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ABSTRACT One of the problems encountered in the design and implementation of a serial production
line (SPL) is the buffer size between the machine tools. The buffer size of the SPL has an important impact on
the productivity of the whole production system. The machine tools’ characteristics including their uptimes
and downtimes and the process parameters are the main factors that affect the decision regarding the buffer
size, and thus the productivity of the SPL. Due to the dynamic nature of this problem, it is complex to
find the optimal buffer size in SPL. Thus, in this paper, an Efficient Prediction Model (EPM) is developed
using Artificial Neural Network (ANN). The purpose of the developed EPM is to find the buffer size
between each succeeding pair of machine tools in SPL at any given uptimes and downtimes of machine
tools. An optimization model based on genetic algorithms (GA) is used to generate the learning data for the
prediction model to find the optimal or near optimal buffer size of the bay of each machine tool in SPL.
The proposed approach integrates the optimization and prediction methodologies to evaluate, and predict
the optimal buffer sizes for maximum productivity. Including uptime and downtime parameters enable the
proposed method to be used to improve the design of running SPL as well as to design a new SPL. Numerical
examples for five and fifteen machine tools were conducted independently in this research and the results
show the ability of the proposed method to determine the optimal buffer sizes in a reasonable amount of
time. In particular, the results of case studies show that the developed model accurately predict the optimal
buffer size, especially for the case of five machines and even for a higher number of machine tools yet with
acceptable but less accuracy. Finally, the performance of the proposed approach was compared with some
results of the state of the art methods reported in the literature. The comparison shows the superiority of the
present approach to identify buffer sizes for higher throughput under the same uptimes and downtimes.

INDEX TERMS Flexible manufacturing system, serial production line, optimization, prediction model,
buffer size, productivity.

NOTATION
Abbreviations Descriptions
N Number of buffers in the main

production line
Bi Buffer size in front of the machine

tool i+1
F(i) Fitness of individual i

The associate editor coordinating the review of this manuscript and

approving it for publication was Baoping Cai .

P_size Population size (number of individuals
in population)

S Number of individuals selected by
applying elitist strategy

IND(i) Individual i
POP(i) Population i
CP Crossover point
Cr Crossover rate
Mr Mutation rate
pi uptime parameters of machine i
ri downtime parameters of machine i
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I. INTRODUCTION
A serial production flow/transfer line is a system in which
machine tools are placed in series with buffers of in-process
parts between them [1]. Serial production line (SPL) is a
common form of mass production systems in modern plants.
In order to design an efficient production system, the size
of buffers in the bay of machine tools in SPL should be
optimized. The main purpose for maintaining buffers in the
production line is to carry out a series of operations more
independently [2]. Increasing the independence of operations
reduces the effect of interruption triggered by events such as
machine failure. Furthermore, it absorbs the production vari-
ability caused by stochasticity of machine tools and/or due to
differences in their capacity, processing time or throughput
of different stages in the production line. However, the addi-
tion of buffers results in extra capital investment, space, and
inventory [3]. Therefore, it is vital to choose buffer sizes effi-
ciently. In production systems, the uptimes and downtimes
parameters of the machine tool has an important impact on
the buffer size on the bay of each machine tools in SPL. The
machine tool uptime refers to the amount of time that the
machine tool is working and available, while downtime refers
to the amount of time that the machine tool is not operating
or unavailable. Changing the uptimes and downtimes parame-
ters affects the production rate (throughput) of the production
system. The flexibility and production rate of the production
system can be improved with a well-optimized production
line [4]. Therefore, identifying the optimal buffer size has
been a serious challenge in manufacturing industries, and
there is a need for an effective and efficient methodology
that can determine optimal buffer sizes at different levels of
uptimes and downtimes parameters of the machine tools of
the production system.Moreover, this determination of buffer
size needs to be reached in a relatively short time. In this
work, it is assumed that the machine tools and manufacturing
processes have already been selected and the uptimes and
downtimes parameters of all machine tools are well defined.
Thus, the only decision variable is to optimize the buffer size
at these uptimes and downtimes to improve the production
rate of the system.

