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ABSTRACT

An analytical model of coaxial traveling-wave-tube-like waveguides with plasma filling has been justified and utilized to analyze the
eigenmodes. Very often, introducing plasma into vacuum electronic devices leads to essential advantages as compared with evacuated tubes.
The cylindrical structure under the present consideration consists of a central dielectric rod, placed inside a plasma coaxial layer with a
metallic helix sheath on its outer interface, and a metal screen separated from the plasma by another dielectric layer. The dispersion
properties of electromagnetic waves propagating across the external axial static magnetic field in such traveling-wave-tube-like waveguides
are studied and summarized. The presence of a dense plasma coaxial layer makes the media nontransparent for waves in the electron
cyclotron frequency range. However, surface type electromagnetic waves can propagate in this case. These waves are called azimuthal surface
waves (ASWs). The helix sheath causes coupling of ordinarily and extraordinarily polarized ASWs. The zeroth radial ASW modes have been
found to be most dangerous for parasitic wave excitation in dense plasma-loaded, coaxial traveling-wave-tube-like waveguides.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0045139

I. INTRODUCTION

Traveling wave tubes (TWTs) are widely applied in telecommu-
nication and therefore intensively studied in the scientific literature. A
comprehensive overview of their development since 1942 till nowa-
days has been presented in Ref. 1. Their potential impact on commer-
cial and industrial applications explains the continuous interest in
further improving their technical characteristics.

The dispersion relation for the relativistic TWT was derived in
the framework of the linear field theory and analyzed in Ref. 2. The
TWT was assumed to be filled by a cold and uniform plasma. The
slow-wave structure was considered to be sinusoidally corrugated and
driven by a finite thick annular intense relativistic electron beam with
the entire system immersed in a strong axial magnetic field. A similar
TWT structure with an elliptical cross section and a degenerate plasma
column protected by an elliptical annular dielectric layer was theoreti-
cally investigated in Ref. 3.

Forward- and backward-wave interaction was analyzed in Ref. 4
following the Eulerian hydrodynamic approach in a plasma-filled helix
TWT, taking into account the following three features. First, the veloc-
ity of plasma electrons was considered to be thermal. Second, collisions

between plasma electrons were taken into account. Third, the effect of
the finite radius of the electron beam and its proximity to a metal wall
was studied.

Variable-width technology was applied in Ref. 5 to folded wave-
guide TWTs to suppress the lower band edge oscillation and to expand
the operating frequency bandwidth. An output power level of over
350W in the W-band frequency range of 85–90GHz (5GHz) was
obtained with a maximum power of �648W and an electron effi-
ciency of �12.1% at 88GHz with a beam current of 260mA and a
beam voltage of 20.5 kV.

A 340GHz integrated dual-beam TWT based on a staggered
dual-vane slow-wave structure was investigated in Ref. 6. A uniform
magnetic field of 0.52T was utilized to focus the two electron beams,
and a beam transmission efficiency of 97.1% was achieved over the
TWT length of 50mm.

A 1D frequency-domain nonlinear model was studied in Ref. 7
for illustrating the beam-wave interaction in sinusoidal-waveguide
(SWG) TWTs. The model took into account space-charge fields and
Ohmic losses to be closer to practical situations. The sheath beam was
split into a set of rectangular electron plates in the axial direction, and
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the space-charge field was calculated in the framework of the theory of
Green’s function. The model was successfully applied to the design of
a 0.22THz SWG TWT.

The interaction of electromagnetic waves and electron beams in a
4-m-long TWT was investigated in Ref. 8. The device was specifically
designed to provide low-noise beam-plasma experiments. The nonlin-
ear phenomena arising from the beam–wave interaction, such as the
modulation of the electron beam, the wave growth, and the saturation
process were analyzed also.

The dielectric-plasma-vacuum-metal structure considered in the
present paper is almost the same as that studied in Ref. 9. However,
the following essential features are different. First, in Ref. 9 the azi-
muthal wavenumberm was equal to zero and wave propagation in the
axial direction was studied. On the contrary, flute electromagnetic
waves with kz ¼ 0 and m 6¼ 0 are considered in the present paper.
Second, in Ref. 9 the plasma was assumed to be degenerate, whereas a
magnetoactive gas plasma is considered here.

Azimuthal surface waves (ASWs) are known to be electromag-
netic eigenwaves of cylindrical plasma-filled waveguides.10 Therefore,
they are described in cylindrical coordinates, having the axis along
both the waveguide axis and the external magnetic field direction.
They are intensively studied due to their possible applications in
plasma electronics, plasma-antenna systems, plasma production, and
nano-technologies.11–18 Plasma electronics devices are well known to
have several advantages compared with vacuum devices, since they are
characterized by a wider spectrum of eigenfrequencies. Therefore, they
provide the possibility to control the frequency spectrum in a wide fre-
quency range, to generate and/or enhance radiation in superhigh fre-
quency ranges and the possibility to enhance electromagnetic
radiation power generated by these devices due to the ability to
increase the electric current, which flows in the plasmas.

