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Abstract: Sophisticated and highly specialized optical
measuring devices are becoming increasingly important
for high-precision manufacturing and environment per-
ception. In particular, light field cameras are experienc-
ing an ever-increasing interest in research and industry as
they enable a variety of new measurement methods. Un-
fortunately, due to their complex structure, their calibra-
tion is very difficult and usually precisely tailored to the
particular type of light field camera. To overcome these
difficulties, we present a method that decodes a light field
from the raw data of any light field imaging system with-
out knowing and modeling the internal optical elements.
We calibrate the camerausing aprecise generic calibration
method and transform the obtained ray set into an equiva-
lent light field representation. Finally,we reconstruct a rec-
tified light field from the irregularly sampled data and in
addition we derive the geometric ray properties as intrin-
sic camera parameters. Experimental results validate the
method by showing that both the information of the ob-
served scene and the geometric structure of the light field
are preserved by an adequate rectification and calibration.

Keywords: Light field, decoding, rectification, generic
camera calibration.

Zusammenfassung:Anspruchsvolle undhochspezialisier-
te optische Messgeräte werden für die hochpräzise Ferti-
gung und Umfelderkennung immer wichtiger. Insbeson-
dere Lichtfeldkameras erfahren ein immer größeres Inter-
esse in Forschung und Industrie, da sie eine Vielzahl von
neuen Messmethoden ermöglichen. Leider ist ihre Kali-
brierung aufgrund ihres komplexen Aufbaus sehr schwie-
rig und meist genau auf den jeweiligen Lichtfeldkamera-
Typ zugeschnitten. Um diese Schwierigkeiten zu über-
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winden, stellen wir eine Methode vor, die ein Lichtfeld
aus denRohdaten eines beliebigen Lichtfeldaufnahmesys-
tem decodiert, ohne die internen optischen Elemente zu
kennen und zu modellieren. Wir kalibrieren die Kamera
mit einer präzisen generischenKalibrierungsmethodeund
transformieren das erhaltene Strahlenset in eine äquiva-
lente Lichtfelddarstellung. Schließlich rekonstruieren wir
ein rektifiziertes Lichtfeld aus den unregelmäßig abgetas-
teten Daten und leiten darüber hinaus die geometrischen
Eigenschaften der Strahlen als intrinsische Kamerapara-
meter ab. Experimentelle Ergebnisse validieren die Me-
thode, indem sie zeigen, dass sowohl die Informationen
der beobachteten Szene als auch die geometrische Struk-
tur des Lichtfeldes durch eine adäquateRektifizierungund
Kalibrierung erhalten bleiben.

Schlagwörter: Lichtfeld, Dekodierung, Rektifizierung, ge-
nerische Kamerakalibrierung.

1 Introduction

In recent years, research on light fields and light field cam-
eras (plenoptic cameras) has become more and more im-
portant. In contrast to traditional cameras, light field cam-
eras are able to capture both angular and spatial informa-
tion of the light rays that are propagated through space.
They are thus able to obtain multiple views of the same
scene ina singlephotographic imageexposure, to estimate
the depth of the scene or to shift the focus of the image af-
ter capturing the image [11]. These advantages have led to
light field cameras becoming an important tool in image
processing andopticalmetrology. As a result, a precise cal-
ibrationof these camerasbecomes increasingly important.

The first commercially available light field camerawas
presented by Ng [11]. He proposed a hand-held camera
that consisted of an additional microlens array (MLA) that
is placed in a small distance in front of the sensor, see
Fig. 1. This array additionally allows to detect the direc-
tional dependencies of the rays and thus a light field can
be extracted. Since the design of microlens-based cam-
eras is not trivial, the light field has to be decoded from
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Figure 1: Schematic structure of a light field camera.

the raw sensor image using sophisticated algorithms. Fur-
thermore, each lens (main lens and micro lens) is affected
by the usual lens aberrations, i. e. a subsequent rectifica-
tion of the light field is necessary to obtain correct geo-
metric information relevant for image processing and ap-
plications in optical metrology. Dansereau et al. [4] pre-
sented a method that first extracts a light field from the
rawsensor data by several reshaping and interpolationop-
erations and then rectifies it by estimating the values of
a 12-parameter camera model. Bok et al. [3], in contrast,
presented a method that could extract the rectified light
field directly from the raw sensor data by also using a low-
dimensional camera model. In order to be able to extract
any light field information from the raw data, both meth-
odsmust initially detect the centers of themicrolenses very
precisely. But even with a subpixel accurate detection, the
camera rays at the boundary of the microlenses are very
difficult tomodel in bothmethods, and therefore these pix-
els are mostly discarded.

Another disadvantage of these methods is the model-
based calibration in general. It can’t describe highly lo-
cal errors such as the strong distortions at the boundaries
of the microlenses using only a low-dimensional model.
As a consequence, in recent years, new camera models
were proposed that describe the camera as a generic imag-
ing system. They are able to model the ray of each pixel
individually and thus allow for a high-precision calibra-
tion [6, 13]. However, the biggest disadvantage of the com-
mon light field reconstruction methods is that they are
only applicable for a single type of camera, e. g.microlens-
based light field cameras whose microlenses are exactly
focused onto the sensor. To our knowledge, there is no sin-
gle method yet that can reconstruct a light field from any
type of light field camera.

