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ABSTRACT
Automatic quality control has long been an integral part of the processing of food and agricultural
products. Visual inspection offers solutions for many issues in this context and can be employed in the
form of sensor-based sorting to automatically remove foreign and low quality entities from a product
stream. However, these methods are limited to defects that can be made visible by the employed
sensor, which usually restricts the system to defects appearing on the surface. An alternative non-
visual solution lies in impact-acoustic methods, which do not suffer from this constraint. However,
these are strongly limited in terms of material throughput and consequently not suitable for large scale
industrial application. In this paper, we present a novel approach that performs inspection based on
optically acquired motion data. A high-speed camera captures image sequences of test objects during
a transportation process on a chute with a specific structured surface. The trajectory data is then used
to classify test objects based on their motion behavior. The approach is evaluated experimentally on
the example of distinguishing defect-free hazelnuts from ones that suffer from insect damage. Results
show that bymerely utilizing the motion data, a recognition rate of up to 80% for undamaged hazelnuts
can be achieved. Amajor advantage of our approach is that it can be integrated in sensor-based sorting
systems and is suitable for high throughput applications.

1. Introduction
Quality control has played a central role in the manufac-

turing and processing industry for many years. To humans,
a variety of modalities is available to solve this task: test ob-
jects can be viewed, turned, felt, smelled, and so on. In many
areas, performing quality control by human personnel is no
longer feasible, because quantities are simply to large, em-
ployment of staff is uneconomical, and the process is highly
error-prone and not reproducible [1]. This development gave
rise to automatic quality control, which is vital to a vast vari-
ety of production and treatment processes. One of the most
widespread kind of automatic quality control systems are vi-
sual inspection systems. The term visual does not imply a re-
striction to the range of the electromagnetic spectrum which
is visible to humans, but rather incorporates imaging sen-
sors. However, state-of-the-art machine vision systems are
typically evaluating the product to be tested based on a static
image. Compared with the above mentioned possibilities for
humans, this is a severe limitation.

Ensuring product quality and safety is particularly cru-
cial for the processing of food and agricultural products.
Nuts are a comparatively expensive product and, due to the
growing market in the area of healthy food, are enjoying
increasing demand. Quality demands of consumers are par-
ticularly high. Although sensor-based sorting systems have
successfully been employed to identify and sort out nuts
with certain unwanted properties, for instance closed-shell
pistachio nuts [2], those are, as mentioned above, by de-
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sign limited in terms of the defects that can be detected.
An alternative approach are so-called impact acoustic-based
systems. Instead of imaging sensors, microphones are em-
ployed to analyze the acoustic emission of the product to be
inspected during an impact with another rigid body. Various
works have successfully demonstrated how such systems
can be used for the detection of internal damages by ana-
lyzing the acoustic signal. However, a major drawback of
the approach is its lack of scalability in terms of throughput,
which in turn is a major economic concern. This is mainly
because an individual sensor, i.e., microphone, is needed for
each object to be tested simultaneously. Most likely for this
reason, impact acoustic sorting systems appear to be rather
of scientific interest than of industrial.

In other fields of study, evaluating quality on the basis
of motion parameters is a fairly established means. Data
sources for such approaches are for instance GPS data for
the classification of vehicles in urban traffic [3] or absolute
orientation sensors [4], but also include cases where infor-
mation about the motion is derived from image data, for
instance in computer-assisted sperm analysis [5], the iden-
tification of bird species [6] or reasoning about entities in
video surveillance footage [7]. In [8], utilizing knowledge
on the motion of particles during transportation in sensor-
based sorting has been proposed.

