, a rule is of the form (rule-name premise_0 ... premise_n conclusion),
where conclusion is a formula and the premises can be either formulas or proofs. During
replay of a Z3 rule in KeY, premises and conclusion must be translated to KeY formulas.
However, since replay is performed in the opposite direction as Z3 constructs the proof,
during replay, skolem symbols are used before they are introduced (the skolem rule is a
closing rule occurring at a leaf of the proof, see Section 2.2.1).

Luckily, we can use the Hilbert choice operator 𝜖 to solve both problems at once. Intu-
itively, the term 𝜖𝑥 . 𝜙 (𝑥) denotes some 𝑥 , if there exists one, such that the formula 𝜙 (𝑥)
holds. Using this binding operator, we can translate skolem symbols as follows: If a skolem
symbol 𝑠 is encountered in a formula𝜓 (𝑠) during replay, we search the proof tree from
there towards the leaves until we �nd the corresponding skolemization rule where 𝑠 is
introduced2. We then construct the term 𝜖𝑥 . 𝜙 (𝑥) and replace it for 𝑠 (right hand side). In
addition, we are now allowed to replace equisatis�ability by equivalence, as explained in
the previous section:

. . .

sk
Γ ` (∃𝑥 . 𝜙 (𝑥)) ∼ 𝜙 (𝑠)

. . .
... . . .

. . .
Γ ` 𝜓 (𝑠)

. . .

sk
Γ ` (∃𝑥 . 𝜙 (𝑥)) ↔ 𝜙 (𝜖𝑥 . 𝜙 (𝑥))

. . .
... . . .

. . .
Γ ` 𝜓 (𝜖𝑥 . 𝜙 (𝑥))

However, for skolem functions it gets more complicated: If a skolem function 𝑠 (𝑡) occurs
depending on any term 𝑡 , the skolemization occurs in a subtree of the proof with free
variables (marked as subtree A in the example below). Note that such free variables in
Z3 are usually introduced by the quant-intro rule as shown. In the example, 𝜒 and 𝜌 are
arbitrary formulas, 𝑄 stands for either ∀ or ∃, 𝑡 is any term, and 𝑦 is a free variable in

2Without loss of generality, we only consider the existential variant of the sk rule here. The variant with
universal quanti�er is analogue.
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subtree A:

. . .

. . .

sk
Γ ` (∃𝑥 . 𝜙 (𝑥,𝑦)) ∼ 𝜙 (𝑠 (𝑦))

. . .
... . . .

. . .
Γ ` 𝜒 (𝑦) ∼ 𝜌 (𝑦)

quant-intro subtree A ↑
Γ ` 𝑄𝑦.𝜒 (𝑦) ∼ 𝑄𝑦.𝜌 (𝑦)

. . .
... . . .

. . .
Γ ` 𝜓 (𝑠 (𝑡))

For translation, we again collect the epsilon term from the sk rule. This 𝜖-term e�ectively
denotes a skolem function, which is notable since it is possible to construct skolem
functions for KeY this way. When inserting this skolem function into the original formula
𝜓 , the free variable 𝑦 has to be replaced by the term 𝑡 , which is denoted by the substitution
[𝑦/𝑡]:

. . .

. . .

sk
Γ ` (∃𝑥 . 𝜙 (𝑥,𝑦)) ↔ 𝜙 (𝜖𝑥 . 𝜙 (𝑥,𝑦))

. . .
... . . .

. . .
Γ ` 𝜒 (𝑦) ↔ 𝜌 (𝑦)

quant-intro subtree A ↑
Γ ` 𝑄𝑦.𝜒 (𝑦) ↔ 𝑄𝑦.𝜌 (𝑦)

. . .
... . . .

. . .
Γ ` 𝜓 ( [𝑦/𝑡]𝜖𝑥 . 𝜙 (𝑥,𝑦))

For the Hilbert choice operator, there are multiple possible semantics. A selection of
them is presented by Giese and Ahrendt (1999). In KeY, binders are extensional in general,
that is, simpli�cation and replacement of a term by an equivalent one inside a binder do
not in�uence the valuation of the binder term. According to Giese and Ahrendt (1999), it is
probably not possible to provide rules for a complete calculus with extensional semantics of
epsilon terms which are well-suited for automatic theorem proving. Therefore, we impose
additional restrictions for epsilon terms: The only occurrences of the choice operator
we allow are those introduced during replay by our technique. With this restriction, for
handling epsilon terms we only need the newly added rule epsDefAdd, used during replay
of the sk rule (see Paragraph 3.5.1) to justify the introduction of the choice operator. Note
that this axiom describes the relation between existential quanti�er and choice operator:

epsDefAdd` ∃𝑥 . 𝜙 (𝑥) ↔ 𝜙 (𝜖𝑥 . 𝜙 (𝑥))

Notably, epsilon terms always occur inside the formula 𝜙 that is also the condition of the
choice operator. Everywhere else, epsilon terms can be treated as atomically. Note that
without this restriction, the calculus would be incomplete. An example formula that could
not be proven can be found in Appendix A.1.
Finally, there is a drawback when replacing skolem symbols as described: Due to the

introduced epsilon-terms the formulas grow heavily in size. This is a problem yet to be
solved for the future.
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s_Null

real Z3 sorts and their domains
embedding functions (bijective)
typeof function
subtype relation (partial order)

Figure 3.3: The type hierarchy after translation to Z3. For brevity, the “sort_” pre�x is
shortened to “s_”.

3.3.4 Translating the Type Hierarchy

As explained in Section 2.1, KeY uses Java dynamic logic (JavaDL) with a type hierarchy
as shown in Figure 2.1. In this type hierarchy, every sort is a sub-sort of Any, including
boolean and int. In contrast to that, Bool and Int are top level sorts in Z3. Therefore, some
e�ort is necessary to retain KeY’s type hierarchy while still being able to bene�t from Z3’s
built-in and very fast reasoning strategies for Bool and Int. The following technique is
taken from (Leino and Rümmer, 2010) and has already been implemented in KeY prior to
this work. However, the existing implementation was using features unsuitable for replay.
Therefore, we present an altered type hierarchy translation that permits us to translate all
terms back to KeY during proof replay.

The original translation technique. Core idea of the technique is to encode each KeY sort
s as individual “sort_s” of the new Z3 sort T, while all instances of s are embedded into
the new Z3 sort U. To establish the connection between the “sort” and their values, a
function 𝑡𝑦𝑝𝑒𝑜 𝑓 : U → T is de�ned. The embedded sorts are connected via the predicate
𝑠𝑢𝑏𝑡𝑦𝑝𝑒 : T × T → Bool, which is axiomatized to form a partial order, that is, a re�exive,
transitive, and antisymmetric relation.
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subtype relation is a partial order:
re�exive:

∀𝑡 : 𝑇 . 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 (𝑡, 𝑡)
antisymmetric:

∀𝑡1 : 𝑇, 𝑡2 : 𝑇 . 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 (𝑡1, 𝑡2) ∧ 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 (𝑡2, 𝑡1) → 𝑡1 = 𝑡2

transitive:
∀𝑡1 : 𝑇, 𝑡2 : 𝑇, 𝑡3 : 𝑇 . 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 (𝑡1, 𝑡2) ∧ 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 (𝑡2, 𝑡3) → 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 (𝑡1, 𝑡3)

cast:
∀𝑢 : 𝑈 , 𝑡 : 𝑇 . 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 (𝑡𝑦𝑝𝑒𝑜 𝑓 (𝑐𝑎𝑠𝑡 (𝑡,𝑢)), 𝑡)
∀𝑢 : 𝑈 , 𝑡 : 𝑇 . 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 (𝑡𝑦𝑝𝑒𝑜 𝑓 (𝑢), 𝑡) → 𝑐𝑎𝑠𝑡 (𝑡,𝑢) = 𝑢

for each sort 𝑠 with 𝑛 child sorts 𝑐1, . . . , 𝑐𝑛:
sort “de�nition”:

𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑡,𝑢)
for every subsort 𝑐𝑖 :

𝑠𝑢𝑏𝑡𝑦𝑝𝑒 (𝑐𝑖 , 𝑠)

Figure 3.4: Axioms of the original type hierarchy translation

Besides the two Z3 sorts T and U, there are the original Z3 sorts Bool and Int, both
with their own domain. The embedded int values are connected by bijective functions
𝑢2𝑖 : U → Int and 𝑖2𝑢 : Int → U to their “real” Z3 counterparts, and equally for boolean.
An overview of the resulting type hierarchy in Z3 is given in Figure 3.3, the axioms are
shown in Figure 3.4.

Typeguards for quantifiers. The translation as described above has a problem when
translating quanti�ers: Values of T, for example sort_any, are no real sorts that can be
quanti�ed over in Z3. Quanti�cation now has to be done over U, which usually contains
much more than the domain of the original sort. The solution for this problem is to
introduce typeguards for quanti�ers (also described in (Leino and Rümmer, 2010)). To give
an example, the formula

∀𝑖 : 𝑖𝑛𝑡 . 𝑖 > 0

from KeY will be translated to the following Z3 formula:

∀𝑖 : 𝑈 . 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑖𝑛𝑡, 𝑖) → 𝑖2𝑢 (𝑖) > 𝑖2𝑢 (0)

In addition to applications of the embedding function 𝑖2𝑢, we can clearly see the typeguard
𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑖𝑛𝑡, 𝑖) here, connected by an implication to the original formula. For typeguards
of existential quanti�ers, the junctor ∧ is used. Adding typeguards that way ensures that
we do not introduce inconsistent formulas by quantifying over the wrong domain.

Type Hierarchy Translation for replay. First of all, for translating quanti�er terms back to
KeY, one has to know the original sort. However, if given a Z3 term such as

∀𝑢 : 𝑈 . 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑡,𝑢) → 𝜙 (𝑢)
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for any formula 𝜙 , we do not know if the subterm 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑡,𝑢) is a typeguard or was
already present in the original KeY formula prior to its translation to Z3. To be able to distin-
guish both cases reliably, we introduce an additional predicate 𝑡𝑦𝑝𝑒𝑔𝑢𝑎𝑟𝑑 : 𝑇 ×𝑈 → 𝐵𝑜𝑜𝑙

that is semantically equivalent to 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 : We establish this connection via the follow-
ing additional axiom schema (for every type 𝑡 ∈ 𝑇 ):

∀𝑢 : 𝑈 . 𝑡𝑦𝑝𝑒𝑔𝑢𝑎𝑟𝑑 (𝑡,𝑢) ↔ 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑡,𝑢),

Now we exclusively use the new 𝑡𝑦𝑝𝑒𝑔𝑢𝑎𝑟𝑑 predicate to represent typeguards. During
replay, we can reliably extract the quanti�ed types from them.
As already mentioned, the technique as described above was implemented in KeY

using two features that prevent translation of Z3 terms backs to KeY, which is crucial
for replay. In the �rst place the translation uses the function 𝑡𝑦𝑝𝑒𝑜 𝑓 : 𝑈 → 𝑇 and the
predicate 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 : 𝑈 ×𝑈 → 𝐵𝑜𝑜𝑙 , which both have no direct counterpart in the logic
used by KeY. Since the complete type hierarchy has been axiomatized using these, we
had to �nd an alternative equivalent axiomatization without them. The new axioms
presented in Figure 3.5 use only the predicates 𝑒𝑥𝑎𝑐𝑡𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 : 𝑇 × 𝑈 → 𝐵𝑜𝑜𝑙 and
𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 : 𝑇 ×𝑈 → 𝐵𝑜𝑜𝑙 , which have direct counterparts in KeY.