The dependencies of ASW electromagnetic fields on the coordinates
and time are as follows: f(r)exp[i(mu�xt)]. Here, r is the radial coordi-
nate, m the azimuthal wavenumber (m is an integer), u the azimuth
angle, x the wave angular frequency, and t the time. ASWs of ordinary
polarization (OASWs) with the field components Hr, Hu, Ez and those
with extraordinary polarization (XASWs) with the components Er, Eu,
Hz are known to propagate independently in the external axial static mag-
netic field. The presence of a nonzero axial wavenumber kz and/or an azi-
muthal component of the external static magnetic field would cause
coupling of the ordinary and extraordinary ASWs.19–21 In these cases,
ordinary and extraordinary ASWs cannot be considered separately.

In the present paper, dispersion properties of coupled ASWs are
studied in the case when the coupling is caused by the presence of the
metallic helix, the slow-wave structure in TWTs. The dispersion rela-
tion of ASWs is derived for the structure, which consists of a cylindri-
cal dielectric rod (for helix support) placed inside the magnetoactive
plasma coaxial layer with a cylindrical helix sheath (similar to a tape
helix) on its outer interface, and one dielectric coaxial layer more,
which separates the structure from the outer cylindrical metal wall
(Fig. 1). The latter dielectric layer is usually vacuum and is used for
transmission of an annular electron beam in the axial direction. The
dispersion relation has the form of the determinant of an 8� 8 matrix.
The dependencies of the eigenfrequency on the geometrical dimen-
sions, plasma particle density, axial static magnetic field, magnitude
and sign of azimuthal wavenumber, helix pitch angle, and dielectric
constants are studied numerically.

FIG. 1. (a) Schematic of the problem. General view. (b) Cross section of the
waveguide. The space r � R1 is occupied by the dielectric rod. Plasma is
placed in the layer R1 � r � R2. The metallic helix sheath (similar to a tape
helix) is placed at the interface r ¼ R2. The other dielectric layer, R2 � r � R3,
separates the plasma from the metal wall. (c) To the definition of the helix pitch
angle.
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The paper is arranged as follows. After the present introduction
(Sec. I), the model of the plasma waveguide to be studied is described
in Sec. II. The spatial distribution of the ASW field is presented along
with the boundary conditions. The dispersion relation is also derived
in the form of the determinant of the 8� 8 matrix. The elements of
the matrix are listed in the Appendix. The numerical analysis of the
dispersion relation is carried out in Sec. III. Finally, the conclusions are
summarized in Sec. IV.

II. PLASMA WAVEGUIDE MODEL AND DERIVATION
OF DISPERSION RELATION

As described in Sec. I, a three-component cylindrical waveguide
structure is considered (see Fig. 1) in the present paper. It is assumed
to be infinite and uniform in the axial direction. The external static
magnetic field only has an axial component (~B0jj~z).

A cylindrical dielectric rod with dielectric constant ed1 and radius
R1 is placed in the center of the metal waveguide with radius R3.
The radial distribution of the fields of ASWs within the rod can be
found from Maxwell’s equations. Taking into account the boundary
condition at the axis of the system, one can express the amplitude of
the axial component of the ASW magnetic field, Bz ~rð Þ ¼ Bz rð Þ
exp[i(mu�xt)] as

Bz rð Þ ¼ A1Jm kd1rð Þ; r < R1: (1)

In Eq. (1), A1 is a constant of integration, Jm nð Þ is the Bessel function
of the first kind of the order m,22 kd1 ¼ k

ffiffiffiffiffiffi
ed1
p

, k ¼ x=c, and c is the
speed of light in vacuum.

The amplitudes of the radial and azimuthal components of ASW
electric fields can be derived in terms of Bz rð Þ

Er rð Þ ¼ � km
k2d1r

Bz; Eu rð Þ ¼ � ik
k2d1

dBz

dr
: (2)

The radial distribution of the axial component of the ASW elec-
tric field can also be found as a solution of the Bessel equation

Ez rð Þ ¼ A2Jm kd1rð Þ; r < R1: (3)

The amplitudes of the radial and azimuthal components of ASWmag-
netic fields can be written in terms of Ez rð Þ within the whole wave-
guide, 0 � r � R3, as follows:

Br rð Þ ¼ m
kr

Ez; Bu rð Þ ¼ i
k
dEz
dr

: (4)

The inner rod in covered by the coaxial plasma layer with inter-
nal radius R1 and external radius R2. The tangential components of
ASW electric and magnetic fields should be continuous at the bound-
ary r¼ R1.

The plasma is assumed to be cold and collisionless. In such a
plasma, the displacement vector ~D is linked with the electric field ~E
via the permittivity tensor23

ê ¼
e1 ie2 o

�ie2 e1 0

0 0 e3

0
BB@

1
CCA: (5)

Its components read as

e1 ¼ 1�
X

a

X2
a

x2�x2
a
; e2 ¼�

X
a

X2
axa

x x2�x2
a

� � ; e3 ¼ 1�
X

a

X2
a

x2
:

(6)

In Eq. (6), Xa is plasma frequency of the particle of species a (a ¼ i for
ions and a ¼ e for electrons), and xa is corresponding cyclotron
frequency.

