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Abstract

The microstructural evolution in solids is driven by different factors,
such as entropy density, the chemical potential and mechanical energy.
The mechanical energy density propagates along with the propagation
of the mechanical wave, which has a great influence on the rapid solid-
state phase transformation, such as the martensitic transformation. In
order to determine the mechanical contribution to the driving force dur-
ing the microstructural evolution, it is therefore indispensable to simu-
late the mechanical wave propagation within a multiphase and multigrain
system. With the introduction of an order parameter for each phase,
the phase-field method is an efficient and robust numerical analysis tool,
which obviates the complexity of tracking the interfaces among different
phases. In this paper, the phase-field method is extended to simulate the
mechanical wave propagation by coupling it with the high-order discon-
tinuous Galerkin method. The jump condition at the sharp interface is
derived for mechanical waves with strong and weak discontinuities. Based
on the jump condition, the interpolation scheme for the stiffness matrix
and the density is formulated with order parameters, so as to derive the
driving force for the microstructural evolution. Numerical validations are
carried out to verify the jump condition, the interpolation scheme and the
accuracy and convergence of this simulation scheme.

Keywords: Phase-field method, High-order discontinuous Galerkin method, Mechan-
ical wave propagation, Jump condition

1 Introduction

The macroscopic material properties are determined by the microstructural morphol-
ogy of the materials [1,2]. In order to gain an insight into the mechanism of material
properties, it is thus indispensable to study the material from the microstructural
point of view.
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In a multiphase system, the microstructural evolution is driven by configurational
forces, which are contributed by different factors, such as entropy density, the chem-
ical potential, mechanical energy and others [3,4]. The evolution process was initially
described by the moving free boundary problems with a sharp interface, where the
interface thickness was equal to zero. Partial differential equations were utilised to
describe the physical mechanisms within the single-phase domains, while boundary
conditions were imposed on the interfaces [5,6]. The difference of material properties
leads to the jump of energy densities across the sharp interfaces. As a result, it is not
practical to track the sharp interfaces when the growing geometry of grains/phases
is complicated [7]. In the phase-field method, the order parameter φα represents the
volume fraction of the α phase, which varies smoothly but steeply across the diffuse
interfaces with finite thickness. The free energy of a multiphase/multigrain system
can be expressed by various physical fields, together with the order parameters. Thus,
the process of phase transition can be explicitly expressed as the evolution of order
parameters, which is formulated by the variational derivation of free energy with re-
spect to the order parameters, according to the free energy minimization. Therefore,
with the introduction of order parameters, one of the most important advantages of
the phase-field method is that it can successfully obviate the great effort necessary for
tracking the interfaces among different phases/grains [8–10]. The phase-field method
has been developed into an efficient and robust numerical analysis tool to study the
process of microstructural evolution, such as solidification, grain growth, the lithiation
of Si electrodes, film growth, as well as precipitation and crack propagation [11–16].

For the modelling of mechanical processes, homogenisation approaches are mostly
used in the phase-field community [17]. Levitas and Warren [18] extended the expression
for the anisotropic gradient energy by introducing the interface stresses with the help
of geometric nonlinearity. Javanbakht and Levitas [19] studied the phase transforma-
tion processes under the conditions of high pressure and a large shear. Ma et al. [20]

found that the thermomechanical process significantly influences the microstructural
evolution of the TiB/Ti matrix composite through the recrystallisation in the beta
phase field. However, using homogenisation approaches leads to interfacial excess en-
ergy contributions that distort the balance equations at the interfaces [21,16]. Only in
the most recent approaches are the mechanical balance equations at the interfaces used
to calculate the effective material properties in the transition areas [22–25]. It has been
shown that these models fulfil the mechanical jump conditions and represent the con-
figuration forces during phase transformations in multiphase systems with solids [25].
Furthermore, these approaches have already been extended for the mapping of chemo-
mechanically coupled phase transformation processes [26,27], as well as plastification
mechanisms [28], and allow the modelling of relevant transformation processes in steels
in industrial applications [29–31]. With an improved stress and strain formulation prior
to and after a crack initiation, Borden et al. [32] broadened the application scope of the
phase-field method to the simulation of a crack initiation and propagation in ductile
materials.

For the purpose of simulating the rapid solid-state phase transformation, such
as the martensitic transformation, it is indispensable to take the dynamic mechanical
energy into consideration [33]. To simulate the ultrasonic wave propagation in polycrys-
talline metal with columnar structures, Nakahata et al. [34] coupled the finite element
method (FEM) with the phase-field method. Borden et al. [35] extended the phase-field
method from a quasi-static brittle fracture to the dynamic cases. Henry and Levine [36]

and Henry [37] studied the dynamic instabilities of fracture with the phase-field model,
under different loading conditions. Henry [38] discussed the limitation of the phase-field
method in modelling crack propagation with a wedge of high fracture energy. However,
regarding the substitution of the sharp interface within the multiphase/multigrain sys-
tem by the diffuse interface in the phase-field method, a detailed parameter study and
convergence analysis are still missing. The parameter study and convergence analysis
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should be the fundamental work and should provide guidelines for the further devel-
opment of the phase-field method, in simulating the microstructural evolution under
dynamic mechanical conditions. In this paper, the high-order discontinuous Galerkin
method (DGM), which has been successfully applied in the simulation of the propaga-
tion of waves [39–42], is coupled with the phase-field method to investigate elastic wave
propagation in a polycrystalline structure. Currently, the research scope is limited to
the simulation of infinitesimal deformation. Wave propagation with finite deformation
will be formulated and studied in the future.

The remaining part of this paper is organised as follows: In Section 2, the numerical
methods adopted in this paper, i.e. the phase-field method and the high-order DGM,
are briefly introduced to provide the basic evolution formula. Then, considering the
mechanical wave with both strong and weak discontinuities, the jump condition at the
sharp interface is investigated in Section 3, which is followed by an interpolation scheme
for the stiffness matrix and the density at the diffuse interface. In Section 5, several
1D numerical examples are illustrated and analysed to validate the accuracy of the
numerical methods presented in Section 2, the jump condition at the sharp interface
derived in Section 3 and the efficiency of the interpolation scheme introduced in Section
4. Suggestions regarding the simulation parameters are provided to obtain accurate
numerical results. Moreover, two 2D numerical examples with regular and irregular
diffuse interfaces are simulated and analysed to verify the application efficiency. In
Section 6, conclusions are drawn.

2 Numerical methods

In this paper, the phase-field method is coupled with the high-order DGM to simulate
the mechanical wave propagation within the multiphase/multigrain system, which will
be briefly introduced in the following parts of this section.

For the symbols and equations in this paper, the following conventions apply: (1)
the scalar variables are written as regular uppercase/lowercase letters, (2) the bold
lowercase letters represent vectors, (3) the bold uppercase letters denote matrices and
(4) for the lowercase Latin subscripts/superscripts in the equations, the index notation
and the Einstein summation convention apply, if no further instructions are given.

2.1 Parametrisation of phases in the phase-field method

In a multiphase system, where the total number of phases is defined as N , the free
energy F is calculated as:

F =

∫
V

[fse(φφφ,∇φ∇φ∇φ) + fd(φφφ,εεε,vvv) + f(...)] dV (1)

where the N -tuple φφφ = (φ1, φ2, ..., φN ), and φα (α = 1, 2, ..., N) is the order parameter
for the α phase. The N -tuple∇φ∇φ∇φ = (∇φ1,∇φ2, ...,∇φN ) contains the gradients of each
element in the N -tuple φφφ, and ∇ is the gradient operator. fse(φφφ,∇φ∇φ∇φ) denotes the grain
boundary contributions, dependent on the order parameters and their gradients [28,23].
V is the volume of the concerned domain, and fd(φφφ,εεε,vvv) represents the dynamic
mechanical energy density derived according to the N -tuple φφφ, the infinitesimal elastic
strain matrix εεε and the material particle velocity vector vvv. f(...) denotes the additional
energy densities contributed by factors such as heat, the chemical potential and/or
others.

In this paper, only the dynamic mechanical contribution fd(φφφ,εεε,vvv) with infinitesi-
mal elastic strain is considered and derived in detail. The dynamic mechanical contri-
bution with finite strain will be formulated and analysed in future research work. It is
worth mentioning that in this paper, the reference configuration is used for geometrical
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computing, since infinitesimal elastic strain is under consideration. For the situation
with finite strain, the calculation based on the reference configuration will be retained
through the combination with the Piola-Kirchhoff stress [24].