The second problem is quanti�cation over (embedded) types. It can be solved by rolling
out the relevant axioms for every sort. This applies to the two cast axioms:

∀𝑡 : 𝑇 . ∀𝑢 : 𝑈 . 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑡, 𝑐𝑎𝑠𝑡𝑡 (𝑢))
∀𝑡 : 𝑇 . ∀𝑢 : 𝑈 . 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑡,𝑢) → 𝑐𝑎𝑠𝑡𝑡 (𝑢) = 𝑢

Special care has to be taken for the Null sort (containing only the single individual 𝑛𝑢𝑙𝑙 ):
It is subsort of every Object sort. While the subtrees pending from two children 𝑐𝑖 and
𝑐 𝑗 of an object sort are mostly disjoint, this is not the case for the null sort: It is indeed
contained by both subtrees. Therefore, we add a special axiom for every pair of subsorts
(𝑐𝑖, 𝑐 𝑗 ) with (𝑖 ≠ 𝑗) of every object sort:

∀𝑢 : 𝑈 . 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑐𝑖, 𝑢) ∧ 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑐 𝑗 , 𝑢) → 𝑛𝑢𝑙𝑙

This set of axioms can be further optimized by omitting symmetrical cases: For example,
the axiom for (𝑐𝑖, 𝑐 𝑗 ) is equivalent to that for (𝑐 𝑗 , 𝑐𝑖).

Counting the needed axioms, we can see that our new translation needs 𝑂 (𝑛3) axioms
for 𝑛 sorts, whereas the original translation needed only 𝑂 (𝑛2). The detailed calculation
can be found in Appendix A.2. While𝑂 (𝑛3) in comparison to𝑂 (𝑛2) sounds bad, we argue
that it is a worst case estimation that most likely does not happen in reality: The worst
case is if the type hierarchy is very broad and �at, i.e. all Java classes are direct subclasses
Object. This is rarely the case for large sets of classes. The inequations displayed above
are very coarse, usually 𝑠𝑚𝑎𝑥 � 𝑛 and also 𝑠𝑖 � 𝑠𝑚𝑎𝑥 for most 𝑠𝑖 . In addition, all generated
axioms can be easily triggered via a pattern and do not lead to much performance loss, at
least not for the amount of classes that occurred during the evaluation of this work. In
practice, the enlarged number of axioms should be no problem for Z3.
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for each sort 𝑠 with 𝑛 child sorts 𝑐1, . . . , 𝑐𝑛:
sort “de�nition”:

∀𝑢 : 𝑈 . 𝑒𝑥𝑎𝑐𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑠,𝑢) ∨ 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑐1, 𝑢) ∨ ... ∨ 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑐𝑛, 𝑢) → 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑠,𝑢)
cast:

∀𝑢 : 𝑈 . 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑠, 𝑐𝑎𝑠𝑡 (𝑠,𝑢))
∀𝑢 : 𝑈 . 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑠,𝑢) → 𝑐𝑎𝑠𝑡 (𝑠,𝑢) = 𝑢

typeguard:
∀𝑢 : 𝑈 . 𝑡𝑦𝑝𝑒𝑔𝑢𝑎𝑟𝑑 (𝑠,𝑢) ↔ 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑠,𝑢)

for every subsort 𝑐𝑖 :
at most one type:

∀𝑢 : 𝑈 . ¬𝑒𝑥𝑎𝑐𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑠,𝑢) ∨ ¬𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑐𝑖 , 𝑢)
additional axiom for sort_any only:

for every subsort pair (𝑐𝑖 , 𝑐 𝑗 ), subsorts are disjoint:
∀𝑢 : 𝑈 . ¬𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑐𝑖 , 𝑢) ∨ ¬𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑐 𝑗 , 𝑢) (𝑖 ≠ 𝑗)

additional axioms for object sorts only:
for every subsort pair (𝑐𝑖 , 𝑐 𝑗 ) subsorts are disjoint (except null):

∀𝑢 : 𝑈 . 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑐𝑖 , 𝑢) ∧ 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑐 𝑗 , 𝑢) → 𝑢 = 𝑛𝑢𝑙𝑙 (𝑖 ≠ 𝑗)

Figure 3.5: Axioms of the modi�ed type hierarchy

3.3.5 Structurally Di�erent Terms

A challenge for replay is that there are cases where the structure of terms in Z3 di�ers from
their translation to KeY. There are multiple reasons for this: First of all, in Z3 the boolean
connectors “and” and “or” are polyadic, whereas in KeY they are only binary functions.
While in theory the solution is easy (unfolding a single polyadic function application
to multiple binary ones), it sometimes makes position calculations very di�cult on an
engineering level. An example where this can be seen is the quanti�er instantiation rule.
The second reason is similar to the �rst: In contrast to KeY, in Z3 a single quanti�er

may bind multiple variables. Hence during translation, Z3 quanti�ers have to be unfolded
to multiple identical quanti�ers with one bound variable each. Consequently, a single Z3
quanti�er rule in general has to be translated to multiple applications of KeY’s quanti�er
rules.
The third reason is the forward translation (from KeY to Z3) using typeguards as

described in Paragraph 3.3.4. Intuitively, one would like to translate a Z3 formula with
typeguard back to its original KeY formula. However, doing so the formulas in the Z3
proof diverge from the formulas actually available in KeY during replay. The solution is
to translate the typeguards back to KeY (using the instanceof function family). A small
drawback is that it in�ates the sequents in KeY with terms that were not present in the
original problem, hence reducing readability.
Finally, there is small semantic di�erence between Z3 and KeY: While in the former

predicates are just functions with boolean result type, the latter explicitly distinguishes
between formulas and terms of boolean type (in the implementation this is re�ected by the
additional type “Formula”). For the translation of a Z3 term back to KeY, this means it is
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sometimes necessary to add an additional “= TRUE” term, for example 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑖𝑛𝑡, 4)
in Z3 translates back to 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 (𝑖𝑛𝑡, 4) = 𝑇𝑅𝑈𝐸 in KeY, since instanceof is boolean
in KeY. In addition, KeY has the constant formulas “true/false” as well as the constants
“TRUE/FALSE” of boolean sort. Also, it has to be taken care to translate Z3’s equality to
either = or ↔, depending on the type of the translated arguments.
To sum up, these structural di�erences of terms provide engineering challenges and

decrease readability in KeY, but do not generally prevent replay.

3.4 Additional Rules for KeY as Abbreviations

It turns out that it is bene�cial for replay to add some rules to KeY. All of them are only
abbreviations for multiple rule applications of existing rules. Their soundness can be
proven in KeY easily, the proofs are found by KeY’s auto mode within a second. However,
for replay they allow to treat certain cases uniformly. It should be noted that these rules
are not made available to KeY’s normal built-in proof search strategy to avoid changing
anything. Instead, they are only applied “manually” during replay or made available to
certain replay-only strategies.
The rule equivSymm is similar to eqSymm presented in Paragraph 2.1, but for ↔ instead
of =.

𝜙 ↔ 𝜓  𝜓 ↔ 𝜙 equivSymm

The rules notElimLeft/Right introduce an additional negation in front of a formula, thereby
moving it to the other side of the sequent. It is on purpose that these rules are not available
to KeY’s auto mode, since they con�ict with the usual proof direction in KeY: Instead of
simplifying the formula, they make it more complex by introducing additional operations.
Nonetheless they are useful for uniform handling of literals for example during replay of
the unit-resolution rule.

Γ ` ¬𝜙
notElimLeft

Γ, 𝜙 `
Γ,¬𝜙 `

notElimRight
Γ ` 𝜙

Finally, the additional rule distribute_all_equiv provides a signi�cant abbreviation for
multiple rule applications of KeY’s standard rules. It is tailored to the quant-intro rule
(and an identical schema that may occur during replay of nnf-pos/nnf-neg) and weakens
the proposition by distributing the universal quanti�er over equivalence. Using this rule,
it is possible to avoid a case split and afterwards on each of the branches a skolemization
plus two quanti�er instantiations. KeY’s auto mode usually does not �nd the necessary
rule applications within a considerable amount of steps (more than 1000 in our examples).
Therefore, the rule is made available to a specialized proof search macro when replaying
nnf-pos, nnf-neg, and quant-intro.

Γ,∀𝑥 . 𝜙 (𝑥) ↔ ∀𝑥 . 𝜓 (𝑥) `
distribute_all_equiv

Γ,∀𝑥 . (𝜙 (𝑥) ↔ 𝜓 (𝑥)) `
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3 The Replay Technique

3.5 Translating Z3’s Proof Rules

In this section, we describe for every Z3 rule how it is translated to a tree of rule applications
in KeY. As in the previous chapter, we present the rules in a sequent calculus style and
assume for readability, that all formulas which could occur on the right side of the turnstile
in a sequent are moved into Γ by negating them. On the left side (or on top for long rules),
the Z3 rules are presented, while their replay schema is displayed on the right (or below, if
it does not �t into the line). For descriptions of the Z3 rules, see Section 2.2.1, while KeY
rules are explained in Paragraph 2.1.
A general question that can be asked is why one would not add a new rule in KeY

for every Z3 rule and use these in replay. However, most proof rules of Z3 denote rule
schemata (for example because conjunction and disjunction are polyadic in Z3) and can
thus not be represented by a single KeY rule.

3.5.1 Rules Replayed Manually

The rules in this section can be replayed manually, that is, predetermined by program code
without actual proof search. Due to the polyadic nature of some functions, quanti�ers, and
proof rules of Z3, the concrete number of steps often depends on the arity of the replayed
construct.

true-axiom This is the most simple proof rule, a proof of true. Of course it can be directly
mapped to the use of KeY’s closeTrue rule:

true-axiom
Γ ` >  

closeTrue
Γ ` >

i�-true The iff-true rule also maps straightforward to a single rule application in KeY:

Γ ` 𝑃
iff-true

Γ ` 𝑃 ↔ >
 

Γ ` 𝑃
concrete_eq_3

Γ ` 𝑃 ↔ >

i�-false Quite similar is the iff-false rule:

Γ ` ¬𝑃
iff-false

Γ ` 𝑃 ↔ ⊥
 

Γ ` ¬𝑃
concrete_eq_4

Γ ` 𝑃 ↔ ⊥

i�∼ For the rule deducing equisatis�ability from equivalence, nothing has to be done,
since we replace all occurrences of equisatis�ability by equivalences earlier.

