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Abstract

Greenhouse gas (GHG) emissions need to be reduced to limit global warming. Plastic

production requires carbon raw materials and energy that are associated today with

predominantly fossil raw materials and fossil GHG emissions. Worldwide, the plastic

demand is increasing annually by 4%. Recycling technologies can help save or reduce

GHG emissions, but they require comparative assessment. Thus, we assess mechani-

cal recycling, chemical recycling by means of pyrolysis and a consecutive, complemen-

tary combination of both concerning Global Warming Potential (GWP) [CO2e], Cumu-

lative Energy Demand (CED) [MJ/kg], carbon efficiency [%], and product costs [€] in
a process-oriented approach and within defined system boundaries. The developed

techno-economic and environmental assessment approach is demonstrated in a case

study on recycling of separately collected mixed lightweight packaging (LWP) waste

in Germany. In the recycling paths, the bulk materials polypropylene (PP), polyethy-

lene (PE), polyvinylchloride (PVC), and polystyrene (PS) are assessed. The combined

mechanical and chemical recycling (pyrolysis) of LWPwaste shows considerable saving

potentials in GWP (0.48 kg CO2e/kg input), CED (13.32 MJ/kg input), and cost (0.14

€/kg input) and a 16% higher carbon efficiency compared to the baseline scenario with

state-of-the-art mechanical recycling in Germany. This leads to a combined recycling

potential between 2.5 and 2.8 million metric tons/year that could keep between 0.8

and 2millionmetric tons/year additionally in the (circular) economy instead of inciner-

ating them. This would be sufficient to reach both EU and German recycling rate tar-

gets (EC 2018). This article met the requirements for a gold-silver JIE data openness

badge described at http://jie.click/badges.
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1 INTRODUCTION

Plastic production requires predominantly crude oil and energy while emitting GHG emissions that need to be reduced to combat climate change

(IPCC, 2013). TheGerman chemical sector, the largest in Europe, accounts for 6%of annualGHGemissions (UBA, 2018a;Destatis, 2018;VCI, 2019;

Wyns et al., 2018). In Europe, 49million tons1 of plastics are produced annually for packaging (40%), construction (20%), automotive parts (9%) and

electronics (6%). 25.8 million tons of plastic waste are generated annually (EC, 2018). Plastic waste can be recycled mechanically or chemically,

or processed to chemical or physical energy carriers. Currently, less than 30% is collected for recycling; a significant part is exported to non-EU

countries with lower environmental standards (EC, 2018). In Germany, 46 wt% of the plastic waste (including production and processing wastes) is

recycledmechanically; 1 wt% is recycled chemically (Conversio, 2018).

The EU demands a recycling rate for plastics packagingwaste of 55% in 2030, while Germany demands 63% until 2022 (EC, 2018). But, mechan-

ical recycling only can hardly fulfil the imposed recycling rates due to technical restrictions and economic limitations (Pivnenko et al., 2015; Ragaert

et al., 2017).

Mechanical recycling processes plastic waste fractions without significant changes to their chemical composition, while chemical recycling pro-

cesses it to intermediate chemicals by changing its chemical structure (Conversio, 2018; Stapf et al., 2019b). The latter can be used as a secondary

or renewable feedstock (Meran et al., 2008; Sommerhuber et al., 2016; Gu et al., 2016a,b) in plastics’ or other chemicals’ production and can sig-

nificantly reduce GHG emissions (Makuta et al., 2000; Dormer et al., 2013). Mechanical recycling cannot produce high- or virgin-quality plastics,

but up to 20−50% cheaper plastics compared to virgin plastics (Gu et al., 2016a,b; 2017). Thus, it is challenging to identify the environmentally or

economically best recycling option, depending on locally available technologies, capacities, process efficiencies, specific waste compositions, and

conditions (Van Eygen et al., 2018a).

Life Cycle Assessment (LCA) (DIN EN ISO 14040:2006) is widespread to assess environmental impacts during a products’ lifecycle (Rieckhof &

Guenther, 2018; Rebitzer, 2002; Klöpffer&Renner, 2008).Multiple LCAand techno-economic analyses of olefin production fromoil, coal,methane,

andethane (e.g., Renet al., 2006, 2008;Ren, 2009;Xiang et al., 2014a,b; 2015;Amghizar et al., 2017;Zhaoet al., 2017) andplant-specific approaches

(e.g., Patel, 2003; Pereira et al., 2013; Kanchanapiya et al., 2015) were conducted. LCA was also applied to mechanical recycling, incineration with

energy recovery, and landfilling of plastic waste to compare disposal alternatives (e.g., by Lazarevic et al., 2010; Wäger et al., 2011; Al-Maadeed

et al., 2012; Turner et al., 2015; Wäger & Hischier, 2015; Gu et al., 2017; Van Eygen et al., 2018b). Separately collected waste fractions (Perug-

ini et al., 2005; Achilias et al., 2007; Turner et al., 2015; Van Eygen et al., 2018a), post-industrial plastic waste (Huysman et al., 2017), and post-

consumer electronic waste (Achilias et al., 2009; Wäger et al., 2011; Wäger & Hischier, 2015) were assessed. Mechanical plastics recycling and

re-granulate performance was extensively researched (Chen et al., 2011; Turner et al., 2015; Gu et al., 2016a,b; 2017; Van Eygen et al., 2018a,b).

Fewworks considered chemical recycling and only recent works address mixed post-consumer packaging waste (e.g., Perugini et al., 2005; Achilias

et al., 2007,2009; Lazarevic et al., 2010; BKV&Plastics Europe, 2019; Bergsma, 2019a,b;Meys et al., 2020; Russ et al., 2020). However, there is not

enough pyrolysis data for other use cases thanmixed household waste (Vogel et al., 2020).

Some works assess national waste management systems or compliance to future regulations (Chen et al., 2011; Van Eygen et al., 2018a,b;

Bergsma, 2019a,b). Van Eygen et al. (2018a,b) assessed single-polymer and mixed-polymer recycling of Austrian plastic packaging waste. They

highlight the importance of high-quality single-polymer recycling and lower environmental benefits of mixed-polymer recycling compared to the

status quo. Chen et al. (2011) assessed (LCA) plastic waste recycling and energy-recovery technologies versus landfilling in China and found highest

GHG reductions in low-grade plastics production frommechanical recycling and highest fossil fuel-savings in refuse-derived fuel (RDF) production

and combustion. Huysman et al. (2017) developed a quality indicator tomeasure circular economy performance of post-industrial plastic waste.