In the following, the plasma is assumed to be uniform and suffi-
ciently dense, and the external static magnetic field is assumed to be
sufficiently weak, Xe>jxej. The dispersion properties of XASWs in the
opposite case of strongly magnetized plasma were studied in Ref. 24.
In this case, surface type oscillations of ion species were demonstrated
to be possible. Excitation of XASWs by annular ion beams was shown
in Ref. 25 to take place under extremely strong external static axial
magnetic field.

The amplitude of the ASW axial magnetic field can be written in
terms of the modified Bessel functions of the first, Im nð Þ, and second,
Km nð Þ, kinds22

Bz rð Þ ¼ B1Im k?rð Þ þ B2Km k?rð Þ; R1 < r < R2: (7)

Here, B1 and B2 are the constants of integration. The penetration
depth k�1? of the XASW into the plasma is defined as follows:
k2? ¼ k2e1 l2 � 1ð Þ; withl ¼ e2=e1. The electromagnetic wave field is
of surface nature just inside the plasma coaxial layer. Outside of the
plasma, the considered waves are of bulk nature. This is true within
specific frequency ranges only. These ranges were defined in Ref. 26
from the inequality k2? > 0

xLH < x < xej j; xej j < x < x1; (8)

xUH < x < x2; (9)

where x1;2 ¼ 7 xej j=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

e þ x2
e=4

q
are the cutoff frequencies for

bulk modes, andxLH andxUH are the lower and upper hybrid frequen-
cies, respectively. These ranges (8) and (9) were referred to as low-
frequency (LF) and high-frequency (HF) region, respectively. At first
view, these ranges should be out of scope of practical application since
the plasma is nontransparent for electromagnetic waves in this case. On
the other hand, electromagnetic wave excitation in these ranges can be
more efficient since one has to spend less energy to build up the struc-
ture of surface type waves than that for bulk waves. XASWs of the fre-
quency range (9) propagate with higher frequencies, which can be of
interest for practical applications. However, excitation of XASWs by
gyrating electron beams above the upper hybrid frequency was found to
be less efficient than in the range of electron cyclotron frequency.27,28

That is why the LF range is considered in the present paper.
The amplitudes of XASW electric fields can be written in terms

of Bz rð Þ

Er rð Þ ¼ k
k2?

l
dBz

dr
þm

r
Bz

� �
; Eu rð Þ ¼ ik

k2?

dBz

dr
þ lm

r
Bz

� �
: (10)

Within the plasma layer, OASWs are also of surface nature. The
amplitude of the electric field of OASWs reads as follows:

Ez rð Þ ¼ B3Im korð Þ þ B4Km korð Þ; R1 < r < R2: (11)

The penetration depth of OASWs into the plasma k�1o is defined as
follows:
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ko ¼ k
ffiffiffiffiffiffiffiffi�e3
p

:

The outer interface of the plasma layer at r¼ R2 is defined by the
metallic helix sheath (tape helix). This sheath is assumed to be a sur-
face with zero thickness and anisotropic electrical conductivity. The
sheath is characterized by the helix pitch angle h ¼ arctan[d/(2pR2)]
with d being the axial progression length of the tape helix, which is the
angle between the tangent to the tape and the azimuthal direction
[Fig. 1(c)]. The electrical conductivity is assumed to be infinite along
the tape and zero in the direction perpendicular to the tape. That is
why at this interface, the tangential components of the ASW electric
fields Eu and Ez should be continuous, the longitudinal ASW electric
field should vanish, which means sinh Ezþ cos h Eu ¼ 0, and the lon-
gitudinal ASWmagnetic field should be continuous as well. These two
last boundary conditions cause the coupling of XASWs and OASWs.

The coaxial plasma layer with the outer helix sheath is separated
from the cylindrical metal wall by a coaxial dielectric layer with the
dielectric constant ed2. The radial distribution of the ASW fields within
this layer can be written in terms of Bessel functions of the first and
second, Nm nð Þ, kinds:22

Bz rð Þ ¼ C1 Jm kd2rð ÞN 0m kd2R3ð Þ � Nm kd2rð ÞJ 0m kd2R3ð Þ
� �

;

R2 < r < R3;
(12)

Ez rð Þ ¼ C2 Jm kd2rð ÞNm kd2R3ð Þ � Nm kd2rð ÞJm kd2R3ð Þ½ �;
R2 < r < R3:

(13)

In Eqs. (12) and (13), C1 and C2 are constants of integration, and
kd2 ¼ k

ffiffiffiffiffiffi
ed2
p

. A prime denotes the derivative of the function with
respect to the argument.

The amplitudes of the radial and azimuthal components of the
ASW electric fields can be presented in the form of Eq. (2) with the fol-
lowing replacement: ed1 ! ed2. The amplitude of the radial and azi-
muthal components of the ASW magnetic fields can be written in
terms of Ez rð Þ in the form of Eq. (4). The expressions (12) and (13)
already satisfy the boundary conditions at the metal wall, which mean
that the ASW tangential electric fields Eu rð Þ and Ez rð Þ vanish at the
interface r¼ R3.