Γ ` 𝑃1 ↔ 𝑃2
iff∼

Γ ` 𝑃1 ∼ 𝑃2
 

Γ ` 𝑃1 ↔ 𝑃2

Γ ` 𝑃1 ↔ 𝑃2

and-elim The and-elim rule selects a single literal from a conjunction. Beginning with
this rule, the replay starts to get slightly more involved: It is not possible to directly
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3.5 Translating Z3’s Proof Rules

translate the Z3 rule to a single KeY rule. This is mainly due to the deconstructive nature
of KeY’s inference rules in contrast to the constructive ones of Z3.

Γ ` 𝐿1 ∧ . . . ∧ 𝐿𝑛
and-elim

Γ ` 𝐿𝑖

We replay this Z3 rule using the generic scheme from Figure 3.2: The conclusion of the
Z3 rule is introduced to the sequent in KeY by case distinction with the cut rule. On
the right branch we can now hide the original conclusion ¬𝐿𝑖 , since we know that it is
irrelevant here. The sequent of this branch now is equal to the premise of the original
Z3 rule. Further replay of Z3 rules continues here. In the left branch we have to justify
the soundness of the cut. For the and-elim rule this step is rather simple: We apply 𝑛 − 1
times KeY’s andLeft rule, which then leads to the literals 𝐿1 to 𝐿𝑛 occurring as individual
formulas in the antecedent. Finally, the branch can be closed, since the literal 𝐿𝑖 is present
in antecedent and succedent:

close
Γ, 𝐿1, . . . , 𝐿𝑛 ` 𝐿𝑖 andLeft

...
andLeft

Γ, 𝐿1 ∧ . . . ∧ 𝐿𝑛 ` 𝐿𝑖
Γ ` 𝐿1 ∧ . . . ∧ 𝐿𝑛 hideRight

Γ ` 𝐿1 ∧ . . . ∧ 𝐿𝑛, 𝐿𝑖 cut
Γ ` 𝐿𝑖

not-or-elim Similar to and-elim, this rule weakens a proposition by selecting a single
literal from it:

Γ ` ¬(𝐿1 ∨ . . . ∨ 𝐿𝑛)
not-or-elim

Γ ` ¬𝐿𝑖
Replay is very similar to that of and-elim, except that we split the formula with top level
disjunctions on the right side (orRight) and have two additional steps (notLeft/notRight) to
dispose the negations. Again, the right branch ends with the premise of the original Z3
rule:

close
Γ, 𝐿𝑖 ` 𝐿1, . . . , 𝐿𝑛 notRight
Γ ` 𝐿1, . . . , 𝐿𝑛,¬𝐿𝑖 orRight

...
orRight

Γ ` 𝐿1 ∨ . . . ∨ 𝐿𝑛,¬𝐿𝑖 notLeft
Γ,¬(𝐿1 ∨ . . . ∨ 𝐿𝑛) ` ¬𝐿𝑖

Γ ` ¬(𝐿1 ∨ . . . ∨ 𝐿𝑛) hideRight
Γ ` ¬(𝐿1 ∨ . . . ∨ 𝐿𝑛),¬𝐿𝑖 cut

Γ ` ¬𝐿𝑖

asserted The asserted rule in Z3 looks as follows:

asserted
Γ, 𝑃 ` 𝑃

Closing is allowed since the proposition 𝑃 to prove occurs in the antecedent. For Z3 this
means that 𝑃 has been asserted in the input, i.e. 𝑃 is either an assertion that stems from
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the translation of a formula of the original KeY sequent, or an axiom (for example from the
type hierarchy). For replaying the rule, we have to distinguish both cases: If the assertion
originates from the sequent, replay is trivial:

close
Γ, 𝑃 ` 𝑃

However, if 𝑃 is an axiom, it is not directly present in the KeY sequent. In this case, we
have to rely on KeY’s automatic proof search to �nd a proof for 𝑃 . This is always possible
using the built-in taclets of KeY. We argue that it is not very di�cult for KeY to �nd the
necessary rule applications, since the search space is very limited.

hypothesis This rule introduces a new hypothesis into the proof. While 𝑃 can be any
formula, it has to be discharged using the lemma rule later on this branch. The lemma rule
adds 𝑃 to the context on the left hand side of the sequent.

hypothesis
Γ, 𝑃 ` 𝑃  

close
Γ, 𝑃 ` 𝑃

lemma The lemma rule states the following: If we can deduce a refutation from𝑛 lemmata,
at least one of them must be invalid:

Γ, 𝐿1, . . . , 𝐿𝑛 ` ⊥
lemma

Γ \ {𝐿1, . . . , 𝐿𝑛} ` ¬𝐿1 ∨ . . . ∨ ¬𝐿𝑛

We can see that this adds (possibly multiple) lemmata to the context on the left side in
the antecedent, thus it is the counterpart of the hypothesis rule. Due to its nature with 𝑛
lemmata, considerable amount of work has to be done in splitting the formulas (orRight,
andLeft) and eliminating negations by moving formulas to the other side of the sequent
(notLeft, notRight):

closeTrue
Γ, 𝐿1, . . . , 𝐿𝑛 ` >

simplify
Γ, 𝐿1, . . . , 𝐿𝑛 ` > ∧ . . . ∧ >

replace_known_right
.
.
.

replace_known_right
Γ, 𝐿1, . . . , 𝐿𝑛 ` 𝐿1 ∧ . . . ∧ 𝐿𝑛 notRight

.

.

.
notRight

Γ ` 𝐿1 ∧ . . . ∧ 𝐿𝑛,¬𝐿1, . . . ,¬𝐿𝑛 orRight
.
.
.

orRight
Γ ` 𝐿1 ∧ . . . ∧ 𝐿𝑛,¬𝐿1 ∨ . . . ∨ ¬𝐿𝑛 notLeft

Γ,¬(𝐿1 ∧ . . . ∧ 𝐿𝑛) ` ¬𝐿1 ∨ . . . ∨ ¬𝐿𝑛

Γ, 𝐿1, . . . , 𝐿𝑛 `
andLeft

.

.

.
andLeft

Γ, 𝐿1 ∧ . . . ∧ 𝐿𝑛 `
notRight

Γ ` ¬(𝐿1 ∧ . . . ∧ 𝐿𝑛) hideRight
Γ ` ¬(𝐿1 ∧ . . . ∧ 𝐿𝑛),¬𝐿1 ∨ . . . ∨ ¬𝐿𝑛 cut

Γ ` ¬𝐿1 ∨ . . . ∨ ¬𝐿𝑛

While each of these rule applications is very simple on its own, the proof tree necessary
for just the replay of a single lemma rule already gives an idea about the complexity of the
proof resulting from the replay. This complexity gain is owed to the nature of the rules:
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In Z3, proof rules often are axiom schemas, whereas the concrete axiom depends on the
number 𝑛 of subterms. In KeY, on the other hand, rules are single axioms and can only
reason about a constant number of terms. This is a general challenge (on an engineering
level), that we can see in the subsequent rules as well.

unit-resolution One of the core rules of Z3 is unit-resolution, created by the SAT solver
in Z3.

Γ `
∨

𝑖∈𝐼𝑠
𝐿𝑖 〈𝑖 ∈ 𝐼𝑠 | Γ𝑖 ` ¬𝐿𝑖〉

unit-resolution
Γ ∪

⋃
𝑖∈𝐼𝑠

Γ𝑖 `
∨

𝑖∈𝐼\𝐼𝑠
𝐿𝑖

𝐼 = {1, . . . , 𝑛}, 𝐼𝑠 ⊆ 𝐼

We start with a special case: The rule often is used as last rule at the root of a proof,
that is 𝐼𝑠 = 𝐼 = {1, . . . , 𝑛}, and thus the conclusion is ⊥:

Γ ` 𝐿1 ∧ . . . ∧ 𝐿𝑛 Γ1 ` ¬𝐿1 . . . Γ𝑛 ` ¬𝐿𝑛
unit-resolution

Γ, Γ1, . . . , Γ𝑛 ` ⊥

The replay is done as shown below. The dots on the right hand side of the cut indicate that
this branch is replayed exactly as shown in the generic replay scheme in Figure 3.2: The
original conclusion is hidden, and the cut formula is split into multiple branches, which
are the original premises of the unit-resolution rule. Note that for easier readability, we
combine multiple subsequent applications of the same rule and indicate this by a star after
the rule name.

closeFalse
Γ, Γ1, . . . , Γ𝑛,⊥ ` 𝐿1, . . . , 𝐿𝑛 simplify*

Γ, Γ1, . . . , Γ𝑛,⊥ ∨ . . . ∨ ⊥ ` 𝐿1, . . . , 𝐿𝑛 replace_known_left*
Γ, Γ1, . . . , Γ𝑛, 𝐿1 ∨ . . . ∨ 𝐿𝑛 ` 𝐿1, . . . , 𝐿𝑛 notLeft*

Γ, Γ1, . . . , Γ𝑛, 𝐿1 ∨ . . . ∨ 𝐿𝑛,¬𝐿1, . . . ,¬𝐿𝑛 `
andLeft*

Γ, Γ1, . . . , Γ𝑛, (𝐿1 ∨ . . . ∨ 𝐿𝑛) ∧ ¬𝐿1 ∧ . . . ∧ ¬𝐿𝑛 ` . . .
cut

Γ, Γ1, . . . , Γ𝑛 ` ⊥

For the general case, where the succedent is
∨

𝑖∈𝐼𝑠 𝐿𝑖 for 𝐼 = {1, . . . , 𝑛}, 𝐼𝑠 ⊆ 𝐼 , the same
rules are applied (possibly less often) with one exception: the last step in the branch is close,
since a clause containing some of the literals is left in the antecedent, which is exactly the
formula to prove in the succedent.

mp, mp∼ Replay of the modus ponens rule is relatively simple ( denotes either →,
↔, or ∼). Note that mp∼ reduces to normal mp rule, since we replaced equisatis�ability as
described in Paragraph 3.2.