As previously emphasized, the selection of suitable buffer
sizes for any production line has been a critical task because
it greatly affects the throughput of the system. In this con-
text, a significant amount of research has been carried out
to address the buffer size problem. For example, Bulgak
and Sanders [5], implemented simulated annealing (SA)
technique to determine optimal buffer sizes for a system
comprising both automated inspection as well as assembly
lines. Bulgak [6], also optimized the allocation of inter-stage
buffers to optimize the overall production rate of the system.
In particular, a simulation model based on ANN and GA
had been proposed to deal with the optimization of buffer
allocation in split-and-merge assembly systems. Similarly,
a group of researchers developed a meta-heuristic approach
based on Tabu search algorithm to determine buffer location
and sizes for a given manufacturing line [7]. Furthermore,

Tsadiras et al. [8], presented the prediction capabilities of
ANN in production systems and explained how they can be
trained to obtain better and quick results. Nahas et al. [9],
utilized a GA algorithm to maximize the production rate
by simultaneously selecting buffers and machines in assem-
bly/disassembly manufacturing networks. They reported that
efficient machines and large buffers elevate the average
production rate of the system; however, this requires huge
financial investment. Therefore, they formulated a design
model based on combinatorial optimization for assem-
bly/disassembly networks and used buffers and machines as
decision variables in the problem. Moreover, Papadopoulos
and Vidalis [10], proposed a heuristic algorithm to deal with
the buffer allocation problem in unreliable and/or unbalanced
production lines. For production systems including a sup-
porting line, researchers utilized GA to develop a decision
support system deciding buffer size for a flexible transfer line
with bypass lines [11]. In addition, Qudeiri et al. [12], used
genetic algorithms to optimize the buffer size and worksta-
tion capacity of serial parallel production lines. The results
were presented in which a flexible production system with
sub-lines was modeled and they included the buffer size in
the model as well [13]. Hasama et al. [14], used the dynamic
programming approach to optimize the buffer size allocation
for an assembly line. A numerical approach has been applied
to design the buffer in an automated transfer line to alleviate
the effect of breakdown on the line efficiency [15]. Several
studies utilized simulation techniques to deal with SPL opti-
mization problem [16]–[18].

Buffer sizes in asynchronous assembly system were
studied using a combination of ANN and simulated
annealing [19]. The buffer allocation problem has also been
investigated for optimal solutions by applying artificial intel-
ligence (AI), GA, and ANN [2]. Zandieh et al. [20], pre-
sented an integrated simulation and meta-heuristic algorithm
method to study the buffer allocation problem. Furthermore,
Han and Park [21] presented an analytical method to opti-
mize buffer allocation for maximum throughput in a serial
production line involving workstations, buffers, and quality
inspection machines. However, it was found time consuming
especially when the system becomes complex. Similarly,
Usubamatov et al. [22], proposed an analytical approach to
compute the productivity of an automated line comprising
both parallel and serial machines with buffer storages.

Shao et al. [23], proposed a novel method for solving line
balancing and buffer allocation problems at the same time.
Production rate was calculated using a simulation procedure.
In particular, non-dominated Sorting Genetic Algorithm-II
(NSGA-II) and Multi-Objective Particle Swarm Optimiza-
tion (MOPSO) were applied to a real case study, and total
cost for machine tools and buffer capacity were optimized.
Results reported good efficacy of the proposed method. Kang
and Ju [24], studied SPL from preventive maintenance per-
spective and with finite buffer size. In this research study,
Markov decision models were utilized to obtain optimal
maintenance policy with a single buffer system between two
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FIGURE 1. Structure of SPL containing n machine tools through which the parts are processed in series.

machines. The model effectiveness was shown with the help
of numerical examples. Ouzineb et al. [25], investigated the
problem of buffer size and inspection station locations in
unreliable production lines. The aim was to optimize the
buffer size, number and location of inspection stations, ful-
filling customer demand with minimal total cost. An exact
mathematical method was presented to solve this complex
problem. It was reported that the developed method was
capable to solve the problem instances with up to 30machines
tools, which was previously not solved. Dolgui et al. [26],
studied a multicriterial optimization problem for volumes of
buffers in a production line. Evolutionary algorithms namely
SIBEA (Simple Indicator-Based Evolutionary Algorithm),
and SEMO (Simple Evolutionary Multi-objective Optimizer)
were implemented to solve the problem. Results showed that
problemswith larger dimensionwere solved efficiently by the
proposed method.