The boundary conditions mentioned above make it possible to
derive the dispersion relation for ASWs in the considered waveguide
in the form of the determinant of an 8� 8 matrix

detaij ¼ 0: (14)

The elements of the matrix aij are summarized in the Appendix.
Here, one should underline that the dispersion relation of sym-

metric (m¼ 0 and axial wavenumber kz 6¼ 0) electromagnetic waves in
the same waveguide structure as in the present paper but with a degen-
erate plasma was investigated in Ref. 9. There, the dispersion relation
was derived in the form of the determinant of a 10� 10 matrix.

III. NUMERICAL ANALYSIS OF THE DISPERSION
RELATION

Figures 2–6 show the results of the numerical analysis of the dis-
persion relation (14). There, the ASW eigenfrequency normalized by
the electron cyclotron frequency, x/jxej, is given as ordinate. Figure 7
is the only exception, where the influence of the external static mag-
netic field is studied. That is why the choice of jxej for frequency nor-
malization is inappropriate there. Therefore, in Fig. 7 the ASW

eigenfrequency is normalized by the electron plasma frequency and
x/Xe is the ordinate.

The effective azimuthal wavenumber, kef ¼ jmjd/R1, is chosen as
abscissa. Here, d ¼ c/Xe is the skin-depth. This choice of the abscissa
is explained by the following. It is usual to present dispersion curves
with the variables “wavenumber-frequency.” The ratio jmj/R1 plays

FIG. 2. Normalized ASW eigenfrequency vs kef for opposite directions of the wave
propagation. h ¼ p/3, Z � Xe/jxej ¼ 5, ed1 ¼ 6.4, ed2 ¼ 1, R2/R1 ¼ 2.0, and R3/
R1 ¼ 3.0, m ¼ �1 (two solid curves), m ¼ þ1 (three dashed curves): “1”—lower
branch of the dispersion curve for ASW with m ¼ þ1; “2”—middle branch of the
dispersion curve for ASW with m ¼ þ1; “3”—middle branch of the dispersion curve
for ASW with m ¼ �1; “4”—upper branch of the dispersion curve for ASW with m
¼ �1; “5”—upper branch of the dispersion curve for ASW with m ¼ þ1.

FIG. 3. Normalized ASW eigenfrequency vs kef for positive magnitudes of azimuthal
wavenumber. m ¼ þ1 (solid curves), m ¼ þ2 (dashed curves), m ¼ þ3 (dotted
curves), h ¼ p/3, Z¼ 5, ed1 ¼ 6.4, ed2 ¼ 1, R2/R1 ¼ 2.0, and R3/R1 ¼ 3.0:
“1,2,3”—lower branches of the dispersion curves; “4”—middle branch of the disper-
sion curve for ASW with m ¼ þ1; “5,6”—middle branches of the dispersion curves
for ASW with m ¼ þ2, 3; “7”—upper branch of the dispersion curve for ASW with
m ¼ þ1; “8”—upper branch of the dispersion curve for ASW with m ¼ þ2; “9”—
upper branch of the dispersion curve for ASW with m ¼ þ3.
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the role of the characteristic azimuthal wavenumber in the present
paper. After normalization by the skin-depth, the ratio becomes the
effective wavenumber. Therefore, Figs. 2–7 show the dependencies of
ASW eigenfrequencies on either the plasma particle density ne (since
kef/ n�1=2e ) or the dielectric rod radius R1.

The higher the radial wavenumber (the number of nodes of the
radial field distribution within the dielectrics except of those at the axis
and at the metal wall) is, the less efficient is the excitation of this wave
(see, e.g., Ref. 29). That is why the zeroth radial modes are considered
in the present paper. To be sure that the calculated frequency relates to
just the zeroth radial mode one has to check whether the frequency
shift, [kd1R1þ kd2(R3�R2)], is smaller or of the order of p.

To demonstrate the difference between the dispersion properties
of ASWs propagating in opposite directions, the dependencies of
ASW eigenfrequencies on the effective wavenumber are presented in
Fig. 2 for the azimuthal wavenumbersm¼61. The dielectric constant
of the inner rod is chosen as that of mica, ed1 ¼ 6.4, and the external
coaxial dielectric layer is chosen as vacuum with ed2 ¼ 1, since its pur-
pose in a TWT is to carry the annular electron beam. The following
other parameters of the waveguide structure are chosen for the calcula-
tions: m ¼ �1 (solid curves), m ¼ þ1 (dashed curves), h ¼ p/3, Z
� Xe/jxej ¼ 5, R2/R1 ¼ 2.0, R3/R1 ¼ 3.0. The shape of the four upper
curves in Fig. 2 is in qualitative agreement with those obtained in Refs.
10 and 26 wherein the space r< R1 was filled by the plasma. The simi-
larity is especially pronounced for small magnitudes of kef, which cor-
responds to the case of small ASW penetration depth into the plasma.
In the latter case, kef < 1, the surface wave dispersion properties are
insensitive to the permittivity of the internal media. One can see in
Fig. 2 that the upper branches vary weakly with changing the sign of

m. The frequencies of the middle branches of ASWs with m> 0 are
significantly smaller than those of ASWs withm< 0. For example, for
jmj ¼ 1 and kef ¼ 2, the difference is about 35%. The main qualitative
difference between the dispersion properties of ASWs with opposite
signs of azimuthal wavenumbers is that the dispersion relation for
ASWs with positive m have three roots rather than two as for the case
of m< 0. However, these additional frequencies (x < 0.4 j xej in
Fig. 2) of ASWs with positivem are much lower than those in the mid-
dle and upper branches, which make them less important for excita-
tion in TWTs.