In the phase-field method, the order parameter φα(xxx, t) is used to parametrise the α
phase, which physically represents its volume fraction at the location xxx = (x1, x2, x3)T

and the time t, with (x1, x2, x3)T defining the material particle position in the Carte-
sian coordinate system, constructed by the base unit vectors {eee1, eee2, eee3}. Therefore,
the order parameters satisfy the following constraint:

N∑
α=1

φα(xxx, t) = 1 (0 ≤ φα(xxx, t) ≤ 1) (2)

With order parameters, the parametrisation of a multiphase system can be visually
demonstrated as Figure 1. Specifically, φα = 1 in the regions with a single α phase,
and φα = 0 within the grains containing a single β (α 6= β) phase. Between the
phases α and β, there is an interface with finite thickness. In contrast to systems
with sharp interfaces, where the volume fraction of a phase is either 1 or 0, the order
parameters are diffused and change continuously across the finite-thickness interfaces
in the phase-field method, as illustrated on the right side of Figure 1. Here, Eq. (2) is
always satisfied in the whole simulation domain.
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Figure 1: A volume fraction in a multiphase system

With order parameters, the dynamic mechanical energy density fd(φφφ,εεε,vvv) is cal-
culated as the interpolation of phase-dependent contributions:

fd(φφφ,εεε,vvv) =
N∑
α=1

fαd (εεεα, vvvα)hα(φφφ) (3)

where fαd (εεεα, vvvα) is the dynamic mechanical energy density of the α phase, and hα(φφφ)
is an interpolation function determined by φφφ and constructed with the purpose of
interpolating the dynamic mechanical energy density fαd (εεεα, vvvα) across the diffuse
interfaces. Similar to the order parameter φα, hα(φφφ) satisfies [24]:

N∑
α=1

hα(φφφ) = 1 (0 ≤ hα(φφφ) ≤ 1) (4)
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With diffused volume fractions and energy densities, the process of the phase
transition can be explicitly described by the evolution of the order parameters as
follows [43]:

φ̇α(xxx, t) = − 1

N

N∑
β=1,β 6=α

Mαβ

(
δF
δφα

− δF
δφβ

)
(5)

where φ̇α(xxx, t) = ∂φα(xxx, t)/∂t is the first-order time derivation of the order parameter
φα, Mαβ represents the mobility for the α− β interface [44] and the operator δ/δφα is
expressed as:

δ

δφα
=

∂

∂φα
−∇ · ∂

∂∇φα
(6)

where ∇· denotes the divergence operator.

2.2 High-order DGM

The DGM has been proven to be an efficient numerical tool in simulating wave propa-
gation [39–42]. In this paper, the high-order formulation of DGM is therefore embedded
into the phase-field method to study the influence of mechanical wave propagation
upon the process of phase transformation. According to Leveque [45], the local govern-
ing equations for mechanical wave propagation can be expressed as:

u̇i(xxx, t) = Ckijuj,k(xxx, t) + si(xxx, t) (7)

where ui(xxx, t) (i = 1, 2, ..., 9) represents the i-th element in the vector uuu = (σ11, σ22, σ33,
σ23, σ13, σ12, v1, v2, v3)T . The first six elements in uuu are the Cauchy stress variables
in the Voigt notation, while the last three elements are the velocity variables. The
subscripts {1, 2, 3} of the elements in uuu denote the directions {eee1, eee2, eee3}, respectively;
uj,k(xxx, t) is the first-order derivation of uj(xxx, t) with respect to xk (k = 1, 2, 3). si(xxx, t)
denotes the source term corresponding to ui(xxx, t), C

k
ij represents the element in the

i-th row and the j-th column of the matrix CCCk, and CCCk is the coefficient matrix which
defines the relationship between u̇i(xxx, t) and uj,k(xxx, t). In this paper, the simulated
material is supposed to be isotropic within a single-phase domain. Thus, the matrix
CCCk is expressed as:
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CCC1 =



0 0 0 0 0 0 K11 0 0
0 0 0 0 0 0 K21 0 0
0 0 0 0 0 0 K31 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 K55

0 0 0 0 0 0 0 K66 0
R 0 0 0 0 0 0 0 0
0 0 0 0 0 R 0 0 0
0 0 0 0 R 0 0 0 0



CCC2 =



0 0 0 0 0 0 0 K12 0
0 0 0 0 0 0 0 K22 0
0 0 0 0 0 0 0 K32 0
0 0 0 0 0 0 0 0 K44

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 K66 0 0
0 0 0 0 0 R 0 0 0
0 R 0 0 0 0 0 0 0
0 0 0 R 0 0 0 0 0



CCC3 =



0 0 0 0 0 0 0 0 K13

0 0 0 0 0 0 0 0 K23

0 0 0 0 0 0 0 0 K33

0 0 0 0 0 0 0 K44 0
0 0 0 0 0 0 K55 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 R 0 0 0 0
0 0 0 R 0 0 0 0 0
0 0 R 0 0 0 0 0 0



(8)

where Kij (i, j = 1, 2, ..., 6) forms the effective stiffness matrix KKK, which defines the
relationship between the elastic stresses and strains in the Voigt notation:

KKK =


K11 K12 K13 0 0 0
K21 K22 K23 0 0 0
K31 K32 K33 0 0 0

0 0 0 K44 0 0
0 0 0 0 K55 0
0 0 0 0 0 K66

 (9)

In Eq. (8), the reciprocal of the effective densityR is determined by the densities of
the simulated materials. As introduced in Section 2.1, the sharp interfaces among the
different phases/grains are substituted by diffuse interfaces in the phase-field method,
and the order parameter φα represents the volume fraction of the α phase. In Eq.
(8), the material property parameters, i.e. the effective stiffness matrix KKK and the
reciprocal of the effective density R, thus are given in the interpolated form. This
means they are formulated by the Lamé parameters λ and µ, the density ρ and the
order parameter φα, which will be derived in detail in Sections 3 and 4.

It can be observed that the first six equations in the series of Eq. (7) are actually
the dynamic constitutive equations with stress-velocity formulations, while the last
three are the dynamic governing equations expressed by velocity and stress. Since
velocity is the first-order derivation of displacement with respect to time t, Eq. (7)
is exactly equivalent to the traditional constitutive equations and governing equations
with the displacement-stress expression.
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In this paper, the high-order DGM is embedded into the multifunctional numerical
analysis software PACE3D (Parallel Algorithms for Crystal Evolution in 3D)1 [46]. In
this software, the simulated domain is discretised with an equidistant grid, as illus-
trated in Figure 2.

𝜅Cell

x1

x3

x2

Figure 2: Spatial discretisation in PACE3D

Each cell κ is assigned with a variable vector uuuκ, and its element uκi (xxx, t) is spatially
approximated by a linear combination of a series of orthogonal polynomials. This
results in the following:

uκi (xxx, t) = aκij(t)pj(xxx) (10)

where aκij(t) represents the unknowns for uκi (xxx, t) at time t. The orthogonal polynomial
basis pj(xxx) forms the spatially approximating space ppp = (pj(xxx), j = 1, 2, ..., n), which
satisfies the following requirement:∫

Vκ

pj1(xxx)pj2(xxx) dVκ =

{
1 (j1 = j2)

0 (j1 6= j2)
(11)

where Vκ is the volume for the cell κ. With the highest polynomial degree equal to q,
the number of bases in space ppp, i.e. n, is calculated as:

n =
(q + 1)(q + 2)(q + 3)

6
(12)

For the source term sκi (xxx, t) within the cell κ, it is also approximated through a
linear combination of the bases in ppp, which results in:

sκi (xxx, t) = bκij(t)pj(xxx) (13)

where bκij(t) is calculated according to the Taylor series of the input source function.
For the cell κ, the weak form of Eq. (7) can be written as:

∫
Vκ

u̇κi (xxx, t)pl(xxx) dVκ = Cκkij

∫
Vκ

uκj,k(xxx, t)pl(xxx) dVκ +

∫
Vκ

sκi (xxx, t)pl(xxx) dVκ (14)

Eq. (14) shows that the elements in the coefficient matrix CCCκk are considered as
constants within the cell κ. According to the product rule of the derivation and the
divergence theorem, the first term on the right-hand side of Eq. (14) can be expressed
as:

1PACE3D is developed by the research group of Prof. Dr. rer. nat. Britta Nestler, at the
Karlsruhe Institute of Technology and the Karlsruhe University of Applied Sciences.
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Cκkij

∫
Vκ

uκj,k(xxx, t)pl(xxx) dVκ =Cκkij

∫
Sκ

uκj (xxx, t)pl(xxx)ξk dSκ−

Cκkij

∫
Vκ

uκj (xxx, t)pl,k(xxx) dVκ

(15)

where Sκ denotes the surface of the cell κ, and ξξξ = (ξ1, ξ2, ξ3)T is the outward unit
normal vector of the surface Sκ. In order to calculate the interaction or the numerical
flux between adjacent cells, the Riemann solver is used with an upwind scheme [39].
Therefore, the first term on the right-hand side of Eq. (15) can be written as:

Cκkij

∫
Sκ

uκj (xxx, t)pl(xxx)ξk dSκ =
1

2

∫
Sκ

TSκij (Cκ1
jm −Dκ1

jm)T
′Sκ
mr u

κ
r (xxx, t)pl(xxx) dSκ+

1

2

∫
Sκ

TSκij (Cκ1
jm +Dκ1

jm)T
′Sκ
mr u

κSκ
r (xxx, t)pl(xxx) dSκ

(16)

where the symbol κSκ in u
κSκ
r (xxx, t) refers to the cell which shares the surface Sκ with

the cell κ. TTTSκ represents the matrix transforming the local variables uuuSκ to the global
variables uuuκ, i.e. uκi = TSκij u