Perugini et al. (2005) assessed and compared mechanical and chemical recycling (low-temperature fluidized bed pyrolysis and high-pressure

hydrogenation) of plastic containers and highlighted the good environmental performance of coupling feedstock andmechanical recycling. Achilias

et al. (2007) assessed chemical recycling (dissolution/reprecipitation and catalytic pyrolysis on laboratory fixed bed reactors) of single-polymer

model plastics, commercial plastics, and plastic wastes and received a polymer recovery of >90%. BKV and Plastics Europe (2019) analyzed the

technology readiness of chemical recycling processes (pyrolysis, gasification) of plasticwaste focusing ondata availability, necessary pretreatments,

and economic competitiveness. Bergsma (2019a,b) assessed potential material inputs for chemical recycling from unrecycled Dutch waste (e.g.,

recycling losses, PET-trays, mixed plastics) and compared chemical (pyrolysis, hydropyrolysis, gasification) and mechanical recycling. Meys et al.

(2020) developed a theoretical chemical recycling model to identify the best possible performance of five environmental impacts in 75 scenarios

compared to existing recycling processes. Russ et al. (2020) assessed pyrolysis of mixed plastic waste (LCA) to understand favorable conditions and

influencing factors.

Sensor-based sorting of plastic wastes is not new (Allen et al., 1999; Feldhoff et al., 1997; Murase & Sato, 1999; Scott, 1995; Wan et al., 1994).

Recent publications address hyperspectral (Serranti et al., 2011, 2015; Habich & Beel, 2014) or black plastics sorting (Huang et al., 2017). Today,

near-infrared sensors are widespread, but can neither separate HDPE and LDPE nor extract colored/black plastics.

1 Tons refer tometric tons throughout the article.
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Literature gapsexist regarding theassessmentof single-/dual-commingledwasteplastics fromcollection systems (Turner et al., 2015), real-waste

fractions with minerals, metals, and other contaminations, and new recycling technologies (e.g., pyrolysis). Notably, there is a lack of high-quality

Life Cycle Inventory (LCI) data on material reprocessing/recycling and more case-specific LCA studies on recycled plastics are highly desirable

(Turner et al., 2015; Gu et al., 2017). Most works investigate new sorting and recycling technologies under lab conditions only (e.g., Achilias et al.,

2007). Assessments and primary data of pilot or industrial-scale chemical recycling plants (pyrolysis, gasification, solvolysis) are often missing and

transparent LCI data is missing almost entirely (Gu et al., 2017), except for recent works (BKV & Plastics Europe, 2019; Meys et al., 2020). Also, a

comparative study of sorting and recycling technologies for mixed plastic packaging waste is missing.

This study develops amethod to assess primary plastics production (see Annex A3 of Supporting Information S2), post-consumer plastic packag-

ing waste sorting (Section 2.2.1), and recycling (mechanical, chemical, and combined) (Section 2.3) concerning costs, carbon efficiency, cumulative

energy demand (CED), and global warming potential (GWP) (Section 2.4) for polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), and

general purpose polystyrene (GPPS). We assess packaging waste provided by the German packaging collection systems (see Section 2.3 for its

composition). This study differs from previous studies in threemain aspects:

1. It provides a transparent and comparative techno-economic and environmental assessment of primary plastic production and different plastic

recycling paths comprisingGWP, CED, carbon efficiency, and costs. The underlying data is provided and includes details for a theoretical sensor-

based sorting plant. Therefore, we address the lacking high-quality LCI data on bespoke processes.

2. It develops a techno-economic assessment of recycling paths on industrial scale based on literature data.

3. It considers a real waste composition from separately collected mixed-polymer lightweight packaging (LWP) waste instead of mono-fractions

(Perugini et al., 2005), contaminated mono-fractions (Meys et al., 2020), or specified mixed plastic fractions (Russ et al., 2020). The assessment

of real mixed plastic waste is complex since multiple materials’ treatments (of minerals, metals, fine fraction, or organic material) have to be

allocated.

Our approach enables producers and customers of plastic packaging to integrateGWP,CED, cost, and carbon efficiency intomulti-objective pro-

curement and investment decision-making. This is particularly valuable when facing CO2e prices or tax, stricter regulation and volatile landfilling,

incineration and co-combustionprices. This study also supports policymakers regarding thepromotion and regulationof favorable recycling options

for mixed plastics packaging waste.

2 METHODOLOGY

2.1 Goal and scope

This study combined mass flow analysis (MFA) with LCA data of the considered recycling technologies (mechanical, chemical, and combined recy-

cling) of mixed LWP waste. Mass and energy balances for the assessment of sensor-based sorting, mechanical recycling, chemical (feedstock),

and combined recycling of mixed LWP were established in a partial LCA (attributional approach). The model data is literature-based and process-

orientedwhere datawas not available, that is, value chainswere disaggregated into relevant unit processes that are assessed (i) based on simulation

or (ii) measured data where physic-chemical models do not exist.

The assessment covers a mechanical pretreatment step to separate metals and minerals from refuse-derived fuel (RDF) as recycling feedstock,

the state-of-the-art re-granulate production from sorted plastics formedium- and low-quality plastic products (likewaste bins, formwork panels, or

park benches), and the chemical feedstock production via chemical recycling (here: pyrolysis). Other chemical recycling processes are not assessed

(see Section 4.2). Themass balances (including amounts andmaterial types) and the impact assessment of CED, GWP, carbon efficiency, and cost of

each recycling pathwere calculated (Section 3). Then, the different recycling pathswere compared including compensation for substituting primary

material and for energy co-generation through incineration of by-products.

The functional unit was 1 kg of mixed LWP waste that is collected separately and recycled in Germany. In the assessment, input waste was not

associated with any GWP, CED, or cost.

Mechanical recycling includesmechanical pretreatment, sensor-based sorting and regranulation2. Themainproduct is plastic re-granulate, often

with a reduced quality compared to the original plastics (input) and with few possible recycling cycles (EMAF, 2016). Main fields of application are

road construction (100–150 kilotons/a), window and door profiles (100–150 kilotons/a), pipes (50–70 kilotons/a), landscaping, agriculture, elec-

tronics, packaging, and plastic sheets (Conversio, 2018, p. 67ff.).