Γ1 ` 𝜙 Γ2 ` 𝜙  𝜓
mp

Γ1, Γ2 ` 𝜓
We follow our generic replay scheme and add the premises of the rule (connected by ∧) as
a cut �rst. On the right branch, as always we hide the original conclusion and split into
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the original premises, from where the further replay continues. On the left branch, we
justify the modus ponens step by splitting the premises, replacing the formula 𝜙 in the
(bi-)implication. After simpli�cation, we can close the goal.

close
Γ1, Γ2, 𝜙,𝜓 ` 𝜓

simplify
Γ1, Γ2, 𝜙,> 𝜓 ` 𝜓

replace_known_left
Γ1, Γ2, 𝜙, 𝜙  𝜓 ` 𝜓

andLeft
Γ1, Γ2, 𝜙 ∧ (𝜙  𝜓 ) ` 𝜓

Γ1 ` 𝜙 Γ2 ` 𝜙  𝜓
andRight

Γ1, Γ2 ` 𝜙 ∧ (𝜙  𝜓 )
hideRight

Γ1, Γ2 ` 𝜓, 𝜙 ∧ (𝜙  𝜓 )
cut

Γ1, Γ2 ` 𝜓

refl The re�exivity rule directly maps to either eqClose or eq_eq, depending on whether
the relation is = or↔. Again, ∼ has already been replaced by↔ earlier.

refl
Γ ` 𝑡 = 𝑡  

eqClose
Γ ` 𝑡 = 𝑡

refl
Γ ` 𝑡 ↔ 𝑡  

eq_eq
Γ ` 𝑡 ↔ 𝑡

symm Very similar to re�exivity, the symmetry rule can directly be replayed by a single
rule depending on the relation. Note that equivSymm is a new rule introduced speci�cally
for the purpose of replay, see Section 3.4.

Γ ` 𝑡1 = 𝑡2
symm

Γ ` 𝑡2 = 𝑡1
 

Γ ` 𝑡1 = 𝑡2 eqSymm
Γ ` 𝑡2 = 𝑡1

Γ ` 𝑡1 ↔ 𝑡2
symm

Γ ` 𝑡2 ↔ 𝑡1
 

Γ ` 𝑡1 ↔ 𝑡2 equivSymm
Γ ` 𝑡2 ↔ 𝑡1

trans For replay of the transitivity rule, we apply the generic replay scheme from Fig-
ure 3.2.

Γ1 ` 𝑡1 ' 𝑡2 Γ2 ` 𝑡2 ' 𝑡3
trans

Γ1, Γ2 ` 𝑡1 ' 𝑡3

Since ' can denote = or ↔ here (∼ would have already been replaced by ↔), the rule
marked with A stands for either applyEq or applyEquiv during replay.

close
Γ1, Γ2, 𝑡1 ' 𝑡2, 𝑡1 ' 𝑡3 ` 𝑡1 ' 𝑡3 A
Γ1, Γ2, 𝑡1 ' 𝑡2, 𝑡2 ' 𝑡3 ` 𝑡1 ' 𝑡3 andLeft
Γ1, Γ2, 𝑡1 ' 𝑡2 ∧ 𝑡2 ' 𝑡3 ` 𝑡1 ' 𝑡3

Γ1 ` 𝑡1 ' 𝑡2 Γ2 ` 𝑡2 ' 𝑡3 andRight
Γ1, Γ2 ` 𝑡1 ' 𝑡2 ∧ 𝑡2 ' 𝑡3 hideRight

Γ1, Γ2 ` 𝑡1 ' 𝑡3, 𝑡1 ' 𝑡2 ∧ 𝑡2 ' 𝑡3 cut
Γ1, Γ2 ` 𝑡1 ' 𝑡3

quant-inst In the quanti�er instantiation rule, 𝑥 = (𝑥1, . . . , 𝑥𝑛) denotes the bound vari-
ables and 𝑡 = (𝑡1, . . . , 𝑡𝑛) its instantiations.

quant-inst
Γ ` ¬(∀𝑥 . 𝜙 (𝑥)) ∨ 𝜙 (𝑡)
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Since quanti�ers in KeY only bind a single variable, during term translation we have to
unfold the single Z3 quanti�er into 𝑛 quanti�ers in KeY. In the same way we have to apply
KeY’s instantiation rule allLeft multiple times, since it only can be used to instantiate a
single quanti�er. Also note that after each application of allLeft, the original quanti�ed
formula is still present on the sequent. However, for readability, we omit those and indicate
those formulas only by the dots after Γ.

close
Γ, . . . , 𝜙 (𝑡1, . . . , 𝑡𝑛) ` 𝜙 (𝑡1, . . . , 𝑡𝑛) allLeft

Γ, . . . ,∀𝑥𝑛 . 𝜙 (𝑡1, . . . , 𝑡𝑛−1, 𝑥𝑛) ` 𝜙 (𝑡1, . . . , 𝑡𝑛) allLeft
...

allLeft
Γ, . . . ,∀𝑥2 . . .∀𝑥𝑛 . 𝜙 (𝑡1, 𝑥2, . . . , 𝑥𝑛) ` 𝜙 (𝑡1, . . . , 𝑡𝑛) allLeft

Γ,∀𝑥1 . . .∀𝑥𝑛 . 𝜙 (𝑥1, . . . , 𝑥𝑛) ` 𝜙 (𝑡1, . . . , 𝑡𝑛) notRight
Γ ` ¬(∀𝑥1 . . .∀𝑥𝑛 . 𝜙 (𝑥1, . . . , 𝑥𝑛)), 𝜙 (𝑡1, . . . , 𝑡𝑛) orRight
Γ ` ¬(∀𝑥1 . . .∀𝑥𝑛 . 𝜙 (𝑥1, . . . , 𝑥𝑛)) ∨ 𝜙 (𝑡1, . . . , 𝑡𝑛)

proof-bind This is actually not a calculus rule, but a binder, binding “free” variables in the
whole sub-tree from the rule application towards the leaves. It has only a single argument
and is always succeeded by a lambda term. Note that the only rules that may introduce free
variables are quant-intro, nnf-pos, and nnf-neg. Since KeY does not have a notion of free
variables in formulas, we apply the following: The formula 𝜆 𝑥1, . . . , 𝑥𝑛 . 𝜙 (𝑥1, . . . , 𝑥𝑛) is
translated as ∀𝑥1, . . . , 𝑥𝑛 . 𝜙 (𝑥1, . . . , 𝑥𝑛). Later, we apply KeY’s skolemization rule allRight 𝑛
times, thereby introducing 𝑛 fresh skolem constants. Since skolem constants are implicitly
universally quanti�ed in KeY (see validity in Section 3.2), this is semantically equivalent to
having “real” free variables.

quant-intro The quant-intro rule is always immediately followed by proof-bind and
lambda, since the variables 𝑥 in its conclusion are free. We follow the description from the
section about the proof-bind rule and bind the free variables 𝑥 by additional universal
quanti�ers. Fresh skolem constants are denoted by 𝑠 here. The rule is available in two
variants: 𝑄 can be either ∀ or ∃.

Γ ` 𝜙 (𝑥) ∼ 𝜓 (𝑥)
quant-intro

Γ ` 𝑄𝑥. 𝜙 (𝑥) ∼ 𝑄𝑥. 𝜓 (𝑥)

As in the quant-inst rule, the single quanti�er of Z3 has to be replaced by multiple
quanti�ers in KeY, we denote multiple steps of a rule by appending a star after the rule
name and use dots to indicate the hidden irrelevant formulas that are generated. The
existential variant of the rule is replayed as follows:

𝐴

Γ ` 𝜙 (𝑠) ↔ 𝜓 (𝑠)
allRight

Γ ` ∀𝑥 . 𝜙 (𝑥) ↔ 𝜓 (𝑥)
hideRight

Γ ` ∃𝑥 . 𝜙 (𝑥) ↔ ∃𝑥 . 𝜓 (𝑥),∀𝑥 .𝜙 (𝑥) ↔ 𝜓 (𝑥)
cut

Γ ` ∃𝑥 . 𝜙 (𝑥) ↔ ∃𝑥 . 𝜓 (𝑥)
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3 The Replay Technique

For reasons of space, the sub-tree denoted by A is given separately. It can be seen, that the
two branches are perfectly symmetric with 𝜙 and𝜓 swapped:

close
Γ, . . . ,𝜓 (𝑠), 𝜙 (𝑠) ` 𝜓 (𝑠), . . .

simplify
Γ, . . . ,> ↔ 𝜓 (𝑠), 𝜙 (𝑠) ` 𝜓 (𝑠), . . .

repl_known_left*
Γ, . . . , 𝜙 (𝑠) ↔ 𝜓 (𝑠), 𝜙 (𝑠) ` 𝜓 (𝑠), . . .

allLeft*
Γ, . . . , ∀𝑥. 𝜙 (𝑥) ↔ 𝜓 (𝑥), 𝜙 (𝑠) ` 𝜓 (𝑠), . . .

exRight*
Γ, . . . , ∀𝑥. 𝜙 (𝑥) ↔ 𝜓 (𝑥), 𝜙 (𝑠) ` ∃𝑥. 𝜓 (𝑥)

exLeft*
Γ, ∀𝑥. 𝜙 (𝑥) ↔ 𝜓 (𝑥), ∃𝑥. 𝜙 (𝑥) ` ∃𝑥. 𝜓 (𝑥)

close
Γ, . . . , 𝜙 (𝑠), 𝜙 (𝑠) ` 𝜙 (𝑠), . . .

simplify
Γ, . . . ,𝜓 (𝑠) ↔ >,𝜓 (𝑠) ` 𝜙 (𝑠), . . .

repl_known_left*
Γ, . . . , 𝜙 (𝑠) ↔ 𝜓 (𝑠),𝜓 (𝑠) ` 𝜙 (𝑠), . . .

allLeft*
Γ, . . . , ∀𝑥. 𝜙 (𝑥) ↔ 𝜓 (𝑥),𝜓 (𝑠) ` 𝜙 (𝑠), . . .

exRight*
Γ, . . . ∀𝑥. 𝜙 (𝑥) ↔ 𝜓 (𝑥),𝜓 (𝑠) ` ∃𝑥. 𝜙 (𝑥)

exLeft*
Γ, ∀𝑥. 𝜙 (𝑥) ↔ 𝜓 (𝑥), ∃𝑥. 𝜓 (𝑥) ` ∃𝑥. 𝜙 (𝑥)

equiv_right
Γ, ∀𝑥. 𝜙 (𝑥) ↔ 𝜓 (𝑥) ` ∃𝑥. 𝜙 (𝑥) ↔ ∃𝑥. 𝜓 (𝑥)

Finally, the variant of the rule with the universal quanti�er replays in an analogous manner,
with the only di�erence that instead of the rule sequence (exLeft*, exRight*) the sequence
(allRight*, allLeft*) is used on both branches.

sk For replaying the two variants of the skolemization rule, we apply the changes
described in Section 3.3.2 and Section 3.3.3: The Hilbert choice operator is used to represent
skolem symbols (constants and functions), and equisatis�ability is replaced by equivalence.