In this paper, we present a novel approach to test agricul-
tural products for visually indiscernible defects, such as in-
terior damages, by means of visual inspection. A schematic
illustration of the approach is provided in Fig. 1. The hy-
pothesis of this study is that forcing test objects into an un-

Maier et al.: Preprint submitted to Elsevier Page 1 of 9



Motion-based Visual Inspection of Optically Indiscernible Defects on the Example of Hazelnuts

experimental 
observation

test object

image and
trajectory 
processing

optical and 
motion-based

features

image sequence

Figure 1: Schematic illustration of the proposed approach for
motion-based visual inspection.

steady motion path can be used to reveal features influenced
by the mechanical properties and allows reasoning about the
test object. Our goal is to evaluate whether this effect can be
exploited in machine vision tasks. The approach is based on
the evaluation of the motion of test objects while facing “ex-
citations” during transportation. Using machine learning,
the motion data is used to detect faulty objects. Addition-
ally to the motion data, the approach can naturally be com-
bined with classical visual features, such as color, texture or
shape. The advantage of the proposed approach is that, due
to the usage of an imaging sensor, a huge number of objects
can be tested simultaneously, allowing for high throughput
applications. Furthermore, the concept integrates well into
sensor-based sorting systems already established in industry.
We demonstrate the success of our methods by designing
and implementing an experimental setup and data process-
ing pipeline for a case study with hazelnuts. The evaluated
task involves the discrimination of hazelnuts suffering from
insect damaged and undamaged ones by means of the intro-
duced approach.

This paper is organized as follows. Following this brief
introduction, related work is reviewed in Section 2. The data
acquisition and processing as well as the experimental setup
are introduced in Section 3. Experimental results for the de-
tection of damaged hazelnuts are presented in Section 4. Fi-
nally, Section 5 concludes the paper.

2. Related Work
In many cases, sensor-based sorting systems can be em-

ployed for the inspection and physical cleaning of products
by means of removing low-quality and foreign, potentially
harmful, entities from a given product stream. The main
fields of application of sensor-based sorting are recycling,
for instance the preparation of glass [9] by removing materi-
als harmful to themelting process such as stones and ceramic
glass [10], mining, mainly to remove unwanted gangue
from ore, e.g., copper-gold ore [11], as well as agricultural
products and foodstuff. Regarding the latter, examples of
applications are diverse, including the removal of fungus-
infected wheat kernels [12], low-quality rice grains [13],
and sunflower seeds [14], or quality insurance in bulgur
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processing

Figure 2: Schematic illustration of a chute-type sensor-based
sorting systems. The turquoise objects represent particles to
be accepted, typically the product, and the red ones those to
be removed, for instance foreign particles. The field of view by
the sensor is denoted by the yellow ray. The blue ray represents
compressed air which is released to deflect an rejected object.

production [15]. A schematic illustration of a sensor-based
sorting system is provided in Fig. 2. A material stream is fed
into the system where it is further transported, for instance
by means of a chute. The width of the chute and the bulk
density are decisive for the achievable material throughput.
Typically after being discharged, the material is perceived
by one or multiple sensors. These commonly are scanning,
imaging sensors, such as color or near-infrared cameras. Us-
ing image processing, individual objects are classified into
an accept or reject1 fraction based on a single observation.
The sorting decision is executed by deflecting individual
objects from the product flow. State-of-the-art systems use
compressed-air nozzles for this purpose [16]. A major ad-
vantage of sensor-based sorting is that high throughput can
be achieved, typically in the magnitude of multiple tonnes
per hour. This is because objects distributed throughout
the sorting width can be perceived by the sensor simulta-
neously and, thanks to the availability of fast sensors, can
be transported at speeds typically ranging between 1m s−1
and 10m s−1. However, such imaging systems are, with
the exceptions described below, limited to the detection of
defects appearing on the surface or related to the geometry
of the product.

There exist several works addressing the problem of
designing automatic visual, i.e., imaging sensor based, in-
spection systems for the detection of visually indiscernible
defects. In the context of sensor-based sorting, there are
mainly two types of sensors which are employed for such
tasks. The first type is Xray-based. Imaging via Xray Flu-
orescence (XRF) or Dual-Energy Xray transmission (DE-

1For the sake of completeness it is mentioned that theoretically, an ar-
bitrary number of classes can be distinguished and separated. In industrial
application, however, mostly binary sorting tasks are found due to complex
mechanical handling for multi-way sorting.
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XRT) is mainly found in the field of mining, for instance
in order to assess the copper content in ores [17] or the
beneficiation of coal [18]. However, applying Xray-based
technology always comes at the cost – and this term is to be
taken literally – of the necessity to satisfy rather strict safety
regulations. The second type of imaging sensor that enables
revealing information beyond the surface of a test object is
Terahertz (Thz)-based imaging, as for instance presented
in [19] in the context of black plastic sorting, which is par-
ticularly challenging in sensor-based sorting. However, this
presented sensor system can still be regarded as being at
an early development stage and further advances in sensor
technology are required.

