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Introduction

Although the postulation of neutrinos by Wolfang Pauli in 1930 [Pau30] dates back 90
years and since then many experiments have been devoted to the study of these particles,
not all their properties are known to this day. The measurement of neutrinos is challenging
and involves a great deal of effort; for example, the first direct experimental proof of the
existence of neutrinos in the Savannah River Experiment was only provided 26 years after
their postulation [Cow+56]. Through the observation of the solar neutrino deficit and
the discovery and experimental confirmation of neutrino flavour oscillations in many
experiments [Suz95; SNO+02; Fuk+01; Ham+99; Abd+94] it has been proven today that
neutrinos have a non-vanishing mass. The undisputed evidence of the experimental data
thus exposes a clear shortcoming of the Standard Model of elementary particle physics,
in which neutrinos are massless. Despite the overwhelming success of the Standard
Model in describing the interaction of particles and thus fundamental physics on the
smallest length scales, it is undisputed that its description of neutrinos is incomplete. The
experimental study of neutrinos, including the determination of their mass, is an essential
step to understand the necessary extension of the Standard Model and thus physics on the
smallest length scales.

Neutrinos are not only relevant on the smallest but also on the largest length scales:
According to the ACDM model, the "Standard Model" of cosmology, they are the most
abundant massive particles in the universe. Their mass is one of the parameters that
influences how structures in the early universe evolved, leading to the distribution of
galaxies, voids and galaxy clusters observed today. Extensions of the ACDM model can be
used to derive an upper limit on the size of the neutrino mass, however, the most sensitive
results rely on the combination of several different observational data sets [CH20]. For
this reason, although precision cosmology has become a sensitive probe for the sum of
neutrino masses, direct laboratory measurements are indispensable to corroborate and
test the interpretation in the cosmological framework.

Two experimental approaches have been established to determine the neutrino mass in
the laboratory, both of which use a form of beta decay. The neutrinoless double beta decay
(0vBP) assumes that neutrinos are Majorana particles, i.e. their own antiparticles, and is
prohibited in the Standard Model as a lepton number violating process. The exchange
of virtual Majorana neutrinos is a mediator of the hypothetical double beta decay. The
Majorana neutrino mass thus impacts the decay rate of 0vpf. Therefore, experiments that
can detect this type of decay and measure its half-life could indeed prove that neutrinos
are Majorana particles and contribute to an extension of the Standard Model. However, if
neutrinos are not their own antiparticles, these experiments cannot determine the neutrino
mass. Very long half-life times well in excess of ordinary first-order weak interactions
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are expected for 0vpf and if it takes place at all, then only so rarely that it has not been
observed until today [Ni+19].

The second established laboratory method is the precise measurement of the single beta de-
cay spectrum. The most advanced current-generation experiment targeted at determining
the neutrino mass in this way is the KArlsruhe TRItium Neutrino (KATRIN) experiment.
It builds on the experience of the predecessor experiments in Mainz and Troitsk, but will
exceed those in its sensitivity to the determination of the neutrino mass by a factor of
10. This is only possible with enormous technical efforts and numerous innovations, so
that many components of KATRIN have set the limits of what is technically feasible at the
moment. This work aims to contribute to the equally complex and extensive data analysis
and modelling of the measurements.

The KATRIN experiment performs a kinematic measurement of the electron neutrino mass
m, by precision spectroscopy of the tritium § decay spectrum at its kinematic endpoint
with and energy of 18.6 keV. KATRIN’s first published result of m, < 1.1eV (90 % C.L.)
[Ake+19] of the KNM1 campaign is the current most stringent limit from laboratory
neutrino mass measurements. Future measurement campaigns will successively bring
down the statistical uncertainty. In order to push for the target sensitivity of 200 meV
(90 % C.L.) [KAT04b], though, a detailed understanding of the systematic uncertainties is
needed, as well.

The topic of the thesis at hand is the development of a theory to characterise source
potential systematics of the KATRIN experiment, which are critical systematic effects.
This theory describes both the observables of the potential, which are obtained in 8*™Kr
calibration measurements and, given estimates of these observables, the expected sys-
tematics in tritium measurements. While the main focus of this work is on the detailed
understanding of the theoretical framework, the developed method is also applied to the
KATRIN KNM1 and KNM2 measurement campaigns carried out in 2019.

One of the major systematic uncertainties stems from energy calibration, i.e. from the
precise determination of the difference of the electric potential between source and spec-
trometer. The B decay takes place in the Windowless Gaseous Tritium Source (WGTS),
where the gaseous tritium is continuously cycled. Inelastic scattering of the decay elec-
trons off the gas molecules leads to two effects of relevance for this thesis: on the one
hand, it leads to charge generation by ionisation of the gas, which entails the formation
of a low-density plasma. This plasma can lead to a spatially non-homogeneous source
potential and thus contributes to an uncertainty of the energy calibration. On the other
hand, inelastic scattering provides spatial resolution on the source potential, due to the
following reasoning: Scattering is more likely to occur for those electrons, which have
to traverse a larger portion of the 10 m long source tube, such that electrons of higher
scattering multiplicities are more likely to originate further from the rear part of the
source. In addition, the inelastic scattering is quantum mechanically forbidden for incident
electron energies smaller than ~ 13 €V, so that the overall recorded electron spectrum
consists of a summation of spectra for the different scattering multiplicities, starting from
unscattered electrons. In combination, this provides a mechanism for sensitivity on the
longitudinal starting position of the observed electrons: In mono-energetic spectra the
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electrons of different scattering multiplicity, which stem from different parts of the source,
appear in different energy ranges. In continuous spectra like the tritium § spectrum the
scattering contributions overlap, which partly obscures this connection. Nevertheless, this
mechanism still leads to spatial sensitivity on the source potential. The consequences of
this observation are manifold and constitute the main part of this thesis.