With the rule additional epsDefAdd described in Section 3.4, replaying both variants of
the sk rule is rather easy:

sk∃
Γ ` (∃𝑥 . 𝑃 (𝑦, 𝑥)) ↔ 𝑃 (𝑦, 𝜖𝑥 . 𝑃 (𝑦, 𝑥))

The existential variant of the skolemization rule is replayed as follows:

close
Γ, (∃𝑥 . 𝑃 (𝑦, 𝑥)) ↔ 𝑃 (𝑦, 𝜖𝑥 . 𝑃 (𝑦, 𝑥)) ` (∃𝑥 . 𝑃 (𝑦, 𝑥)) ↔ 𝑃 (𝑦, 𝜖𝑥 . 𝑃 (𝑦, 𝑥))

epsDefAdd
Γ ` (∃𝑥 . 𝑃 (𝑦, 𝑥)) ↔ 𝑃 (𝑦, 𝜖𝑥 . 𝑃 (𝑦, 𝑥))

There is a second variant of the skolem rule, where a universal quanti�er is present,
but surrounded by a negation. By DeMorgan’s Law, ¬∀𝑥 . 𝜙 (𝑥) ↔ ∃𝑥 . ¬𝜙 (𝑥). Therefore,
the rule is e�ectively the same as the existential variant, with the only di�erence of the
negated 𝑃 :

sk¬∀
Γ ` ¬(∀𝑥 . 𝑃 (𝑦, 𝑥)) ↔ ¬𝑃 (𝑦, 𝜖𝑥 . ¬𝑃 (𝑦, 𝑥))

Replay is done as in the other skolem rule, with the addition of a single proof step to
push the negation into the quanti�er. Note that 𝜙 in the axiom schema epsDefAdd has to
be instantiated with ¬𝑃 (𝑦, 𝑥) here, while for sk∃ only 𝑃 (𝑦, 𝑥) has to be used.

close
Γ, (∃𝑥 . ¬𝑃 (𝑦, 𝑥)) ↔ ¬𝑃 (𝑦, 𝜖𝑥 . ¬𝑃 (𝑦, 𝑥)) ` (∃𝑥 . ¬𝑃 (𝑦, 𝑥)) ↔ ¬𝑃 (𝑦, 𝜖𝑥 . ¬𝑃 (𝑦, 𝑥))

nnf_notAll
Γ, (∃𝑥 . ¬𝑃 (𝑦, 𝑥)) ↔ ¬𝑃 (𝑦, 𝜖𝑥 . ¬𝑃 (𝑦, 𝑥)) ` ¬(∀𝑥 . 𝑃 (𝑦, 𝑥)) ↔ ¬𝑃 (𝑦, 𝜖𝑥 . ¬𝑃 (𝑦, 𝑥))

epsDefAdd
Γ ` ¬(∀𝑥 . 𝑃 (𝑦, 𝑥)) ↔ ¬𝑃 (𝑦, 𝜖𝑥 . ¬𝑃 (𝑦, 𝑥))

elim-unused This rule is used by Z3 to eliminate variables that do not occur in the formula
quanti�ed over:

elim-unused
Γ ` ∀𝑥1, . . . 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚 . 𝜙 (𝑥1, . . . 𝑥𝑛) ↔ ∀𝑥1, . . . 𝑥𝑛 . 𝜙 (𝑥1, . . . 𝑥𝑛)
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3.5 Translating Z3’s Proof Rules

Replay in KeY is also quite simple, apart from the fact that the corresponding rule in KeY
can only eliminate a single variable at once. Note that eq_close and all-unused are rewrite
rules that work by locally rewriting terms.

close_true
Γ ` >

eq_close
Γ ` ∀𝑥1, . . . 𝑥𝑛 . 𝜙 (𝑥1, . . . 𝑥𝑛) ↔ ∀𝑥1, . . . 𝑥𝑛 . 𝜙 (𝑥1, . . . 𝑥𝑛) all-unused

...
all-unused

Γ ` ∀𝑥1, . . . 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚−1. 𝜙 (𝑥1, . . . 𝑥𝑛) ↔ ∀𝑥1, . . . 𝑥𝑛 . 𝜙 (𝑥1, . . . 𝑥𝑛) all-unused
Γ ` ∀𝑥1, . . . 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚 . 𝜙 (𝑥1, . . . 𝑥𝑛) ↔ ∀𝑥1, . . . 𝑥𝑛 . 𝜙 (𝑥1, . . . 𝑥𝑛)

3.5.2 Rules Replayed With Automatic Proof Search in KeY

For the rules in this section, KeY’s built-in proof search strategy is used. Replay is done
using the generic scheme as displayed in Figure 3.2, where KeY’s built-in proof search is
applied to the left branch 𝐿.

monotonicity For any congruence relation 𝑓 , the following rule is available:

Γ1 ` 𝑡1 ' 𝑠1 . . . Γ𝑛 ` 𝑡𝑛 ' 𝑠𝑛
monotonicity

Γ1, . . . , Γ𝑛 ` 𝑓 (𝑡1, . . . , 𝑡𝑛) ' 𝑓 (𝑠1, . . . , 𝑠𝑛)

In theory we could close the branch 𝐿 manually by applying all equalities, closing the
equation, and �nally closing with true on the right hand side of the sequent. However,
during our experiments, we observed additional (undocumented) rewriting steps that may
occur. Therefore, it is necessary to use KeY’s automatic proof search.

commutativity In this rule, � stands for any commutative relation. Therefore, the replay
has to rely on KeY’s built-in proof search to �nd the proof.

Γ ` (𝑡1 � 𝑡2 ' 𝑠1 � 𝑠2)
commutativity

Γ ` (𝑡2 � 𝑡1 ' 𝑠2 � 𝑠1)

def-axiom This rule contains schematic axioms for justifying conversion steps to Tseitin
CNF form of a formula. Theoretically, one could collect all of those by experimenting
(the documentation of Z3 lists at least 19 schemata, however, this list is known to be
incomplete). For this work, we chose to use proof search in KeY for replay.

nnf-pos and nnf-neg These rules are used by Z3 to reason about conversion to negation
normal form. As for def-axiom, there are multiple schemata used, which is why we rely
on KeY to �nd a proof.
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rewrite Before starting the “ping-pong game” between CDCL SAT solver and theory
solvers, Z3 may use a simpli�er to apply simpli�cation steps to terms. The rewriting
steps may be propositional or theory-speci�c and are presented as axioms. Examples for
possible axioms are 𝜙 ∨ ⊥ ↔ 𝜙 or 𝑥 + 0 = 𝑥 . The following three cases of rewrite may
occur, where always the top level symbol of 𝑡 is interpreted (∨ and + in the example).

rewrite
Γ ` 𝑡 ' 𝑠

There is no list of allowed rewrites, therefore, we have to rely on the proof search of KeY
to justify the rewrite step. However, the assumption is that only rewrite steps for theories
present in KeY occur. For example, for bit-vector simpli�cations KeY will clearly not be
able to �nd a proof, since the theory of bit-vectors is not built-in.

th-lemma During the “ping-pong” between SAT solver and theory solvers, facts produced
from the latter are introduced via the th-lemma rule. In contrast to the rewrite rule, Z3
may give some additional information about the used theory and the nature of the lemma
(in our examples, more often no information was given). For example, arith may be
given for the theory of arithmetic and farkas for Farkas’ lemma or triangle-eq for
𝑡1 = 𝑡2 ↔ (𝑡1 ≤ 𝑡2 ∧ 𝑡2 ≤ 𝑡1). However, no complete list of theory lemmas is given in
documentation. Therefore, as for the rewrite rule, a proof search in KeY is necessary to
legitimate the lemma.

th-lemma (𝑇 -Tautology)
Γ ` 𝜙

In addition to the use as axiom, the th-lemma rule can be used to deduce ⊥ from a set of
hypotheses (undocumented in API). This use case is tailored to �t the lemma rule already
presented above.

Γ ` 𝐿1 . . . Γ ` 𝐿𝑛
th-lemma

Γ, 𝐿1, . . . , 𝐿𝑛 ` ⊥

For this case we apply our generic replay scheme from Figure 3.2 and rely on KeY to �nd a
proof for the sequent 𝐿.

trans* The trans* rule combines multiple subsequent applications of the rules trans
and symm. For replay, we apply our generic replay scheme with automatic proof search in
KeY for the branch 𝐿.

Γ1 ` 𝑡1 ' 𝑡2 . . . Γ𝑛 ` 𝑡𝑛−1 ' 𝑡𝑛
trans*

Γ1, . . . , Γ𝑛 ` 𝑡𝑖 ' 𝑡 𝑗
for any 𝑖, 𝑗 ∈ 1, . . . , 𝑛, 𝑖 ≠ 𝑗

distributivity The distributivity rule is used by Z3 to justify applications of DeMor-
gans’s law, that is, distributing conjunctions over disjunctions or vice versa. The polyadic
nature of Z3’s conjunctions and disjunctions makes the implementation di�cult, therefore
we currently use our generic replay scheme complemented by proof search in KeY.
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rewrite* When speci�c options for simpli�cation are set, Z3 may use the rewrite* rule
to justify multiple rewriting steps at once. Again, we apply the generic replay scheme
with automatic proof search in KeY.

3.5.3 Other Rules

From the total of 42 proof rules of Z3, currently 11 rules can not be replayed. During
experiments (more than 100 proofs started from problems shipped with KeY), 11 rules
never appeared. These rules are:

• undef: This “rule” is used to indicate the null proof object. Since we start replay
only if we have a valid proof, we can safely ignore this rule.

• def-intro and apply-def: According to the sparse documentation, these rules could
be used to introduce an abbreviation for a term, and to apply the de�nition later.
Since this is exactly what is done in nearly all proof examples by using the let binder,
it seems that these two rules have been replaced by the more general concept with
let (let binders can be used to share terms as well as whole subtrees of a proof).

• The rules assumption-add, lemma-add, redundant-del, and clause-trail are used
for clausal proofs, which is an alternative proof mode of Z3’s core solver “SMT”.
Clausal proofs must be enabled explicitly by setting an option, however, for some
tests we conducted, the produced proof did not di�er if this �ag was set. Hence for
now we do not set the option and ignore these rules.

• pull-quant and push-quant: These rules can be used to move quanti�ers from the
inside of functions to the outside (for example to distribute a universal quanti�er
over a conjunction). When this was necessary in our examples, always the rules nnf-
pos and nnf-neg were used, the rule pull-quant and push-quant did never occur.
Therefore, we also ignore them for now.