Sκ
j . With the base unit vectors {ξξξ,ηηη,ζζζ} = {(ξ1, ξ2, ξ3)T ,

(η1, η2, η3)T , (ζ1, ζ2, ζ3)T } constructing the local Cartesian coordinate system, TTTSκ is
expressed as follows:

TTTSκ =

ξ1ξ1 η1η1 ζ1ζ1 2η1ζ1 2ξ1ζ1 2ξ1η1 0 0 0
ξ2ξ2 η2η2 ζ2ζ2 2η2ζ2 2ξ2ζ2 2ξ2η2 0 0 0
ξ3ξ3 η3η3 ζ3ζ3 2η3ζ3 2ξ3ζ3 2ξ3η3 0 0 0
ξ2ξ3 η2η3 ζ2ζ3 η2ζ3 + η3ζ2 ξ2ζ3 + ξ3ζ2 ξ2η3 + ξ3η2 0 0 0
ξ1ξ3 η1η3 ζ1ζ3 η1ζ3 + η3ζ1 ξ1ζ3 + ξ3ζ1 ξ1η3 + ξ3η1 0 0 0
ξ1ξ2 η1η2 ζ1ζ2 η1ζ2 + η2ζ1 ξ1ζ2 + ξ2ζ1 ξ1η2 + ξ2η1 0 0 0

0 0 0 0 0 0 ξ1 η1 ζ1
0 0 0 0 0 0 ξ2 η2 ζ2
0 0 0 0 0 0 ξ3 η3 ζ3


(17)

TTT
′Sκ denotes the inverse matrix of TTTSκ . The matrix DDDκk is determined by the eigen-

values and right eigenvectors of the matrix CCCκk:

Dκk
ij = Gκkil H

κk
lmG

′κk
mj (18)

where the Einstein summation convention does not apply to the superscript k. HHHκk =
diag(|h1|, |h2|, ..., |h9|), where |hi| (i = 1, 2, ..., 9) is the absolute value of the i-th
eigenvalue of the matrix CCCκk and satisfies the following:

hi1 ≤ hi2 (i1 < i2) (19)

The matrix GGGκk = (ggg1, ggg2, ..., ggg9), with the column vector gggi (i = 1, 2, ..., 9) being the
eigenvector of the matrix CCCκk corresponding to the eigenvalue hi. In Eq. (16), it is
worth noticing that the following equation remains valid when ξξξ = eeek:

Cκkij −Dκk
ij = TSκil (Cκ1

lm −Dκ1
lm)T

′Sκ
mj (20)

By substituting Eqs. (15) and (16) into Eq. (14), the following formula can be
obtained:
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∫
Vκ

u̇κi (xxx, t)pl(xxx) dVκ =
1

2

∫
Sκ

TSκij (Cκkjm −Dκk
jm)T

′Sκ
mr u

κ
r (xxx, t)pl(xxx) dSκ+

1

2

∫
Sκ

TSκij (Cκkjm +Dκk
jm)T

′Sκ
mr u

cSκ
r (xxx, t)pl(xxx) dSκ−

Cκkij

∫
Vκ

uκj (xxx, t)pl,k(xxx) dVκ +

∫
Vκ

sκi (xxx, t)pl(xxx) dVκ

(21)

According to Eqs. (10), (11) and (13), as well as the forward finite difference
approximation, Eq. (21) can be written as:

aκil(t+ ∆t) =aκil(t) + ∆t

(
1

2

∫
Sκ

TSκij (Cκkjm −Dκk
jm)T

′Sκ
mr a

κ
rs(t)ps(xxx)pl(xxx) dSκ+

1

2

∫
Sκ

TSκij (Cκkjm +Dκk
jm)T

′Sκ
mr a

κSκ
rs (t)ps(xxx)pl(xxx) dSκ−

Cκkij

∫
Vκ

aκjm(t)pm(xxx)pl,k(xxx) dVκ + bκil(t)

) (22)

where ∆t denotes the timestep for the temporal discretisation.
In this paper, three different boundary conditions are considered, namely free,

nonreflective and de-dimension boundary conditions. The first two adapt the formula
in Käser and Dumbser [39]. Supposing that the surface Sι is a free boundary, the
numerical flux in Eq. (16) for the surface Sι is calculated as:

Cκkij

∫
Sι

uκj (xxx, t)pl(xxx)ξk dSι =
1

2

∫
Sι

TSιij (Cκ1
jm −Dκ1

jm)T
′Sι
mr u

κ
r (xxx, t)pl(xxx) dSι+

1

2

∫
Sι

TSιij (Cκ1
jm +Dκ1

jm)NmrT
′Sι
rs u

κSι
s (xxx, t)pl(xxx) dSι

(23)

where NNN = diag(−1, 1, 1, 1,−1,−1, 1, 1, 1). If the surface Sι is a nonreflective bound-
ary, Eq. (23) becomes:

Cκkij

∫
Sι

uκj (xxx, t)pl(xxx)ξk dSι =
1

2

∫
Sι

TSιij (Cκ1
jm −Dκ1

jm)T
′Sι
mr u

κ
r (xxx, t)pl(xxx) dSι (24)

It is noticed that Eq. (23) sets the inward and outward flux as opposite values,
for the stress elements which are supposed to be zero at the free boundary. While
Eq. (24) fixes the inward flux at the noneflective boundary as zero. As for the de-
dimension boundary, it is introduced when investigating some phenomena with 1D or
2D numerical examples on the 3D software platform, i.e. PACE3D. At this time, the
inward flux is exactly the same as the outward flux. Thus, assuming that the surface
Sι is a de-dimension boundary, Eq. (23) becomes:

Cκkij

∫
Sι

uκj (xxx, t)pl(xxx)ξk dSι =
1

2

∫
Sι

TSιij (Cκ1
jm −Dκ1

jm)T
′Sι
mr u

κ
r (xxx, t)pl(xxx) dSι+

1

2

∫
Sι

TSιij (Cκ1
jm +Dκ1

jm)T
′Sι
mr u

κ
r (xxx, t)pl(xxx) dSι

=

∫
Sι

TSιij C
κ1
jmT

′Sι
mr u

κ
r (xxx, t)pl(xxx) dSι

(25)
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3 Jump condition at the sharp interface

In this section, the jump condition at the sharp interface between two different phases
is investigated, on the basis of which the interpolation of the material parameters
within the corresponding diffuse interface can be derived in the phase-field method.
For the interface generated by more than two phases, the jump condition and the
interpolation scheme presented in this paper can be extended, similar to the method
proposed by Schneider et al. [25].

The geometrical description of the physical domain is given as in Figure 3. Ωα
denotes the open domain with a single α phase, which means that Ωα ∩ Γα = ∅, if
Γα represents the boundary of Ωα. Λαβ = Γα ∩ Γβ \ Pαβ represents the open domain
shared by the boundaries of the α and β phases, i.e. the sharp interface between
these phases, and Pαβ is the boundary of Λαβ . Ωαβ = Ωα ∪ Ωβ ∪ Λαβ denotes the
open domain including the α and β phases, and Γαβ = Γα ∪ Γβ \ Λαβ represents the
boundary of Ωαβ .

𝒫"#

𝛼 𝛽

Ω" Ω#Λ"#

Γ" Γ#

Figure 3: Geometrical description of the physical domain

In order to study the jump condition at the interface Λαβ , it is split into two
symmetric parts, Λβα and Λαβ , as demonstrated in Figure 4. The coordinate variable
xxx has identical values at the symmetric points, which are respectively located at the
surfaces Λβα and Λαβ . However, the material properties at the surface Λβα take the
values from the α phase, while the material properties at the surface Λαβ assume the

values from the β phase. Thus, in the domain Ωα = Ωα ∪ Λβα, only the α phase is
present. The jump of an arbitrary variable z(xxx, t), at the interface Λαβ , is defined as:

Jz(xxx, t)KΛαβ = zΛβα(xxx, t)− zΛαβ (xxx, t) (26)

where zΛβα(xxx, t) denotes the z field at the surface Λβα.
For the elastic wave propagation within continua, the displacement fields www =

(w1, w2, w3)T of material particles are continuous within the whole simulated domain
Ω, according to the continuity condition. In this paper, two different elastic wave types
are studied, i.e. elastic waves with strong and weak discontinuities [47]. The definition
of the elastic wave with strong discontinuity is given as:

Definition 1. ∀ε > 0, ∃δi > 0, ∀xxx ∈ Ω : ‖xxx − xxx0‖2 < δi =⇒ |wi(xxx, t)− wi(xxx0, t)| <
ε (i = 1, 2, 3; xxx0 ∈ Ω; t > 0).
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Λ"#

Λ"
# Λ#"

𝜉

𝜁

𝜂

Figure 4: Splitting the interface Λαβ into Λβα and Λαβ

On the basis of Definition 1 and with further constraints, the elastic wave with weak
discontinuity is defined as follows:

Definition 2. ∀ε > 0,∃δ1ij , δ2i > 0 :

(1) ∀xxx ∈ Ωα, ‖xxx− xxx0‖2 < δ1ij =⇒
∣∣∣∣ ∂wi(xxx,t)∂xj

− ∂wi(xxx,t)
∂xj

∣∣∣
xxx=xxx0

∣∣∣∣ < ε,

(2) ∀t > 0, |t−t0| < δ2i =⇒
∣∣∣∣ ∂wi(xxx,t)∂t

− ∂wi(xxx,t)
∂t

∣∣∣
t=t0

∣∣∣∣ < ε, (i, j = 1, 2, 3; xxx,xxx0 ∈

Ωα, t, t0 > 0).