In another research study, simulation based optimization
approach was utilized for optimization of buffer level, and
processing time simultaneously [27]. A real world problem
was modeled using simulation, and then design of experi-
ments were used for obtaining the mathematical model of
this bi-objective problem. The mathematical model was opti-
mized using multi-objective GA. Liberopoulos [28] investi-
gated a production line that operates on Echelon buffer policy.
They modeled the system as a queuing network, and further
divided each segment into sub-systems with 2 machines and
their buffer. Each sub-systemwas solved usingMarkov chain.
Results showed that the developed method provided accurate
results. Xi et al. [29] presented a multi-objective optimization
problem for a unbalanced series-parallel production lines.
The objective was to optimize machine types, number of
parallel machines, and buffer capacities for obtaining desired
throughput rate and cycle time. The developed method was
based on decomposing and coordination, in which a large
production line was decomposed into several small lines, and
small lines were optimized separately, then through coordi-
nation process a unified result was obtained. The developed
method was compared against SA and NSGA-II, and the
results showed better efficiency of the developed method.

Weiss et al. [30] conducted a comprehensive literature
review on the buffer allocation problem in production lines.
The review highlighted the future research directions in
this field. Kose and Kilincci [31] investigated the problem
of buffer allocation in open serial production lines. The
investigation considered two conflicting objectives, maxi-
mizing the average system production rate and minimizing
total buffer size. Elitist NSGA-II, and a special version of
a multi-objective SA were utilized to optimize the stated

objectives. Discrete event simulation was employed to esti-
mate the performance measures for the production systems.
The results revealed that the developed methodology had
a substantial potential to minimize the total buffer space.
Koyuncuoğlu and Leyla [32], presented a comparative study
for solving the buffer allocation problem. Two algorithms
under consideration were combat GA and Big Bang-Big
Crunch algorithm. The objective was to maximize the
throughput of the line under the total buffer size constraint
for unreliable production lines. The results concluded that
the Big Bang-Big Crunch algorithm provided better results
than combat GA. Demir and Koyuncuoğlu [33] proposed a
variable neighborhood search approach for the buffer allo-
cation problem in a serial production line. The proposed
VNS-based solution approach was found highly effective
in finding good-quality solutions, according to the results
reported.

The previous studies attempted to optimize the buffer
size in a relatively long processing time. Moreover, none
of the aforementioned studies solved this problem through
the integration of optimization and prediction based on the
uptimes and downtimes parameters as proposed in this work.
In this context, this methodology aims to optimize buffer
size, thereby maximizing the throughput of the given SPL
under specified assumptions and constraints including the
uptimes and downtimes of the machine tools in SPL. The
proposed approach can solve the problem in a relatively
short time to enable the management to take quick deci-
sions regarding the selection of buffer sizes in the produc-
tion line. Thus, the proposed method will enable generation
of new sets of buffer sizes that achieve the maximum pro-
ductivity in relatively short time. In addition to the serial
production line, the proposed method can be applied to
complex production lines such as production lines with
rework path and hybrid serial-parallel production systems,
etc. Following this introduction, the remainder of the paper
is organized as follows. Section II present the model of
the serial production line. The resolution approach for opti-
mal SPL is discussed in Section III. Section IV presents
numerical verification results. The paper is concluded in
section V.

II. MODEL OF THE SERIAL PRODUCTION LINE
The structure of SPL studied in this paper is shown
in Figure 1.

The main assumptions pertaining the SPL components are
given below,
1. The SPL consists of n machine tools (M1,M2, . . . .,Mn)

and n− 1 buffers (B1,B2, . . . .,Bn−1). The machine tools
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are arranged serially and each buffer separating each con-
secutive pair of machine tools.

2. Each machine tool Mi, i = 1, 2, . . . , n, has two states: up
and down. When up, the machine is capable of producing
with the rate 1 part per unit of time (cycle); when the
machine is down, no production takes place.

3. The uptime and the downtime of each machine Mi, i =
1, 2, . . . , n, are random variables distributed exponentially
with parameters pi and ri, respectively. Please note that
1/pi and 1/ri are the uptime values of machine i.

4. Each buffer Bi, i = 1, 2, . . . , n, is characterized by its
capacity, 0 ≤ Ni <∞.

5. Machine toolMi is starved at time t if buffer Bi−1 is empty
at time t . The first machine tool in SPL, M1 is never
starved.