The first consequence affects the description of energy calibration systematics. In the
KATRIN systematic budget an accuracy on the order of 10 mV on the difference of the po-
tentials of the main spectrometer and the tritium source is required. The exact quantitative
specification of this requirement depends on the shift of the observable squared neutrino
mass Am? resulting from inhomogeneities of the energy scale. For the latter there are
different measures. In the simplest description of the B spectrum the shift of the squared
neutrino mass is given by the standard deviation o of an unaccounted distribution of the
[-electron energy, caused by a systematic effect. In this case the relation [RK88]

Am?

v = ~20° (1)
holds in leading order, for which the KATRIN design reports states a requirement of
o < 60 meV [KATO04b] for all energy scale systematics. However, inelastic scattering is
one of the reasons why this simple case is not always realised at KATRIN and why in some
situations equation 1 needs to be modified. The mechanism leading to this modification is
sketched in the following.

The use of an overall energy distribution to describe systematic influences as opposed to de-
tailed modelling of the physical effects involved makes this description phenomenological.
As a consequence, this type of theory for the neutrino mass shift has some formal similari-
ties with the theory of phase transitions. One of them is the relevance of symmetries and
symmetry breaking. Equation 1 uses only a single distribution of the f-electron energy,
which assumes that the measured § spectrum does not depend on spatial or temporal
coordinates. In this sense the energy scale is fully symmetrical. However, as shown in this
thesis, for certain experimental conditions more than one energy scale distribution must
be considered, rendering o not well defined. The emergence of more than one energy scale
distribution is caused by physical effects that break certain symmetries. Consequently,
additional degrees of freedom are required to fully specify the neutrino mass shift. Two of
these effects are investigated in this thesis:

One is the mentioned inelastic electron scattering in the source, breaking the longitudinal
symmetry of the source energy scale. As a consequence, electrons of different scattering
multiplicity have different starting potential distributions. In leading order this is accounted
for by a measure of the difference of their means A, in addition to the standard deviation
for the unscattered electrons oy.

The other is energy scale fluctuations on run time scale, breaking the temporal symmetry
of the energy scale. Energy fluctuations with periods much smaller than the usual mea-
surement are averaged, such that no information on the fluctuation phase is contained
in the recorded electron spectrum. However, comparable time scales of fluctuation and
measurement lead to a predictable relation between fluctuation phase and energy of the
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electrons. The occurrence of this effect is quantified by the size of the Root Mean Square
value of the energy fluctuation orys on the time scale of the measurement.

As shown in this work, those additional degrees of freedom lead to the modification of
equation 1 to

Am’ = -20% - eA, + €opms+ ao{iMS . (2)
| — —_——————
Longidutinal distribution Temporal distribution

The coefficients €, €’ and a are order parameters which vanish for full symmetry. Their
determination as a function of the relevant operating parameters, such as the tritium
column density in the source or the time sequence used in the energy spectroscopy, is one
of the topics of this thesis.

One tool for the energy calibration and the determination of oy, A, and ors is the 83myy
mode of the gaseous source. In this mode, gaseous, mesomeric krypton-83m is dispersed
along with the tritium gas inside the tritium source. Krypton-83m exhibits several electron
conversion lines in a range measurable by KATRIN, such that it can be used as a nuclear
standard. It approximately follows the tritium distribution in the source tube volume, such
that the conversion electrons suffer from comparable source potential systematics as the
B spectrum. However, due to the mono-energetic lines, the effect of inelastic scattering
is directly visible in the krypton spectrum. In particular, the unscattered portion of the
investigated line is directly related to the longitudinal plasma inhomogeneity oy, by an
additional broadening on top of the intrinsic width. A line of one-time scattered electrons
is observed approximately 13 eV below the unscattered electrons. From the difference
of those two lines A, can be determined. Temporal fluctuations lead to an additional
broadening of the line, such that it can also be used to constrain orps.

As discussed, the parameters oy and A, are given by the central moments of the starting
potential distributions for different scattering multiplicities. The expansion of the distri-
butions in moments is a perturbative approach, which reveals the essential observables
of the krypton-83m and the tritium measurement. This is particularly noticeable when
examining the predictive power of the krypton-83m measurement on the actual potential.
It can be shown that the ratio of the measured moments is given by the correlation of the
potential with a certain longitudinal potential shape. In particular, potentials which are
antisymmetric in relation to the gas injection point in the centre of the 10 m long source
A

tube lead to extreme values of Ug for typical KATRIN measurement conditions, while A,

vanishes for symmetric potentials.

Finding exact, model-independent relations like these is a focus of this work: The measure-
ments of the KNM1 and KNM2 campaigns at KATRIN have shown that the determination
of the plasma potential systematics is very difficult, since also the krypton-83m calibration
measurement and other methods suffer from systematics. In addition, many dimensions
like temporal drifts, radial dependencies of the observables and the multitude of the avail-
able methods lead to complicated discussions, such that additional model dependencies
need to be avoided. This goal is fully achieved in this work, which rigorously relates
symmetries of the potential to all observables of the krypton measurement and gives a
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comprehensive description of the neutrino mass systematics resulting from those potential
symmetries.

This rigour comes at the expense of a well founded mathematical approach of the developed
formalism. As it turns out, there are many subtleties like for example differences in the
longitudinal gas profiles for krypton and tritium, which lead to different moments for the
two gas species. While such details are not relevant to understand the overall picture of
the developed theory, they are relevant for the full KATRIN measurement. For this reason,
the main part of this work starts with a short summary, which skips the mathematical
details and derivations. The goal is to facilitate the understanding of the general picture,
before the details are studied in the individual chapters.

This thesis is structured as follows:

Chapter 1 gives a short overview of the basic components of the KATRIN experiment as
well as its analysis and simulation framework. It also includes descriptions of the KATRIN
83mKy mode modelling and of basic plasma physics.

Chapter 2 provides the short summary of the following three chapters without mathemat-
ical detail. It also lists the nomenclature used in the later chapters.

In chapter 3 the general formalism fitting to describe source plasma potential systematics
is derived. Since all relevant relations are deduced here, it is the basis of the following
chapters. The fundamental krypton-83m observables are identified and a general ansatz
for the potential induced neutrino mass and endpoint shift is given. While in essence
the used formalism is standard (Gaussian) statistics of the starting potential distribution,
due to inelastic scattering several of those distributions and their relations need to be
considered.

Chapter 4 describes the potential models deducible from the krypton-83m measurement.
In an exact, analytical approach, all observables are related to symmetries of the potential
and the remaining, model dependent portion of the potential is identified. To illustrate
this abstract discussion by a concrete example, the potential moments resulting from a
polynomial potential model are calculated.