Here, ‖ · ‖2 refers to the Euclidean norm, which calculates the length of a vector.
Definition 1 ensures the continuity of the displacement fields www over the whole domain
Ω, while Definition 2 shows that both the first-order spatial and temporal derivations
of the displacement fields are continuous within a single-phase domain Ωα. This means
that the waveforms of the strains, stresses and velocities are continuous within a single-
phase domain Ωα. For brevity, the elastic wave with strong discontinuity is referred
to as Type I wave in this paper, while the elastic wave with weak discontinuity is
described as Type II wave. Figure 5 respectively illustrates an example for Type I and
Type II waves, which are used for numerical analysis in this paper.

The base unit vectors (ξξξ,ηηη,ζζζ)T construct the local Cartesian coordinate system at
the interface Λαβ , with ξξξ normal to the interface Λαβ , as shown in Figure 4. Hence,
the local stresses and strains can be expressed as follows:{

σ̃̃σ̃σ = (σ̃̃σ̃σ1, σ̃̃σ̃σ2)T = MMMσσσσ

ε̃̃ε̃ε = (ε̃̃ε̃ε1, ε̃̃ε̃ε2)T = MMMεεεε
(27)

where σ̃̃σ̃σ1 = (σξξ, σξζ , σξη)T and σ̃̃σ̃σ2 = (σηη, σζζ , σηζ)
T respectively represent the nor-

mal and tangential components in the local stress vector, while ε̃̃ε̃ε1 = (εξξ, εξζ , εξη)T

and ε̃̃ε̃ε2 = (εηη, εζζ , εηζ)
T denote the corresponding normal and tangential components

in the local strain vector. σσσ and εεε are the global stress and strain fields in the Voigt
notation. The local base unit vectors (ξξξ,ηηη,ζζζ)T define the transformation matrices MMMσ

and MMMε as follows:

11
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(a) An example of a velocity waveform for
a Type I wave

vmin

0

vmax

0 ts te

V
el

o
ci

ty
v

Time t

Velocity waveform

(b) An example of a velocity waveform for
a Type II wave

Figure 5: The examples for the Type I and Type II waves (ts and te
respectively represent the beginning and the end of the incident wave)

MMMσ =


ξ1ξ1 ξ2ξ2 ξ3ξ3 2ξ2ξ3 2ξ1ξ3 2ξ1ξ2
ξ1ζ1 ξ2ζ2 ξ3ζ3 ξ2ζ3 + ξ3ζ2 ξ1ζ3 + ξ3ζ1 ξ1ζ2 + ξ2ζ1
ξ1η1 ξ2η2 ξ3η3 ξ2η3 + ξ3η2 ξ1η3 + ξ3η1 ξ1η2 + ξ2η1

η1η1 η2η2 η3η3 2η2η3 2η1η3 2η1η2

ζ1ζ1 ζ2ζ2 ζ3ζ3 2ζ2ζ3 2ζ1ζ3 2ζ1ζ2
η1ζ1 η2ζ2 η3ζ3 η2ζ3 + η3ζ2 η1ζ3 + η3ζ1 η1ζ2 + η2ζ1



MMMε =


ξ1ξ1 ξ2ξ2 ξ3ξ3 ξ2ξ3 ξ1ξ3 ξ1ξ2
2ξ1ζ1 2ξ2ζ2 2ξ3ζ3 ξ2ζ3 + ξ3ζ2 ξ1ζ3 + ξ3ζ1 ξ1ζ2 + ξ2ζ1
2ξ1η1 2ξ2η2 2ξ3η3 ξ2η3 + ξ3η2 ξ1η3 + ξ3η1 ξ1η2 + ξ2η1

η1η1 η2η2 η3η3 η2η3 η1η3 η1η2

ζ1ζ1 ζ2ζ2 ζ3ζ3 ζ2ζ3 ζ1ζ3 ζ1ζ2
2η1ζ1 2η2ζ2 2η3ζ3 η2ζ3 + η3ζ2 η1ζ3 + η3ζ1 η1ζ2 + η2ζ1



(28)

where ξξξ = (ξ1, ξ2, ξ3)T , ηηη = (η1, η2, η3)T and ζζζ = (ζ1, ζ2, ζ3)T . It can be seen that

MMM
′
σ = MMMT

ε and MMM
′
ε = MMMT

σ .
Similar to the static mechanics [48,23] for both elastic wave types, i.e. Type I and

Type II waves, the following equilibrium equations hold true at the interface Λαβ :

w
Λβα
i (xxx, t) = w

Λαβ
i (xxx, t) (29a)

(σ̃1
i )Λβα(xxx, t) = (σ̃1

i )Λαβ (xxx, t) (29b)

(ε̃2
i )

Λβα(xxx, t) = (ε̃2
i )

Λαβ (xxx, t) (29c)

v
Λβα
i (xxx, t) = v

Λαβ
i (xxx, t) (29d)

where the subscript i = 1, 2, 3 denotes the i-th element in the corresponding vector.
Eqs. (29a) and (29b) are automatically satisfied, according to the requirements of the
material continuity and the force balance at the interface Λαβ . Then, based on Eq.
(29a), the following conclusions can be drawn:

12



∂w
Λβα
i (xxx, t)

∂x̃2
=
∂w

Λαβ
i (xxx, t)

x̃2
(30a)

∂w
Λβα
i (xxx, t)

∂x̃3
=
∂w

Λαβ
i (xxx, t)

x̃3
(30b)

∂w
Λβα
i (xxx, t)

∂t
=
∂w

Λαβ
i (xxx, t)

∂t
(30c)

where x̃̃x̃x = (x̃1, x̃2, x̃3)T = QQQxxx denotes the material particle position in the local
Cartesian coordinate system, and the transformation matrix QQQ is expressed as:

Q =

ξ1 ξ2 ξ3
η1 η2 η3

ζ1 ζ2 ζ3

 (31)

Thus, Eq. (29c) can be obtained through Eqs. (30a) and (30b), while Eq. (29d) can
be obtained through Eq. (30c).

According to Eqs. (26) and (29), the jump condition at the interface Λαβ can be
described as:

Jwww(xxx, t)KΛαβ = 0 (32a)

Jσ̃̃σ̃σ1(xxx, t)K
Λαβ = 0 (32b)

Jε̃̃ε̃ε2(xxx, t)K
Λαβ = 0 (32c)

Jvvv(xxx, t)KΛαβ = 0 (32d)

At the interface Λαβ , the jump of other mechanical fields, i.e. strains ε̃̃ε̃ε1, stresses σ̃̃σ̃σ2

and momentums ψψψ = ρvvv, is determined by the jump of the stiffness matrix and the
density.

Through Definitions 1 and 2, it can be observed that the displacement fields www for
both Type I and Type II waves are continuous within the whole simulated domain,
which can also be ensured by the continuous requirement of continua mechanics. How-
ever, it is worth pointing out that the following proposition is only true for the Type
II wave:

Proposition 1. ∀ε > 0, ∃δ1i, δ2i, δ3i > 0, ∀xxx ∈ Ωαβ :

(1) ‖xxx− xxx0‖2 < δ1i =⇒ |σ̃1
i (xxx, t)− σ̃1

i (xxx0, t)| < ε,

(2) ‖xxx− xxx0‖2 < δ2i =⇒ |ε̃2
i (xxx, t)− ε̃2

i (xxx0, t)| < ε,

(3) ‖xxx− xxx0‖2 < δ3i =⇒ |vi(xxx, t)− vi(xxx0, t)| < ε, (i = 1, 2, 3; xxx0 ∈ Λαβ ; t > 0).