To study the influence of the absolute value of the azimuthal
wavenumber on the dispersion properties of ASWs, the dependence of
ASW eigenfrequencies on kef is plotted in Fig. 3 for the azimuthal
wavenumbersm¼ þ1,þ2,þ3. The other plasma waveguide parame-
ters are the same as in Fig. 2. The difference between the three fre-
quencies which correspond to the same magnitude of azimuthal
wavenumber successively increases with increasing kef for smaller
magnitudes of the plasma particle density, kef > 1. The difference
between the ASW frequencies of the lower branches is almost invisible
in Fig. 3.

The lower frequency branch of the ASW with m¼ 2 is larger by
10% than that for the ASW withm¼ 1 for kef ¼ 2.0, and larger by 1%
than that for m¼ 3. The middle frequency branch monotonously
decreases with increasing jmj. The middle frequency branch of the
ASW with m¼ 1 is larger than that for the ASW with m¼ 2 by 7% for

FIG. 4. Normalized ASW eigenfrequency vs kef for different helix pitch angles. h
¼ p/2 (two solid curves), h ¼ p/3 (three dashed curves), h ¼ p/6 (three dotted
curves), m ¼ þ1, Z¼ 5, ed1 ¼ 6.4, ed2 ¼ 1, R2/R1 ¼ 2.0, R3/R1 ¼ 3.0: “1”—lower
branch of the dispersion curve for the helix pitch angle h ¼ p/3; “2”—lower branch
of the dispersion curve for the helix pitch angle h ¼ p/6; “3”—middle branch of the
dispersion curve for the helix pitch angle h ¼ p/2; “4”—middle branch of the disper-
sion curve for the helix pitch angle h ¼ p/3; “5”—middle branch of the dispersion
curve for the helix pitch angle h ¼ p/6; “6”—upper branch of the dispersion curve
for the helix pitch angle h ¼ p/2; “7”—upper branch of the dispersion curve for the
helix pitch angle h ¼ p/3; “8”— upper branch of the dispersion curve for the helix
pitch angle h ¼ p/6.

FIG. 5. Normalized ASW eigenfrequency vs kef for different dimensions of the
waveguide components. R2/R1 ¼ 2.0, R3/R1 ¼ 3.0 (thin solid curves), R2/R1 ¼ 1.6,
R3/R1 ¼ 2.4 (bold solid curves), R2/R1 ¼ 2.0, R3/R1 ¼ 4.0 (dashed curves), R2/R1
¼ 3.0, R3/R1 ¼ 4.0 (dotted curves), m ¼ þ1, h ¼ p/3, Z¼ 5, ed1 ¼ 6.4, and ed2
¼ 1: “1,2,3,4”—lower branches of the dispersion curves for all the four configura-
tions; “5”—middle branch of the dispersion curve for the configuration with
increased dielectric rod radius; “6”—middle branch of the dispersion curve for the
configuration with increased plasma layer width; “7”—middle branch of the disper-
sion curve for the initial configuration (R2/R1 ¼ 2.0, R3/R1 ¼ 3.0); “8”—middle
branch of the dispersion curve for the configuration with increased external dielec-
tric layer width; “9”—upper branch of the dispersion curve for the configuration with
increased dielectric rod radius; “10”—upper branch of the dispersion curve for the
configuration with increased plasma layer width; “11”—upper branch of the disper-
sion curve for the initial configuration; “12”—upper branch of the dispersion curve
for the configuration with increased external dielectric layer width.
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kef ¼ 2.0, and larger than that for m¼ 3 by 8%. The upper frequency
branch monotonously increases with increasing jmj. The upper fre-
quency branch of the ASW withm¼ 1 is smaller than that for the ASW
withm¼ 2 by 5% for kef¼ 2.0, and smaller than that form¼ 3 by 9%.

The influence of the helix pitch angle h on the ASW eigenfre-
quency is plotted in Fig. 4. In the case h¼ p/2 (see solid curves), the infi-
nite electrical conductivity of the metal helix sheath in the axial direction
suppresses the axial electric wave field, Ez¼ 0. In this case, ASWs propa-
gate in the form of XASWs, and the dispersion relation has two roots.
The dependence of the ASW eigenfrequency on kef for the helix pitch
angle h¼ p/3 is presented in Fig. 4 by the dashed curves, and for h¼ p/
6 by the dotted curves. One can see the gradual increase in the ASW fre-
quency with decreasing pitch angle of the helix sheath. In the case h¼ 0,
the azimuthal component of the wave electric field vanishes, Eu ¼ 0.
Since the zeroth radial modes of OASWs do not propagate in the con-
sidered frequency ranges (8), (9), the dispersion relation (14) has no
roots in this case.