In this workwe present amethod to reconstruct a light
field that was captured by an arbitrary light field imaging
system, without knowing the actually used configuration
of optical elements inside the camera. We propose to use
a generic camera calibration procedure to optimally cali-
brate each individual pixel of the camera, where all dis-
tortions of the optical elements are contained in the un-
constrained bundle of sight rays, and thus are modeled
very accurately. Further, we propose to use this bundle
of rays to obtain an irregularly sampled presentation of
the light field, we present a simple reconstruction method
to interpolate a rectified light field from the irregularly
spaced camera rays, and finally, we demonstrate how to
calculate the intrinsic camera parameters. We use the pre-
sented method to calibrate and reconstruct light fields
from two commercially available light field cameras which
are based on different optical designs, a Lytro Illum and a
Raytrix R5.

The paper is organized as follows: Section 2 provides
the background about light fields and light field cameras.
It gives an introduction to the concept of generic camera
calibration andmotivates our approach. Section 3.1 and 3.2
derive the 4D light field parameters from the uncon-
strained ray bundle obtained in the generic calibration.
Section 3.3 describes the algorithm for the reconstruction
of the light field from the rays’ intensity values, Section 3.4
derives the intrinsic camera parameters, and finally, Sec-
tion 4 experimentally validates the proposed method by
analyzing real light field images. At last, Section 5 draws
conclusions and presents directions for future work.

2 Background

2.1 Light field acquisition

The light propagating through space contains a variety of
information. In a scene of interest, light can be described
by the plenoptic function. Within the field of geometri-
cal optics, this function can be described with seven vari-
ables: three spatial coordinates, two angular coordinates,
one spectral value and time. A conventional camera, how-
ever, usually only captures a subspaceof this function: two
spatial coordinateswith a color/intensity value and time in
case of video cameras.

More information can be extracted when using light
field acquisition devices. The 4D light field parameterizes
a light ray with four coordinates (x, y, u, v) and to each ray
a corresponding spectral value or color λ can be assigned,
resulting in a 5D function L(x, y, u, v, λ). However, for sake
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of simplicity, we omit the spectral value λ for the rest of
this paper. In most cases, the two-plane parameterization
is used, consisting of two parallel planes. The x, y-plane
usually represents the spatial dependency of the light field
and the u, v-plane symbolizes the angular properties. With
this, each ray can be defined by the intersection points
with these two planes.

Themost commonly used designs for light field acqui-
sition devices are microlens-based light field cameras [7].
Their layout is similar to that of a conventional camera
with the essential difference that an array of microscopi-
cally sized lenses is placed in front of the sensor, see Fig. 1.
By adding this microlens array it is possible to capture a
section of the 4D light field L(x, y, u, v) of a scene and to
encode it onto the 2D sensor.

When the distance between the MLA and the sensor
corresponds to the focal length of the microlenses, the
camera is an unfocused plenoptic camera [11]. The coor-
dinates of the light field’s two-plane parameterization are
represented here by the x, y- and u, v-coordinates,whereby
x, y define the position of amicrolens in front of the sensor
and thus, they encode the spatial dimension of the light
field.u, v describe the coordinateswithin themicrolens rel-
ative to its center and in this way, they implicitly provide
information on where a light ray has passed through the
main lens. They represent the angular information of the
light field. Each u, v coordinate therefore represents a vir-
tual subcamera, which observes only a small part of the
main lens,meaning that a light field camera can also be in-
terpreted as a multi-camera array, whereby each subcam-
era, often referred to as subaperture image, has a slightly
different view onto the scene, see Fig. 2.When the distance
between the MLA and the sensor differs from the focal
length of the microlenses, the camera is a focused plenop-
tic camera [8]. The relation between light field coordinates
and the optical components of the camera is no longer as
intuitive as it was before. Now, each microlens contains
spatial information by imaging a microimage. Further, the
position of a microlens contains angular and spatial infor-
mation, due to a slightly different view of the scene in each
microimage. For a comparison of the focused and unfo-
cused plenoptic camera see Fig. 3.

The additional information compared to a standard
camera allows to change the perspective of the scene after
the exposure, which allows to extract depth information.
Moreover, even after capturing a dynamically active scene,
it becomes possible to shift the focus plane by rendering
new images from the 4D light field data.

In particular, there are different configurations, e. g.,
the distance of the microlens array to the sensor can be
varied or microlenses with multiple focus lengths can be

Figure 2: Interpretation of the light field camera as an array of sub-
cameras which have slightly different views of the scene.

Figure 3: Camera raw data. Left: Unfocused plenoptic camera (Lytro
Illum). The pixels under each microlens contain only angular infor-
mation. Right: Focused plenoptic camera (Raytrix R5). The pixels
under each microlens contain spatial information.

used [5, 8, 11]. Furthermore, there exist a variety of more
exotic designs, e. g., coded aperture based light field cam-
eras, multispectral light field cameras, kaleidoscope-like
configurations and of course camera arrays [7, 10, 16].

However, all have in common that decoding the light
field from the sensor data and calibrating the camera is
generally difficult. For example, to reconstruct the light
field of microlens-based cameras, the centers of the mi-
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crolenses, which are often arranged in a hexagonal grid,
must be detected very accurately [9]. The 4D light field
can then be extracted by shifting the pixels onto a rectan-
gular grid and reshaping the 2D microlens images into a
4D array. The resulting light field, however, generally still
contains all the distortions of the main lens and the mi-
crolenses, which is why an additional rectification is nec-
essary [3, 4].