Proposition 1 states the continuity of the stress fields σ̃̃σ̃σ1, strain fields ε̃̃ε̃ε2 and
velocity fields vvv across the interface Λαβ . For the Type II wave, Proposition 1 can
be proven straightforwardly, according to Definition 2 and Eqs. (29b), (29c) and
(29d). While the continuity stated by Proposition 1 cannot be ensured for the Type I
wave, due to the discontinuity of the first-order spatial or temporal derivation of the
displacement fields www within a single-phase domain Ωα, although Eqs. (29b), (29c)
and (29d) hold true.
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4 Interpolation of material parameters

In order to obviate the effort necessary for tracking interfaces, the sharp interface Λαβ ,
between the α and β phases, is approximated in PACE3D through a diffuse interface
with the order parameter φκα, which represents the volume fraction of the α phase
in the cell κ. Therefore, the material stiffness matrix KKK and the density ρ can be
interpolated with the order parameters φφφ, which form the effective stiffness matrix KKK
and the reciprocal of the effective density R in Eq. (8). This interpolation leads to
a diffusion of the jump of the strains ε̃̃ε̃ε1, stresses σ̃̃σ̃σ2 and momentums ψψψ = ρvvv at the
interface Λαβ , as well as the dynamic mechanical energy density fd(φφφ,εεε,vvv), since:

fd(φφφ,εεε,vvv) = fε(φφφ,εεε) + fv(φφφ,vvv) (33)

where fε(φφφ,εεε) and fv(φφφ,vvv) are the elastic strain energy density and the kinetic energy
density, respectively.

4.1 Interpolation of the stiffness matrix

According to Eqs. (32b) and (32c), it can be concluded that during the mechanical
wave propagation, the jump condition for the elastic stresses and strains at the inter-
face Λαβ is exactly the same as for the static case [23]. Therefore, the interpolation
scheme for the effective stiffness matrixKKK, proposed by Schneider et al. [23], is adopted
and briefly reviewed in this section.

Supposing the simulated material is isotropic within each α phase, the strain energy

density f
Λβα
ε , at the surface Λβα, is calculated as:

f
Λβα
ε =

1

2
ε̃

Λβα
i K̃α

ij ε̃
Λβα
j =

1

2
σ̃

Λβα
i ε̃

Λβα
i (34)

where the symmetric matrix K̃̃K̃Kα = MMMσKKK
αMMMT

σ is the transformed stiffness matrix,
determining the relationship between the stresses σ̃̃σ̃σα and strains ε̃̃ε̃εα for the α phase.

After diffusing the sharp interface Λαβ and introducing the concept of the order
parameter φφφ, the strain energy density fε is calculated as:

fε = fαε h
α(φφφ) + fβε h

β(φφφ) =
1

2
σ̃αi ε̃

α
i h

α(φφφ) +
1

2
σ̃βi ε̃

β
i h

β(φφφ) (35)

where σ̃̃σ̃σα ≈ σ̃̃σ̃σΛβα , ε̃̃ε̃εα ≈ ε̃̃ε̃εΛβα and fαε ≈ f
Λβα
ε when 0 < hα(φφφ) < 1, since a thin diffuse

interface is used to approximate the sharp interface. The influence of the diffuse
interface width will be studied in Section 5.2.

Since only the sharp interface between two different phases is considered, the fol-
lowing equations can be obtained in accordance with Eqs. (2) and (4):

φβ = 1− φα (36a)

hβ(φφφ) = 1− hα(φφφ) (36b)

According to Eqs. (6) and (36a), the driving force in Eq. (5) can be simplified to:

1

N

N∑
β=1,β 6=α

(
δF
δφα

− δF
δφβ

)
=

δF
δφα

(37)

Based on Eqs. (1), (6), (33), (36b) and (37), the driving force contributed by the
strain energy density fε therefore is calculated as [23]:

δfε
δφα

=
∂fε
∂φα

−∇ · ∂fε
∂∇φα

=
(
ϕαε − ϕβε

) ∂hα(φφφ)

∂φα
(38)
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where ϕαε represents the strain potential for the α phase, which is calculated as fol-
lows [23]:

ϕαε =
1

2
σ̃αi ε̃

α
i − σ̃1α

i ε̃1α
i = −1

2
σ̃1α
i ε̃1α

i +
1

2
σ̃2α
i ε̃2α

i (39)

The 6× 6 stiffness matrix K̃̃K̃Kα is discretised into four 3× 3 sub-matrices as follows:

σ̃̃σ̃σα = K̃̃K̃Kαε̃̃ε̃εα =⇒
(
σ̃̃σ̃σ1α

σ̃̃σ̃σ2α

)
=

(
K̃̃K̃K11α K̃̃K̃K12α

K̃̃K̃K21α K̃̃K̃K22α

)(
ε̃̃ε̃ε1α

ε̃̃ε̃ε2α

)
(40)

Thus, Eq. (39) can be rewritten as:

ϕαε (ε̂̂ε̂εα) =
1

2
ε̂αi K̂

α
ij ε̂

α
j (41)

where ε̂̂ε̂εα = (σ̃̃σ̃σ1α, ε̃̃ε̃ε2α)T , and

σ̂̂σ̂σα = (−ε̃̃ε̃ε1α, σ̃̃σ̃σ2α)T = K̂̂K̂Kαε̂̂ε̂εα (42)

with K̂̂K̂Kα expressed as:

K̂̂K̂Kα =

(
−(K̃̃K̃K11α)

′
(K̃̃K̃K11α)

′
K̃̃K̃K12α

K̃̃K̃K21α(K̃̃K̃K11α)
′

K̃̃K̃K22α − K̃̃K̃K21α(K̃̃K̃K11α)
′
K̃̃K̃K12α

)
(43)

Eqs. (41) and (43) show that the strain potential ϕαε (ε̂̂ε̂εα) is expressed by σ̃̃σ̃σ1α and ε̃̃ε̃ε2α,
which respectively satisfy the jump condition in Eqs. (32b) and (32c), and that the

stiffness matrix K̂̂K̂Kα is symmetric. Therefore, the function Φ(ε̂̂ε̂ε,φφφ) can be constructed
as:

Φ(ε̂̂ε̂ε,φφφ) = ϕαε (ε̂̂ε̂ε)hα(φφφ) + ϕβε (ε̂̂ε̂ε)hβ(φφφ) =
1

2
ε̂iK̂ij(φφφ)ε̂j (44)

where ε̂̂ε̂ε = ε̂̂ε̂εα = ε̂̂ε̂εβ , when 0 < hα(φφφ) < 1. K̂̂K̂K(φφφ) is interpolated as:

K̂ij(φφφ) = K̂α
ijh

α(φφφ) + K̂β
ijh

β(φφφ) (45)

Supposing σ̂̂σ̂σ = K̂̂K̂K(φφφ)ε̂̂ε̂ε, the following equations can be derived according to Eqs.
(38), (41), (42), (44) and (45):

δfε
δφα

=
∂Φ(ε̂̂ε̂ε,φφφ)

∂φα
(46a)

σ̂̂σ̂σ = σ̂̂σ̂σαhα(φφφ) + σ̂̂σ̂σβhβ(φφφ) (46b)

According to Eqs. (35), (42) and (46), it can be concluded that the jump of the

variables f
Λαβ
ε , (ε̃̃ε̃ε1)Λαβ and (σ̃̃σ̃σ2)Λαβ , which are related to the strain-energy-induced

driving force, has been smoothly diffused with the function hα(φφφ).

Similar to the stiffness matrix K̃̃K̃Kα, the 6× 6 stiffness matrix K̂̂K̂K is discretised into
four 3× 3 sub-matrices as follows:(

σ̂̂σ̂σ1

σ̂̂σ̂σ2

)
=

(
K̂̂K̂K11 K̂̂K̂K12

K̂̂K̂K21 K̂̂K̂K22

)(
ε̂̂ε̂ε1

ε̂̂ε̂ε2

)
(47)

Therefore, the relationship between the local effective stress fields σ̃̃σ̃σ = (ε̂̂ε̂ε1, σ̂̂σ̂σ2)T and
the local effective strain fields ε̃̃ε̃ε = (−σ̂̂σ̂σ1, ε̂̂ε̂ε2)T can be derived as:(

ε̂̂ε̂ε1

σ̂̂σ̂σ2

)
=

(
−(K̂̂K̂K11)

′
−(K̂̂K̂K11)

′
K̂̂K̂K12

−K̂̂K̂K21(K̂̂K̂K11)
′
K̂̂K̂K22 − K̂̂K̂K21(K̂̂K̂K11)

′
K̂̂K̂K12

)(
−σ̂̂σ̂σ1

ε̂̂ε̂ε2

)
(48)
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which can be simplified to:

σ̃̃σ̃σ(xxx, t) = K̃̃K̃Kε̃̃ε̃ε(xxx, t) (49)

Now Eq. (49) is transformed into the global Cartesian coordinate system:

σσσ(xxx, t) = KKKεεε(xxx, t) = MMMT
ε K̃̃K̃KMMMεεεε(xxx, t) (50)

where σσσ(xxx, t) and εεε(xxx, t) are the effective stress and strain fields, respectively, in the
Voigt notation. KKK is the effective stiffness matrix in Eq. (9).

It should be mentioned that the effective stiffness matrix KKK is exactly the same as
the material stiffness matrix KKKα, when the interpolation function hα(φφφ) = 1. With
Schneider et al. [23], the advantages of this interpolation scheme can be concluded as
follows: (1) the interpolation scheme satisfies the mechanical jump condition, (2) the
contribution of the elastic driving force is exactly equal to the elastic contribution of
the Gibbs-Thomson equation, (3) both the interface width and the surface energy are
stable at equilibrium and (4) the stress fields for the different phases are calculated at
the diffuse interface, which is necessary to calculate the plastic strain fields according
to the yield criterion.