The influence of the geometrical dimensions of the waveguide
components on the ASW eigenfrequency is studied in Fig. 5. The thin
solid curves are presented for the comparison of various different
geometries for the case of equal widths of all the components of the
waveguide structure under study: internal dielectric rod, plasma coax-
ial layer, and external dielectric layer (R2/R1 ¼ 2.0, R3/R1 ¼ 3.0). An
increase in the dielectric rod radius R1 by the factor of 1.25, while
keeping the same ratio of the two other radii, R3/R2, is shown by the
bold solid curves in Fig. 5 to cause a decrease in the ASW eigenfre-
quencies. Increasing radius of the metal wall and the resulting increase
in the width of the external dielectric layer, while keeping the same

ratio of the two other radii, R2/R1¼ 2.0, results in increasing ASW fre-
quencies (see dashed curves in Fig. 5). An increase in the width of the
plasma layer, while keeping the same ratio of the external dielectric
width to the radius of the dielectric rod, (R3�R2)/R1, causes decreasing
ASW frequencies. All the changes in the geometrical dimensions men-
tioned above only have a weak influence on the lower branch of ASW
frequencies. These curves (x< 0.357jxej) are almost indistinguishable
in Fig. 5. The difference between the ASW frequencies in this branch
is smaller than 12% for kef¼ 2.

A decrease in the magnitude of the permittivity of the dielectric
rod from ed1¼ 6.4 (ed2¼ 1, solid curves) to ed1¼ 4.0 (ed2¼ 1, dashed
curves) is shown in Fig. 6 to result in increasing ASW eigenfrequencies
of the middle branch with almost no change in those of the upper and
lower branches. One can see in Fig. 6 also, that increasing magnitude
of the dielectric constant of the outer dielectric layer from ed2 ¼ 1.0
(ed1 ¼ 6.4, solid curves) to ed2 ¼ 2.0 (ed1 ¼ 6.4, dotted curves) would
cause decreasing ASW eigenfrequencies of the upper branch with
almost no change in those of the middle and lower branches. It was
noted in Refs. 10 and 26 that an increase in the relative width of the
external dielectric layer and a decrease in its dielectric constant lead to
increasing XASW eigenfrequency. This is in qualitative agreement
with the results presented in Figs. 5 and 6.

Figure 7 shows that a decrease in the external static axial mag-
netic field by a factor of two (which is equivalent to the enhancement
of Z � Xe/jxej from Z¼ 5 to Z¼ 10) causes a weak decrease in the
ASW frequencies in the upper and lower branches and an increase in
those in the middle branch. For example, for kef ¼ 2.0 the ASW fre-
quency in the upper branch decreases by about 2.8% and increases in
the middle branch by about 7.8%.

FIG. 6. Normalized ASW eigenfrequency vs kef for different dielectric constants of
the internal dielectric rod. ed1 ¼ 6.4, ed2 ¼ 1 (solid curves), ed1 ¼ 4.0, ed2 ¼ 1
(dashed curves), ed1 ¼ 6.4, ed2 ¼ 2 (dotted curves), m ¼ þ1, Z¼ 5, h ¼ p/3, R2/
R1 ¼ 2.0, and R3/R1 ¼ 3.0: “1,2,3”—lower branches of the dispersion curves for all
the three cases; “4”—middle branch of the dispersion curve in the case of larger
dielectric constant of the external dielectric layer; “5”—middle branch of the disper-
sion curve in the initial case (ed1 ¼ 6.4, ed2 ¼ 1); “6”—middle branch of the disper-
sion curve in the case of smaller dielectric constant of the dielectric rod; “7”—upper
branch of the dispersion curve in the case of larger dielectric constant of the exter-
nal dielectric layer; “8”—upper branch of the dispersion curve in the initial case;
“9”—upper branch of the dispersion curve in the case of smaller dielectric constant
of the dielectric rod.

FIG. 7. Normalized ASW eigenfrequency vs kef for different magnitudes of the
external static axial magnetic field. Z¼ 5 (solid curves), Z¼ 10 (dashed curves), m
¼ þ1, h ¼ p/3, ed1 ¼ 6.4, ed2 ¼ 1, R2/R1 ¼ 2.0, and R3/R1 ¼ 3.0: “1”—lower
branch of the dispersion curve in the case of smaller external static axial magnetic
field B0; “2”—lower branch of the dispersion curve in the case of larger B0; “3”—
middle branch of the dispersion curve in the case of larger B0; “4”—middle branch
of the dispersion curve in the case of smaller B0; “5”—upper branch of the disper-
sion curve in the case of smaller B0; “6”—upper branch of the dispersion curve in
the case of larger B0.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 28, 043106 (2021); doi: 10.1063/5.0045139 28, 043106-6