2.2 Generic camera calibration

A camera maps the three-dimensional world onto a two-
dimensional image. The calibration of a camera generally
refers to the determination of the parameters of this map-
ping operation. A good calibration procedure is based on
a careful modeling of the optical elements inside the cam-
era, which of course is strongly influenced by the camera
type. Typically, low-dimensionalmodels are used tomodel
the entire camera. Standard cameras, for example, often
use the model of Zhang [18], which represents the cam-
era as a pinhole model with additional distortion param-
eters. However, these simple models have the disadvan-
tage that they have only a limited descriptive capability.
Thus, for modern cameras, or rather for more advanced
optical systems, not all pixels canbeperfectly describedby
these few model parameters. As the complexity of an op-
tical system increases, it becomes more and more difficult
tomodel it with a low-dimensional representation. Hence,
the lack of flexibility and precision has led to the develop-
ment of new camera models. Cameras are now described
as generic imaging systems, which are independent of the
specific camera type and allow high-precision calibration
[2, 6, 13]. An imaging system is modeled as a set of pho-
tosensitive pixels, with all other optical elements not ex-
plicitlymodeledbut representedby ablackbox. Eachpixel
collects light from a bundle of rays, referred to as raxel, en-
tering the imaging system. The set of all raxels with their
associated geometric parameters then forms the complete
generic imaging model.

The geometric parameters can be described for each
pixel i by a single camera ray running through the center
of the raxel along the direction of light propagation. There
are a multitude of options for describing rays. One mathe-
matically easy-to-handle choice are, for example, Plücker-
line coordinates [1, 14]. Here, a ray li = (d

T
i ,m

T
i )
T consists

of a direction vector di and a moment vectormi. And due
to rays having four degrees of freedom in 3D-space, two
constraints must be considered: dTi mi = 0 , ‖di‖ = 1 .

The calibration of the entire bundle of rays belonging
to the camera is then usually realized with the help of a

minimization of the ray projection error εi. Meaning, the
sum of the Euclidean distances of the rays li to known ref-
erence points pik in space is minimized [13]:

argmin
li
∑
i
ε2i = argmin

li
∑
i,k
de(li,pik)

2 , (1)

with de(li,pik) = ‖pik × di −mi‖ . A minimization of the
commonly used ray reprojection error on pixel level is of-
ten not possible, becausemost generic models do not sup-
port a direct projection of points in space onto the pixel
plane. See [13] for details.

The advantage of this type of calibration is that there is
no longer one globalmodel that has to describe the camera
over the entire pixel plane. Instead,with the genericmodel
evenhigh-frequencydistortions in the optical imaging sys-
tem can be modeled equally accurate both locally and
globally, resulting in a highly accurately calibrated cam-
era. This is specifically important for light field cameras
where it becomes very difficult to model distortions of the
microlenses with a global model. In the end, however, one
does not obtain an image but rather a set of rays with cor-
responding intensities. This does not interfere with many
applications in optical metrology, e. g., profilometry or de-
flectometry, where only the geometric ray properties are
relevant [15, 17]. Yet itmay complicate other tasks since the
spatial correlations between pixels and their associated
rays are lost. The classical image processing algorithms
cannot be applied without further effort. In the specific
case of the light field camera, algorithms such as a subse-
quent refocusing of the image or a simple depth estimation
can no longer be performed using standard methods. Our
approach and proposal is therefore to use the generic cam-
era model to obtain all the geometric ray parameters of an
arbitrary light field camera as accurately as possible. Sub-
sequently, we use this information to reconstruct the light
field from the set of all rays. And consequently, with that
we obtain a generic algorithm to extract a light field from
an arbitrary optical imaging system, neglecting the actual
design of the used light field acquisition device.

3 Light field reconstruction

3.1 Normalizing the ray bundle

In order to decode a light field from the raw sensor data,
the cameramust first be calibrated by using, e. g., a generic
calibration method as described in the previous section.
As a consequence, all the preprocessing steps of the clas-
sical light field calibration are not needed at all. There-
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fore, it is not necessary to detect the centers of the mi-
crolenses and no hexagonal sampling of the MLA has to
be compensated. However, due to the black box charac-
ter of the generic calibration, it is initially not possible
to define a consistent camera coordinate system for every
calibrated camera. Even when using the same calibration
algorithm for the same camera, the outcome could vary.
Hence, the result of a generic calibration is (inmany cases)
not unique, i. e. the calibrated camera rays are represented
in an arbitrary coordinate system, which usually depends
on the starting configurationof the generic calibrationpro-
cedure or on the used calibration reference target. There-
fore, to transform this arbitrary coordinate system into one
that is fixed to the individual camera, a few steps are nec-
essary.

First, we define the origin of this coordinate system to
be the optical center of the camera, and for a light field
camera this corresponds approximately to the center of the
exit pupil. The location of it can be understood as the point
po that has the smallest distance to all rays, i. e. it can be
calculated by minimizing the weighted mean of the Eu-
clidean distances to all rays:

po = argmin
p
∑
i
wi ‖p × di −mi‖

2 (2)

= (∑
i
wi[di]×[di]

T
×)
−1

∑
i
wi[di]×mi , (3)

where [a]× is the matrix equivalent of the cross product
with [a]×b = a × b. The weighting factor can be chosen
to suppress poorly calibrated rays and to remove outliers.
For instance, a simple choice is to use the inverse of the
ray projection error wi = 1/εi that is calculated during the
generic calibration procedure.