In chapter 5 the coeflicients of the equations derived in chapter 3 are simulated for
conditions comparable to the KNM1, KNM2 and KNM3 measurements. Here all plots for
the calculation of the plasma potential systematic from the potential observables measured
with krypton-83 are found.

In chapter 6 the KNM1 and KNM2 krypton-83m measurements are described. A short
discussion is dedicated to modelling, systematics and complementary measurements.
However, the main focus is on the application of the previously derived methods, which
for example includes model-independent constraints of the peak-to-peak value of the
measured potential. The discussion on plasma potential systematics from longitudinal
inhomogeneity is concluded with the calculation of the expected systematics in the KNM2
neutrino mass measurement.

In chapter 7 systematics stemming from time dependent energy scale perturbations are
discussed. While this topic is not covered by the theoretical framework of the previous
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discussion, time dependencies of the plasma potential are still one possible candidate to
cause energy scale perturbations. Quantitative relations are found for the neutrino mass
shift for different perturbation frequency regimes and time sequences of the measurement.
The size of the systematic is constrained from the KNM2 krypton-83m measurement, both
for the respective neutrino mass campaign, and for full KATRIN.

The thesis concludes with a summary and an outlook in chapter 8.
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1. The KATRIN Experiment

The KArlsruhe TRItium Neutrino (KATRIN) experiment performs a kinematic measure-
ment of the neutrino mass by precision spectroscopy of the tritium beta decay electron
spectrum at the endpoint of 18.6 keV. By the time of writing of this thesis, three neutrino
mass campaigns (KNM1-3) were successfully finished at KATRIN. The first published
result from KNM1 is [Ake+19]

m, <1.1eV(90%C.L.). (1.1)

Although only using roughly four weeks of measurement time at reduced source strength,
this improves the results of the predecessor experiments in Mainz and Troitsk [Kra+05;
Ase+11] by almost a factor of two. The targeted total sensitivity of 200 meV (90 % C.L.) for
1000 days of data taking exceeds the sensitivity of the predecessor experiments even by one
order of magnitude [KAT04b]. Reaching this goal can only be achieved by increasing the
statistical sensitivity of the measurement, while keeping stringent limits on the systematic
uncertainty budget. This chapter summarises which methods are used at KATRIN to do so
and discusses the plasma systematics, which are at the focus of this thesis.

Section 1.1 discusses the measurement principle and setup of the experiment. In section 1.2
the simulation and data analysis framework of KATRIN is explained .

Section 1.3 describes the #3™Kr mode of the gaseous source, which is a calibration mode
used for the study of systematic effects.

Finally, in section 1.4 the source plasma potential systematics is explained, which is studied
using the 3*MKr mode and is the main concern of this thesis.

1.1. Measurement Principle and Setup

KATRIN performs a high-precision spectroscopy of the tritium p-electron spectrum close
to the endpoint. The used molecular tritium T, decays mainly by the f reaction

Ty, > HeT " +e™ + 7 . (1.2)

The electron antineutrinos v, are not detected. However, using energy momentum conser-
vation their mass can be inferred from the energy spectrum of the electrons e”. Neglecting
the final states of the daughter molecule HeT" from the f decay the spectrum is obtained

!Those topics were already covered in many publications of the KATRIN collaboration. Here they are
reduced to the necessary parts for this thesis. [Sei1l9] was found to be a good, much more comprehensive
recent overview.
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Figure 1.1.: Beta decay spectrum of tritium: Shown is the total energy spectrum of the
electrons emitted in tritium beta decay normalised to the maximum. In the
inset a close-up on the energy range 1.5 eV below the endpoint Ey ~ 18.6 keV
is shown. Arbitrary effective electron antineutrino masses are included, which
lead to a decrease of rate in comparison to the spectrum with zero mass. This
rate decrease corresponds to the negative broadening expressed in equation 1.

by considering the phase space of the kinetic energy E and momentum p, of the electrons
and the corresponding quantities of the neutrino v, leading to [OW08]

% = AE) pe E (Eo—E) ) |UalJ(Bo ~ E)? —m? (B ~E~my).  (13)
E,

pPv

A(E) is the amplitude, which depends on the matrix element of the transition and the
coupling constant. The U,; are elements of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix, which specifies the mixing of the mass states m; of the three neutrino flavours.
The 6 function ensures energy conservation. The energy of the endpoint E is given by
the released energy of the decay, corrected by the nuclear recoil of the daughter molecule.

The resulting electron spectrum is visible in figure 1.1. In the inset, one sees that the
neutrino mass modifies the spectrum near the endpoint, most clearly visible in the lowering
of the maximum electron energy. For each of the mass eigenstates m; one expects a separate
kink at its mass; however, KATRIN (and any other planned experiment) cannot resolve
this substructure. The measured effective observable is the squared effective electron
antineutrino mass [OW08]

3
mﬁ = Z |Ue,~|2m? . (1.4)
f
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Figure 1.2.: The experimental setup of KATRIN, comprising:

(a) Rear Section, monitoring and calibration,

(b) Windowless Gaseous Tritium Source,

(c) Differential and Cryogenic Pumping Section, removal of the tritium,
(d) Pre Spectrometer, filtering of low energy electrons,

(e) Main Spectrometer, high resolution spectroscopy,

(f) Detector Section, position resolved electron counting,

(g) Monitor Spectrometer, precision high voltage monitoring.

To improve the sensitivity on m,, by a factor of 10 compared to the predecessor experiments
at Mainz and Troitsk [Kra+05; Ase+12], the sensitivity on m? needs to be improved by a
factor of 100. At KATRIN this is achieved by increasing the dimensions of the experiment
and the source activity, while decreasing the systematic uncertainty budget.

The over 70 m long setup is shown in figure 1.2. The individual components are:

Rear Section, figure 1.2(a): The rear section is used for calibration and monitoring.

Windowless Gaseous Tritium Source (WGTS), figure 1.2(b): Here the decay of the
molecular tritium takes place.

Transport Section, figure 1.2(c): It prevents the gas inside the WGTS from reaching
the spectrometers, while transporting the produced electrons adiabatically, using
strong magnetic fields.