Published under license by AIP Publishing

https://scitation.org/journal/php


In the following, the parameters of a practical laboratory device
are estimated for which the results obtained in the present paper can
be applied. If the external static axial magnetic field is B0 ¼ 1.5 kG,
which is a typical magnitude for small-size TWTs, the angular electron
cyclotron frequency is jxej ¼ 2.64� 1010 rad/s. The highest frequency
x ¼ 3.039jxej is obtained in calculations for kef ¼ 1.6, as shown in
Fig. 4. Since Z � Xe/jxej ¼ 5, the electron plasma frequency is Xe

¼ 1.3� 1011 rad/s, which corresponds to the plasma particle density
ne ¼ 5.4� 1012 cm�3. Applying this magnitude of kef and the azi-
muthal wavenumber m¼ 1 leads to the radius of internal dielectric
rod R1 ¼ 0.14 cm, the external radius of the plasma coaxial layer R2
¼ 0.28 cm, and that of the metal wall R3 ¼ 0.42 cm. All these parame-
ters look like achievable in a University Laboratory. The ASW fre-
quency is expected to belong to the gigahertz range, � ¼ 12.6GHz.

The analysis of the dispersion properties cannot be considered as
completed without any comments on the wave field distribution. The radial
distributions ofASWelectric fieldsEu andEz are plotted in Fig. 8 for the fol-
lowing parameters of the waveguide: Z¼ 5, m ¼ þ2, h ¼ p/3, ed1 ¼ 6.4,
ed2 ¼ 1, R2/R1 ¼ 2.0, R3/R1 ¼ 3.0, and kef ¼ 1.0. The latter correspond to
the data presented in Fig. 3 by dashed curves. All the pairs of curves are
normalized in such a way that the maximum magnitude of the wave field
amplitude Eu within the waveguide is equal to one. The wave field ampli-
tudes are given in arbitrary units.

In the considered frequency range, the zeroth radial modes of
OASWs are not eigenwaves of the studied waveguide structure in the
absence of the coaxial helix sheath. That is why they are driven oscilla-
tions in the present problem. This circumstance explains the fact that
the normalized magnitude of Ez is smaller than one within the whole
waveguide. The helix sheath provides the maximum magnitude of the
field Ez just at r ¼ R2. These maximummagnitudes Max{Ez} are equal

to 0.594 for x ¼ 0.18jxej (solid curve), Max{Ez} ¼ 0.032 for x
¼ 1.142jxej (dashed curve), and Max{Ez} ¼ 0.577 for x ¼ 1.824jxej
(dotted curve). The first and third curves (solid and dotted ones) are
almost indistinguishable in Fig. 8.

The azimuthal electric fields of the modes that propagate with
the lowest frequency x ¼ 0.18jxej and the highest one x ¼ 1.824jxej
reach their maxima at the interface r ¼ R2. They both change their
signs within the plasma layer. These changes of signs should not be
considered as indicator of a higher radial mode, since the plasma is
nontransparent for the wave in the studied frequency range. The radial
distributions of these fields look very similar. However, they are easily
distinguishable in the performed calculations due to a significant dif-
ference in the radial phase change within the dielectric rod and the
layer for these modes, DU¼ kd1R1 þ kd2 R3 � R2ð Þ. The phase change
is DU ¼ 0.254 for the mode with the lowest frequency, and DU
¼ 2.576 for the mode with the highest frequency.

The azimuthal electric field of the mode that corresponds to the
middle frequency x ¼ 1.142jxej reaches its maximum at the interface
r¼ R1 and does not change its sign within the waveguide.

IV. CONCLUSIONS

The dispersion properties of azimuthal surface waves (ASWs)
along with their excitation by annular beams of charged particles were
studied in detail for the case of the cylindrical waveguide structure:
central plasma column–coaxial dielectric layer–outer metal waveguide
wall.10 Two modes of ASWs, ordinary ASWs with the components Ez,
Br, Bu, and extraordinary ASWs with the components Bz, Er, Eu, were
demonstrated to propagate independently in such structures. Zeroth
radial modes of OASWs were shown to be suppressed in such
waveguides.

However, the present introduction of an internal dielectric rod
(e.g., as helix support in a plasma TWT) causes the appearance of an
additional interface dielectric plasma, which in turn gives rise to the
existence of one more solution of the dispersion relation for the stud-
ied surface-type waves. This can be of practical interest for designing
plasma electronic devices for wideband communication systems.

Introduction of the cylindrical metallic helix sheath results in
coupling of OASWs and XASWs. In this case, the zeroth radial modes
of OASWs play the role of driven waves. The coupling causes the
appearance of one solution more of the dispersion relation of ASWs
with positive azimuthal wavenumbers. XASWs are known to be effec-
tively excited by annular electron beams gyrating in the external axial
static magnetic field around the plasma column (see, e.g., Refs. 27–29)
This is possible due to the presence of the azimuthal electric wave field
Eu of the superposition of XASWs, which is parallel to the annular
beam velocity. The presence of the axial electric wave field Ez in the
superposition of ASWs coupled by the helix sheath makes it possible
to excite ASWs by an axial annular electron beam, being an element of
traveling wave tubes (TWTs). Since ASWs do not transfer their energy
in the axial direction, their excitation should be considered as an unde-
sired parasitic phenomenon in such coaxial TWTs, where the helix is
supported by the inner dielectric rod. Therefore, the analysis provided
in this paper can be useful to avoid parasitic energy losses. The helix
sheath uses to play the role of the slow-wave structure in TWTs. The
decrease in the helix pitch angle is shown to result in an increase in the
eigenfrequency of the undesired ASWs.