As a next step,wedefine the z-axis of our camera-fixed
coordinate system, i. e. the view axis, as the average ray
direction which can be found by solving the constrained
optimization problem

dz = argmax
d
∑
i
wi ⟨d,di⟩

2 , s.t. ‖d‖ = 1 . (4)

Using the Lagrangemultiplier formalism and solving for d
produces an eigenvalue problem:

dz = argmax
d
∑
i
wi ⟨d,di⟩

2 − μ (dTd) , (5)

⇒ (∑
i
widid

T
i )dz = μdz , (6)

where the eigenvector dz with largest absolute eigenvalue
μ results in the average ray direction. A corresponding ro-
tation matrix R∠dz , that rotates the bundle of rays into the
new z-direction, can then directly be calculated.

The last remaining degree of freedom is the rotation
around this new z-axis. Since light field cameras project
the light onto a rectangular sensor, we wish to align the
coordinate system’s x- and y-axis with the corresponding
sensor’s x�- and y�-axis, respectively. Furthermore, due to
the almost perspective projection, the change of ray direc-
tion with respect to the x- and y-axis should correspond
to the change with respect to the x�- and y�-axis. Thus, us-
ing di = (dx,i, dy,i, dz,i)T, the rotation angle that aligns both
coordinate systems can be found by calculating the mean
image gradients with respect to x� = (x�, y�)T:

(
dxx�
dxy�
) =
∑i wi∇x�dx,i
∑i wi

, (7)

(
dyx�
dyy�
) =
∑i wi∇x�dy,i
∑i wi

. (8)

By estimating the orientation angle of the gradients with
respect to the sensor axes, a rotation matrix Rα can be
found that rotates the coordinate system around the z-axis
by an angle α:

αx = arctan2 (dxx� , dxy�) , (9)

αy = arctan2 (dyx� , dyy�) +
π
2
, (10)

α = arctan2(sin αx + sin αy , cos αx + cos αy) . (11)

As final action, we transform the Plücker-ray param-
eters into light field coordinates. For this, we first trans-
form the rays into the camera-fixed coordinate system, by
shifting the origin and appropriately rotating the axes, and
then calculate the intersections of the rays with the two-
plane representation of the light field. The u, v-plane is
placed orthogonal to the z-axis into the origin of the co-
ordinate system. The x, y-axis is placed parallel to this at
an arbitrary distance f , see Fig. 4. And thus, each ray li =
(di,mi)

T can be described by four light field coordinates
x̄i, ȳi, ūi, v̄i:

λ (x̄i, ȳi, ūi, v̄i, 1)
T = PT li , (12)

with the coordinate transformation matrix T and the pro-
jection operator P (see [1, 12] for details1):

T = ( RαR∠dz 0
RαR∠dz [−po]× RαR∠dz

) , (13)

P =(

f 0 0 0 −1 0
0 f 0 1 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0

) . (14)

1 The projection operator P of Johannsen et al. [12] may have a typo
because it is slightly different from ours.
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Figure 4: Two-plane parameterization of the light field. The ray li intersects the u, v- and the x, y-plane in (ui , vi , xi , yi). The intensities in the
planes visualize the spatial distribution of the intersection points as a 2D histogram for the Lytro Illum data set. The u, v-plane lies in the
plane of the camera’s main lens. The x, y-plane corresponds to a projection of the rectangular sensor into space.

3.2 Regular light field grid

To reconstruct a light field from the bundle of rays belong-
ing to the camera, the calibrated ray coordinatesmust first
be transformed to a standardized grid. Afterwards, the ob-
served ray intensities can be interpolated to a discretized
light field, which we parameterize in the same two-plane
representation as before. The complete set of real camera
rays described as a set of 4D-points is arranged in an irreg-
ular 4D-grid. Still, the classical light field algorithms re-
quire a regular grid with uniform spacing. Therefore, this
irregular grid of continuous rays has to be interpolated to
a discrete light field described by a regular grid.

Hence, we need to define a regular grid with integer
grid points (x, y, u, v) ∈ [0,Nx − 1]×[0,Ny − 1]× [0,Nu − 1]×
[0,Nv − 1] with a fixed number of samples Nx ,Ny ,Nu,Nv in
the respective dimensions. After the discrete target light
field has been defined, we need to transform the set of real
camera rays for which we need to estimate the parameter
space of the actual ray geometry. First, the domains of the
real light fielddimensions are determinedby analyzing the
2D histogram of the intersection points of rays with both
planes of the light field representation, see Fig. 4. In order
to place the regular grid structure into the irregular data,
we define the grid extension by using a threshold value on
the histogram data. A threshold of, e. g., 10% ensures that
most of the camera’s rays are within the range defined by
the grid.

Since the real light field parameters are specified in
physical units, e. g. mm, they have to be transformed to
the previously defined discrete 4D-pixel grid by shifting
the minimal value xo, yo, uo, vo, by normalizing the width
of the histogramΔx,Δy,Δu,Δv and by considering the sam-

pling rate. The normalized coordinates are defined by:

xi =
Nx − 1
Δx
(x̄i − xo) , yi =

Ny − 1
Δy
(ȳi − yo) ,

ui =
Nu − 1
Δu
(ūi − uo) , vi =

Nv − 1
Δv
(v̄i − vo) .