Spectrometer Section, figure 1.2(d)+(e): Pre- and main spectrometer of the Magnetic
Adiabatic Collimation combined with Electrostatic (MAC-E) filter type are used to
block electrons with less energy than an applied retarding energy.

Detector, figure 1.2(f): The detector counts the electrons which pass the retardation
filter, thus producing an integral measurement of the tritium p spectrum.

Monitor Spectrometer, figure 1.2(g): The monitor spectrometer is used for high voltage
monitoring.
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Figure 1.3.: The rear section: The rear section consists of three components; firstly the
electron gun and its electromagnetic transport system, secondly a supercon-
ducting magnet focusing the flux to the rear wall disk, and thirdly the rear wall
chamber, which includes the rear wall and the BIXS system for rate monitoring.
The electron gun and rear wall chamber are surrounded by glove boxes which
serve as second containment for tritium (after [Sei19]).

The isotropically generated electrons are guided from the source to the detector by a
magnetic field in the range of a few tesla, which is created along the entire beam line by
superconducting solenoids.

In the following the components and their significance for KATRIN and this work are
explained in more detail.

1.1.1. The Rear Section

A detailed view of the rear section is shown in figure 1.3. It is placed at the upstream end
of the WGTS and provides several calibration and monitoring devices:

Rear wall [Sch16]: The rear wall is used to define the electric potential of the source
with a gold-coated stainless steel disk perpendicularly to the magnetic field lines. The
gold-coating is used to guarantee that the inhomogeneity of the rear wall work function
is smaller than 20 meV. Since the full magnetic flux hits the wall, the rear wall has
significant influence on the low-density plasma forming in the WGTS. To influence the
plasma conditions, a bias voltage can be applied, which is one of the key parameters of
the studies presented in this work. Also, low energetic electrons can be created using the
photoelectric effect by UV illumination of the rear wall [Ful20]. These electrons can be
used to compensate or create space charges.
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Figure 1.4.: Windowless gaseous tritium source: The central WGTS consists of the 10 m
long, temperature-stabilised cryostat into which high-purity tritium is injected
in the central chamber. The differential pumping sections (DPS1-R and DPS1-F)
attached to each end of the central WGTS remove the gas from the beam line.
The setup is connected to the rear and transport section on the left and right
(after [Har15]).

Electron gun [Bab14; Sch16; Hei15]: The applications of the angular-resolved electron gun
include the determination of the electron energy loss function discussed in section 1.2,
continuous column density monitoring and alignment studies. 10* photo electrons are
created per second using a UV illuminated cathode. Electrodes allow the acceleration
of the electrons to keV energies, however the current hardware was designed to reach
energies only up to 21 keV, whereas in this thesis the requirement to upgrade to 32 keV is
shown. The energy width is approximately 0.2 eV. Before entering the WGTS through a
hole in the center of the rear wall, the electrons pass through an aperture with a slight
offset from the central axis. This prevents gas from the source from directly entering
the rear wall chamber. The position of the electron beam can be controlled using dipole
magnets in the WGTS, allowing to scan the whole flux tube.

BIXS [R6115]: P Induced X-ray Spectroscopy (BIXS) is a method of rate monitoring of
the source activity. It monitors the X-rays which are emitted from the rear wall due to
electron impact. In KATRIN almost all of the 10'! electrons produced per second in the
WGTS hit the rear wall, either directly or after being reflected at the spectrometer high
voltage or magnetic fields. Thus, BIXS allows for rate monitoring on the 0.1 % level in 70 s
measurement time.
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1.1.2. The Windowless Gaseous Tritium Source

The Windowless Gaseous Tritium Source (WGTS), shown in figure 1.4, circulates the tritium
for the B-spectrum measurement. It combines high luminosity with small systematic
uncertainties. The tritium gas is provided by the Tritium Laboratory Karlsruhe (TLK) in a
closed gas loop [Bor11]. Continuous filtering of the gas removes the daughter molecule
HeT" as well as other impurities. Thereby an isotopic tritium purity inside the source of
more than 95 % is ensured, which is monitored using a LAser RAman (LARA) system [Fis14].

Temperature: The central tube with a length of about 10 m and a diameter of 90 mm
is embedded in a cryostat with a length of 16 m, a width of 1.5m, a height of 4m and a
weight of 26 t [Gro+08]. Depending on the desired temperature it uses different coolants:
For the nominal tritium measurement in the 30 K temperature range a two-phase neon
cooling system is used, which reaches a temperature stability of + 30 mK. The temperature
stability directly affects the stability of the column density and thus the rate stability. For
measurements involving krypton-83m the temperature needs to be raised to avoid freezing
out of the krypton-83m at the walls. Accordingly, the neon is exchanged with coolants
with more suitable vapour pressure. Temperature regimes of 80 K (nitrogen) and 100 K
(argon) were used up to now.

The determination of the optimal temperature set point includes many factors: it is chosen
to reduce the thermal Doppler effect leading to a broadening of the electron spectra and
to ensure a high tritium density at low flow rate. On the other hand a low tritium pressure
and small clustering of tritium molecules is required [KAT04b]. The KNM1 and KNM2
measurements were performed in the nominal 30 K mode. In KNM3a a focus was put on
the study of systematics caused by the source plasma potential; to allow for equal source
conditions in tritium and krypton-83m commissioning measurements, the temperature of
80 K was used also for the tritium measurement.

Column density [KAT04b]: The tritium or krypton gas is injected in the center of the
central beam tube and pumped off by two Differential Pumping Sections at the rear and
front sides (DPS-1-R/F-1 and DPS-1-R/F-2) with six Turbo-Molecular Pumps (TMP) each.
They reduce the pressure from pinj ~ 3+ 107> mbar at the injection by around two orders of
magnitude. The nominal value of the density is pd ~ 5 - 10%! m~2, which is a compromise
between a high signal rate and low probability of electrons to scatter off source gas.
However, for co-circulation of tritium and krypton in #*™Kr mode the tritium column
density was limited to 30 — 40 % of the nominal value in the passed measurements,
depending on the temperature. For a given column density, the increased temperature
leads to a higher throughput of the gas, which has to be smaller than the pumping speed
of the TMPs. Thus, while the column density could be increased from 22 % of nominal in
the first neutrino mass measurement KNM1 to 84 % of nominal in KNM2, in KNM3a only
40 % of the nominal value was used to match the value of the KNM3 krypton measurement
at 80 K.
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Figure 1.5.: Differential and cryogenic pumping section: In the DPS2-F the tritium gas
throughput is reduced by five orders of magnitude using turbo molecular
pumps. In the CPS an additional reduction by at least seven orders of magnitude
is accomplished by using cryosorption. Both components use a chicanery of
the beam tubes elements to block neutral particles (after [Hot12; Sei19]).