FIG. 8. Radial distribution of ASW electric fields Eu and Ez (in arbitrary units). x
¼ 0.18jxej (solid curves), x ¼ 1.142jxej (dashed curves), and x ¼ 1.824jxej
(dotted curves). The curves are normalized such that the maximum magnitude of
Eu within the waveguide is equal to one. Z¼ 5, m ¼ þ2, h ¼ p/3, ed1 ¼ 6.4, ed2
¼ 1, R2/R1 ¼ 2.0, R3/R1 ¼ 3.0, and kef ¼ 1.0: “1”—Eu(r) for the lower branch of
the ASW dispersion curve; “2”—Eu(r) for the middle branch of the dispersion curve;
“3”—Eu(r) for the upper branch of the dispersion curve; “4,6”—Ez(r) for the lower
and upper branches of the dispersion curve; “1”—Ez(r) for the middle branch of the
dispersion curve.
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Thus, the present detailed analysis of ASW dispersion properties
in dependence on the waveguide parameters: geometrical dimensions,
plasma particle density, external axial static magnetic field, magnitude
and sign of azimuthal wavenumber, pitch angle of the metallic helix,
and dielectric constants, can be of interest for the suppression of para-
sitic waves in plasma-loaded coaxial TWTs, operating in the gigahertz
range of frequencies.
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APPENDIX: COMPONENTS OF THE DISPERSION
RELATION

In Eq. (14), the matrix elements are as follows:

a11 ¼ Jm x1ð Þ; a13 ¼ �Im x3ð Þ; a14 ¼ �Km x3ð Þ;
a12 ¼ a15 ¼ a16 ¼ a17 ¼ a18 ¼ 0;

(A1)

a22 ¼ Jm x1ð Þ; a25 ¼ �Im x2ð Þ; a26 ¼ �Km x2ð Þ;
a21 ¼ a23 ¼ a24 ¼ a27 ¼ a28 ¼ 0;

(A2)

a32 ¼ x1J 0m x1ð Þ; a35 ¼ �x2I0m x2ð Þ; a36 ¼ �x2K 0m x2ð Þ;
a31 ¼ a33 ¼ a34 ¼ a37 ¼ a38 ¼ 0;

(A3)

a41 ¼ x�11 J 0m x1ð Þ; a43 ¼ x�13 I0m x3ð Þ þmlx�23 Im x3ð Þ;
a44 ¼ x�13 K 0m x3ð Þ þmlx�23 Km x3ð Þ;
a42 ¼ a45 ¼ a46 ¼ a47 ¼ a48 ¼ 0;

(A4)

a55 ¼ Im x4ð Þ; a56 ¼ Km x4ð Þ;
a58 ¼ Nm x6ð ÞJm x7ð Þ � Jm x6ð ÞNm x7ð Þ;
a51 ¼ a52 ¼ a53 ¼ a54 ¼ a57 ¼ 0;

(A5)

a63 ¼ x�15 I0m x5ð Þ þmlx�25 Im x5ð Þ;
a64 ¼ x�15 K 0m x5ð Þ þmlx�25 Km x5ð Þ;

(A6)

a67 ¼ x�16 J 0m x6ð ÞN 0m x7ð Þ � N 0m x6ð ÞJ 0m x7ð Þ
� �

;

a61 ¼ a62 ¼ a65 ¼ a66 ¼ a68 ¼ 0;

a71 ¼ a72 ¼ a73 ¼ a74 ¼ a75 ¼ a76 ¼ 0;

a77 ¼ x8x�15 cos h J 0m x6ð ÞN 0m x7ð Þ � N 0m x6ð ÞJ 0m x7ð Þ
� �

;

(A7)

a78 ¼ sin h Jm x6ð ÞNm x7ð Þ � Nm x6ð ÞJm x7ð Þ
� �

;

a81 ¼ a82 ¼ 0; a83 ¼ sin hIm x5ð Þ; a84 ¼ sin hKm x5ð Þ;
a85 ¼ cos hx4x�18 I0m x4ð Þ;
a86 ¼ cos hx4x�18 K 0m x4ð Þ;

a87 ¼ sin h Nm x6ð ÞJ 0m x7ð Þ � Jm x6ð ÞN 0m x7ð Þ
� �

;

a88 ¼ x6x�18 cos h N 0m x6ð ÞJm x7ð Þ � J 0m x6ð ÞNJm x7ð Þ
� �

:

(A8)

The following notations are applied in Eqs. (A1)–(A8):

x1 ¼ kd1R1; x2 ¼ koR1; x3 ¼ k?R1; x4 ¼ koR2; x5 ¼ k?R2;

x6 ¼ kd2R2; x7 ¼ kd2R3; x8 ¼ kR2:
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