(15)

This still results in irregularly spaced data, which however
can now be interpolated more easily to the desired regu-
larly sampled light field.

The number of 4D cubes in each direction and the
length of their edges could in principle be defined arbi-
trarily but it is advisable to incorporate knowledge about
the physical camera. For example, our light field camera
(Lytro Illum) has microlenses with a radius of about 7 pix-
els. Thus, this sampling can be used directly as a basis for
the discretization of the u, v-plane, where Nu = Nv. The
sampling of the x, y-plane can be determined in the same
way by, e. g., the number ofmicrolenses in front of the sen-
sor, whereby it is advisable to choose Ny =

Δy
ΔxNx to obtain

approximately square spatial pixels.

3.3 Reconstructing radiometric properties

After the parameters of the light field have been defined,
each corresponding light field pixel can be determined for
every ray by finding the discrete grid point that is closest to
the ray’s light field representation. Since the rays and the
grid arenormalized to the same scale, the set of raysNx,y,u,v
that has an effect on a pixel (x, y, u, v) can easily be found
by a fast and simple rounding operation to the closest inte-
ger [ ⋅ ]. As a result, each light field pixel is only influenced
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by rays that lie in the corresponding 4D cube:

Nx,y,u,v :=

{{{{
{{{{
{

i : m
2
≥

""""""""""""""""""

(

x
y
u
v

) −(

[xi]
[yi]
[ui]
[vi]

)

""""""""""""""""""∞

}}}}
}}}}
}

, (16)

where each individual ray is assigned to a nearest pixel by
using m = 1. To allow a ray to influence more than the
nearest pixel, higher order neighbors can be utilized with
m > 1 ,m ∈ ℕ+. The intensity of a discrete pixel can thenbe
calculated from the intensity values of the corresponding
rays as a weighted average:

L(x, y, u, v) =
∑i∈Nx,y,u,v

wi L(xi, yi, ui, vi)
∑i∈Nx,y,u,v

wi
. (17)

For theweighting factorwe calculate the distance between
the ray’s light field parameters and its correspondence in
the grid. In order to consider larger deviations less, the er-
ror is squared and exponentially weighted.

wi =
1
εi
exp (− """""(x, y, u, v)

T − (xi, yi, ui, vi)
T"""""

2
2) . (18)

An additional weighing of the different light field coor-
dinates is not required, since these have already been
brought to a unified basis by the normalization of Sec-
tion 3.2. To additionally benefit from the results of the
generic camera calibration, an error measure εi is taken
into account, e. g. the pixelwise ray projection error [13].
This suppresses badly calibrated camera rays, which of-
ten do not have good optical properties, e. g. dead pixels or
pixels at the edges of microlenses, which can be strongly
distorted.

3.4 Reconstructing geometric properties

Apart from the radiometric reconstructionof the light field,
the geometric ray properties are relevant formany applica-
tions. For opticalmetrology, 3D reconstruction, or other ar-
eas of computer vision, a mapping is needed to transform
pixel coordinates intoworld coordinates, andvice versa, to
project points fromworld coordinates onto the pixel plane.
Unlike the classic camera model, where each world point
is mapped to only a 2D pixel pair, the same point can be
mapped tomore thanone4D light field pixel. Illustratively,
this can be understood by the observation that a light field
camera can also be interpreted as an array of individual
virtual subcameras, where an observed point is mapped
to a 2D pixel pair in each individual camera’s virtual sen-
sor plane. We therefore need for every angular coordinate

a projection equation from world points to spatial pixels.
The intrinsic camera parameters required for this are de-
scribed for each angular coordinate by a projection matrix
(comparable to the standard camera model [18]):

K(u, v) =(
fx 0 cx(u)
0 fy cy(v)
0 0 1

) . (19)

The parameters of this matrix can directly be determined
from the two-plane parameterization of the light field:

fx = f
Nx − 1
Δx
, (20)

fy = f
Ny − 1
Δy
, (21)

cx(u) = u
Δu
Δx

Nx − 1
Nu − 1
+ (Nx − 1)

uo + xo
Δx
, (22)

cy(v) = v
Δv
Δy

Ny − 1
Nv − 1
+ (Ny − 1)

vo + yo
Δy
. (23)

Since the optical centers of the individual subcameras
are slightly displaced with respect to each other in the
u, v-plane, a corresponding translation vector is required
to represent the relative offset with respect to the central
subcamera:

t(u, v) =(
tx(u)
ty(v)
0
) =(

u Δu
Nu−1
+ uo

v Δv
Nv−1
+ vo

0
) . (24)

The forward projection of a point p (measured in the co-
ordinate system fixed to the central subcamera) onto the
light field pixel (x, y, u, v) can therefore be found by:

λ(
x
y
1
) = K(u, v) (p + t(u, v)) . (25)

The backward projection of light field pixels (x, y, u, v) to
points p(λ) along the associated ray is given by:

p(λ) = λK(u, v)−1(
x
y
1
) − t(u, v) . (26)

3.5 Spherical parameterization of angular
coordinates

As can be seen in Fig. 4, the parameterization of the
u, v-plane using Cartesian coordinates is not always ideal.
If the grid is defined to enclose the entire circle, then the
light field is reconstructed for areas where no rays pass
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Figure 5: Differences in the sampling pattern of spherical coordi-
nates. Left: Equidistant radius spacing, using rn = const . Right:
Equal pixel area, using rn = √nr1.

through the u, v-plane. If the grid is placed inside the cir-
cle, sufficient rays will pass through each light field pixel.
However, information is discarded at the edges. Hence, it
would be better to directly use a spherical parameteriza-
tion of the angular coordinates, whichwould allow the en-
tire information to be capturedwithout sampling unneces-
sary areas.