6. Machine toolMi is blocked at time t if Bi is full at time t .
The last machine tool in SPL,Mn is never blocked.

A. THROUGHPUT EVALUATION OF SPL
Recently, the design, implementation, and parameter iden-
tification and optimization of SPL have been reported in a
number of research studies such as [34]–[38]. Among oth-
ers, Sun et al. [36] studied production lines characterized by
the Bernoulli serial line model and developed algorithms
to identify model parameters to fit the system throughput.
Furthermore, Yan et al. [38] proposed an improved aggrega-
tion method to improve the prediction accuracy of traditional
aggregation method for the Bernoulli serial production lines
with unreliable machines and finite buffers. There are many
approximation approaches used to evaluate the SPL based
on aggregation and decomposition. This paper follows the
aggregation procedure presented in [39] to evaluate the SPL
at given uptimes and downtimes parameters and buffer sizes
for all machine tools in the SPL. This aggregation procedure
is described below. Consider the serial production line withM
machines shown in Figure 1 defined by assumptions 1 to 6.

The first two machine tools (M1 and M2) are aggregated
into a single machine, M f

2 , with the following uptime and
downtime parameters:

pf2 = p2 + r2Q (p1, r1, p2, r2,N1) (1)

r f2 = r2 − r2Q (p1, r1, p2, r2,N1) (2)

where Q (p1, r1, p2, r2,N1) is the probability that the
machine toolM2 is starved and is defined as given in Eq. (3),
as shown at the bottom of the page, follows [39] and

ei =
ri

pi + ri
, i = a, b,

∅ =
ea (1− eb)
eb (1− ea)

,

β =
ea (pa + pb+ra + rb) (parb − pbra)

(pa + pb) (ra + rb)
(4)

Next, aggregation in forward direction (forward aggrega-
tion); the resulted equivalent machine tool, M f

2 defined by
pf2 and r f2 is aggregated with M3 to result in M f

3 defined by
pf3 and r f3 , with the parameters defined as above, and so on
until all n machine tools are aggregated in a single one, M f

n
defined by pfn and r fn . Then, in the backward aggregation,
the last machine, Mn, is aggregated with M f

n−1 to result in
Mb
n−1 defined by pbn−1 and rbn−1 and so on until all machine

tools are again aggregated in a single machine, Mb
1 defined

by pb1 and rb1 . The procedure is repeated until the following
criteria is satisfied:

r fn

pfn
=
rb1
pb1
r f2 (5)

Formally, this process is represented as follows:

r fi (s+ 1) = ri − riQ
(
pfi−1 (s+ 1) , r fi−1 (s+ 1) ,

× pbi (s+ 1) , rbi (s+ 1) ,Ni−1
)
,

i = 2, . . . , n

pfi (s+ 1) = pi + riQ
(
pfi−1 (s+ 1) , r fi−1 (s+ 1) ,

× pbi (s+ 1) , rbi (s+ 1) ,Ni−1
)
,

i = 2, . . . , n

rbi (s+ 1) = ri − riQ
(
pbi+1 (s+ 1) , rbi+1 (s+ 1) ,

× pfi (s) , r
f
i (s) ,Ni

)
, i = 1, . . . , n− 1

pbi (s+ 1) = pi + riQ
(
pbi+1 (s+ 1) , rbi+1 (s+ 1) ,

× pfi (s) , r
f
i (s) ,Ni

)
, i = 1, . . . , n− 1

(6)

with the following initial conditions:

pfi (0) = pi, r fi (0) = ri, ∀ i = 2, . . . , n− 1,

and boundary conditions:

pf1 (s) = p1, r f1 (s) = r1,

pbn (s) = pn, rbn (s) = rn,

∀s = 0, 1, 2, . . .

where function Q (pa, ra, pb, rb,N ) is defined in Eq. (3).

Q (pa, ra, pb, rb,N ) =


(1− ea) (1− ∅)

1− ∅e−βN
, if

pa
ra
6=
pb
rb

pa (pa + pb) (ra + rb)
(pa + ra) [(pa + pb) (ra + rb)+ pbra (pa + pb+ra + rb)N ]

, if
pa
ra
=
pb
rb

(3)
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FIGURE 2. SPL evaluation procedure.

Finally, production rate for the defined SPL can be approx-
imated as follows:

PR (p1, r1, . . . , pn, rn,N1, . . . ,Nn−1)=
r fn

pfn+r
f
n
=

rb1
pb1 + r

b
1

.

(7)

This aggregation procedure is described in the appendix.
The SPL evolution procedure can be summarize graphically
as shown in Figure 2.