For foodstuff, in particular nuts and similar products,
many approaches are based on impact acoustic. The main
idea of these approaches is to record acoustic emissions
caused by an entity of the product to be tested colliding with
a rigid body. A schematic illustration of a typical setup is
provided in Fig. 3. As can be seen, one or multiple mi-
crophones are used to record acoustic emissions during the
collision with an impact plate. A possible extension of the
setup lies in the inclusion of laser triggering systems to start
the audio recording [20] or 3D cameras to also account for
the size of the test objects during classification [21]. The
choice of the best suitable microphone [22] or the material of
the impact plate [22] depends on the detection task at hand.
Means of processing the audio data are diverse and range
from Fast Fourier Transform (FFT), Principle Component
Analysis (PCA) to Deep Learning models [23, 24]. Exam-
ples of detection tasks include the discrimination of differ-
ent genotypes of walnuts [23], classification of chestnuts
according to their moisture level [20], detection of damaged
rice [22] and wheat [25, 26] kernels, distinguishing almonds
according to their thickness and hardness [27], and the de-
tection of damaged [28] and hollow hazelnuts [29]. Besides
the application in sorting and grading of agricultural prod-
ucts, impact acoustic is also used in the field of recycling,
for instance for the discrimination of different plastic mate-
rials from automotive shredder residues [21] and sorting of
municipal solid waste [24].

In the works mentioned above from the field of im-
pact acoustic high recognition rates are reported, most of
which typically above 90%. However, the throughput rates
achieved are low and a serious obstacle for the industrial
implementation. For instance, the system introduced in [28]
is capable of the inspection of approximately 40 hazelnut
kernels per second and its successor [30] of only 4 nuts
per second. For the system presented in [26] a maximum
throughput of 33 wheat kernels per second is reported.
Hence, it can be concluded that material throughput is far
from the quantities as for instance common in sensor-based
sorting, where thousands of objects are treated per second.

The approach proposed in this paper is based on perform-
ing the detection of visually undetectable defects on the ba-
sis of motion perceived in image data. There exist several
works that exploit visual motion information in order to in-
spect different products. Examples include reasoning about

feeder

chute
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nozzles

processing

impact plate

Figure 3: Schematic illustration of a basic impact acoustic
setup featuring an impact plate and a microphone. As in Fig. 2,
turquoise objects represent particles to be accepted and the red
ones those to be removed.

the stiffness and area weight of fabric which is moved by
unknown wind forces [31], the assessment of sputter events
in a welding process [32], and also the general prediction of
physical properties [33]. Recently, the approach of perform-
ing motion based classification has also been introduced in
the context of sensor-based sorting [8]. Yet, this work only
considers well-defined, artificial test objects. Also, an im-
pact acoustic inspired setup is presented in [34] to record the
motion of test objects while colliding with a plate. However,
this also comes with the aforementioned drawbacks in terms
of throughput, since, in contrast to the approach presented
in this paper, it is hardly suited for observing multiple test
objects simultaneously.

3. Methods and Materials
In the following, we introduce the experimental setup de-

signed for this study. We further provide details on how ex-
perimental image data was acquired, the extraction of object
trajectories from the image data, feature extraction, as well
as the classification algorithms used.
3.1. Experimental Setups

Fig. 4 shows a free body diagram to visualize the forces
and moments applied to a test object on a chute. For a basic
analysis, we consider the 2D movement of a sphere, which
approximates the shape of our test objects. The motion is
determined by the contact angle of the cute and the body,
the friction factor � , the body mass m and the bodies mass
moment of inertia J defined as

J = ∫V
r⃗2⟂�(r⃗) dV , (1)

where r⃗ denotes the distance of a given point of the test ob-
ject to the rotation axis. The conservation laws are then given
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Figure 4: Free body diagram of a test object on a chute.