We therefore define the angular coordinates by spher-
ical pixels r and ϕ. And to obtain a resolution comparable
to the Cartesian sampling, the number of samples is cho-
sen to be Nr = Nϕ = Nu and the coordinates of the samples
are in the domain r ∈ [−Nr−1

2 ,
Nr−1
2 ] and ϕ ∈ [0,

Nϕ−1
Nϕ

π].
While the advantage of a spherical parametrization is

a more efficient sampling, there are also disadvantages.
When sampling the angle and the radius in equidistant
steps, the effective pixel size growswith increasing radius,
see Fig. 5. As a result, fewer rays pass through smaller pix-
els, which would result in a lower signal-to-noise ratio for
these pixels. A possible workaround here is to use more
neighbors for the reconstruction of the pixels and to inter-
polate missing information, which could be achieved with
m > 1 in equation (16). Another possibility is to define the
radius in such a way that each pixel has the same area.
This can easily be achieved by transforming the domain of
the radius coordinates with rn ∼ √n .

The reconstructionof the light fieldusing spherical co-
ordinates is then performed in the same way as presented
in the sections above. The only distinction is the different
sampling grid in the angular plane, which needs a trans-
formation of the Cartesian coordinates ui, vi into spherical
coordinates ri,φi in eq. (16), with:

ri = sign(vi)√u2i + v
2
i , (27)

ϕi = arctan2(vi −
Nv − 1
2
, ui −

Nu − 1
2
) mod π , (28)

and a reverse transformation from r,φ back to u, v in
eq. (18), with

u = r cosϕ + Nu − 1
2
, (29)

v = r sinϕ + Nv − 1
2
. (30)

The calculation of the camera parameters is equivalent to
the one already described in Section 3.4 with merely the
u, v variables having to be replaced by the corresponding
transformations of r and φ.

4 Results
In order to be able to evaluate the method, we recorded
light field data experimentally, see Fig. 3. We used a
Lytro Illum and a monochromatic Raytrix R5. Both are
microlens-based light field cameras. The former is an un-
focused plenoptic camera [11] and the latter is a focused
plenoptic camera [8], see Section 2.1. Therefore, both cam-
eras are based on adifferent cameramodel and for a classi-
cal camera calibration bothwouldneed a different calibra-
tion procedure. However, a generic calibration is indepen-
dent of the camera. To achieve this independence, the ray
geometry of the sight rays of the cameras were estimated
using a generic camera calibration [13]. Subsequently, a
test scene was captured to be used as a basis for compari-
son of the proposed light field reconstruction.

Toallowameaningful discussionof theproposed light
field reconstruction relative to other methods in the liter-
ature, we evaluate the Lytro Illum data by choosing the
resolution of the light field grid to be (Nx ,Ny ,Nu,Nv) =
(625, 434, 15, 15) , which can be found by following the re-
mark at the end of Section 3.2. The resolution for the re-
construction of the Raytrix R5 was set to (Nx ,Ny ,Nu,Nv) =
(1000, 1000, 5, 5) . Since the reconstruction of each pixel
can be done independently fromall others, it is convenient
to parallize the equations (16), (17), (18) using a GPU. The
reconstruction of the complete light field then takes only a
few seconds (Intel Core i7-6700, Nvidia GTX 1080 Ti, 16 GB
RAM).

4.1 Evaluation of the reconstruction

4.1.1 Unfocused plenoptic camera

For a comparison of the proposed method to the state-of-
the-art, we also evaluated the light field reconstruction
methods of Dansereau et al. [4] and Bok et al. [3]. Both
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Figure 6: Top: Subaperture images from the center of the u, v-plane (Lytro Illum). Bottom: Zoomed in.

Figure 7: Top: Subaperture images from the edge of the u, v-plane (Lytro Illum). Bottom: Zoomed in.

methods onlyworkwith unfocusedplenoptic cameras and
can thus only be tested on the Lytro Illum data set.

The reconstruction of the central subaperture image
of the test scene captured with the Lytro Illum is shown in
Fig. 6. Here, only rays from the center of the u, v-planewere
used in the reconstruction. It canbe seen that theproposed
method can reconstruct the scene correctly, although there
were absolutely no presumptions about the internal opti-
cal structure of the camera and no information of the con-
nection between rays and pixels on the sensor was used.
The reconstruction results of Dansereau et al. and the pro-
posedmethod are relatively similar and show a sharper re-
sult compared to themethod of Bok et al. In detail it can be
seen that the proposed method can reconstruct the light
field even near object edges very well. The minimally blur-
rier appearance compared to Dansereau et al. is due to the

relatively freely chosen sampling of the light field. A better
optimized choice of the light field dimensions should re-
sult in less rays being summed up, thus reducing the blur.
However, moving away from the center and looking at the
subaperture images at the edge, one sees that the quality
of the images for Dansereau et al. decreases significantly,
while the proposed method and Bok et al.’s method only
become slightly blurrier, see Fig. 7. The image of Bok et al.
shows black borders, i. e. invalidated pixels, at the bottom
and on the right. The proposed method, shows a similar
effect, which, depending on how tight the dimension of
the x, y-plane is chosen using the histogram in Section 3.2,
could also be stronger.