In forward direction (to the detector) the tritium gas cannot be contained within the
source using a solid barrier, since the passing of the electrons through this barrier would
lead to systematics. Consequently, the whole system from source to detector is a closely
connected vacuum system, hence the term windowless. Regardless, it needs to be prevented
that tritium gas reaches and contaminates the spectrometer section. This is achieved in a
pumping section, which reduces the gas density, while ensuring adiabatic transport of the
electrons.

1.1.3. The Transport and Pumping Section

The transport and pumping section is divided into the Differential and the Cryogenic Pump-
ing Sections (DPS2-F and CPS), which reduce the partial pressure of tritium compounds to
below 102" mbar and the overall gas pressure to below 10~ mbar [KAT04b]. The first
limit is necessary to prevent additional background created in the spectrometer by tritium
decay, the second to prevent scattering of electrons on residual gas.

DPS2-F: As shown in figure 1.5a, the DPS2-F consists of five connected tubes. A tilt of
20° between the tubes ensures that neutral particles like tritium molecules cannot pass in
direct line of sight to the spectrometer section. The four pump ports between the beam
tube elements house TMPs, which reduce the tritium gas flow by five orders of magnitude.
The electrons are transported adiabatically through the 7 m long unit by a magnetic field
of up to 5.5T, which is created using superconducting solenoids. In addition, the DPS2-F
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is used for the analysis and blocking of ions such as T} or *(HeT)*, which are created in
chemical and ionisation processes. Blocking and analysis are performed using ring- and
dipole electrodes [Kle19].

CPS: Another reduction of the tritium flow is achieved by the CPS, which is visible in
figure 1.5b. In a process called cryosorption gas particles get adsorbed on a 3K cold argon
frost layer. As the DPS2-F, the CPS uses a chicanery for neutral particles. Its overall
reduction factor was demonstrated to be better than 1071° [Eic+08; Jan15; R6t19].

CKrS: A measuring device for calibration and monitoring can be inserted in one of the
pump ports of the CPS: The Condensed Krypton-83m Source (CKrS), which consists of a
sub mono-layer of #¥™Kr on a highly oriented pyrolytic graphite (HOPG) substrate. It
can be moved inside the flux tube to irradiate different pixels [Are+18]. In addition to
measurements of the spectrometer transmission properties it also allows to determine
parameters describing the #*™Kr conversion electron lines. Compared to the measurements
of the extended gaseous source described in section 1.3 it has the advantage that, due to
its small dimensions, it does not suffer from the systematic of residual beam tube work
function inhomogeneities. This is further discussed in chapter 6.

1.1.4. The Spectrometer Section

KATRIN uses a total of three MAC-E filters for the determination of the electron energy
(pre- and main spectrometer) and for monitoring of the stability of the high voltage
(monitor spectrometer).

The monitor spectrometer can be connected to the same voltage supply as the main
spectrometer. It repeatedly measures the position of a #*™Kr conversion electron line from
an implanted ®*Rb/%™Kr source, which functions as nuclear standard [Sle16].

The pre spectrometer is usually operated at a retarding voltage that allows only high-
energy electrons a few 100 eV into the spectrum to pass on to the main energy filter. This
reduces background creation by scattering processes in the large volume of the main
spectrometer, which performs the precision spectroscopy of the remaining electrons.

Principle of the MAC-Efilter: In the following the principle of the MAC-E filter is explained,
which applies to all three spectrometers. This section is largely based on [Mac16].

An illustration of the MAC-E filter (based on the main spectrometer) is found in figure 1.6.
The electric and magnetic fields are shown, as they are essential for the working principle
of the MAC-E filter. Its magnetic field configuration is used to collimate the initial isotropic
electron impulses. The energy spectroscopy is then carried out with an electrostatic
retarding voltage U, which works as a high-pass filter. The details are as follows:

The electrons move in cyclotron motion around the magnetic field lines. In relation to
the magnetic field their kinetic energy Ey;, can be decomposed into a transverse E; and a
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Figure 1.6.: Working principle of the MAC-E filter: Superconducting solenoids create the
guiding magnetic field (green). The field strength is minimal in the middle of
the spectrometer. Since the magnetic moment is conserved, the momentum
of the electrons is collimated to be parallel to the magnetic field when the
electrons reach the central analysis plane. As a consequence electrons with
a total energy smaller than the retarding energy qU are reflected and only
electrons of higher energies reach the detector (after [Sei19]).

parallel component E;
Exin=E, +E). (1.5)

The angle between the parallel component and the total momentum is called the polar
angle 0.

For vanishing electric fields and low magnetic field B gradients, the movement of the
electrons is adiabatic (§Ey;, = 0)

AB
— < 1. 1.6
- (1.6)

Since in this case the angular momentum L is conserved, the magnetic moment

‘I (1.7)

H= 2m,
is also a constant [Zub11]. Here e is the electric charge and m, the mass of the electron.
In non-relativistic approximation the transverse energy of the electron can be expressed
as [Zub11]

EJ_ = _ﬁB 5 (18)

i.e. it is proportional to the magnetic field strength. This allows to express the transverse
energy as function of the magnetic field strength

E.(B) = E, (Bs) - B% , (1.9)
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where Bg is the field at the point of the creation of the electrons. Due to the conservation
of the total energy lowering the magnetic field transfers transverse energy to parallel
energy.

In the spectrometer the electrons are slowed down by the retarding voltage U applied to
the spectrometer vessel. They are reflected if their parallel energy in the analysing plane
reaches zero, leading to the following condition:

= E” = Exin — qU — ﬁE 2 0. (1.10)

If the magnetic field By, in the analysing plane is small electrons with energies smaller than
qU are reflected. Since all electrons of higher energies than qU can pass the spectrometer
and are counted at the detector, MAC-E filters perform an integrated energy measurement.