III. RESOLUTION APPROCH FOR OPTIMAL SPL
To find the optimal design for SPL, this study utilizes
GA to develop an optimization model, the fitness function
for GA used the evaluation method for SPL discussed in
section 2. The proposed optimization model identifies the
buffer size that achieve the highest production rate at any
given uptime (pi) and the downtime (ri) parameters. Then,
and based on the optimization module this study develops a
prediction module to predict the buffer size of the SPL for
any given pi and ri∀ i=1,. . . , n-1, where n is the number of
machine tools in the SPL. The proposed prediction model can
reduce the computational time for the determination of buffer
sizes at a given pi and ri. The optimizationmodule can be used
again in this stage to validate that the predicted buffer sizes
leads to the highest production rate.

A. OTIMIZATION MODEL
In this research, GA is utilized to obtain the optimal or near
optimal buffer size. GA is one of the well-known meta-
heuristic optimization methods, which finds the optimal or
near optimal solution based on natural selection and genetics
principles. GA begins with an initial population including
arbitrarily selected solutions known as individuals, where
each individual is defined by a group of variables known as
Genes. Then determining the fitness of all individuals in the

initial population. This is followed by the selection of the
fittest individuals allows them to pass their genes to the next
generation. These iterations are repeated to obtain the optimal
or near optimal result of the problem. The solution of the
highest fitness becomes the candidate solution to the given
problem. Figure 3 shows the outline of GA.

The first step to implement the GA approach is to define
the structure of an individual and encode the individual’s
elements. In this research, the individual is defined as a set
with n-1 elements, where n is the number of machine tools
in SPL. Each of these elements represents one buffer. The
individual is defined as follows.

Individual = [N1,N2, . . . ,Nn−1] (8)

where N1 is the buffer size in front of the bay of SPL’s
machine tool number i+1. The expression matrix is not lim-
ited, and it can be defined by any number of elements. Thus,
it can deal with production systems having any number of
machine tools.

In Figure 3, I refers to the number of individuals selected
based on the crossover operation, in each crossover operation,
two individuals are generated and sent to the next population.
J refers to the number of individuals selected based on muta-
tion operation, in each mutation operation, one individual is
generated and sent to next population. S refers to the number
of individuals of the next population, and these individuals
selected based on elitist strategy (best individuals in current
population). The detailed GA is introduced in the following
steps.

Step 1: Calculate F (i)∀i = 1, 2, . . .N for current popula-
tion.

Step 2: Send s individuals to next population, IND (i)∀i =
1→ s by applying elitist strategy.

VOLUME 9, 2021 61811



H. Alkhalefah et al.: Development of an Efficient Prediction Model for Optimal Design of SPLs

FIGURE 3. GA work flow.

Step3: Calculate PR (i) ∀i ∈ POP (current) , i =
(1, . . . ,N ) as follows:

PR (i) =
F (i)2∑N
i=1 F (i)

2
(9)

Step 4: Calculate A (i)∀i = 1, 2, . . .N by using Eq. (10):

A (i) =
∑i

j=1
PR (i) =

∑i

j=1

(
F (i)2∑P__size

i=1 F (i)2

)
(10)

Step 5: Calculate Period (i)∀i = 1, 2, . . . IND as follows:

Period (0) = [0,A (1)]

Period (i) = [A (i− 1) ,A (i)] , ∀i = 1, 2, . . . IND

(11)

Step 6: Carry out crossover operation as follows:
Step 6.1: Select two numbers between 0 and A(N ) as

follows:

N1 ← Random [0, . . . ,A (N )] and

N2 ← Random [0, . . . ,A (N )] (12)

If N1 and N2 ∈ P (i) ,∀i = 1, 2, . . . ,NI Then, reselect N2
Step 6.2: Find IND (i)∈ Period (i) ⊂ N1 and

IND (j) ∈ Period (j) ⊂ N2, ∀i, j = 1, 2, . . . IND (13)

Step 6.3: Select crossover point, CP, as follows:

CP← Random [1, . . . , i, . . . ,O− 1] (14)

Step 6.4: Exchange the genes after and before CP between
individuals N1 and N2.

Step 6.5: Send the generated individuals to the next
population.