Regardless of the reconstruction of the subaperture
images, the advantage of the proposed method becomes
apparent in another area. Apart from the central view that
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only incorporates spatial information, the light field con-
tains much more, i. e. angular information. If one fixes an
angular and a spatial coordinate in the 4D light field point-
ing in the same direction, e. g. u and x, one gets a 2D-slice
of the light field, a so-called epipolar plane image (EPI)
[11]. Lines of different slopes can be seen, whose orienta-
tion represents the depth of the observed object point [16].
Depth estimation in light fields is thus reduced to a sim-
ple local orientation estimation in these EPIs, whereby the
quality of the estimation is significantly influenced by the
calibration. The better the quality of the lines, the better
the result of the depth estimation. Fig. 8 shows examples
of horizontal and vertical EPIs generated by fixing u or v
to its center coordinates and by selecting pixel lines for
the x (red) or y (green) coordinate, respectively. The EPI of
Dansereau et al. shows strong deviations from the epipolar

Figure 8: EPIs in comparison: Center image (top). Horizontal EPI
(middle) and vertical EPI (bottom), respectively from top to bottom
in the order Bok et al., Dansereau et al., proposed method.

geometry, visible through the curvy epipolar lines. This is
caused by the poor generalizability of the method which
was developed for the old Lytro camera and works only
moderately well for the newer Lytro Illum. The EPI of Bok
et al. on the other hand is much straighter. However, there
are errors at the top and the bottom. These areas corre-
spond to pixels which are located at the boundary of the
microlenses, where the imaging ismore strongly distorted.
For the proposed method, it can be seen that the epipo-
lar geometry is maintained much better, visualized by the
straight lines in the EPIs. Also, the distortions of the lenses
are compensated, resulting in a rectified light field.

Another advantage of the proposed method is the free
choice of sampling. Therefore, a more suitable sampling
grid can be used. The spherical sampling of the u, v-plane
presented in Section 3.5 is better adapted to the data of
the Lytro Illum light field camera and can therefore bet-
ter represent the light field. No unnecessary information is
sampled and the result is more compact, or rather, more
information is contained in the same amount of data. In
contrast, if the u, v-grid in Fig. 5 encloses the shown cir-
cle, Cartesian sampling would provide no data for the pe-
ripheral images, because there are simply no rays that
couldmeasure any information. If the grid is placed inside
the circle, however, rays located at the edges of the circle
would be discarded.With the same resolution and thus the
same size of the reconstructed light field, spherical sam-
pling effectively removes less informationwhile represent-
ing the important informationmore accurately than Carte-
sian sampling. Fig. 9 shows the comparison, whereby the
light field is illustrated as an array of subaperture images.

However, in detail it is important how the spherical
sampling is implemented. As already described in Sec-
tion 3.5, two options for the choice of radial sampling are
considered. For the first choice the radius is set in equidis-
tant steps. This has the advantage that all subaperture
images for ϕ = 0 and for ϕ = π

2 correspond to the re-
sult of the Cartesian sampling. Further the corresponding

Figure 9: The light field as an array of subaperture images. Left:
Spherical sampling results in a more efficient representation of the
data. Right: Cartesian sampling reconstructs unnecessary periph-
eral areas of the circle.
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EPIs in these directions also correspond to the EPIs of the
Cartesian reconstruction, i. e. EPI(r, x)|ϕ=0 = EPI(u, x) and
EPI(r, y)|ϕ= π2 = EPI(v, y). The disadvantage is that the ef-
fective pixel size of the r,ϕ-plane is no longer the same for
each pixel. This means that for small r there might be pix-
els that are not hit by any ray (ui, vi, xi, yi). However, those
pixels can easily be interpolated from the neighboring rays
by selectingm > 1 in eq. (16).

Another way to solve this problem is to directly define
the pixel area of all pixels of the sampling grid to an equal
size, as described in Section 3.5. This has the advantage
that the signal-to-noise ratio remains the same for each
pixel. Still, a minor disadvantage becomes apparent when
analyzing the EPIs. Since the radius now scales with a
square root, the lines in the EPIs are no longer straight but
curved. The classical light field depth estimation, which
analyzes the slope of the lines, can therefore no longer
be applied here without further consideration, as it would
provide incorrect results or would necessitate correspond-
ing corrections, e. g. a local rescaling of the estimated slope
of the lines. The comparison of the EPIs is shown in Fig. 10.
As a conclusion, it is therefore recommended to use spher-
ical sampling with equivalent pixel area if the light field
camera is only used as a multi-view camera array. For use
in the field of depth estimation, where the EPIs are used,
sampling the radius in equidistant steps is preferable.

Figure 10: Spherical EPIs for ϕ = 0: Radial sampling in equidistant
steps (top). Radial sampling with rn ∼ √n steps (bottom).