• der (destructive equality resolution) and hyper-resolve: These rules did never occur
in any example, therefore, replay of them is currently not implemented. They both
represent simpli�cation steps that can be composed of several other rule applications.
No conceptual di�culties exist for replay, they could be implemented (possibly using
KeY’s built-in proof search) if needed.

3.6 Properties of the Technique

In this section we describe theoretical properties of our replay technique. The translation
of a KeY problem to Z3 is not the focus of this thesis and is, apart from the changes in type
hierarchy translation described in Section 3.3.4, not part of this work. For this section, we
assume it to be sound, but under-approximating: Some concepts of KeY, for example rules
to symbolically execute Java code inside modalities, are not translated at all. Therefore, it
may happen that even if a formula is valid (and provable in KeY), its translation to Z3 is
no longer provable.
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3.6.1 Soundness

The soundness of the technique is a direct consequence of the soundness of KeY’s calculus
rules.

Theorem 1. The replay technique described in this work is sound.

Proof. We assume that all KeY rules are sound, and all Z3 rules are replayed using these
rules only3. As a consequence, the replay technique is sound. �

3.6.2 Totality

The replay technique is a (total) function: Every proof found by Z3 for a problem translated
from KeY can be replayed in KeY, provided the assumptions below hold. These assumptions
can be classi�ed into two categories. The �rst category (assumptions 0, 1, and 2) relates to
properties of Z3 and the produced proof, while the second (assumptions 3 and 4) contains
statements about the completeness of KeY’s proof search:

• Assumption 0: The Z3 proof is wellformed and closed. In addition, we assume that
no silent rewriting of terms occurs in a way not described in the documentation4.

• Assumption 1: Only proof rules which are part of the replay technique, that is, their
replay is described in Section 3.5.1 and Section 3.5.2, occur.

• Assumption 2: For each quanti�er, the sort of the quanti�ed variable can be extracted
from the typeguard. This is possible if Z3 does not introduce new typeguards and
does not remove them from formulas during reasoning.

• Assumption 3: For the closing rules rewrite and th-lemma, KeY’s built-in proof
search strategy is able to �nd a proof.

• Assumption 4: For Z3 proof rules containing multiple schemas, KeY’s automatic
proof search strategy �nds the necessary rule applications to close the proof. Rules
where this is required are: monotonicity, commutativity, def-axiom, nnf-pos/nnf-
neg, trans*, distributivity, rewrite*.

Theorem 2. Under the assumptions given above, the replay technique is a total function,
that is, every Z3 proof for a problem translated from KeY can be replayed into a KeY proof.

Proof. Under the given assumptions, a closed proof in KeY can always be created by the
construction technique described in this chapter. �

3Although tedious and di�cult, the whole replay could theoretically be done interactively in the graphical
user interface of KeY.

4Unfortunately, such behaviour has already been observed for the rules asserted and monotonicity.
However, we can only hope it does not occur, and run KeY’s proof search as a fallback.
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4 Implementation of the Replay Technique
in KeY

In this chapter, we describe how the previously described proof replay technique was
implemented as a prototype within the KeY system. This implementation consists of an
ANTLR 4 grammar for the Z3 proof format and 50 Java classes with approximately 4100
lines of code (not including the generated ANTLR parser). The code is available on the
branch pfeiferZ3ProofReplay in the Git repository of the KeY system, the commit hash of
the latest version at the time of writing is a1d10fbbd6aafeb0f60a2deae43d268a7b2e490e.

4.1 Communication with Z3

The idea to use Z3 (as well as other SMT solvers) for externalizing the proof search from
KeY has long been there. A translation of KeY sequents to SMT-LIB input has already been
implemented in KeY long before the start of this work. However, during the production
of this thesis, there was ongoing work in writing a new, modular SMT translation with
separate modules for di�erent theories and features of the logic (such as sequences, arrays,
heaps, quanti�ers, ...). Our replay implementation is based on this new modular SMT
translation, altered with type hierarchy changes as described in Section 3.3.4. In addition, a
map from SMT-LIB style s-expressions to KeY terms is created for formulas of the original
sequent in KeY. This allows us the �nd and insert the original formula during replay of
the asserted rule.

The input to Z3 is given in the standard SMT format SMT-LIB. A relatively small example
can be seen in Figure 4.1. Proof production has to be explicitly enabled in Z3 (line 4). Since
it is useful to make the proof more readable for humans, we enable pretty printing (line 5).
This mainly changes indentation, we also observed by trial and error that it sometimes
prevents from simplifying the proof (or sub-proofs) in such a way that it does not contain
su�cient information for replay: Without setting the option, in our experiments the whole
proof could be simpli�ed to the single rule application (asserted false). Unfortunately
it is unclear (undocumented and not easily observable by examining Z3’s source code)
how proof simpli�cation is done, and if and how it could be disabled reliably. However,
since it was helpful in our experiments, we decided to enable the pretty printer. Note that
apart from :print-success and :produce-models which were already set by the current
translation and do not in�uence the proof in any way, we set no other options in Z3. The
proof output for the example from Figure 4.1 is shown in Figure 4.3.
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1 ; --- Preamble

2 (set-option:print-success true)

3 (set-option:produce-models true)

4 (set-option:produce-proofs true)

5 (set-option:pp.pretty-proof true)

6 (set-logic ALL)

7
8 ; --- Declarations

9 (declare-sort T 0)

10 (declare-sort U 0)

11 (declare-constsort_any T)

12 (declare-fun u2b (U) Bool)

13 (declare-fun b2u (Bool) U)

14 (declare-constsort_boolean T)

15 (declare-const TRUE U)

16 (declare-const FALSE U)

17 (declare-funinstanceof (U T) Bool)

18 (declare-funexactinstanceof (U T) Bool)

19 (declare-fun u2i (U) Int)

20 (declare-fun i2u (Int) U)

21 (declare-constsort_int T)

22 (declare-fun u_p () Bool)

23 (declare-fun u_q () Bool)

24 ; ... other declarations

25
26 ; --- Axioms

27 (assert (distinctsort_booleansort_any))

28 (assert (forall ((b Bool)) (= (u2b (b2u b)) b)))

29 (assert (exactinstanceof TRUE sort_boolean))

30 (assert (exactinstanceofFALSE sort_boolean))

31 (assert (forall ((u U))

32 (=> (exactinstanceof u sort_boolean)

33 (or (= u TRUE) (= u FALSE)))))

34 ; ... more type hierarchy axioms

35
36 ; --- Sequent

37 (assert (not (=> (=> u_p u_q) (=> (not u_q) (not u_p)))))

38
39 (check-sat)

40 (get-proof)

Figure 4.1: Z3 input for the sequent ` (𝑝 → 𝑞) → (¬𝑞 → ¬𝑝)

4.2 Overview and Architecture

The entry point for replay is the corresponding method of the class SMTReplayer (Fig-
ure 4.2). From there the parser is started, which parses the Z3 proof given in text format
and creates an abstract syntax tree (AST). The parser is generated from an ANTLR 4
grammar for SMT-LIB extended with proof terms. Since many operations have to traverse
the AST, it makes sense that they are implemented as visitors, extending the abstract
ANTLR-generated AST visitor. In total, there are 7 visitors that serve various purposes:

1. Before the actual replay is started, namespaces are constructed for shared terms.
This is is necessary, since the same symbols may contain in various contexts as
abbreviations for di�erent terms. The bindings are collected by the BindingsCollector
and stored in a map in SMTReplayer.

2. The actual replay is done by a the class ReplayVisitor which is responsible for creating
instances of ProofRule and initiating the replay of each individual rule.

3. When replaying a rule, its conclusion and premise terms must be collected from the
Z3 proof tree and converted to KeY. This is done by the DefCollector.

4. As described in Section 3.3.3, during conversion of an SMT term to KeY, skolem
symbols may occur. In such case, the SkolemCollector is responsible for traversing
the proof until the corresponding sk rule is found. From there, the de�nition of the
skolem symbol is extracted as term using the Hilbert choice operator.

5. When translating terms, for quanti�ed variables the original sort has to be recovered
from typeguards (see Section 3.3.4) by the TypeguardSortCollector.Note that this
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4.3 Implementation Challenges
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Figure 4.2: Overview of the implementation architecture. Dashed arrows indicate the
control �ow (return directions are omitted). The class ReplayTools provides
static utility methods and is used from nearly every class.

step is heuristical and may result in a wrong sort (a supersort of the sort the variable
had originally in KeY), since Z3 could transform terms containing typeguards and (in
theory) even introduce additional ones. However, this only occurs in very rare cases.

6. When replaying the lemma rule, it is not possible to extract the used hypotheses
directly from the premises. Instead, we have to descend into the proof tree until we
reach the leaves containing the corresponding hypothesis rules for the lemma. This
is done by the HypothesesCollector.

7. Finally, there is an additional visitor (simply named TextCollector) for collecting the
text corresponding to a rule node, thereby inlining all shared terms. It is used purely
for debugging and usability purposes. After the text is collected, it is attached to
proofs nodes in the KeY GUI as notes.

4.3 Implementation Challenges

Figure 4.3 show Z3’s output for the contraposition example from Figure 4.1. As can already
be seen in this small example, Z3 makes extensive use of sharing of terms (a!1 in the
example) as well as subtrees of the proof (a!3): It introduces new symbols as abbreviations
and connects them to their de�nitions via the binder let. This extensive use of sharing
poses a great engineering challenge: It makes the implementation di�cult and error prone,
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4 Implementation of the Replay Technique in KeY

1 unsat

2 (let ((a!1 (not (=> (=> u_p u_q) (=> (not u_q) (not u_p)))))

3 (a!2 (or u_q (not u_p) (not (or u_q (not u_p))))))

4 (let ((a!3 (mp (asserted a!1) (rewrite (= a!1 (not a!2))) (not a!2))))

5 (let ((a!4 (trans (monotonicity (iff-true (not-or-elim a!3 u_p) (= u_p true))

6 (= (not u_p) (not true)))

7 (rewrite (= (not true) false))

8 (= (not u_p) false))))

9 (let ((a!5 (monotonicity (iff-false (not-or-elim a!3 (not u_q)) (= u_q false))

10 a!4 (= (or u_q (not u_p)) (or false false)))))

11 (let ((a!6 (trans a!5

12 (rewrite (= (or false false) false))

13 (= (or u_q (not u_p)) false))))

14 (mp (not-or-elim a!3 (or u_q (not u_p))) a!6 false))))))

Figure 4.3: Z3 proof output for the input in Figure 4.1. Note that the root of the proof tree
is the term false in line 14, the �rst rule for replay is mp in the same line.

since an AST node traversed during replay could actually be a symbol bound by let, which
would have to be unwrapped �rst. In addition, the current prototypical implementation
does not reuse created terms and proofs, therefore often doing the same work multiple
times. Of course, this comes with disadvantages in memory use of the replayed proof and
time necessary to construct it. The evaluation in Chapter 5 shows that it is indeed a crucial
performance factor.