by
J'̈ = −FW ⋅ r

= −� ⋅ m ⋅ g ⋅ cos(�) ⋅ r
(2)

and
m ⋅ ẍ = −m ⋅ g ⋅ sin(�) + FW

= −m ⋅ g ⋅ sin(�) + � ⋅ m ⋅ g ⋅ cos(�) . (3)

Boundary conditions and the kinematic relationship of the
angular velocity '̇ and the vertical velocity ẋ and ẏ accord-
ing to Fig. 4 are given by

ẋ = r ⋅ '̇ ,
ẏ = 0 . (4)

Applied to our experiment, a geometry not symmetric to
a central point generates a more complex trajectory with a
3D movement. We can assume an inhomogeneous density
�(r⃗) for damaged hazelnuts. Accordingly, this results in dif-
ferences with respect to the center of mass and the mass mo-
ment of inertia J compared with undamaged hazelnuts. This
leads to an expected difference in motion in x⃗ and '⃗. To am-
plify this effect, the experimental setup to be designed must
ensure that test objects are forced into an unsteady trajectory.
We further aim for a setup that integrates well into existing
sensor-based sorting systems and supports the inspection of
a high number of objects simultaneously. As a basis, we em-
ploy a chute serving the purpose of material transportation.
For our experiments, this chute is inclined by � = 17.6° hor-
izontally and has a width of 39.4 cm. A special feature of
our chute is that it can be covered with a structured surface
as shown in Fig. 5. This structured underground, which is
provided by a polymer mat in our study, serves as a handi-
cap for the motion of the test objects, forcing them into an
unsteady motion path due to different impact angles.

After sliding down the chute, the test objects drop into a
cone and further on into a flexible pipe. A venturi feeder is
connected to the pipe and serves as a pneumatic conveyor.
This way, the test objects are pushed by compressed air back

(a) Close-up of the structure. (b) Medium shot of the mat.
Figure 5: Photos of the polymer mat considered in the remain-
der to create a structured surface on the chute.

on top of the chute. The compressed air is set to a constant
value, so the objects are accelerated in the same way. Hence,
the setup enables automatic circulation of the test objects,
which facilitates data acquisition. A schematic illustration
and a photo of the resulting experimental setup are provided
in Fig. 6.

We mount a high-speed camera on the experimental
setup such that an area of approximately 30.8 cm × 31.8 cm
can be observed. The acquired images have a resolution of
980 px× 1016 px, resulting in a spatial resolution of approx.
0.31mmpx−1. The camera model used in the experiments
is Ximea xiQ MQ022. It is equipped with an 8 mm lens.
The camera is connected to a computer using the USB 3.0
interface and enables recording of images at 181 fps in this
setup. A LED flat dome is used to illuminate the viewing
area of the camera.
3.2. Data Acquisition and Image Processing

Since continuously storing all images recorded by the
camera as described in Section 3.1 would result in approx-
imately 450MB s−1 and is considered infeasible, we imple-
ment an online image processing and data reduction system.
A schematic illustration of the software is provided in Fig. 7
and introduced in detail in the following. Our goal is to ex-
tract the image coordinates of the centroids of objects de-
tected in each frame in order to create discrete time series
data. The 2D position, the behavioral attribute of the discrete
time series, is then stored together with a timestamp, which
serves as the contextual attribute. Using the camera vendors
C++Application Programming Interface (API), we develop
a software to set specific camera parameters, e.g., the inte-
gration time, and store the retrieved images in memory. For
the pre-processing stage, we implement a threshold-based
method to convert the color image to a binary mask image,
where one value encodes the background and the other the
foreground, i.e., the test object. The resulting binary im-
age is further pre-processed usingmorphological operations,
namely erosion and subsequent dilation, followed by Gaus-
sian filtering. In order to be able to handle the high data
throughput, these steps are executed on a graphics process-
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(a) Schematic illustration of the experimental setup.