4.1.2 Focused plenoptic camera

While the proposed method can already reconstruct light
fields very well from the raw data of the Lytro Illum cam-
era, another advantage of the generic method is that the
procedure works with other light field cameras without
further adaptation. To show this, the light field of a Raytrix
R5 was reconstructed. The reconstruction of the central
subaperture view is shown in Fig. 11. One can see that the
scene is reconstructed correctly and that even details are
recognizable. Since this light field camera is built differ-
ently than the Lytro, not everything in the reconstructed

Figure 11: Top: Subaperture image from the center of the u, v-plane
(Raytrix R5). Bottom: Zoomed in.

image is in focus. With this camera, the depth of field and
the focus distance are now determined by the main lens
and the main lens setting. Because our lens is not opti-
mally selected for the Raytrix R5, strong vignetting effects
are visible at the edges of themicrolenses, as canbe seen in
Fig. 3. While with the Lytro microlens-vignetting reduces
the quality of the edge subaperture views, with the Raytrix
the effect can also be seen in the central view. Very dark
pixels at the edge of the microlenses cause reconstruc-
tion artifacts in the image due to a devignetting operation.
However, this unwanted effect could be resolved by using
a suitable lenswith a hexagonal aperture and bymanually
adjusting the aperture’s opening to the correct size.

4.2 Evaluation of the calibration

Apart from the reconstruction of the light field and the
qualitative analysis of the result, an exact characterization
of the ray geometry is essential for optical metrology and
as well for many other areas of computer vision. Since the
proposedmethod is based on a generic camera calibration
and in order to be comparablewith the very same,we need
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to investigate the ray projection error. This error equals the
distance between a geometric camera ray and an observed
point on a reference target, see Section 2.2.

In order to be able to evaluate the error experimen-
tally, a commercially available monitor was used as a ref-
erence target, whose pixels serve as reference coordinates.
The monitor was captured from different poses using the
Lytro Illum. Where in each pose pattern sequences were
displayed on the screen encoding the reference coordi-
nates with subpixel accuracy. The corresponding 3D co-
ordinates of these points were then determined using the
procedure presented in [13].

The camera raw data with the measured point refer-
ences were then converted to light fields using the method
of Bok et al. [3] and the proposed one, respectively. Fur-
ther, with the help of the respective camera parameters,
the camera rays could be determined and the ray projec-
tion error as an average value over all rays could be cal-
culated. The method of Danserau et al. [4] could unfor-
tunately not be evaluated, as the rectification algorithm
and thus the determination of the camera parameters only
works for the older Lytro camera, but does not provide any
meaningful results for the newer Lytro Illum.

The comparison of the different methods is shown in
Tab. 1. As expected, the generic calibration has the lowest
calibration error, since each pixel can be calibrated indi-
vidually and hence with a high precision. However, this
result cannot be compared directly to the other methods,
since the correlations of the rays and the light field infor-
mation are lost or can’t be used immediatelywith this cam-
era model. It is therefore only used to represent a lower
limit of the calibration error. More importantly, it can be
seen that the proposed method has a much smaller mean
error and rootmean squared error (RMSE) than themethod
of Bok et al., resulting in a better calibration with less out-
liers. And thus, the ray geometry is estimated much bet-
ter although the light field reconstruction results of both
methods were very similar. This is due to the fact that
the ray calibration of the proposed light field reconstruc-
tion itself could be carried out very precisely, starting from
the generic calibration. The ray projection error is only
slightly worsened during the interpolation and rounding

Table 1: Comparison of the ray projection errors.

ε in µm
Mean RMSE

Generic calibration [13] 49.4 105.8
Bok et al. [3] 375.6 758.8
Proposed method 97.1 155.0

operations of Section 3.3. In the end, a better calibration of
the cameras geometrical properties leads to better results
when used in the field of optical metrology, depth estima-
tion or environment perception.

5 Conclusions

In this paper, we presented amethod to calibrate any light
field camera (e. g., microlens-based, mirror-based, camera
arrays) without having to model the exact optical prop-
erties. By means of a generic calibration, we were able
to precisely calibrate the individual camera rays. Further,
we normalized the result to subsequently transform it into
an equivalent light field representation. Since classical al-
gorithms require a regular sampling, we fit a regular 4D
grid onto the irregular camera rays. The summation of
the weighted intensity values of the rays finally led to the
interpolation and reconstruction of a rectified light field.
Apart from the usual Cartesian sampling of the angular co-
ordinates, we presented two possibilities to sample them
by means of spherical coordinates. This proved to be ad-
vantageous, since the light field information can now be
represented more compactly. Besides the pure reconstruc-
tion of the light fields radiometric quantities, we also pre-
sented a derivation of the intrinsic camera parameters, i. e.
the geometric quantities. The reconstructed light field can
therefore also easily be used in the field of optical metrol-
ogy and computer vision. Eventually, experiments showed
that the proposed method can provide good reconstruc-
tions and that it provides rectified light fields. The epipolar
geometry between the virtual subcameras is preservedand
even shows better results than the conventional methods.
In addition, an analysis of the geometric parameters by
meansof the rayprojection error showed that theproposed
method has a smaller calibration error than the state-of-
the-art methods from the literature and thus, it achieves
a better calibration. Still there is room for improvement.
Hence, furtherwork is dedicated to the improvement of the
light field sampling, whereby both the desired resolution
and the position of the grid points are to be optimized and
adapted to the used camera.
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