2 Costs of all regranulation substeps (post-sorting, cleaning/washing, melting) are considered. Regarding CED and GWP, only melting is considered due to its dominance and missing data for the

other substeps.
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Chemical recycling processesmechanically pre-treatedwaste to chemical intermediates. In both recycling paths, the samemechanical pretreat-

ment processwas applied that is suitable to provide feedstock formaximum sensor-based plastics sorting yield and that is also standard for produc-

ing RDF frommixed waste (Stapf et al., 2019a). In the combined recycling assessment, the recovered pure plastics from sensor-based sorting were

mechanically regranulated, while the sorting residues were chemically recycled.

For all recycling paths, all economic and environmental burdens and rewards associated with the process steps, the by-products and their han-

dling were assigned to the respective main products as the treatment of plastic waste is the focus of this study. The substitution of primary plastic

material was rewarded in all paths by multiplying the amount of produced re-granulate or virgin plastic by the impact of the substituted primary

plastic (Section 2.4).

The system boundaries (see Table S2-1 of Supporting Information S2) exclude energy inputs for plant construction andmachine production, the

plastics use phase, the transportation3, and cleaning/washing4 processes. Likewise, transportation emissions are excluded, as they are expected

to be relatively low (Chen et al., 2011). In the following subsections, technologies and recycling paths are assessed in detail. Different scenarios

(Section 2.5) and sensitivities (Section 3.4) demonstrate the variability of the results.

2.2 Technology assessment

2.2.1 Mechanical recycling and sensor-based sorting assessment

Prior to sensor-based sorting or pyrolysis, LWPwaste is sorted in a mechanical pretreatment step using conventional technologies, including com-

minution, classification, sifting, and metal separation and it is processed to RDF (Stapf et al., 2019a). Then, the produced RDF is sorted in a sensor-

based sorting plant to separate fractions with distinct qualities for further recycling and processing. Plastic types often cannot be separated by

conventional sorting technologies, and mixed fractions cannot be recycled to high-quality products as small ratios of cross-contamination can lead

to unusable batches (Masoumi et al., 2012; EMAF, 2016). Since data on sensor-based sorting is not publicly available, we assessed different sorting

technologies andmodelled a theoretical sorting plant (see Annex A2 of Supporting Information S2).

Sensor-based sorting produces sorted plastics and sorting residues. Sorted plastics are the input for a regranulation process, while sorting

residues are valuable fuel for different thermal recycling paths due to their high calorific value. As the modelled mechanical pretreatment is more

refined than the usual mechanical steps in mechanical-biological treatment plants, further treatments of sorting residues are omitted. Burdens

associatedwith incineration of the sorting residues and rewards for substituting other fuelswere included and allocated to the sensor-based sorted

plastics.Within the scenario analysis, sorting residues were allocated to different thermal recycling paths (Section 2.5).

The sorted plastic types are regranulated in an extruder. Additional sorting processes and associatedmass reductions at the re-granulator were

considered in the sorting plant yield. A separate assessment was not carried out.

2.2.2 Chemical recycling

Chemical recycling processes mechanically pretreated waste to monomers or other chemicals (Conversio, 2018) that can be used as secondary

feedstock in plastics’ or other chemicals’ production. In the assessed process, the produced RDF is fed into an integrated pyrolysis unit producing

two useful co-products (pyrolysis liquid and pyrolysis gas), and a solid fraction (by-product). The pyrolysis liquid consists of oily and watery parts

that are separated by condensation for further use. Gas and liquid fractions mainly consist of hydrocarbons; the solid fraction consists of minerals,

char, and hydrocarbons. Pyrolysis oil replaces naphtha as the feedstock of the hot part of the steam cracking process, where its components are

thermally cracked under the presence of steam. In contrast, the pyrolysis gas enters only the cold downstream part of the steam cracking process

for separation of the individual gaseous components. The solid fraction from the pyrolysis is combusted to provide its process heat and to condition

it fordeposit. Theexcessheat is sold fordistrict heatingpurposes and is considered in all impact categories. In the steamcrackingprocess,monomers

are produced that are subsequently polymerized. The produced plastics have virgin quality and are rewardedwith primary plastics’ substitution.

2.3 Inventory data of technologies and other data

The assessment of the mechanical, chemical, and combined recycling paths was demonstrated for LWP waste in a case study for Germany.

The separately collected German LWP sums up to ca. 2.5 million tons/year. Its average composition is shown in Figure S2–5 of Supporting

Information S2. The environmental impact factors (Table S2–5 of Supporting Information S2) specific to Germany were used to calculate the GWP

3 Transportation between production gate and customer, post-consumer collection and transport to sorting, recycling, re-processing or incineration plants should be included in future research.
4 Contamination usually does not impair the sorting result (Safavi et al., 2010).
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[CO2e/kg input] and CED [MJ/kg input] per process step based on its energy demand. Together with energy efficiencies of the combustion systems,

they were also used to calculate associated rewards and burdens. Uncertainties and their impacts on the results are considered in a sensitivity

analysis (see Annex A7 of Supporting Information S2). For the calculation of the substitution effects of primarymaterial, LCAs based on the “cradle-

to-gate” approach for primary plastic production in Europewere used (PlasticsEurope, 2018b) (see Annex A3 of Supporting Information S2).

2.3.1 Mechanical pretreatment

LWP waste is sorted with conventional technologies and can be separated into metals (1.2% ferrous and 1.8% non-ferrous metals), heavy compo-

nents (10%), a low-calorific fine components (20%), and water (2%) (Stapf et al., 2019a). The variable sorting costs include the gate fee of incoming

waste, compensation formetal recycling, landfilling of heavy components, and the gate fees for energetic utilization (Annex A4 of Supporting Infor-

mation S2). The fixed costs for awaste pretreatment plantwith a capacity of 100,000 tons/year and operating 8,000 h/year added up to 2.07million

€/year.
The environmental impact was derived from the electrical energy demand of 0.40 MJ/kg treated waste. This was measured at an exemplary

treatment process and is higher than literature values (Bilitewski et al., 2018) due to higher processing demands for the RDF production (see Annex

A9 of Supporting Information S2). The energy demand of themechanical pretreatment had a net5 impact of 1.84MJ/kg (CED) and 0.32 kg CO2e/kg

(GWP). We reward electricity and heat production from incineration of the low-calorific fine components based on their calorific value, the

emission-factor for household waste, and the efficiency of waste incineration plants. Ferrous metals replace primary metal in cast iron production;

non-ferrous metals substitute primary raw aluminum (as a non-ferrous representative).