For representing skolem symbols, the replay technique uses the Hilbert choice operator
𝜖 (see Section 3.3.3). While the choice operator is currently not implemented in KeY, a
very similar and even more generic construct is available: The ifEx binder, which extends
the choice operator by two separate explicit return values in case the condition is or is not
met. This can be used in our translation:

𝜖 𝑥 : 𝑇 . 𝜙 (𝑥) ≡ ifEx 𝑥 : 𝑇 . 𝜙 (𝑥) then 𝑥 else 𝑑𝑇 ,

where 𝑇 is any type and 𝑑𝑇 (called T::defaultValue in KeY) an uninterpreted function
depending only on𝑇 . Note that ifExwas actually only intended to be used for𝑇 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ,
hence there are no calculus rules for other sorts present in KeY. However, with the additional
rule epsDefAdd as introduced in Section 3.4 (where every occurrence of 𝜖 is replaced by
ifEx as described above) it can by used for any sort during the replay.

4.4 Current Limitations of the Prototype

As the current implementation is a prototype, there are limitations on the replayable Z3
proofs. First of all, a proof can currently not be replayed if multiple skolem symbols are
introduced in a single occurrence of the sk rule. Second, the translation of terms to KeY
only handles simple sorts such as Int and Bool, and object sorts. That is, compound sorts
such as arrays and special KeY sorts such as sequences (more precisely, their translation to
Z3) currently prevent replay.
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4.4 Current Limitations of the Prototype

The current implementation transfers identi�ers to KeY without renaming. These may
contain characters which are problematic for identi�ers in KeY, such as the exclamation
mark often contained in skolem symbols. While this does not hinder proof construction
as well as saving, it turned out that KeY currently is not able to load saved proofs that
contain such identi�ers.
Closely connected to the previous limitation, the replay technique currently does not

handle escaped symbols. Escaping is done with vertical bars in SMT-LIB, for example
|sort_int[]|. These are introduced when translating arrays and �elds to KeY, features
that prevent replay anyway.
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5 Evaluation

For an evaluation of the replay technique and its implementation, we provide some statistics
of replayed proofs. Due to the prototypical state, out of a large set of benchmark and
example problems shipped with KeY we selected 29 that could successfully be replayed
with the current implementation. These selected problems are propositional or �rst-order,
possibly containing uninterpreted functions, quanti�ers, and arithmetic. For 26 of the 29
proofs KeY was also able to �nd a proof using its automatic proof search. For the remaining
three problems KeY’s built-in proof search strategy is not able to �nd a proof, however,
they are provable when applying some rules interactively.

All tests have been run on a desktop computer featuring a quad-core 3.4 GHz processor
and 12 GB DDR3 RAM. However, neither the replay technique nor the automatic proof
search in KeY are parallelized, and also the parallelization features of Z3 have not been
utilized. The problems have been loaded using KeY’s API from custom test code, that is,
without starting the graphical user interface of KeY. Afterwards, either the automatic proof
search of KeY or the translation to SMT-LIB plus Z3 plus replay have been executed. KeY’s
proof search has been run using its default settings, with the maximum number of steps
extended to 1 000 000 and a timeout of 5 min. As can be seen in the tables provided below,
neither the step limit nor the timeout have been reached anywhere close in our examples.

5.1 Problems Automatically Provable by KeY

In Table 5.1, time measurements for the selected problems are shown. For easier compara-
bility, the lines have been roughly sorted by di�culty of the proofs, that is, by the time
needed for replay. The second column shows how long KeY’s built-in proof search strategy
needed for closing the proof. The other columns show values measured during the replay:
The time necessary to translate the problem to SMT-LIB format plus the time Z3 needs to
�nd a proof, and the time actually needed for replay. Finally, a total time adding together
SMT-LIB translation, Z3 proof search, and replay time is given.
It stands out that even for the smallest proof, the time needed by KeY is not smaller

than 100 ms. This is due to active waiting in KeY’s command line interface: It waits for
the automatic proof search in steps of 100 ms. The time that is really needed is anywhere
beneath. However, this overhead does not change the fundamental result: When comparing
KeY’s automatic proof search with the total time of replay, that is, translation to Z3, proof
search by Z3, and the actual replay, it can be clearly seen that the latter is currently
usually much slower. The only exception to this are the very small examples, where the
constant overhead as explained above dominates. For the larger examples, replay is even
magnitudes slower. In addition, it is notable that the proof search in Z3 is typically faster
than the proof search in KeY (third column), considering the fact that the corresponding
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5 Evaluation

values also contains the time needed for translation of the problem to SMT-LIB. Finally,
it becomes apparent that usually more than half of the total replay time is spent with
automatic proof search in KeY.

File Name KeY Replay
Transl. + Z3 Replay Auto Total

Ex3.41-formula1 110 63 15 0 78
doubleNeg 110 63 16 0 79
andCommutes 110 47 31 0 78
equalities 109 47 31 0 78
Sect2.5.1-ExampleProof 110 62 31 15 93
contraposition 110 47 47 16 94
mv1 109 63 78 31 141
subsumptionExample 110 47 78 62 125
simpleEps 110 47 93 62 140
liarsville 109 62 110 94 172
inequations2 110 62 141 94 203
liarsWithInt 109 47 141 141 188
Ex2.56 109 78 156 31 234
check_jdiv_concrete 110 79 187 109 266
projection 110 63 188 31 251
mv2 109 62 203 32 265
disjoint 110 110 250 47 360
inequations0 109 63 265 204 328
liars 110 47 281 249 328
castOperators 110 62 359 123 421
Ex2.57 109 62 359 204 421
Ex2.53 109 63 843 311 906
generalProjection 110 62 969 782 1 031
SET063p3 109 62 1 875 1 314 1 937
project 1 057 172 13 437 7 497 13 609
PUZ001p1 2 953 375 83 344 50 742 83 719

Table 5.1: Time statistics for problems provable in KeY (in ms)

Apart from the time, also the size of proof is of interest for comparison. Table 5.2 show
such statistics. The second column shows the number of rule applications needed in KeY to
close the proof. The next two columns denote the line count of input (translated problem)
and output (proof) of Z3. The �nal two columns indicate, how many rule applications
were used in KeY during replay and how many thereof were created using automatic
proof search. Of special interest are the columns “Shared Terms” and “Shared Sub-Proofs”.
They give an idea, how essential sharing of terms and sub-proofs (via the let binder) is in
Z3. For our table, we omitted the symbols that were only used once. The number given
in the column “Shared Terms” denotes the sum of occurrences of each symbol de�ning
an abbreviation for shared (that is, used at least twice) term, and likewise for “Shared
Sub-Proofs”. We can see that these numbers get really large, the larger the Z3 proof is.
This explains the enormous grow in the size of replayed proofs (column “Replay:Steps”)
compared to the proof size in KeY: The current replay implementation has to inline the
sub-proof each time it occurs, often doing the same work again and again. This indicates
great potential optimizations: If we were able to detect a shared proof, we could introduce
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5.1 Problems Automatically Provable by KeY

File Name KeY Z3 Replay

Steps Input
Lines

Proof
Lines

Shared
Terms

Shared
Sub-Proofs Steps Auto

Ex3.41-formula1 6 90 9 9 8 52 20
doubleNeg 4 62 17 12 6 175 87
andCommutes 6 62 18 9 8 199 92
equalities 7 80 22 12 12 294 114
Sect2.5.1-ExampleProof 6 62 18 9 8 199 92
contraposition 8 62 17 12 6 202 87
mv1 4 81 77 42 13 370 213
subsumptionExample 16 86 14 14 6 219 64
simpleEps 7 83 35 82 20 434 198
liarsville 14 95 66 19 2 161 52
inequations2 27 86 22 3 1 516 95
liarsWithInt 24 140 54 53 2 374 52
Ex2.56 6 82 62 140 23 483 264
check_jdiv_concrete 31 86 46 67 16 334 94
projection 10 83 83 109 27 764 416
mv2 7 81 85 82 17 516 243
disjoint 6 196 185 163 50 1 194 572
inequations0 50 88 30 141 22 771 177
liars 38 129 71 49 2 382 52
castOperators 6 137 190 232 40 1 101 577
Ex2.57 8 82 95 308 26 629 357
Ex2.53 14 83 149 590 38 2 011 719
generalProjection 11 84 60 370 35 1 013 460
SET063p3 89 114 264 586 61 4 867 778
project 148 138 770 1 789 226 15 989 3 280
PUZ001p1 3 197 199 1 200 5 578 380 51 373 6 136

Table 5.2: Size statistics for problems provable in KeY

its conclusion early in the proof (at the lowest common ancestor of the occurrences of the
shared sub-proof) via KeY’s cut rule. In this way each sub-tree would have to be replayed
only once, probably at the cost of cluttering up the sequent.

In addition, in the current implementation we translate a shared formula from SMT
format to KeY anew each time it is used in premise or conclusion of any rule. This is also
the reason for the magnitudes of di�erence between time needed for proof search in KeY
compared to replay time. A reasonable improvement would be to add a cache for translated
formulas/terms. However, implementing this is not as easy as it sounds: Subterms may
only be cached if they do not contain free variables, since in the text format of Z3 the sort
of a free variable can only be determined at a binder. Implementing a cache for terms
depending on free variables may be possible, but di�cult. However, it surely would speed
up the implementation further.
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5.2 Problems Not Provable by KeY’s Built-In Proof Seach

There are examples where KeY is not able to �nd a proof, and Z3 is able to �nd one. An
example of such a problem is (for formulas 𝜙 and𝜓 ):

(∃𝑥 .𝜙 (𝑥) → ∃𝑥 .𝜓 (𝑥)) → ∃𝑥 .(𝜙 (𝑥) → 𝜓 (𝑥))

This problem de�ned in the input �le Ex2.54, statistics can be found in the tables below.
While it is provable in KeY when applying a manual case distinction, the built-in proof
search does not �nd any proof, but stops after only a few steps, since no more rules are
applicable. In contrast to that, Z3 is able to �nd a proof of 226 lines, which can be replayed
using our technique KeY in about one second. As explained in the previous section, due to
the extensive sharing in Z3’s proof, to replay the proof the rather large number of 2 131
proof steps is necessary. The other two examples here are very similar: KeY stops after a
few steps, since it can not apply any rule.