Step 7: Redefine the two selected periods as follows:

Period (i)= [A (i− 1) ,A (i)− n] for Period (i)⊂N1 and

Period (j)= [A (j− 1) ,A (j)− n] for Period(j)⊂N2

(15)

Step 8: Carry out mutation operation as follows.
Step 8.1: Select a number as follows:

Num← Random [0, . . . ,A(N )] (16)

Step 8.2: Find IND (i)∈POP (i) ⊂ Num
Step 8.3: Select two genes from the selected individual as

follows.

a, b← Random [1, . . . ,NI ] (17)

Step 8.4: Swap the values of the two selected genes.
Step 8.5: Send the generated individual to the next

population.
Step 9: Redefine the endpoint of the selected period by a

constant value n as follows:

Period (i) = [A (i− 1) ,A (i)− n] for Period (i) ⊂ Num

(18)

Step 10: Repeat steps 6 to 9 to generate N – s individuals
of the new population based on Cr and Mr.

Step 11: Repeat step 1 to step 10. Repeat step 11 until the
fitness becomes constant. Set the individual of this fitness as
the optimal individual.

Using the optimization model many sets of uptimes and
down times parameters and their optimal corresponding
buffer size can be generated. The Optimization toolbox in
MATLAB R2019a is used to perform the optimization based
on the GA.

B. PREDICTION MODEL
As formerly stated, the goal of the prediction model is to pre-
dict the optimal buffer size on the bay of eachmachine tools at
any set of uptime and downtimes. Nevertheless, the prediction
model can reduce the computational time for the buffer sizes
determination. An artificial neural network (ANN) technique
is utilized to develop the prediction model. ANN consists of
an interconnection of simulated neurons with weights. It has
the capability to acquire knowledge about the connections
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FIGURE 4. The structure of the ANN.

between inputs and outputs (cf. Figure 4) and to generalize
those connections to previously unseen data. The ANN trans-
fers a known input pattern to an output pattern by adjusting
the association weight. In this research, the ANN model uses
the data generated by optimization model considering the
uptimes and downtimes parameters and the optimal buffer
sizes associated with the highest throughput corresponding
to each set of the uptimes and downtimes parameters to train
the prediction model. The prediction model then will be used
to predict the buffer size in a production system at any set of
uptimes and downtimes.

The algorithm at this stage is carried out using the follow-
ing steps:

Step 1: construct the ANN model.
Step 2: train theANNwith some of the buffer sizes resulted

by optimization model.
Step 3: validate the ANN by the rest of the buffer sizes

data.
The neural network toolbox in MATLAB R2019a is used

to build the ANN model. The three layers of neural network
are developed with a sigmoid activation function between the
layers given in Eq. 19.

f (v) =
1

1+ e−v
(19)

C. INTEGRATION OF OPTIMIZATION AND PREDICTION
MODELS
The optimal design of production system can be achieved by
integrating the optimization model and the prediction model
discussed in previous sections. The optimization model is
used to generate enough data to learn the prediction model.
These sets of data include different levels of uptimes and
down times for all machine tools in SPL and the correspond-
ing optimal buffer sizes that achieve the highest production
rate of that SPL. After that, these data (uptimes and down-
times and corresponding buffer sizes) are fed to the prediction
ANN model, by this way the prediction model can be used to
predict the optimal buffer sizes at any input values of uptimes
and downtimes of machine tools. Finally, the predicted buffer
sizes are sent again to the optimization model to validate
that the highest production rate is achieved at these predicted
buffer sizes. Figure 5 shows the date flow and interaction
between the optimization model and prediction model.

FIGURE 5. Integration of the optimization and prediction models.

The interaction between the GA based optimization model
and the prediction ANN model is repeated to obtain the opti-
mal or near optimal buffer size. This combination can be used
to find the optimal design of the SPL during the development
of the production system and support the decision of produc-
tion system developer engineers regarding the selection of
machine tools to achieve the goal of the production system.
Furthermore, the proposed methodology can be applied to
improve the production rate of a running production system,
in order to address changes of uptimes and downtimes of
machine tools in the production system.

TABLE 1. Uptimes and downtimes parameters for two different SPLs of
5 machine tools.