(b) Photo of the resulting experimental setup in the laboratory with
the surface as shown in Fig. 5 mounted on the chute.
Figure 6: Illustrations of the designed experimental setup. The
yellow, dashed square corresponds to the viewing area of the
high speed camera. The blue path indicates a potential tra-
jectory followed by a test object.

ing unit (GPU). Next, the contour of the object is extracted
and the centroid is calculated during the detection stage. The
centroid coordinates and the number of the frame it was de-
tected in are eventually stored in a file, resulting in discrete
measurements in the form of

pt ∶= (xt, yt) . (5)
The timestamp t corresponds to the frame number the mea-
surement stems from. To increase performance and exploit

Camera
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Call
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Figure 7: Schematic illustration of the image processing
pipeline.

the advantages of multi-CPU systems, the software is de-
signed in a pipeline structure such that the steps depicted in
Fig. 7 can be run concurrently.

Up to this point, there merely exist data in form of un-
related, single point measurements. However, after having
recorded the data, we want to model a trajectory as

T ∶= {pt1 ,… , ptn ∣ tn ≤ tn+1} , (6)
i.e., as a set of subsequent measurements. Using the con-
textual attribute of our data, i.e., the timestamp, we iden-
tify those measurements which stem from the same sample.
Here, a sample is defined as a single run of a test object down
the chute. By restricting ourselves to recording data for a sin-
gle object at a time, i.e., there never occur two test objects in
a single frame, we can identify the measurements stemming
from a single pass by requiring that

T ∶= {pt1 ,… , ptn ∣ tn < tn+1, tn+1 − tn ≤ �} (7)
where � ∶= 1∕fps is the time between two consecutive frames.
In other words, we exploit the knowledge that there is always
at least one image without detection between two runs. It is
important to note that although the test objects are fed in-
dividually into the system and our data acquisition system
considers only one test object at a time, the system can be
extended, for instance by integrating a real-time multiobject
tracking system for sensor-based sorting as presented in [35],
to handle multiple test objects occurring in the same frame.
We further require that the number of points associated with
an sample, i.e., |T |, is greater than a certain threshold which
is based on the average number of points associated to the
extracted samples. An exemplary visualization of resulting
trajectories is shown in Fig. 8.
3.3. Trajectory Data Processing

In the following, we describe the implemented data pro-
cessing pipeline with the goal of classifying individual tra-
jectories. The implemented pipeline consists of four steps,
namely pre-processing, feature extraction, post-processing
and classification. During pre-processing, we determine the
number of points we want to use per trajectory in order to ob-
tain an initial feature vector of constant length. The number
of points is determined as the mean length of all trajectories
recorded for the considered classes. Trajectories containing
more points are cropped, while trajectories containing less
points are filled up with zero-valued coordinates. Further-
more, for each trajectory, we let

pts ∶= pt1 (8)
Maier et al.: Preprint submitted to Elsevier Page 5 of 9
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Figure 8: Exemplary visualization of acquired trajectories of
samples from an undamaged hazelnut. The main running
direction is from top to bottom. The different colors rep-
resent the different samples and the individual markers the
corresponding centroids as extracted by the image processing
system.

and align it to the origin by translating all coordinates ac-
cording to

T ∶= {pt1 − pts , pt2 − pts ,… , ptn − pts} . (9)
This transformation is valid due to the translational symme-
try of the stationary surface and results in our processing be-
coming invariant to wherever the trajectory entered the ob-
servation area of the camera.

For feature extraction, we consider approaches that have
been proposed in the literature for the classification of ob-
jects based on their trajectory, although in rather different
fields of study. For reasons of comprehensibility, we intro-
duce names for the different approaches, however those do
not necessarily comply with the original source.

Our first type of feature extraction is based on the idea
presented in [7]. The authors propose using the coefficient
feature space of spatiotemporal function approximations to
classify objects in video surveillance footage. As approx-
imation functions, least squares polynomials, Chebyshev
polynomials and discrete Fourier transform are considered.
A parameter for this kind of feature extraction is the degree
used for the approximation functions, which also determines
the size of the resulting feature vector. In the remainder, we
refer to this kind of feature extraction by “coefficient feature
space (CFS)”.