4.2 Interpolation of density

In this section, the reciprocal of the effective density, i.e. R in Eq. (8), will be briefly
derived, similar to the effective stiffness matrix KKK.

At the surface Λβα, the kinetic energy density f
Λβα
v is calculated as:

f
Λβα
v =

1

2
v

Λβα
i M

α
ijv

Λβα
j =

1

2
v

Λβα
i ψ

Λβα
i (51)

whereMMMα = diag(ρα1 , ρ
α
2 , ρ

α
3 ) = diag(ρα, ρα, ρα), since the simulated material is sup-

posed to be isotropic within a single-phase domain. ψψψΛβα = MMMαvvvΛβα denotes the
momentum fields at the surface Λβα.

After diffusing the sharp interface Λαβ , the kinetic energy density is assembled as:

fv = fαv h
α(φφφ) + fβv h

β(φφφ) =
1

2
vαiM

α
ijv

α
j h

α(φφφ) +
1

2
vβiM

β
ijv

β
j h

β(φφφ) (52)

where vvvα ≈ vvvΛβα , ψψψα ≈ ψψψΛβα and fαv ≈ f
Λβα
v , when 0 < hα(φφφ) < 1. Thus, the driving

force contributed by the kinetic energy density fv is derived as:

δfv
δφα

=
∂fv
∂φα

−∇ · ∂fv
∂∇φα

=
(
fαv − fβv

) ∂hα(φφφ)

∂φα
(53)

It should be mentioned that it is not necessary to introduce a new function ϕαv for
this kinetic energy contribution, because all variables in vvvα satisfy the jump condi-
tion as demonstrated in Eq. (32d), which is not the case for the variables in ε̃̃ε̃ε1α.
Correspondingly, the function Φ(vvv,φφφ) is constructed as:

Φ(vvv,φφφ) = fαv (vvv)hα(φφφ) + fβv (vvv)hβ(φφφ) =
1

2
viMij(φφφ)vj (54)

where vvv = vvvα = vvvβ , when 0 < hα(φφφ) < 1. MMM(φφφ) is the effective density matrix, which
is interpolated as:

Mij(φφφ) =Mα
ijh

α(φφφ) +Mβ
ijh

β(φφφ) (55)

Supposing ψψψ =MMM(φφφ)vvv, the following equations can be derived according to Eqs.
(53), (54) and (55):
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δfv
δφα

=
∂Φ(vvv,φφφ)

∂φα
(56a)

ψψψ = ψψψαhα(φφφ) +ψψψβhβ(φφφ) (56b)

Thus, it can be concluded that the jump of the variables f
Λαβ
v and ψψψΛαβ , which are

related to the driving force induced by the kinetic energy, has been smoothly diffused
with the function hα(φφφ).

It can be observed that the effective density matrixMMM is a diagonal matrix, with
M11 =M22 =M33. Furthermore, the values of the diagonal elements in the matrix
MMM are equal to ρα when hα(φφφ) = 1. According to Eq. (55), the reciprocal of the
effective density, R in Eq. (8), therefore is calculated as:

R =
1

ραhα(φφφ) + ρβhβ(φφφ)
(57)

5 Numerical validations

In this section, the numerical methods introduced in Section 2, the jump condition at
the sharp interface derived in Section 3, the numerical accuracy of the interpolation
scheme presented in Section 4 and the application efficiency in the multiphase system
are investigated on the basis of the code developed on the platform of PACE3D. The
polynomial degree q in Eq. (12) is fixed as 3, in all the numerical examples.

5.1 Validation 1: jump condition at the sharp interface

According to Eq. (32), two numerical examples are established, as illustrated in Figure
6. The first one, namely Example 1, is a 1µm×200µm×1µm beam and discretised into
200 cells, while the second one, Example 2, is 1µm × 100µm × 20µm and discretised
into 2000 cells. For both examples, the cell size is 1µm × 1µm × 1µm. The origin
of the Cartesian coordinate system is located at the left-bottom-back corner of the
beam, such that the simulated domains for the two examples are [(0, 0, 0), (1, 200, 1)]
and [(0, 0, 0), (1, 100, 20)], respectively. In order to validate the jump condition derived
in Section 3, the simulated domains are divided into two equally dimensioned phases,
i.e. phases α and β, through sharp interfaces, as shown in Figure 6. In each example,
the two different waveforms in Figure 5 are applied as incident waves at the left-side
surface x2 = 0, which is defined as a free boundary. In both examples, the surfaces on
the right side are designed as nonreflective boundaries, while the other four surfaces
in each example are de-dimension boundaries.

𝛼 𝛽Sharp interface
Incident wave

1𝜇𝑚
1𝜇𝑚 200𝜇𝑚

(a) Example 1

1𝜇𝑚 100𝜇𝑚

20𝜇𝑚
𝛽

𝛼

Sharp interfaceIncident wave

(b) Example 2

Figure 6: Numerical examples with a sharp interface

Based on Eq. (32) and the geometrical symmetry of the two examples, two different
incident waves, i.e. σ22 and σ12, are applied and studied for each example with each
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wave type. However, it should be pointed out that the stresses σ22 and σ12 in Example
1 are normal components to the sharp interface, while they are tangential components
in Example 2. In order to gain an insight into the jump condition at the sharp interfaces
with quasi-1D examples, the material properties and incident waves for the α and β
phases are specially designed, as illustrated in Table 1. It is observed that the first
Lamé parameter λ is fixed as 0, that the second Lamé parameter µ, the density ρ and
the stress amplitude |σ|max of the incident waves are not equal for the α and β phases,
and that the propagation velocities of the elastic wave, however, are equal for the α
and β phases, which are calculated as:

VαP =

√
λα + 2µα

ρα
VαS =

√
µα

ρα
(58)

where VαP and VαS are the respective P -wave (primary wave) and S-wave (secondary
wave) velocities for the α phase.
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(e) Displacement field w2 at t = 20.40ns

Figure 7: Mechanical fields for the Type I P -wave in Example 1 with a sharp
interface

The frequency of the incident stress waves is 200MHz, and the timestep ∆t is set
to 0.01ns. To avoid tediousness, only some numerical results of displacement, stress,
strain, velocity and momentum waveforms are selected as representatives for Examples
1 and 2 and are illustrated in Figures 7-10, which also provide the visual comparison
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Table 1: Material properties and incident waves for the α and β phases

Phase λ(GPa) µ(GPa) ρ(kg/m3) VP (m/s) VS(m/s)
|σ|max(100MPa)

Example 1 Example 2
α 0 134.9 7880 5851.37 4137.55 1 1
β 0 67.45 3940 5851.37 4137.55 - 0.5

between the numerical results and the analytical solution. For every waveform of each
numerical example, the L2-norm relative error is additionally calculated and presented
in Table 2.

-1

-0.5

0

0.5

1

0 50 100 150 200

S
tr

es
s

(1
00
M
P
a
)

x2 (µm)

Analytical solution
Numerical results

(a) Stress field σ12 at t = 25.40ns

-10

-5

0

5

10

0 50 100 150 200

S
tr

ai
n

(1
0
E

-0
4)

x2 (µm)

Analytical solution
Numerical results

(b) Strain field ε12 at t = 25.40ns

-45

-30

-15

0

15

30

45

0 50 100 150 200

V
el

o
ci

ty
(1

0
E

-0
1m

/s
)

x2 (µm)

Analytical solution
Numerical results

(c) Velocity field v1 at t = 25.40ns

-0.34

-0.17

0

0.17

0.34

0 50 100 150 200

M
om

en
tu

m
(1

0E
+

05
k
g
/
(m

2
·s

))

x2 (µm)

Analytical solution
Numerical results

(d) Momentum field ψ1 at t = 25.40ns

-5

10

25

40

55

0 50 100 150 200

D
is

p
la

ce
m

en
t

(1
0E

-0
4
µ
m

)

x2 (µm)

Analytical solution
Numerical results

(e) Displacement field w1 at t = 25.40ns

Figure 8: Mechanical fields for the Type II S-wave in Example 1 with a sharp
interface

From Figures 7-10, the following conclusions can be drawn: (1) In both examples,
the numerical results for all mechanical fields agree well with the analytical solution,
although there are small fluctuations for the Type I wave, which are due to the strong
discontinuity property. (2) The jump conditions for both wave types, described by
Eqs. (32a) and (32d), are validated through both examples, while the jump conditions
described by Eqs. (32b) and (32c) are validated through Example 1 and Example
2, respectively. (3) Despite the jump condition specified by Eq. (32), the continuity
property stated in Proposition 1 cannot be ensured for the Type I wave, which can be
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Figure 9: Mechanical fields for the Type I P -wave in Example 2 with a sharp
interface

Table 2: L2-norm relative error for each waveform in Examples 1 and 2 (%)