IV. NUMERICAL VERIFICATION RESULTS
A. SMALL PRODUCTION LINE: 5 MACHINE TOOLS
In this section, the proposed method is applied for two
examples of small production lines, each with 5 machine
tools with the uptimes and downtimes parameters are given
in Table 1. It is worth empathizing that the uptime and
downtime parameters for the first case are identified based
on unbiased random basis, while partially biased random
procedure is followed for the second example to only ensure
the uptime parameters (pi) are always smaller than 0.5 that
will results in large uptimes. At the same time the down-
time parameters (ri) are always kept larger than 0.5, which

VOLUME 9, 2021 61813



H. Alkhalefah et al.: Development of an Efficient Prediction Model for Optimal Design of SPLs

TABLE 2. Optimal buffer size for SPL of 5 machine tools.

FIGURE 6. Pareto front of optimal values for optimization model of SPL
with 5 machine tools.

results in small downtimes. The difference between both
examples is intended to demonstrate the feasibility of the
proposed approach to predict optimal buffer sizes in two
different scenarios, in which the second case expect to give
a higher productivity due to the partially pre-controlled val-
ues of the uptime and downtime parameters. The maximum
buffer capacity to be allocated on the bay of each machine
tools is 20.

Initially, the proposed GA randomly generated 100 sets of
uptimes and downtimes for the five machine tools. Then, the
proposed optimization model identifies corresponding sets of
optimal buffers considering the randomly generated uptimes
and downtimes parameters.

It is worth stating that the GA parameters are determined
based on the guidelines presented in [40] and after some trial
and error, the selected GA parameters are chosen as follows:
population size of 100 individuals, crossover rate of 0.8, and
mutation rate of 0.05. Figure 6 exhibits the Pareto front for the
two competing objectives, productivity rate and total buffer
size, described in this work, determined by the GA based
optimization model.

The generated data including the uptimes and downtimes
parameters and the optimal buffers are fed into the prediction
model as learning and testing data. The input layer consists
of 10 input neurons (uptime and downtime for each of the five
machine tools). By trial and error fifty neurons’ hidden layers
are used which minimized the training error. The output are
the four buffer sizes of the SPL.

The Levenberg-Marquardt optimization algorithm was
used as a training function for the proposed ANN, which is
well known as the fastest backpropagation algorithm in the

FIGURE 7. Regression analyses of outputs from the ANN for SPL of
5 machine tools during (a) the training phase and (b) the entire process
(training and testing).

Matlab toolbox, and is highly commended as a first-choice
supervised algorithm. Among the input uptimes and down-
times groups and their corresponding buffer sizes obtained
from optimization model, 80% of the data are used as the
training group and 20% for testing. Then the ANN is applied
to find the relationships between the inputs (uptimes and
downtimes) and the outputs (buffer sizes). Figure 7 shows a
plot regression for the proposed prediction model.

The optimal buffer sizes of the SPL at given uptimes and
downtimes parameters resulted from the proposed integra-
tion of optimization and prediction models are given in the
Table 2. However, in order to validate the results, the GA
model was used to identify the optimal buffer sizes for the
five machines considering the same uptimes and downtimes
parameters. The obtained values for buffer sizes in both cases,
using the ANN predictor and using the GA optimization
model, were used to calculate associated productivity rates
and all the results are presented in Table 2 for comparison
purpose. From the results, it not so difficult to see that the
prediction of buffer sizes using the two different methods are
close and the final productivity rates are very similar. Besides,
the results of the presented examples demonstrate the ability
of the proposed approach to optimize the buffer sizes for
different scenarios of uptimes and downtimes; one with unbi-
ased random selection while the second deals with partially
biased random selection of the uptimes and downtimes.

B. LARGE PRODUCTION LINE: 15 MACHINE TOOLS
The proposed method is also applied for two examples of
large production lines with 15 machine tools each. The upti-
mes and downtimes parameters selected for both examples
are listed in Table 3. Similar to the two examples presented
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TABLE 3. Uptimes and downtimes parameters for large SPL
of 15 machine tools.

in Table 2 for the small production lines of 5 machine tools,
the first example of the large production line is given uptime
and downtime parameters based on an unbiased random
procedure, while the random selection of the uptime and
downtime parameters for the second example is considered
partially biased. In particular, in the second example the
uptime parameters are restricted to values less than 0.5 and
the downtime parameters are limited to values larger than
0.5. Again, this aims to show the ability of the proposed
approach to optimize large production lines with different
ranges of characteristics (uptime and downtime parameters).
The maximum buffer capacity that is to be allocated on the
bay of each machine tools is 20.