The second type of feature extraction is based on the de-
scriptive statistical analysis proposed in [3], which is origi-
nally proposed in the context of classification of urban vehi-
cles based on GPS data. The authors propose a set of statis-
tical features in order to derive motion profiles. In our im-
plementation, we consider velocity, acceleration and turning
angles for the calculation of such profiles. These profiles are
eventually decomposed based on sinuosity and a deviation
index. For details of the algorithm, the interested reader is

kindly referred to [3]. A parameter for this kind of feature ex-
traction is the so-called decomposition threshold of the algo-
rithm. With reference to the framework originally proposed
in [3], our feature vector includes the mean as well as the
standard deviation of the length of the resulting segments of
each decomposition class, the count of profile changes per
decomposition class, as well as the ratio of segment lengths
per decomposition class in relation to the overall profile. The
resulting feature vector has a length of 45. Based on the
name of the publication, we will call these features “Physics
of Movement (POM) features” in the following.

Lastly, we propose a third type of feature extraction
which is based on velocity and turbulence. We calculate ve-
locities in a sliding window manner, where the window size
w is the parameter for this kind of feature extraction. Ve-
locities are then calculated for both directional components
individually as given by

Vx ∶= {xtw − xt1 , xtw+1 − xt2 ,… , xtn − xtn−(w−1)} (10)
and for y likewise. Turbulence intensity (TI) is a feature typ-
ically used in scientific applications such as pipe flow sim-
ulations [36] or also for optimizing wind farm design [37].
For each time window, we calculate the average velocity v̄
over the entire window aswell as the velocities vi between alltime-wise consecutive coordinates within the window. Fluc-
tuations in velocity are then calculated for both directional
components individual, on the example of the x component
according to

v2f,x ∶=
1

w − 1

w
∑

i=1
(vi,x − v̄x)2 (11)

and then used for the calculation of TI as given by

TI ∶= 1
U

√

1
2
(v2f,x + v

2
f,y) (12)

where U is the mean velocity over all known samples. The
calculation for the directional y component follows likewise.
The resulting feature vector includes (n−w) velocity-related
features for the x and y component and (n−w−1) turbulence-
related features for the x and y component, resulting in a
total feature vector length of (4n − 4w − 2). Since this type
of feature extraction does not strongly relate to an approach
known from the literature, wewill refer to this kind of feature
extraction as the proposed approach.

In the post-processing step, we split the data into a train
and test set by the ratios 2∕3 and 1∕3, respectively. We further
determine the mean and standard deviation of the features
from the train set and then transform both the test and train
set by removing the mean and scaling to unit variance.

For classification, we consider a support vector machine
(SVM) with a radial basis function kernel.

4. Experimental Results
In our case study, we consider two classes of hazel-

nuts, namely undamaged hazelnuts and hazelnuts that suffer
Maier et al.: Preprint submitted to Elsevier Page 6 of 9
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(a) Photo of the hazelnut samples that suffered from insect damage.
The whole drilled by a nut weevil can also be seen. The weight of
the nuts are (FLTR) 0.98 g, 1.73 g and 1.59 g.

(b) Photo of the hazelnut samples without any damage. The weight
of the nuts are (FLTR) 2.44 g, 1.55 g, 1.66 g and 2.39 g.
Figure 9: Photos of the a damaged and b undamaged hazel-
nuts.

from insect damage. Photos of the test objects are provided
in Fig. 9. From Fig. 9a it can be seen that the insect damage
was most likely caused by a beetle called Curculio nucum
(nut weevil). Naturally, the different nuts further differ in
shape, size and weight. For each of the nuts, we acquire
5000 valid samples, i.e., trajectories satisfying the condi-
tions introduced in Section 3.2. The average count of data
points in these trajectories, i.e., the mean length, is 66 and
all trajectories are cropped or filled to this length. The total
set of samples is then randomly split into the train and test
set. Since our dataset includes 20000 samples of undam-
aged and 15000 samples of damaged hazelnut trajectories,
we consider the corresponding classification baselines at ap-
prox. 57% for undamaged and 43% for damaged hazelnuts.
This is the classification result that would be obtained when
always choosing the corresponding class.