2.3.2 Mechanical recycling and sensor-based sorting

A theoretical sorting plant (Figure 1) was assessed to quantify its impact on the mechanical recycling path regarding costs, CED, and GWP. The

combination of sorting technologies results in operational costs of 31.84 €/(ton input), in 0.09MJ/(kg input) (CED), and in 0.006 kg CO2e/(kg input)

(GWP) (Annexes A2 and A4 of Supporting Information S2).

In mechanical recycling, sensor-based sorting residues are incinerated6. Thus, incineration gate fees and emissions, as well as compensation for

produced heat and electricity were included. In the baseline scenario, all sorting residues were incinerated in RDF power plants andmunicipal solid

waste incineration (MSWI) plants (Section 3.1). Other thermal recycling pathswere calculated and discussed in further scenarios (Sections 2.5, 3.2).

The efficiency rates and environmental impact factors used for the impact assessment are displayed in Table S2–5 of Supporting Information S2 and

available as data tables in Supporting Information S3.

In the regranulation, a carbon efficiency of 98% was assumed due to additional sorting steps and material losses (Dehoust et al., 2016). For dif-

ferent carbon efficiencies see Section 2.5. As regranulation costs are not available in literature, the cumulated anterior processing costs were sub-

tracted from the available re-granulates’ market prices resulting in 0.4 €/kg7. Additionally, we assumed an energy consumption of the regranulation

of 0.21 kWh per kg re-granulate that is ranging between 0.18 and 0.24 kWh/kg specified by Großmann (2011).

2.3.3 Chemical recycling

Adequate experimental data of reasonable quality for scalable mixed plastics pyrolysis is only provided by Andreas et al. (1981). They pyrolyzed

a waste composition similar to LWP sorting residues in a rotary kiln reactor at 650◦C and yielded gas (38 wt.-%), liquids (30 wt.-%) and solids

(32 wt.-%). Applying this data, we integrate the pyrolysis process into the process route given in Figure 2. The underlying data of Figure 2 and all

following figures can be found in Supporting Information S1. RDF from mechanical pretreatment is fed into the integrated pyrolysis unit and its

impacts are allocated to the desired pyrolysis products (gas, oil) by mass. Pyrolysis oil replaces naphtha as steam cracking feedstock, while the

pyrolysis gas components are separated in the cold part of the steam cracking process. The integrated pyrolysis process consists of the pyrolysis

reactor, consecutive oil and gas upgrading steps, the solids’ incineration and heat recovery system, solids’ transport and mixing, and necessary

auxiliary units. It is designed to separate all additives, pollutants, and impurities from pyrolysis oil and gas to meet the feedstock specifications of

downstream chemical processing of virgin quality material. Process simulation determines both GWP and CED of the pyrolysis process of German

LWPwaste with 0.993 kg CO2e/kg (GWP) and 14.99MJ/kg (CED).

5 Net environmental impacts, carbon efficiencies and costs include rewards; their gross values only include burdens.
6 In chemical recycling, the sensor-based sorting residues are chemically recycled.
7 We compare bale and re-granulate prices to assess regranulation costs, since the regranulation is the primary process executed between these qualities. Price differences are 0.33 €/kg (PE-HD),
0.36 €/kg (PE-LD), 0.54 €/kg (PP), and 0.24 €/kg (PET) (Plasticker 2019) leading to 0.4 €/kg on average.
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F IGURE 1 Material flow in a theoretical integrated sensor-based sorting plant, designed for maximum color-wisematerial recovery of plastic
fractions PE, PP, PVC, and GPPS, respectively. Sorting residues are unidentified waste and non-sorted plastic colors. The input waste stream is
conventionally sorted andmechanically pretreated

The solid fraction of the pyrolysis unit is combusted; the minerals are deposited. Excess heat is sold for district heating and considered in all

assessment categories; it was credited with 0.155 kg CO2e/kg (GWP) andwith 2.63MJ/kg (CED).

Following BKV and Plastics Europe (2019), the integrated process scheme was developed for an 8.1 ton/h pyrolysis process operating

8,000 h/year. The scale-up is derived from the mass and energy balances from Andreas et al. (1981) and operational and capital investment cost

were calculated. The cost assessment is based on the investment of a rotary kiln waste treatment plant of similar complexity, which was scaled

down to the considered pyrolysis plant size according to BKV and Plastics Europe (2019). Fixed costs added up to 14.2 million €/year for this plant
sizewhich fits to themechanical pretreatment process specified in Section 2.3.1. Variable costs are 8.21 €/ton of themain product and include elec-

tricity of the combustion air-compressor (4 bar at 5 €/1,000m3), landfill fees for combustion residues (100 €/ton), and the compensations generated

fromdistrict heating (0.03 €/kWh).Our calculations led to total pyrolysis costs of around320 €/ton ofmixed plasticwaste. For steamcracking, exist-

ing data on primary ethylene and propylene production is used (PlasticsEurope 2012a). Therefore, no further detailed steam cracking assessment

is made; however, the impact of the inputs is altered.

2.4 Impact assessment

GWP8, CED9, cost, and carbon efficiency are assessed. The carbon efficiency is the recycling rate in terms of the ratio of total carbon mass of the

desired products divided by the total carbonmass of the feed(s) per conversion or separation step or per recycling path. Finally, the recycling paths

are compared concerning their product costs.