Example 1 2

Type
P -wave S-wave P -wave S-wave

I II I II I II I II
Time (ns) 20.40 18.30 27.50 25.40 11.00 11.00 15.00 15.00

Displacement 2.33 5.82 3.15 8.04 3.18 6.37 4.32 8.93
Stress 4.05 0.50 6.60 1.46 1.54 0.37 7.95 0.55
Strain 2.44 0.46 6.28 1.26 1.54 0.37 7.95 0.55

Velocity 1.79 0.80 5.72 1.58 1.22 0.93 7.44 1.09
Momentum 2.45 0.75 4.81 1.69 1.22 0.93 7.44 1.09

concluded from Figures 7 and 9.
From Table 2, it can be concluded that the numerical errors of the stress, strain,

velocity and momentum fields are greater for the Type I wave than for the Type II
wave, which is due to the strong discontinuity at the beginning and the end of the
Type I wave. However, the numerical errors of the displacement fields are greater for
the Type II wave, since the analytical solutions for the Type I and Type II waves are
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Figure 10: Mechanical fields for the Type II S-wave in Example 2 with a sharp
interface

linear and cosinoidal functions, respectively, both of which are continuous over the
whole domain. The values from the same numerical example show that the numerical
errors of the S-wave are greater than those of the P -wave, because the length of the
S-wave is shorter.
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Figure 11: The error of the total mechanical energy in the whole simulated
domain
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Then, the surfaces on the right side of both examples are changed into free bound-
aries. For a period of 50ns after the end of loading, the total mechanical energy of
the whole simulated domain is compared with the corresponding analytical solution,
and the error is presented in Figure 11. For all cases, it is observed that the maximum
error is less than 3%. Moreover, the error for the cases with a Type I wave generally
converges to 1%, while it is almost zero for the cases with a Type II wave.

5.2 Validation 2: interpolation scheme

In this subsection, the sharp interfaces in Examples 1 and 2 are approximated through
diffuse interfaces, as illustrated in Figure 12.

In order to study the influence of the wavelength upon the interpolation scheme
introduced in Section 4, the length in the x2 direction is designed differently for Ex-
ample 3 in Figure 12a, which is in accordance with the frequencies of the incident
waves, as listed in Table 3. The lengths in the x1 and x3 directions are kept as 1µm.
The material properties for the α and β phases and the stress amplitude |σ|max of the
incident wave remain the same as in Example 1.

x3
x1 x2

𝛼 𝛽Diffuse interface
Incident wave

(a) Example 3

x2

𝛽

𝛼
Diffuse interfaceIncident wave x3

x1

(b) Example 4

Figure 12: Numerical examples with a diffuse interface

Table 3: Lengths in the x2 direction, for the different incident-wave frequencies
in Example 3

Frequency (MHz) 200 100 50 20 10

x2 (µm)
P -wave 150 200 300 800 1500
S-wave 150 200 300 600 1000

For the frequency with the value of 50MHz, the numerical results of the waveforms
induced by the Type II P -wave and the Type I S-wave are visually presented and com-
pared with the analytical sharp-interface solution in Figures 13 and 14, respectively,
both of which include the reflected and transmitted stress and velocity waveforms, as
well as the strain and momentum waveforms at the diffuse interface. It is observed that
the numerical results of all waveforms generally agree well with the analytical sharp-
interface solution. The lengths of the reflected waves become longer for both wave
types, since the sharp interface with infinitesimal thickness is approximated through
a diffuse interface with finite thickness. As a consequence, the amplitudes of the re-
flected Type II sinusoidal wave become smaller according to the conservation law of
energy, which is not the case for the reflected Type I square wave, since the duration
of its peak value lasts longer. With the interpolation scheme presented in Section 4,
the values of the strain and momentum waveforms located within the diffuse interface
vary gradually, similar to the volume fraction curves in Figure 1, which coincides with
the conclusion in Schneider et al. [23].
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(d) Momentum field ψ2 at t = 30.70ns

Figure 13: Mechanical fields for the Type II P -wave in Example 3, with a
frequency of 50MHz and a diffuse interface
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(d) Momentum field ψ1 at t = 45.40ns

Figure 14: Mechanical fields for the Type I S-wave in Example 3, with a
frequency of 50MHz and a diffuse interface

Since the numerical errors of the reflected waveforms are induced by approximating
the sharp interface with infinitesimal thickness with the diffuse interface with finite
thickness, the errors of the reflected and transmitted wavelength and stress amplitude
are plotted against the ratio between the incident wavelength and the diffuse interface
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length, as demonstrated in Figure 15. It can be concluded that the errors of the
transmitted waveforms are negligible, since most of them are less than 5%. The errors
of the reflected wavelength decrease dramatically, when increasing the ratio. The
errors of the reflected wavelength are larger for the Type I wave than for the Type II
wave, which is due to the strong discontinuity property. The errors of the reflected
stress amplitude are greater for the Type II sinusoidal wave than for the Type I square
wave, especially when the ratio is less than 20, because the duration of the peak value
lasts longer in the Type I square wave. In Figure 15b, it is important to note that the
numerical errors of the stress amplitude are selected as representative, since the strain,
velocity and momentum waveforms can be derived according to the stress waveform.
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(d) Momentum field ψ2 at
x2 = 55µm, t = 10.60ns

Figure 16: Mechanical fields for the Type II P -wave in Example 4, with a
frequency of 200MHz and a diffuse interface
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For Example 4 in Figure 12b, the parameters for the material property and the
incident wave remain the same as for Example 2. To get a better insight into the
mechanical fields across the diffuse interface, the geometrical dimensions are changed
into 1µm× 100µm× 30µm.

For the Type II P -wave and the Type I S-wave with a frequency of 200MHz,
the stress and momentum fields across the diffuse interface and the strain and velocity
fields over the whole simulated domain are illustrated in Figures 16 and 17, where they
are compared with the analytical sharp-interface solution. The following observations
are made: (1) With the interpolation scheme introduced in Section 4, the values of the
stress and the momentum fields vary gradually across the diffuse interface, similar to
the volume fraction curves in Figure 1, which again coincides with the conclusion made
in Schneider et al. [23]. (2) The strain and velocity fields agree well with the analytical
sharp-interface solution, whose L2-norm relative errors are the same as those in Table 2.
Thus, it can be concluded that the interpolation scheme derived in Section 4 prevents
an increase of numerical error, which is usually caused by approximating the sharp
interface with infinitesimal thickness with the diffuse interface with finite thickness in
Example 4, i.e. the case where a wave propagates parallel to the interface.
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(d) Momentum field ψ1 at
x2 = 50µm, t = 14.30ns

Figure 17: Mechanical fields for the Type I S-wave in Example 4, with a
frequency of 200MHz and a diffuse interface

As the examples in Subsection 5.1, the surfaces on the right side of Examples 3
and 4 are reset as free boundaries. After the end of loading, the error of total mechan-
ical energy within 50ns is presented in Figure 18, by comparing with the analytical
solution. It is observed that the maximum error is less than 2% for Example 3 and
less than 3% for Example 4. The errors for almost all Type I wave cases converge to
the values around or below 1%, while the errors for all Type II wave cases are almost
zero.

Based on the analysis of the numerical results in Subsections 5.1 and 5.2, it is
therefore suggested that the ratio between the minimum wavelength and the maximum
diffuse interface length should be greater than 30 in a multiphase system.
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Figure 18: The error of the total mechanical energy in the whole simulated
domain

5.3 Validation 3: 2D simulation with two phases
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Figure 19: A 2D numerical example with two different phases

As illustrated in Figure 19, a 2D numerical example, i.e. Example 5, with different
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phase information is simulated and analysed. The dimension of Example 5 is 1µm×
200µm×100µm, which is designed as a single-phase (α phase) domain in Example 5a,
while it is equally discretised into two phases, α and β, through a sharp interface in
Example 5b and a diffuse interface in Example 5c. The material properties for these
two phases are listed in Table 4. The Type I wave in Figure 5b, with a frequency of
50MHz and a stress amplitude of 100MPa, is loaded at the bottom surface of the cell
[(0, 100, 0), (1, 101, 1)]. The surfaces normal to the x1 direction are set as de-dimension
boundaries, the bottom surface is set as a free boundary and the remaining surfaces
are set as nonreflective boundaries.

Table 4: Material properties for the different phases in Subsections 5.3 and 5.4

Phase λ(GPa) µ(GPa) ρ(kg/m3) VP (m/s) VS(m/s)
α 105 82.4 5910 6756.58 3733.96
β 26.25 20.6 7880 2925.69 1616.85
γ 52.5 41.2 6304 4625.92 2556.47

Table 5: Properties of the mechanical fields, with respect to the sharp
interface between the α and β phases

Property σ33 ε33 σ22 ε22 v2 ψ2

Normal X X
Tangential X X X X
Continuous X X X
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Figure 20: Comparison of the stress field σ33 and the strain field ε33

When time t = 12.50ns, the numerical results of several selected stress, strain, ve-
locity and momentum fields are taken from three different examples and are compared
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in Figures 20-22. With respect to the sharp interface between the α and β phases, the
directional properties and continuity of these mechanical fields are listed in Table 5.