Similar to the previous small production line numerical
example, the optimization model is applied to find the buffer
sizes corresponding to many sets of uptimes and downtimes
parameters. The GA parameters are similar to those men-
tioned in small production line numerical example. Figure 8
shows the Pareto front for the two competing objectives,
productivity rate and total buffer size, determined by the GA
based optimization model for the large production line.

The input layer consists of 30 inputs neurons (uptime and
downtime for each of the fifteen machine tools). The output
are the buffer sizes of the large SPL. Fifty neurons’ hidden
layers are used which minimized the training error. Similar to

FIGURE 8. Pareto front of optimal values for optimization model of SPL
with 5 machine tools.

FIGURE 9. Regression analyses of outputs from the ANN for large SPL of
15 machine tools during (a) the training phase and (b) the entire process
(training and testing).

the ANN model for the small SPL, the Levenberg-Marquardt
optimization algorithm was used as a training function for the
proposed NN. Then the ANN is applied to find the relation-
ships between the inputs and the outputs. ANN used 15% of
data for both testing and validation. Figure 9 shows a plot
regression for the proposed prediction model of SPL with
15 machine tools, during the training phase only (Fig. 9a) and
the entire process (training and testing in Fig. 9b).

Finally, the optimal buffer sizes of the SPL at given uptimes
and downtimes parameters resulted from the proposed inte-
gration of optimization and prediction models for the large
SPL of 15 machine tools are given in the Table 4. In addition,
the optimal buffer sizes obtained using the GA only for the
same uptimes and downtimes are also listed in Table 4. It is
not so difficult to see that the proposed approach (GA and
ANN) successfully identified buffer sizes very close to the
values determined using the ANN only in both cases; with
unbiased random selection of the uptimes and downtimes and
when these values were partially restricted.

In the above two examples, it is found that the run time are
80 and 211 seconds for 5 and 15 machine tools respectively,
when the codes were run on a computer system with an
Intel(R) Core (TM) i7processor. The run time in all cases was
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TABLE 4. Optimal buffer size at given uptimes and downtimes parameters for large SPL of 15 machine tools.

TABLE 5. Comparison of Optimal buffer size at given uptimes and
downtimes parameters for SPL of 7, 8, 9 and 11 machine tools.

quite small. In the presented numerical examples, the pro-
posed model found the optimal or near optimal solutions for
the buffer size for both short and large serial production lines.

It found that the proposed model can solve the buffer size
problem in a short time.

Finally, the performance of the proposed approach was
compared with the state-of-the-art method for the prediction
of optimal or near optimal buffer sizes for short, medium and
quite large serial production lines. In particular, the results
for production lines with 7, 8, 9 and 11 machine tools, with
the uptimes and downtimes parameters previously reported
in [41] were used as a reference for comparison with the
proposed method in this research work.

The results are listed in Table 5. The maximum buffer
capacity to be allocated on the bay of each machine tools
is 20.

Looking at the comparison between the results of the
proposed approach and the results reported in the literature
under the same conditions of uptimes and downtimes, one
can clearly conclude that the approach presented in the papers
successfully optimized the buffer sizes that lead to a higher
throughput of the SPL when compared with the results pre-
sented in [41], under the same characteristics.

V. CONCLUSION
This paper has reported on the development of an efficient
prediction model to support the manufacturing engineer’s
decision during the design of any new SPL under speci-
fied assumptions and constraints including the uptimes and
downtimes of the machine tools. The propose model also
can be used to improve the design of running SPL. This
study integrates the GA based optimization model and ANN
based prediction models. The proposed model solves the
buffer allocation problem SPL consisting of M machines and
M −1 buffers. The results of case studies showed that the
developed model accurately predict the optimal buffer size,
especially for the case of five machines and even for higher
number of machine tools, the results were acceptable. The
proposed model is quite fast; it can solve the buffer size
problem in a short time to enable a quick decision regarding
the selection of buffer sizes in the production line. The run
time in all cases was quite small.

The performance of the proposed approach was compared
with the state-of-the-art method for the prediction of optimal
or near optimal buffer sizes for short, medium and large
serial production lines. The results have demonstrated that
approach presented in the papers successfully optimized the
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buffer sizes which led to a higher throughput of the SPLwhen
compared with the results presented in the literature, under
the same characteristics.

A further investigation to improve the accuracy of the
proposedmodel, especially for large SPL,might include other
optimization tools. An extension of the work presented in this
paper would be the study of other structures of production
system such as production systemwith rework paths, split and
merge production systems, assembly production systems, etc.
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