Each process step was assessed individually; the recycling paths sum up all process steps along the path. Also, the above mentioned rewards

and burdens were considered. Downstream process steps include the impact of upstream processes of the value chain. Equations (1)–(3) show the

8 Here, GWP100 is assessed as defined in the Kyoto Protocol (IPCC 2013).
9 CED is the “total quantity of primary energy which is necessary to produce, use and dispose of a product” (VDI 2012).
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F IGURE 2 Detailed pyrolysis route of mixed plastics per 1 kg of input waste. Refuse-derived fuel (RDF) is the intermediate product of
mechanical pretreatment. Underlying data used to create this figure can be found in Supporting Information S1

exemplary calculation of CED, GWP, and cost of mechanical pretreatment to produce RDF:

CEDRDF = CEDinput waste + CEDmechanical pretreatment + CEDlandfilling of heavy content + CEDincineration of fine fraction−

CEDcompensation for electricity generation from incineration − CEDcompensation for heat generation from incineration−

CEDcompensation for recycling of ferrous metals − CEDcompensation for recycling of non−ferrous metals

(1)

GWPRDF =

GWPinput waste + GWPmechanical pretreatment + GWPlandfilling of heavy content + GWPincineration of fine fraction−

GWPcompensation for electricity generation from incineration − GWPcompensation for heat generation from incineration−

GWPcompensation for recycling of ferrous metals − GWPcompensation for recycling of non−ferrous metals

(2)

costsRDF =

costsmechanical pretreatment plant + costselectricity for mechanical pretreatment + costslandfilling of heavy contents +

costsincineration of fine fraction (gate fee) − revenueferrous metals − revenuenon−ferrous metals

(3)

The carbon efficiency is based on stoichiometric mass balances. Only in the mechanical pretreatment, we assume 5% carbon in the fine fraction

so that it has to be combusted (Stapf et al., 2019a).

2.5 Scenario definition

Multiple scenarios were developed on varying sensor-based sorting yields and different incineration paths for sorting residues to analyze the influ-

ence of underlying data and assumptions (Table 1). Also, a combination of mechanical and chemical recycling is considered. Further assumptions

and parameters are varied in a sensitivity analysis (Section 3.4, Annex A7 of Supporting Information S2).
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TABLE 1 Overview of scenarios

Scenario no. Scenario description Sorting yield Incineration paths of sorting residues

1.1.1 Mechanical recycling 42% 100%MSWI plant

1.1.2 Mechanical recycling 42% 25%MSWI plant, 75%RDF combustion plant

1.1.3 Mechanical recycling 42% 18%MSWI plant, 58%RDF combustion plant, 13% cement plant, 11%

coal-powered plant

1.2.1 Mechanical recycling 22% 100%MSWI plant

1.2.2 Mechanical recycling 22% 25%MSWI plant, 75%RDF combustion plant

1.2.3 Mechanical recycling 22% 18%MSWI plant, 58%RDF combustion plant, 13% cement plant, 11%

coal-powered plant

2 Chemical recycling – –

3.1 Combined recycling 42% –

3.2 Combined recycling 22% –

Note. “–” indicates parameter does not apply.

Christiani and Beckamp (2020) state that 32% of the LWP provided by the German collection systems are high-grade recyclable plastics. After

conventional sorting, 35% of the mass is discarded and the relative amount of high-grade recyclable plastics rises to 49%. A buffer of 6% for non-

identifiable plastics leads to a resulting sensor-based sorting yield of 43% for mechanical recycling. This buffer results from the share of other

polyolefins in the high-quality recyclable plastic composition (Figure S2–5, Supporting Information S2). Furthermore, additional material losses

between 2% and 50% for sorting steps at the regranulation plant are assigned to the sorting plant (Dehoust et al., 2016). The best and worst-

case scenarios for mechanical recycling the sensor-based sorting yield are multiplied by the extremes of additional regranulation losses. Thus, we

distinguished a sorting yield of 42% (Scenario 1.1) and 22% (Scenario 1.2). Due to missing data, we assume sorting yields only per polymer type

that is then further processed. So, after the sensor-based sorting, we assess a mono stream of one specific polymer type that is then processed in a

regranulation facility. In this step, we do not consider amix of polymers.

Sorting residues are incinerated or co-combusted in cement kilns, coal-fired or RDF combustion plants orMSWI plants (in decreasing efficiency

order) depending on its calorific value and chlorine content.

Scenario 1.1.1 reflects theworst casewhere sorting residues are incinerated inMSWIplants. Scenario 1.2.1 differs from it in a lower sorting yield

and thus a higher sorting residue incineration. Scenario 1.1.2 is the baseline scenario with co-combustion of sorting residues in efficient RDF com-

bustion plants (75%) and MSWI plants (25%). This reflects the current practice in Germany and other European countries (Ketelsen & Kanningen,

2016; VanEygen et al., 2018b;UBA, 2018c; Russ et al., 2020). Scenario 1.2.2 has a lower sorting yield than the baseline scenario. Scenarios 1.1.3 and

1.2.3 include all four thermal recycling paths following currentGerman combustion shares for RDF (Ketelsen&Kanningen, 2016) assuming that the

sorting residues undergo further treatment (e.g., sensor-based sorting steps) to separate PVC andmeet the strict chlorine limits for co-combustion

in coal and cement power plants (5–15 g/kg in coal-powered plants and<10 g/kg in cement kilns) (UBA, 2015).

Scenario 2 examines the chemical recycling (Section 2.3.3). As the variation of the process parameters would result in unknown pyrolysis gas,

oil and solid yields and compositions, sub-scenarios can neither be defined nor analyzed. Scenarios 3.1 and 3.2 combine mechanical and chemical

recycling and examine high and low sensor-based sorting yields. Here, sorting residues are fed into the chemical recycling process10.

3 RESULTS

The impacts of the recycling paths were calculated based on the collected data and the defined scenarios in a case study for Germany. The results

are illustrated for HDPE, but are also available for LDPE, PP, PVC, and GPPS (Annex A6 of Supporting Information S2). The impacts are described

per kilogram of waste input (Figure S2–6 of Supporting Information S2).

3.1 Baseline scenario

The mechanical recycling results in gross sorting and regranulation costs of 0.10 €/kg and induces gross values of 0.67 kg CO2e/kg (GWP)

and 3.83 MJ/kg (CED). The net values take full (100%) substitution of primary material into account (Figure S2-1 to Figure S2-4 of Supporting

Information S2) and result in costs of −0.16 €/kg (=revenues), 0.18 CO2e/kg (GWP), and −18.14 MJ/kg (CED). The differences between net and

gross values result from avoided costs and avoided energy for primarymaterial production and highlight the calculatory impact of primarymaterial

10 Pyrolysis inputs differ in chemical recycling (scenario2) (RDF) and combined recycling (scenarios3.1 and 3.2) (sorting residues). Therefore, the pyrolysis products could be different.
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F IGURE 3 Comparison of considered recycling processes and scenarios regarding their net GWP impact [kg CO2e/kg input]. Assessment for
1 kg of input waste. In Scenarios 2, 3.1, and 3.2, “Burdens Incineration” results from the incineration of the fine fraction of themechanical
pretreatment. Underlying data used to create this figure can be found in Supporting Information S1

substitution on costs, GWP and CED. However, in this scenario, the substitution cannot compensate for the high GWP burdens that result mainly

from incineration of sorting residues.