	25

	50

	75

	100

	50 	100 	150 	200

(x2	μm)

(x
3	
μm

)

Model	5c	(unit:	100MPa)

-0.6

-0.4

-0.2

	0

	0.2

	25

	50

	75

	100

	50 	100 	150 	200
Model	5b	(unit:	100MPa)

-0.6

-0.4

-0.2

	0

	0.2

	25

	50

	75

	100

	50 	100 	150 	200
Model	5a	(unit:	100MPa)

-0.6

-0.4

-0.2

	0

	0.2

(a) Stress field σ22

	25

	50

	75

	100

	50 	100 	150 	200

(x2	μm)

(x
3	
μm

)

Model	5c	(unit:	10E-04)

-1

-0.55

-0.1

	0.35

	0.8

	25

	50

	75

	100

	50 	100 	150 	200
Model	5b	(unit:	10E-04)

-1

-0.55

-0.1

	0.35

	0.8

	25

	50

	75

	100

	50 	100 	150 	200
Model	5a	(unit:	10E-04)

-1

-0.55

-0.1

	0.35

	0.8

(b) Strain field ε22

Figure 21: Comparison of the stress field σ22 and the strain field ε22

Additionally, the analytical solutions for different region boundaries are plotted in
Figure 20a, together with the white-coloured horizontal line denoting the interface.
The boundaries of four different wave regions, as derived by Fung [49], are plotted in
the top image of Figure 20a. Within this single-phase domain, the P -wave generated
by the incident wave exists in all four regions, while the S-wave generated by the
incident wave only occupies Region II. When the wave front of the P -wave intersects
with the free boundary, the intersection points can additionally be analysed as new
wave sources, which generate both P - and S-waves. The P -wave, generated by the
new wave sources, disturbs all four regions, while the newly generated S-wave on the
left propagates through the Regions II and III, and the newly generated S-wave on
the right occupies the Regions II and IV. When the simulated domain is discretised
into two equally dimensioned areas by means of a sharp interface, as shown in Figure
19b, four more new regions are generated by the transmission and reflection of the P -
wave at the sharp interface, as illustrated in the middle image of Figure 20a. Through
the calculation with the incident angle, the refraction angle and the reflection angle,
the transmitted P -wave exists in the Regions V and VI, while the reflected P -wave
is present in the Regions VII and VIII. Moreover, the new S-wave is also generated,
due to the intersection of the P -wave and the material interface. The transmitted S-
wave occupies Region VI, while the reflected S-wave disturbs Region VII. It is worth
mentioning that more new regions will be generated, when the S-wave in Regions II,
III and IV intersects with the sharp interface. Therefore, when time t = 12.50ns, there
are mainly eight regions, as shown in Figure 20a. According to the numerical results
demonstrated in Figure 14, when the sharp interface is replaced by the diffuse interface
as illustrated in 19c, it can be predicted that (1) the wave fronts not yet intersecting
with the interface and the wave fronts of the transmitted waves can be observed, (2)
that the wave fronts of the reflected waves are diffused by the diffuse interface and (3)
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Figure 22: Comparison of the velocity field v2 and the momentum field ψ2

that the mechanical fields, which are discontinuous at the sharp interface, are diffused
with the order parameters φα and φβ .

In Figures 20-22, it is observed that almost all four/eight wave regions can be
clearly distinguished in Examples 5a and 5b, except those whose values do not jump
wide enough to demonstrate the wave fronts. In addition, the wave fronts in Exam-
ple 5c agree well with the prediction at the end of the previous paragraph. For the
numerical results from Example 5b, the mechanical fields σ33, ε22 and v2 are contin-
uous across the sharp interface, as listed in Table 5, while the jump of all remaining
mechanical fields, i.e. ε33, σ22 and ψ2, is clearly observed. For the numerical results
from Example 5c, all mechanical fields which are continuous at the sharp interface are
retained as continuous, while the discontinuous fields are successfully diffused by the
order parameters φα and φβ .

5.4 Multiphase system

A numerical multiphase example with diffuse interfaces is established, as shown in
Figure 23, where the geometrical dimension, the boundary condition and the loading
condition are equal to Example 5 in Figure 19, except that the loading period in this
multiphase system is set to t > 0. For the convenience of analysing the numerical
results, several areas demarcated by phase interfaces are labelled with Roman numer-
als, which will be referred to as Area I, II ..., to distinguish them from the regions in
Figure 20a, as shown in Figure 23. The material properties for the different phases are
listed in Table 4. It is worth noticing that the propagation velocities for the α phase
are highest, while they are lowest for the β phase.

At time t = 3.50ns, 10.00ns, 20.00ns and 30.00ns, the numerical results for the
stress field σ33, the strain field ε23, the velocity field v3 and the momentum field ψ2

are respectively presented in Figure 24. In Figure 24a, the Regions I-IV, described
in Figure 20a, are clearly observed. However, the mechanical wave propagates faster

29



Incident wave

200𝜇𝑚

100𝜇𝑚

𝛼

𝛽
𝛾

I
II

VII

III

IV

V

VIII

X VIII

VI

IXXI

Figure 23: A numerical multiphase example
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Figure 24: Mechanical fields in the numerical multiphase example with diffuse
interfaces

towards the left than towards the right, since the propagation velocities in Area I,
which is filled with the α phase, are the highest among the three different phases.
Similarly, the mechanical wave in Figure 24b propagates faster in the upper-left and
upper-right directions, which is due to the existence of the Areas I and II. In Figure
24c, it is observed that the mechanical wave on the lower-left side propagates slower
after reaching Area III. On the right side, the mechanical wave going from the middle
towards the upper-right direction propagates slower than the one going from the top
towards the upper side and the one going from the bottom towards the right side,
which is because of Areas IV and V. However, the wave front passing through Area
VI propagates further than its surroundings, due to the highest propagation velocities
of the α phase. The phenomenon of diffraction is clearly observed at the top of Area
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VII, since some parts of the mechanical wave bypass Area VII through Areas VIII
and IX. In Figure 24d, the mechanical field becomes more complicated, due to the
different propagation velocities of the different phases and the reflection/transmission
at the interfaces. However, within Area X and the lower left of Area V, two clusters of
the mechanical wave are still observed. The former is mainly caused by the diffraction
phenomenon around Area XI, while the latter is mainly due to the wave transmission
and reflection from its surrounding areas.

In this multiphase system, the diffuse interfaces between the different phases are
generated as curves with finite thickness. This means that the normal vectors of the
interfaces may be oriented in any direction. Therefore, according to the jump condition
in Eq. (32) and the material properties in Table 4, there are discontinuities within
the entire stress field σ33, strain field ε23 and momentum field ψ2 of the corresponding
sharp-interface system. From Figure 24, it can be concluded that the interpolation
scheme derived in Section 4 has successfully diffused the jumps of the mechanical fields.

6 Conclusions

In order to investigate the influence of the mechanical wave upon the process of
the microstructural evolution, high-order DGM is embedded into the multifunctional
numerical analysis software PACE3D. In PACE3D, the free energy is calculated by
stress, strain, velocity, momentum and other fields, together with the order parameter
φα(xxx, t), which represents the volume fraction of the α phase at the location xxx and
the time t. Thus, the evolution of the α phase is characterised by the evolution of
the order parameter φα, whose driving force is formulated by the derivation of free
energy with respect to the order parameter φα and the gradient of the order parameter
∇φα. Thus, the effort necessary for tracking the interfaces among different phases is
obviated. In order to obtain the driving force, the free energy at the sharp interface
should be correctly interpolated with the N -tuple φφφ, which replaces the sharp interface
with a diffuse interface.

In this paper, the jump condition and continuity property of mechanical fields are
therefore investigated at the sharp interface, with regard to the mechanical waves with
strong discontinuity (Type I wave) and weak discontinuity (Type II wave). Based on
the observed jump condition, the interpolation scheme for the stiffness matrix and
the density at the diffuse interface is derived. With the interpolation scheme and the
Type I and Type II incident waves, several numerical examples are carried out. By
comparing the numerical results and the analytical solutions, the following conclusions
are drawn: (1) Generally, the numerical results for the mechanical wave propagation,
the transmission and the reflection agree well with the analytical solutions. (2) The
numerical results from the examples with a sharp interface exactly verify the jump
conditions described by Eq. (32). (3) With the interpolation scheme, the jump of
the discontinuous mechanical fields is correctly diffused in the examples with a diffuse
interface. (4) It is suggested that the ratio between the minimum wavelength and the
maximum diffuse interface length should be greater than 30 in a multiphase system.
(5) According to the analysis of the numerical results in the multiphase system, it is
verified that the simulation scheme presented in this paper is accurate and efficient,
and ready for the application to microstructural evolution by providing the formula of
the driving force contributed by the mechanical wave.

However, it is worth pointing out that the current simulation scheme is derived
on the basis of the assumption of an infinitesimal deformation. The formula for the
finite deformation should be further developed and verified in the future, in order to
extend the application scope. Then, the driving forces will be calculated with the
sharp interface limit, to simulate phase transformation under the mechanical wave
propagation.
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