KIT | KIT-Bibliothek | Impressum | Datenschutz

Detecting Daytime Bruxism Through Convenient and Wearable Around-the-Ear Electrodes

Knierim, Michael; Schemmer, Max; Woehler, Dominik

Abstract:

Bruxism is associated with multiple health issues and affects millions of people worldwide. To enable effective interventions, precise, easy-to-use and unobtrusive detection systems are required. Unfortunately, especially for daytime bruxism, such systems still rely on electrodes placed on the face, recording diaries, and manual algorithm tuning. In this work, we present a novel approach for bruxing event detection using comfortable and inconspicuous around-the-ear sensors (cEEGrids) as a form of distal EMG-based measurement. Using Random Forest classifiers on laboratory experiment data, promising F1-scores (up to 0.9) are found for the detection of bruxing events in contrast to a variety of other facial muscle activity events. Thereby, a promising new alternative for feasible awake bruxism detection is demonstrated.


Originalveröffentlichung
DOI: 10.1007/978-3-030-80091-8_4
Scopus
Zitationen: 2
Dimensions
Zitationen: 2
Zugehörige Institution(en) am KIT Institut für Wirtschaftsinformatik und Marketing (IISM)
Karlsruhe Service Research Institute (KSRI)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2021
Sprache Englisch
Identifikator ISBN: 978-3-030-80091-8
ISSN: 2367-3370, 2367-3389
KITopen-ID: 1000131841
Erschienen in Advances in Usability, User Experience, Wearable and Assistive Technology – Proceedings of the AHFE 2021 Virtual Conferences on Usability and User Experience, Human Factors and Wearable Technologies, Human Factors in Virtual Environments and Game Design, and Human Factors and Assistive Technology, July 25-29, 2021, USA. Ed.: T. Ahram
Veranstaltung 12th International Conference on Applied Human Factors and Ergonomics (AHFE 2021), New York City, NY, USA, 25.07.2021 – 29.07.2021
Verlag Springer
Seiten 26-33
Serie Lecture Notes in Networks and Systems (LNNS) ; 275
Vorab online veröffentlicht am 08.07.2021
Schlagwörter Bruxism, Distal EMG, cEEGrid, Machine Learning, Classification
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page