In the whole recycling path, incineration accounts for 95% of the GWP and 93% of the CED impact. Incineration of the sensor-based sorting

residues accounts for around 60%of the CED andGWP. The regranulation process and its electrical energy demand have a high impact on CED and

costs.

The results presume that the sensor-based sorting process’ outcome is a single plastic fraction that is processed further (Section 2.5).We do not

break down the sensor-based sorted plastic by type due tomissing data regarding the plastic composition after the sorting.

3.2 Other scenarios

The other scenarios of mechanical recycling consider different thermal recycling paths for sorting residues and higher material losses. The results

(Figures 3 and 4) show that including additional industrial co-combustion (Scenario 1.1.3) leads to net reductions by 95% (GWP) and 30% (CED)

compared to the baseline (Scenario 1.1.2). In the worst-case (Scenario 1.1.1), the net GWP increases by 15% and the net CED increases by 7%. This

is also valid for the lower yield scenarios. It results from the higher efficiency of industrial co-combustion compared to MSWI and highlights the

impact of the considered thermal recycling. Scenarios with efficient cement kilns and coal-powered plants particularly show better environmental

performance than the baseline scenario.
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F IGURE 4 Comparison of considered recycling processes and scenarios regarding their net CED impact [MJ/kg input]. Assessment for 1 kg of
input waste. Underlying data used to create this figure can be found in Supporting Information S1

Highermaterial losses lead to higher GWP andCED impacts regardless of the thermal recyclingmix. Additional sorting residues are incinerated,

and less primary material is substituted and rewarded. Regarding costs, there are no differences between the incineration mixes due to the same

assumed gate fees. However, additional material losses lead to rising costs ofmechanical recycling due to additional gate fees for incineration. Also,

the amount of produced re-granulate decreases and reduces the substitution effect.

Scenario 2 (chemical recycling) (Figure S2–7 of Supporting Information S2) results in−0.24 €/kg net sorting and reprocessing costs (=revenues)
and induces −15.92 MJ/kg (CED) and 0.25 kg CO2e/kg (GWP). Steam cracking has a significant impact on all impact categories, mainly because of

its high energy demand. Gross values of Scenario 2 are 0.33 €/kg sorting and recycling costs, 15.66MJ/kg (CED), and 0.96 kg CO2e/kg (GWP). The

high yield of recycledmaterial leads to a high reward for primarymaterial substitution.

The combined approach (Scenario 3.1) (Figure S2–8 of Supporting Information S2) results in net values of −0.29 €/kg sorting and reprocessing
costs (=revenues), −30.14 MJ/kg (CED), and −0.22 kg CO2e/kg (GWP) in a combined assessment of virgin plastics and re-granulate output. With

higher material losses at the regranulation plant (Scenario 3.2), GWP and CED impacts increase because more sorting residues are chemically

recycled. Costs also increase due to a lower total yield. In both scenarios, a high yield leads to high rewards for primary plastic substitution.

3.3 Comparison of recycling processes and scenarios

The assessed recycling paths are compared for HDPE, LDPE, PP, PVC, and GPPS (Figure 6, and Annex A6 of Supporting Information S2). The study

results of HDPE discussed in the following are representative for the other assessed plastic types (except PVC). The results for PVC are different,

although the trend is consistent.
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GWP impacts (Figure 3) ofmechanical recycling are influenced by the incineration paths and their efficiencies (Section 3.2).More efficient indus-

trial co-combustion reduces the impacts due to higher substitution rewards for generated heat and electricity. GWP is also influenced by material

yield, as higher material losses lead to additional sorting residues that are incinerated, and less primarymaterial is substituted.

Chemical recycling performs slightly worse compared to the baseline scenario for most fractions (except for GPPS, where it is significantly

worse). Reduced incineration burdens compensate the GWP impact of the steam cracking and polymer synthesis as no sorting residues are incin-

erated. The non-existent incineration rewards from the combustion of sorting residues counterbalance higher rewards for substituting primary

material. Even though chemical recycling performs slightly worse than mechanical recycling regarding GWP, differences in impurities, additives,

and quality aspects of the final products are not included. Including these has a substantial effect on the recycling paths’ performance (Sec-

tion 3.4). In the combined approaches, lower material losses at the regranulation plants lead to considerably lower GWP and net GWP credits

resulting from omitted incineration burdens from sorting residues and higher total yields due to additional virgin plastic produced by chemical

recycling.

All assessed scenarios show CED savings (Figure 4). Within mechanical recycling, CED savings increase with a decrease in material losses due

to decreasing incineration burdens and increasing primary material substitution rewards. CED savings of mechanical and chemical recycling are

comparable. Although chemical recycling has a higher energy demand than mechanical recycling, this is compensated by higher rewards for sub-

stituting primary material. Thus, the CED advantageousness of specific mechanical and chemical recycling processes cannot be clearly stated,

but depends on different factors, for example, sorting yield, incineration of sorting residues, and specific plant efficiencies (Sections 3.4 and 4).

Combined recycling has the highest CED savings, combining low incineration burdens and high rewards for substituting primary material. With

less yield in mechanical recycling, Scenarios 1.1.3 and 3.2 are comparable regarding GWP and CED, but with considerably higher revenues in

Scenario 3.2.

For all considered plastics, mechanical recycling obtains net revenues (Figure 5). For HDPE, the revenues are 0.16 €/kg waste input decreasing
to 0.08 €/kg with lower sorting yield. Chemical recycling has higher revenues (0.24 €/kg waste input) and the combined recycling yield maximum

revenues (between 0.16 and 0.29 €/kg waste input depending on the plastics type [see Annex A6 of Supporting Information S2]). The reason for

this is higher (virgin) product qualities and market prices, and a higher overall yield. The revenue amount depends on the re-granulate price, the

substituted amount, cost of primary plastic production, and the specific polymer synthesis cost. Combined recycling shows the highest carbon

efficiency (74%) in Scenario 3.1, outperforming chemical (59%) andmechanical recycling (20–40%) (Figure 6).