Maximum acceptance angle: The larger the starting angle of the electrons, the larger is
their pathway from the source to the detector. A larger pathway increases the probability
of scattering off gas in the source and the loss of energy due to the emission of synchrotron
radiation. It is therefore of advantage to exclude electrons with pitch angles larger than the
maximum acceptance angle 0y, from the analysis. This is accomplished by inverse use of
equation 1.9: For collimation the ratio By, /Bs should be as small as possible, since this
minimises the transverse component of the electron motion. Reversely, electrons can be
reflected if they move into an increasing magnetic field By,x > Bs, since this can increase
the transverse energy to a point, were the parallel energy vanishes. This is known as the
magnetic mirror effect.

The maximum magnetic field is applied between spectrometer and detector. The resulting
maximum acceptance angle is given by [KAT04b]

Omax = arcsin (1.11)

max

Filteringwidth: The size of the vacuum vessel limits the minimum ratio of By, and Bpay:
Due to the conservation of the magnetic flux a reduction of the magnetic field strength
leads to an expansion of the field lines, which eventually intersect the walls of the vacuum
vessel. The minimum ratio of By, and By limits the possible energy resolution, which
is explained considering the angular distribution of the electrons:

An electron starting in parallel to the magnetic field with an energy of E = qU can just
pass the retarding potential. Since the transverse component in the analysing plane is not
vanishing due to the non-vanishing magnetic field, an electron starting with the maximal
acceptance angle 0 = 0,y needs the additional (surplus) energy

B .
AE=E -2 (1.12)

max
to be detected. Thus, AE is the width of the energy filter. It does not only depend on
the ratio of the maximum and the minimum magnetic field, but also scales linearly with
the energy of the electrons. The derivation only holds for isotropic electron sources; for
focused sources like the electron gun, the reader is referred to [Zac15; Beh17].

10
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Transmission function: The previous derivation of the filter width used the two extremal
polar angles 0. and zero, resulting in zero or one transmission probability. The transmis-
sion probability for polar angles in between those values and for general energies of the
electrons is described by the transmission function 7 (E, qU). For isotropically generated
electrons it holds in first order [KAT04b]

0 E-qU <0
1— 1= EY. Bs
E Biin
T(E,qU) = 0<E-qU <AE . (1.13)
1- 11—
1 E-qU > AE

In higher orders the transmission function is modified by corrections for relativistic effects
and synchrotron radiation, and by the modification of the angular distribution of the
electrons due to inelastic scattering [Gro15]. While the former two are taken into account
in all analyses of this work, the latter was neglected due to the unfeasible computation
time.

Due to inelastic scattering of the electrons on the gas molecules inside the WGTS the trans-
mission function needs to be convolved with the energy dependent probability of (multiple)
energy losses, resulting in the response function. All three functions (transmission, energy
loss and response function) are shown in section 1.2.2.

Field setting at KATRIN: KATRIN’s design magnetic field values are Bs = 3.6 T, Byin =
3-107* T and Byax = 6 T [KAT04b]. Consequently, the spectrometer vacuum vessel has a
length of about 23 m and a maximum diameter of about 10 m. At the tritium endpoint of
Ey = 18.6 keV the resulting values of the maximum acceptance angle and filtering width
are

Omax ~ 50.8° and AE ~ 0.93 €V . (1.14)

However, to guarantee safe and stable long-term operation of the superconducting magnets
it was decided to reduce the magnetic fields to 70 % of nominal for all measurements
[Hac17]. This does not affect the resolution or acceptance angle, since all fields are scaled
uniformly.

The filtering width is much larger than the envisaged neutrino mass sensitivity of 200 meV.
The latter is only achieved by the precise knowledge and modelling of the transmission
function and its consideration in the modelling of the recorded spectrum. Thus, the
lowering of the maximum electron energy by a non-vanishing neutrino mass (seen in
figure 1.1) cannot be resolved by KATRIN, but it measures the rate decrease corresponding
to the (negative) spectral broadening (see equation 1).

1.1.5. The Detector Section

Electrons that have passed the main spectrometer are directed to the Focal Plane Detector
(FPD) system, visible in figure 1.7. Its main component is a 90 mm silicon PIN diode (i.e. a
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Detector
magnet

Gate valve

Pinch magnet

Shield and muon veto
Post acceleration electrode

Calibration sources

Figure 1.7.: Focal plane detector system: The setup of the detector section comprises two
superconducting solenoids, calibration sources, the detector and the vacuum
system and shielding. A post-acceleration can be applied to shift the electron
energy to a region with a preferable signal-to-background ratio (after [Sei19]).

stack of a p-type, an undoped intrinsic and a n-type semiconductor) divided into 148 pixels,
which allows radial analysis of the spectra. The energy resolution of the FPD of about
1-2keV is used for background discrimination [Ams+15].

1.2. Neutrino Mass Analysis with KATRIN

This section gives a brief insight into simple analysis methods (section 1.2.1) and the
analysis software used for this purpose (section 1.2.2). The final section 1.2.3 describes
the prediction of the sensitivity of KATRIN in neutrino mass determination and gives an
overview of the most important systematics.

1.2.1. KATRIN Likelihood Function

This section evaluates on the principle of maximum likelihood determination (or y?
minimisation), which allows the model parameters to be adapted to the measured data.
It is largely based on [Kle14] and [Mac16]. Further literature on other, complementary
methods can be found for example in [Kle14].

KATRIN measures the total number of integral counts N ; for i settings of the retarding
energy qU; and the respective measurement times ¢;. For the extraction of the sought-after
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1.2. Neutrino Mass Analysis with KATRIN

neutrino mass m, the theoretically expected counts Ny, ;(m?) * for each set value of the
retarding energy must be predicted precisely.

Nuisance parameters: Since the theoretical modelling is not complete in practice due to
uncertainties and incomplete modelling, it is helpful to make Ny,e,; dependent on further
free parameters x € X, the so-called nuisance parameters. For the KATRIN neutrino mass
measurements, the parameters used in the standard fit model are the tritium B-spectrum
endpoint Ey, a constant background rate Bg and a spectrum intensity I.

