KIT | KIT-Bibliothek | Impressum | Datenschutz

Leveraged least trimmed absolute deviations

Sudermann-Merx, Nathan; Rebennack, Steffen 1,2
1 Fakultät für Elektrotechnik und Informationstechnik – Institut für Theoretische Elektrotechnik und Systemoptimierung (ITE), Karlsruher Institut für Technologie (KIT)
2 Institut für Operations Research (IOR), Karlsruher Institut für Technologie (KIT)

Abstract:

The design of regression models that are not affected by outliers is an important task which has been subject of numerous papers within the statistics community for the last decades. Prominent examples of robust regression models are least trimmed squares (LTS), where the k largest squared deviations are ignored, and least trimmed absolute deviations (LTA) which ignores the k largest absolute deviations. The numerical complexity of both models is driven by the number of binary variables and by the value k of ignored deviations. We introduce leveraged least trimmed absolute deviations (LLTA) which exploits that LTA is already immune against y-outliers. Therefore, LLTA has only to be guarded against outlying values in x, so-called leverage points, which can be computed beforehand, in contrast to y-outliers. Thus, while the mixed-integer formulations of LTS and LTA have as many binary variables as data points, LLTA only needs one binary variable per leverage point, resulting in a significant reduction of binary variables. Based on 11 data sets from the literature, we demonstrate that (1) LLTA’s prediction quality improves much faster than LTS and as fast as LTA for increasing values of k and (2) that LLTA solves the benchmark problems about 80 times faster than LTS and about five times faster than LTA, in median.


Verlagsausgabe §
DOI: 10.5445/IR/1000132370
Veröffentlicht am 07.05.2021
Originalveröffentlichung
DOI: 10.1007/s00291-021-00627-y
Scopus
Zitationen: 4
Web of Science
Zitationen: 4
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Operations Research (IOR)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 0171-6468, 1436-6304
KITopen-ID: 1000132370
Erschienen in OR Spectrum
Verlag Springer
Band 43
Heft 3
Seiten 809–834
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page