In Germany, 5.2 million tons of post-consumer plastic wastes waste from packaging, construction, vehicles, electrical and electronic equipment,

household, agriculture, and others are collected annually (Conversio, 2018), including 3.8 million tons of the considered plastics. Depending on the

material losses, between 0.8 (Scenario 1.2.1) and 1.5 (Scenario 1.1.1) million tons re-granulate per year could be kept in use. Assuming combined

recycling, between 2.5 (Scenario 3.2) and 2.8 (Scenario 3.1) million tons/year could be recycled. Thus, 1–2 million tons/year could be kept in the

economy additionally, instead of incinerating them. This would suffice to achieve both the EU and German plastics packaging recycling targets

(Section 1). Moreover, the additional plastic yield from chemical recycling would be of virgin quality.

Today, around 1.9 million tons/year re-granulates are reclaimed from the total plastic waste in Germany (=ca. 30%) annually by mechanical

recycling (Conversio, 2018). However, re-granulates often have lower quality because of limitedmaterial purity, degradation ofmaterial properties,

or color impurities. Thus, they cannot be used for specific applications (e.g., food packing, medical products) (UBA, 2018b). This is discussed within

the sensitivity analysis (Section 3.4). In other EU countries, mechanical recycling rates are lower than in Germany (PlasticsEurope, 2018a), and

application of the assessed recycling technologies could realize significant GWP and CED reductions.

3.4 Quality of re-granulate from mechanical recycling

Virgin material substitution ratio and organic contamination can significantly influence assessments of mechanical plastics recycling (Lazarevic

et al., 2010; Turner et al., 2015; Gu et al., 2017; Van Eygen et al., 2018a). Thus, a substitution ratio of 1:0.81 is recommended by Rigamonti et al.

(2009) and Turner et al. (2015) for mechanical plastics recycling to reflect lower material qualities of re-granulates. The baseline scenario does

not consider reduced re-granulate qualities; these are subject to the following sensitivity analysis (see Annex A8 of Supporting Information S2 for

details).

The sensitivity analysis shows that lower substitution ratios lead to significantly higher environmental impacts of mechanical recycling due to

lower rewards for substituting primarymaterial (Figure 7). If more re-granulate than virgin material is needed to produce a specific product, chem-

ical recycling is more advantageous concerning CED and GWP. For substitution ratios of 1:0.4 and higher, the combined mechanical and chemical

recycling is advantageous concerningCED. ForGWP, combined recycling is advantageous independently of the substitution ratio. Below a substitu-

tion ratio of 1:0.4, chemical recycling leads to higherCED savings than combined recycling. Associated costs do not change due to assumed constant

market prices andmarket clearance (=all re-granulates are sold for the given price).

The sensitivity analysis emphasizes the need to assess the re-granulate quality. In chemical recycling, all or most additives, pollutants and impu-

rities are captured in the solid fraction and extracted from further processing. Thus, it is particularly useful to handle “difficult” plastic wastes.
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F IGURE 5 Comparison of considered recycling processes and scenarios regarding their net product costs [€/kg input]. Assessment for 1 kg of
input waste. Underlying data used to create this figure can be found in Supporting Information S1

4 DISCUSSION

Here, the study results are discussed regarding distinctions to existing studies (Section 4.1) and limitations of this study are specified (Section 4.2).

4.1 Comparison of results with literature

For mixed plastics, Turner et al. (2015) calculated lower GWP impacts than this study. However, their data quality is rather poor and comparability

can be questioned due to different assessed plastics (source-segregated plastics vs. real waste with mixed plastics, paper, metals, and other mate-

rials) and due to other national energy mixes. A higher carbon intensity of the energy mix results in higher rewards for energy generation, and

better performance of mechanical recycling. Gu et al. (2017) found that mechanical PE recycling has only around 76% of the GWP impact of its

virgin production.We can confirm these results for PE. In this study, the averageGWP impact of all assessed plastics constitutes 70% of their virgin

production.

BothChen et al. (2011) andPerugini et al. (2005) highlight synergies between various technologies, especially a cascade utilization ofmechanical

and chemical recycling regarding a good environmental performance. These advantages of combining mechanical and chemical recycling can be

confirmed. However, a direct comparison with Chen et al. (2011) is impossible, due to differences in themethodology.

In Bergsma (2019a), pyrolysis of the waste fraction led to lower GWP savings than mechanical recycling, which is consistent with our results.

Meys et al. (2020) favor mechanical recycling over refinery feedstock production for the mono waste streams of PET, HDPE, LDPE, PP, and GPPS
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F IGURE 6 Comparison of different plastic recycling paths including rewards for substituted primary plastic production (assessed in Annex A3
of Supporting Information S2), power and heat gains, as well as burdens or rewards, respectively, formetal byproducts, incineration, and landfilling.
Values are given for the treatment of 1 kg of waste (see FigureS2–5 of Supporting Information S2 for its composition). The percentages above the
process boxes indicate the carbon efficiency of the respective process while those at the final products indicate the carbon efficiency of the whole
recycling option. Underlying data used to create this figure can be found in Supporting Information S1
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F IGURE 7 CED andGWP impact of thematerial substitution ratio of HDPE re-granulate and virgin material. Thematerial substitution rate
does not change for virgin material produced by chemical recycling (Scenario 2). Underlying data used to create this figure can be found in
Supporting Information S1
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regarding GWP impact, which is also consistent with our results. Russ et al. (2020) found no significant difference regarding GWP and CED impact

between mechanical and chemical recycling (pyrolysis), but state a high impact of thermal recycling paths and carbon intensities of the electricity

mixes on the results, due to their implications for the incineration rewards/burdens. This is consistent with our results. A combined recycling path

is not considered in Russ et al. (2020).

Although similar results are found, the comparison with other studies is difficult as the considered plastic fractions differ. Particularly, different

input waste leads to different pyrolysis results and impacts the assessment of chemical recycling.