Statistical fluctuations and likelihood: Since the observed counts are generated by a ra-
dioactive decay, they are Poisson distributed, which is also referred to as statistical fluctua-
tions. Therefore, if the experiment is repeated several times, it gives a different result of
the fit parameters X each time. Since the underlying Poisson distribution of the counts is
known, the frequency distribution of X after an infinite number of measurements can be
predicted. However, only one measurement can be performed. The probability distribu-
tion for the outcome of this measurement, given the statistical fluctuations, is called the

likelihood L.

For a number of signal events > 25 the Poisson distribution of the measured counts can be
approximated as a Gaussian distribution. Therefore, the likelihood is given as the product
of the Gaussian distributions at each retarding energy or measurement point i

L(Nobs: Ntheo) = l—[ exp _5

i

(1.15)

1 Nobs,i _Ntheo,i(X) 2
Oj )

The quantity o; is the standard deviation of the counts. For the case of a Poisson distribution
it is given by
0; = VNtheo,i . (1'16)

Minimum x?: The goal of the analysis is to find the parameters X which lead to the
maximum likelihood. However, for easier computation the likelihood is usually replaced
by the double negative log likelihood, the y? function

Nobsi = Niheo i (X) |’

Xz =_9 logL _ Z ( obs,i theo,l( ) ’ (1.17)
i Oi

and the best fit parameters of the X are obtained at the minimum of the y*. Due to the

form of equation 1.17 the y? minimisation is sometimes referred to as weighted least

squares [Jam04].

The result of a measurement is then the set of parameters X which gives the minimum 2.
Due to the erroneous nature of the measurement, caused both by the statistical fluctuations

2Since the theoretical modelling of the B spectrum depends only on the square of the neutrino mass, this is
the actual observable.
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and other, systematic uncertainties, this result is only as good as the determination of its
uncertainty. Usually the latter is provided in the form of a confidence interval around X
which, when the measurement could be repeated infinitely often, would cover the fraction
of measurements specified by the confidence level. Thus, a small confidence interval at a
large confidence level is a precise measurement. This confidence interval is related to the
statistical oyat(X) and systematic oy (X) uncertainties, which can both be inferred from
the y? function.

Determination of the statistical uncertainty: The size of the o, (X) is linked to the width
of the y? function near the minimum. If the y? is interpreted as a function of one of the
x € X, it is a parabola around the minimum, if x enters the model Ny, ; linearly for its
minimum value [Jam04]. The measured total counts are directly proportional to the total
measurement time ti,;. Thus, it follows from equation 1.17 that the statistical uncertainty
and the root of t;,: behave anti-proportional for Gaussian distributed variables and the

Poisson distributed counts )

Vitot ‘

The constant of proportionality is related to the second derivative of the y? function.

Osstat (X ) &

(1.18)

Determination of systematic uncertainties: Different methods can be used to determine
the size of the systematic uncertainties oy (X) caused by uncertainties of parameters P:

+ Pull method: For parameters of mean P, with Gaussian uncertainty o(P) equa-

2
tion 1.17 can be amended with further terms of the form (%) and by fitting

Pg:. If the X are correlated to the P this changes the width of the y? parabola in
the direction of the X compared to the purely statistical width, which is interpreted
as gyst(X). Depending on the size of o(P) the change can be positive or negative.
Thus, if ¢(P) is actually known from a more sensitive experiment, pull terms can
also be used to decrease the uncertainty.

« Shift method: In the shift method, non-fitted parameters are deflected in the model
by AP. If the X are correlated to the P this shifts the y® parabola in the direction of
the X, leading to a change of X by AX.

The pull method is used in this thesis to incorporate literature values of some of the
krypton lines, as discussed in chapter 6. The shift method is used whenever systematic
uncertainties are investigated in simulation studies, for example for all of chapter 5.

Asimov data: The determination of the uncertainties does not require an actual mea-
surement. Toy data Nypsi(Xioy) can be generated by the model which is also used to
predict Nineoi(Xgt). Also, this can be done without statistical fluctuations, such that
Nobs,i (Xtoy) = Niheo,i(Xiit), if Xtoy = Xp;. This replaces the counts by their most representa-
tive values, i.e. without systematics the fit needs to recover the exact input values Xjoy.
This is referred to as using Asimov data [Cow+11].
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1.2. Neutrino Mass Analysis with KATRIN

Combined uncertainty: From the central limit theorem it follows that, given the combina-
tion of many systematic uncertainties, the total uncertainty can be considered as Gaussian
uncertainty. Since uncorrelated Gaussian variances are added in quadrature and systematic
and statistical uncertainties are by definition uncorrelated they can be combined like

— 2 2
Otot = \[ Ogtat T Gsyst,tot . (1‘19)

Confidenceinterval: In the case of Gaussian distributions, the confidence level is obtained
by multiplying oot by constant factors. A 1.645 oyt interval covers 90 % of the total area
of a Gaussian, whereas a 1.0 oyt interval only covers 68.3 %.

In the following the spectrum simulation used to obtain the theoretical prediction Nipeo ;
is briefly discussed.

1.2.2. Fit and Spectrum Simulation

For all analyses carried out in this work the software framework of KaFit and Source
Spectrum Calculation (SSC) is used. Booth are based on C++ and the ROOT library [Ant+09],
but have various extensions to other languages like python or libraries like BOOST. Their
connection and relation to the variety of KATRIN analysis tools is shown in figure 1.8.

KaFit: KaFit is a software package which can perform the likelihood calculation and y?
minimisation using different approaches. Only classical minimisers (based on ROOT::Minuit
and ROOT::Minos uncertainty estimation [Jam04]) were used in this work in a frequentist
method [Ken49].

The calculation of the expected counts Nipeo; is performed by SSC, which is explained
briefly in the following. A comprehensive overview is found in [Kle+19].

Source spectrum calculation: Using SSC, the expected count rate N (qU) can be calculated
for given retarding energy qU. The calculation can be done for each pixel individually,
which is mapped to a radial starting position of the electrons in the source by the magnetic
field. Furthermore, the source can be segmented longitudinally to take into account spatial
dependencies of the source parameters. This calculation of many spectra for individual
regions of the source, called voxelisation [Ho6t12], is shown in figure 1.9.