File Name KeY Replay
time Transl./Z3 Replay Auto Total

exists1 109 63 157 79 220
SET043p1 109 47 235 125 282
Ex2.54 109 93 859 312 952

Table 5.3: Time statistics for problems Not automatically provable by KeY (in ms)

There may be several reasons for the advantage of Z3 over KeY here: First of all, Z3
is highly optimized for �nding quanti�er instantiations. Second, since currently KeY’s
rules/taclets are not translated at all in the translation to SMT input, proof search in Z3 is
necessarily “less complete”. This could be a curse and a blessing: On the one hand, there
are formulas KeY could (at least theoretically) �nd a proof for and Z3 can not. On the other
hand, maybe Z3 can �nd a proof because it is not distracted by the additional knowledge.
Since the overhead usually is small compared to a proof search in KeY, it can be bene�cial
to at least translate the problem to Z3 and run Z3 with a small time limit.

File Name KeY Z3 Replay

Steps Input
Lines

Proof
Lines

Shared
Terms

Shared
Sub-Proofs Steps Auto

exists1 9 83 130 108 22 751 335
SET043p1 13 86 86 193 17 621 215
Ex2.54 15 86 226 363 58 2 131 879

Table 5.4: Size statistics for problems Not automatically provable by KeY
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6 Conclusion

6.1 Summary

In this thesis, we have shown that is possible to replay Z3 proofs in KeY. We have shown
what the systematic di�culties are and how to deal with them: The di�erences in type
hierarchies have been taken into account by adapting the translation from KeY to Z3 using
typeguards and embeddings of primitive types into a universe type. The type hierarchy
has been axiomatized using only functions and predicates that have a counterpart in KeY
and thereby can be replayed. The problem of di�erent proof directions of Z3 and KeY has
been solved by locally “reverting” the proof direction in KeY by introducing the premises
of a Z3 rule as cut where necessary. Equisatis�ability has been replaced by equivalence in
combination with a changed handling of skolem symbols, where skolem constants and
functions are represented using the Hilbert choice operator 𝜖 . Free variables of Z3 have
been replaced by fresh skolem constants in KeY, a translation that is justi�ed by the notions
of validity, equisatis�ability and free variables, which have been carefully compared and
determined to admit such a step. The problem of structurally di�erent terms during replay
has been handled on an engineering level. However, a lesson learned is that when replay
is aimed for, the translation from KeY to Z3 should change formulas as little as possible.
For most of Z3’s proof rules, translations have been described how to replay them in

KeY, complemented by automatic proof search in KeY where necessary. The remaining
ones are currently not included in the replay technique as they did never occur in any of
the examples and tests we conducted.

Soundness of the replay technique has been proven. In addition, the technique is a total
function: Under some given assumptions, every Z3 proof is successfully translated into a
KeY proof.
The technique has been implemented as a prototype in KeY, which has been evalu-

ated using multiple example problems. The presented replay statistics provided strong
evidence that our replay technique would be a good complement to KeY’s built-in proof
search. Finally, it has also shown some great starting points and possibilities for future
optimization.

6.2 Future Work

From an engineering point of view, there is much future work possible in improving
the prototypical replay implementation. The current limitations could be resolved by
implementing missing cases, rules, and translation features. In addition, for some rules
that use KeY’s automatic proof search during replay, for example def-axiom, it would be
possible to implement separate manual replay for each of the multiple schemas represented
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by this rule. This would reduce the dependency on KeY’s built-in proof search strategy and
aside from that most likely result in a speed-up, since the necessary replay steps would be
known in advance and not have to be searched by KeY.
Probably most important for making the replay technique “production-ready” is opti-

mization: As the evaluation statistics show, proper caching of terms and even sub-proofs
should result in a massive speed-up as well as signi�cant decrease in memory consump-
tion. While it is clear (apart from engineering) how caching of terms could be done, for
sub-proofs it is not that easy. There are at least two ideas: Possibly the so called Merge
Rules could be used. Another idea is to introduce the shared sub-proof’s conclusion early
using the cut rule. With this, each shared proof would have to be replayed only once.
There is also some optimization potential in the fact that sometimes super�uous rules

like below are introduced by Z3:

` 𝜙 ` 𝜙 ↔ 𝜙
mp` 𝜙

Since the conclusion is identical to one of the premises, this rule could be completely
omitted during replay, thus shortening the proof and saving time and memory.
Apart from optimization of the presented replay technique and its implementation,

some completely di�erent ideas arose while working on this thesis: Instead of aiming
for a complete replay of Z3 proofs, one could exploit only some speci�c information
contained in it. For example, KeY often seems to have problems �nding useful quanti�er
instantiations, a feature Z3 is quite good at. Therefore, an idea would be to extract only the
quanti�er instantiations from a Z3 proof and use them to guide the KeY prover, otherwise
relying completely on its built-in proof search. This could be even taken one step further:
In addition (or, alternatively), one could introduce theory lemmas from Z3 via the cut rule
to give hints to KeY which theory speci�c reasoning steps could be useful.

Finally, a sequent in KeY often contains many formulas that are not needed for a proof.
Frommultiple formulas given as input, Z3 is able to compute the smallest set of unsatis�able
formulas – more speci�cally, one smallest set, since there may be multiple – which is
called unsat-core. An idea would be to use this information to hide all other formulas in
KeY except those really needed for the proof.
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A Appendix

A.1 Example for Incompleteness With Epsilon in Input

When the choice operator is allowed to occur in the formula to prove, the calculus becomes
incomplete. The following formula is an example that can not be proven with KeY:

(∀𝑥 . 𝜙 (𝑥) ↔ 𝜓 (𝑥)) → 𝜖𝑥 . 𝜙 (𝑥) = 𝜖𝑥 . 𝜓 (𝑥)

Since there are no taclets in KeY that are applicable to epsilon terms directly, a proof can
not be conducted. However, this formula is actually characterizing the extensionality of
the choice operator, and thus valid.

A.2 Comparison of the Type Hierarchy Axiom Count

Our new translation adds for each sort s: One type de�nition, two cast axioms, one
typeguard axiom, and furthermore for each subsort of s one axiom ensuring that a value
can not have top level sort and child sort simultaneously. In addition, for all object sorts
we have to add axioms for making sure that if a value has two child sorts simultaneously, it
can only be null. This leads to the following calculation (where 𝑛 is the total sorts count, 𝑜
the number of object sorts, 𝑠𝑚𝑎𝑥 the maximum occurring number of children of any object
sort, excluding the null sort and all interface sorts):

#𝑎𝑥𝑖𝑜𝑚𝑠𝑛𝑒𝑤 =

𝑛∑︁
𝑖=1

(1 + 2 + 1 + 𝑠𝑖) +
𝑜∑︁
𝑖=1

(
𝑠𝑖 ∗ (𝑠𝑖 − 1)

2

)
<

𝑛∑︁
𝑖=1

(4 + 𝑛) +
𝑛∑︁
𝑖=1

(
𝑠𝑖 ∗ (𝑠𝑖 − 1)

2

)
< 𝑛 ∗ (4 + 𝑛) +

𝑛∑︁
𝑖=1

(
𝑠𝑖 ∗ (𝑠𝑖 − 1)

2

)
< 𝑛 ∗ (4 + 𝑛) + 𝑛 ∗

(
𝑠𝑚𝑎𝑥 ∗ (𝑠𝑚𝑎𝑥 − 1)

2

)
= 𝑛 ∗

(
4 + 𝑛 + 𝑠𝑚𝑎𝑥 ∗ (𝑠𝑚𝑎𝑥 − 1)

2

)
∈ 𝑂 (𝑛 ∗ (𝑛 + 𝑠2𝑚𝑎𝑥 ))

< 𝑛 ∗
(
4 + 𝑛 + 𝑠𝑚𝑎𝑥 ∗ (𝑠𝑚𝑎𝑥 − 1)

2

)
∈ 𝑂 (𝑛3)

In contrast to that, the original translation with 𝑡𝑦𝑝𝑒𝑜 𝑓 and 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 had much less axioms:
It only needed 3 axioms for making the relation formed by 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 a partial order, 2 cast
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axioms, for each sort s a “de�nition” axiom and for each subsort of s an axiom de�ning
the relation between them:

#𝑎𝑥𝑖𝑜𝑚𝑠𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 3 + 2 +
𝑛∑︁
𝑖=1

(1 + 𝑠𝑖)

< 5 + 𝑛 ∗ (1 + 𝑠𝑚𝑎𝑥 ) ∈ 𝑂 (𝑛 ∗ 𝑠𝑚𝑎𝑥 )
< 5 + 𝑛2 ∈ 𝑂 (𝑛2)

A.3 File Paths of Evaluation Examples Inside the KeY
Repository

File Name Path (relative to example directory key/key.ui/examples/)

provable automatically by KeY:
Ex3.41-formula1 standard_key/BookExamples/03DynamicLogic/Ex3.41-formula1.key

doubleNeg standard_key/prop_log/doubleNeg.key

andCommutes standard_key/BookExamples/10UsingKeY/andCommutes.key

equalities standard_key/pred_log/equalities.key

Sect2.5.1-ExampleProof standard_key/BookExamples/02FirstOrderLogic/Sect2.5.1-ExampleProof.key

contraposition standard_key/prop_log/contraposition.key

mv1 standard_key/pred_log/mv1.key

subsumptionExample standard_key/inEqSimp/subsumptionExample.key

simpleEps standard_key/pred_log/simpleEps.key

liarsville standard_key/prop_log/liarsville.key

inequations2 standard_key/inEqSimp/inequations2.key

liarsWithInt standard_key/pred_log/liarsWithInt.key

Ex2.56 standard_key/BookExamples/02FirstOrderLogic/Ex2.56.key

check_jdiv_concrete standard_key/arith/check_jdiv_concrete.key

projection standard_key/BookExamples/10UsingKeY/projection.key

mv2 standard_key/pred_log/mv2.key

disjoint standard_key/types/disjoint.key

inequations0 standard_key/inEqSimp/inequations0.key

liars standard_key/pred_log/liars.key

castOperators smt/taclettranslation/castOperators.key

Ex2.57 standard_key/BookExamples/02FirstOrderLogic/Ex2.57.key

Ex2.53 standard_key/BookExamples/02FirstOrderLogic/Ex2.53.key

generalProjection standard_key/BookExamples/10UsingKeY/generalProjection.key

SET063p3 standard_key/pred_log/tptp/SET/SET063p3.key

project firstTouch/01-Agatha/project.key

PUZ001p1 standard_key/pred_log/tptp/PUZ/PUZ001p1.key

not provable automatically by KeY:
exists1 standard_key/pred_log/exist1.key

SET043p1 standard_key/pred_log/tptp/SET/SET043p1.key

Ex2.54 standard_key/BookExamples/02FirstOrderLogic/Ex2.54.key

Table A.1: Paths of the evaluation examples from Chapter 5 (inside the KeY repository)
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