For the evaluation, we implement the data processing ap-
proaches presented in Section 3.3 and assess their suitability
for the task of discriminating damaged hazelnuts from un-
damaged ones. For quantitative assessment, we determine
the accuracy of the classification, which is defined as the ra-
tio of correctly classified samples to all samples. As has been
mentioned in Section 3.3, all three types of feature extrac-
tion considered require parameterization, whereas the opti-
mal one is initially unknown. Namely the parameters are the
degree of the approximation functions for the CFS approach,
the decomposition threshold for the POM features and the
window size for the proposed feature set, respectively. We
determined the best parameterization in a brute force man-
ner. As an example, the results for all plausible window sizes
for the proposed feature set is shown in Fig. 10.

The respective best classification results of the individual
methods are shown in Table 1. As can be seen, employing

0 10 20 30 40 50 60
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cu

ra
cy

Figure 10: Exemplary visualization of the process for obtain-
ing the best parameterization per approach in a brute force
manner, here on the example of the proposed feature extrac-
tion approach. By testing each plausible parameterization, the
best one can be determined, in this case a window size of 5.

Table 1
Summary of the results for all considered types of feature ex-
traction for the classification task of distinguishing damaged
from undamaged hazelnuts. The respective best results are
printed in bold.

Features Accuracy Accuracy Total
undamaged damaged accuracy

CFS: Least-squares 79% 48% 66%polynomials
CFS: Chebyshev 79% 48% 66%polynomials
CFS: Discrete 83%83%83% 43% 66%Fourier transform

POM features 77% 54% 67%

Proposed features 80% 70%70%70% 75%75%75%

CFS features always yields a result of 66% total accuracy
and employing POM features performs fairly similar, result-
ing in 67% total accuracy. In all cases, the accuracy for un-
damaged hazelnuts is well above the baseline, yet the accu-
racy for damaged hazelnuts only marginally. Best results are
obtained by using the proposed feature set consisting of ve-
locity and turbulence related features. In this case, accuracy
for both classes, 80% for undamaged and 70% for damaged
hazelnuts, is well above the baseline.

Based on these results, it can be concluded that analyz-
ing the motion of the test object yields meaningful features
to support the discrimination of different classes of test ob-
jects. While in this study these features were used as the
only ones for classification, we expect a high potential of re-
alizing a more robust classification by combining this new
set of features with traditional features derived from image
data, such as color, texture and/or shape. Regarding the ex-
ample of hazelnuts at hand, we were also able to observe that
the structured surface of the chute supports a rotation of the
hazelnuts while going down the chute. Since several frames
are taken of each nut by the high-speed camera, this also al-
lows optical inspection from several sides without the need
for a multi-camera system. In the case of the assessed insect
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damage, this for instance increases the chances of spotting
the hole. Last but not least, the main advantage of the pro-
posed approach is that it is designed in such a way that it can
directly be integrated into sensor-based sorting and enables
quality inspection of thousands of objects per second. This
way, high throughput can be achieved, making it attractive
for industrial application.

5. Conclusion
We have presented a novel approach for inspection and

sorting tasks where defects that cannot be detected using
static image data, for instance internal defects, can be iden-
tified. The approach is based on a high speed camera and
real-time image processing to extract the position of individ-
ual test objects throughout their trajectory. This motion data
is then used as basic features to classify the different objects.
For this purpose, we considered different feature extraction
methods from the literature and proposed the adaption of an
approach well-known from other fields of study. We evalu-
ated the approach on the inspection task of identifying hazel-
nuts that suffer from insect damage. Our results show that a
discrimination of damaged and undamaged hazelnuts is pos-
sible at an accuracy of 80% for undamaged hazelnuts. The
main advantage of the proposed approach is that it can be
integrated into sensor-based sorting systems and is able to
handle a large number of test objects simultaneously, which
in turn results in high throughput and economic benefits.

In the future, we are interested in running experiments
for tasks from different application domains, such as dis-
criminating different polymer types for recycling applica-
tions. Also, we are particularly interested in experiments
with densely distributed test objects in the images. In such
situations, collisions of multiple test object can occur, which
may reveal further interesting features to reason about the
objects. Also, we expect that omitting feature engineering
and employing purely data drivenmethods, for instance deep
learning, may result in a boost in classification accuracy.
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