4.2 Shortcomings/limitations

Despite reasonable results, this study has limitations and the results face uncertainties due to (1) data and methodological limits, (2) model limits,

or (3) assumptions:

(1) First, the measured LWP composition is quite old and might not reflect the current LWP composition. PET is excluded as it is separately col-

lected and recycled inGermany. Furthermore, pyrolysis data is limited to specific pilot plants. The theoretical pyrolysismodelling (Section 2.3.3)

based on this data requires future validation in experiments with current waste compositions. Potential changes in the plants’ operational

modes are not covered.

Polymer deterioration and additives (e.g., Gu et al., 2017) usually reduce material quality in mechanical recycling (Turner et al., 2015). Like Van

Eygen et al. (2018a), our mechanical recycling assessment neither covers fillers/additives nor hazardous/interfering materials like phthalates

(e.g., Pivnenko et al., 2016); only different substitution ratios are addressed in the sensitivity analysis (Section 3.4). Furthermore, pollutants

or impurities enter the material flow (into and onto the plastics) due to contamination during use or by other wastes. Particularly, additives

like bromine, chlorine, and phthalates need to be included in LCA datasets following EU regulation 1907/2006 (REACH). Compliance with this

regulation is problematic for mechanical recycling, but less challenging for chemical recycling.

Furthermore, this study does not consider chemical recycling processes other than pyrolysis, such as gasification, or partial solvolytic recycling.

It should be emphasized that pyrolysis results strongly depend on the applied technology, process temperature, and process pressure. We

used data of rotary kiln pyrolysis technology; different pyrolysis technologies might lead to varying results. This is particularly important when

comparing different studies. Also,weonly assessed thepyrolysis of LWPwaste and transferred the results to thepyrolysis of LWPwaste sorting

residues. A more detailed analysis of the examined scenario must be carried out, since the data of Andreas et al. (1981) does not allow data

variation and scenario analysis. Providing this data is part of ongoing researchby the authors to providepyrolysis LCI data andenable sensitivity

analysis of chemical recycling. Detailed investigations of the pyrolysis of different waste compositions are necessary and will be part of future

research.

Chemical recycling technologies are less mature than mechanical recycling technologies. The lower technology readiness level of chemical

recycling has not been considered in the sensitivity analysis of this study.Moreover, transportationwas excluded, as its impact is relatively low;

900 km account for 10% of the treatments (Chen et al., 2011).

(2) Second, this study assesses a defined, representative LWPwaste inGermany.However, it is a snapshot and thus not reflecting carbon emission-

factors of other national energymixes or its timely change inGermany (e.g., coal exit). Thus, the study results are specific for Germany. Further-

more, the study is static and does not cover dynamics, for example, of feedback loops, changing LWP waste compositions,11 changing market

demand, cost/price variability, trends, or changing substitution ratios over time.

(3) Third, assumptions introduce uncertainties that were partly covered by scenarios (Section 2.5) and sensitivity analyses (Section 3.4, Annex A7

of Supporting Information S2). However, assumptions might not reflect real market behavior or re-granulate and secondary plastics applica-

tions, but might impact the assessment (particularly the calculated rewards). Market effects have been discussed and considered in a reduced

substitution ratio (Section 3.4). In reality, a mix of scenarios or sensitivities is likely, due to differing effectiveness of collection and recycling

networks, plant efficiencies, and variable waste compositions.

A similar approach to assess plastics production, sorting, and recycling paths is not known to the authors. It can support decision-makers from

academia, industry, and politics to make better-informed choices for optimal recycling and treatment strategies of mixed plastic wastes. Further-

more, it provides performance benchmarks for existing and new processes.

Finally, it should be noted that numerous limitations listed here are not unique to this study, but are ubiquitous in the LCA studies on waste

recycling (e.g., Turner et al., 2015; Chen et al., 2011).

11 Realwastemight vary in composition and amount across regions, seasons, and due to other factors, e.g. design-for-recycling or regulations (e.g. EC2019a,b, regulations 94/62/EGand2018/852).
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5 CONCLUSIONS

Mechanical, chemical, and a combined recycling of mixed plastics waste is transparently assessed, compared, and analyzed in different scenarios

with respect to GWP, CED, carbon efficiency, and costs. Rewards and burdens are integrated for primary plastics substitution, metal by-products,

incineration of non-recyclable residues, and landfilling of mineral non-combustible recycling residues, as well as GWP andCED gains from heat and

power recovery. The developed assessment model is applied in a case study on separately collected LWPwaste in Germany.

The results show that mechanically or chemically recycled plastics are advantageous compared to virgin plastics produced from fossil feed-

stock. Mechanical and chemical recycling perform similarly regarding GWP and CED, depending on sorting yield, thermal recycling paths of sorting

residues and substitution ratio. Chemical recycling performs better thanmechanical recycling concerning cost and carbon efficiency. Both chemical

recycling andmechanical recycling are outperformed by a combination of both in all four assessed categories; particularly for GWP and CED this is

valid for substitution ratios as low as 1:0.4. In the baseline, the costs are insensitive to differing substitution ratios.

Recycling potentials of LWPwaste in Germany are 2.8 million tons/year when considering a combined mechanical and chemical recycling of the

considered plastics. This would be sufficient to reach both EU and German recycling targets (EC, 2018). However, additional measures like design-

for-recycling, CO2-taxes, higher incineration prices (EC, 2018), improved packaging performance (EMAF, 2016) or management (Federal Ministry

of Justice and Consumer Protection, 2019) are required to reachmechanical recycling targets (Conversio, 2018; Christiani, 2017).

The study results strongly depend on local or national circumstances such as waste composition, local processing plants, or energy mix (carbon

intensity). Thus, they are only partly transferable. Calculated economic benefits might also not be generated, if organizational barriers, lacking

stakeholder cooperation, or market aloofness for recycled products persist.

Research is necessary to provide experimentally validated data specifically for chemical recycling of real mixedwaste. Standardization12 efforts

aim at including mass balancing, allocation rules, and chemical characteristics (e.g., calorific value) to improve data consistency, comparability, and

traceability of recycled feedstock into newand certified recycled products (EMAF, 2019; PlasticsEurope, 2017). Future research should address the

quality assessmentwithinmechanical recycling. And, a detailed study of the pyrolysis process and process control for different waste compositions

(beyond household waste) is needed (Vogel et al., 2020). The developed assessment model could be applied to other plastic waste or chemical

recycling technologies such as gasification (Seidl et al., 2019) or solvolysis (Zhao et al., 2018; Schlummer et al., 2020).
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