The total rate is thus given by the following summation over WGTS slices:

slices Q. 00 dN
N(qU) = Z edetﬂ ‘/_w N; (E) R(E+qV;,qU) dE . (1.20)

Thereby €4t is the detector efficiency, % the accepted solid angle, N; the number of
tritium atoms, %—ZI}] the differential tritium spectrum, R(E, qU) the response function of the

experiment and V; the potential in each source slice. The response function is described
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External input
KaLi ‘ plasma simulation |__[BS1® ‘ Kassiopeia
data access ELoss measurement spectrum calculation particle tracking

KEMField
field solving

background model

N measurement plan

observation expectation

likelihood / 2 Bayesian analysis

Frequentist analysis

classical minimisers Markov Chain MC

profile likelihood confidence belts
KaFit, statistical tools

Figure 1.8.: Structure of the KATRIN analysis tools: KaFit can perform a y* minimisation
or maximum likelihood estimation using different methods. The spectrum
calculation is performed by SSC, which comprises many tools or external
inputs (for example plasma profiles like figure 1.19 or the energy loss function
figure 1.10). SSC is also used to generate Asimov spectra (after [Kle14]).

-

7 N\

Tritium source Transport section Detector

S

Figure 1.9.: Mapping of source regions to the detector and voxelisation: The electron
origin in the source is mapped to detector pixels by the magnetic field lines.
As a consequence the spectrum produced in each longitudinal intersection of
the source with the magnetic field lines is mapped to distinct detector pixels
(indicated in grey). Additionally, the longitudinal regions along this field line
can be further divided into voxels, allowing to include longitudinal dependences
of source quantities in the modelling (after [Kle14; H6t12; Mac16]).
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below. Each quantity is obtained from models describing the physical process: The
differential tritium spectrum is the decay spectrum as produced by the decay of the
molecular tritium in the source. Its modelling includes the theoretical description of the §
spectrum as well as nuclear recoil, excitations of the daughter molecule or a (relativistic)
Doppler broadening. Quantities depending on the longitudinal coordinate z are taken
from corresponding profiles, for example from gas dynamics simulations in the case of N;.

Response function: The response function is used to convolve any other external influ-
ence on the electron spectrum from the point of creation of the electrons in the source
to the detection at the focal plane detector. In addition to for example the transmission
function of the spectrometer this also includes the inelastic scattering of the electrons
on the gas in the source. Figure 1.10 shows the corresponding energy loss probability
as function of the surplus energy of the incident electrons with regard to a gas particle.
Multiple scatterings are considered by repeated convolutions of the energy loss function
with itself, as shown in chapter 5. In total, this leads to the structure of the response
function shown in figure 1.11.

1.2.3. Sensitivity of KATRIN on the Neutrino Mass

Following the considerations in section 1.2.1 the sensitivity of KATRIN on m, as defined
in [KAT04b] is given by

Sm, (90%) = \/1.645 - oot (m?) = \/1.645 : \/aftat(mﬁ) + agyst(mi) . (1.21)

A measured value of the neutrino mass of S, (90%) allows to reject the null hypothesis of
vanishing neutrino mass with 90 % confidence.

Statistical uncertainty: Many analyses have determined oy,(m?) and asyst(mi) in the
recent years. It strongly depends on a variety of factors like the background rate, the
used distribution of the measurement time to the energy bins of the spectrum (called
Measurement Time Distribution, MTD) or the magnetic field setting determining the energy
resolution. This list is by no means comprehensive and some effects which were not
considered before were observed with the start of the first tritium measurement campaigns.
Thus, these sensitivity analyses are subjected to constant changes and here only the one of
[Kle14], which was performed prior to the first measurement, is discussed. It uses values
from the design report [KAT04b] for the MTD, the total measurement time (three years
net data taking) and background (10 mcps), yielding

Ostat(M?) = 0.0165eV? . (1.22)

Systematic uncertainty: The list of relevant systematics identified in the design report are
found in table 1.1. The total summation of the individual uncertainties is ogys ot = 0.01 eV2.
To leave room for unknown systematics the total systematic budget of KATRIN was chosen
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Figure 1.10.: Energy loss function: The energy loss function describes the inelastic energy
loss of electrons due to scattering on tritium molecules. A key feature for
the topic of this thesis is its gap of ~ 13 eV. Thus, electrons need to loose at
least ~ 13 eV of energy upon single scattering. The function was measured
by KATRIN during KNM2 [KATep]. Importantly, this measurement is only
valid for electron energies close to the tritium B-spectrum endpoint, which
leads to uncertainties in the analysis of the krypton-83m measurements. This
is discussed in chapter 6.

Transmission probability

20 30 40 50
Surplus energy in eV

Figure 1.11.: Response function: The gap of the energy loss function is also visible in the
response function, where multiple steps with a spacing of = 13 eV are visible
for the increasing scattering multiplicities. The first step starting from zero
energy is given by the transmission function. A close-up can be seen in the
inset. Due to the width of the energy loss function, increasing steps of higher
scattering multiplicities get broadened.
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Table 1.1.: KATRIN systematic uncertainties.
Sources of systematic uncertainties of the KATRIN experiment, as stated in the
design report (from [KAT04b; Mac16]). For a recent, conclusive re-evaluation
the reader is referred to [Seil9].

source of achievable / systematic shift
systematic shift projected accuracy  ogyg(m?) (107 €V?)
description of final states f <101 <6
T~ ion concentration <2-1078 <0.1
unfolding of energy loss func. f(¢€) <6

AT/T <2-1073

AT/T <2-1073
monitoring of column density pd Aer/er < 2-1073 < ‘/51'3-5

Apinj/Pinj <2-1073
ApPex/pex < 0.06

background slope < 0.5 mHz/keV (Troitsk) <12
HV variations AHV/HV < 3 ppm <5

WGTS potential variations AU < 10 meV <0.2
WGTS mag. field variations ABs/Bs < 2-1073 <2

elastic e™ - T scattering <5

identified syst. uncertainties Tsystot = 4] 2 Oays ~ 0.01eV?

slightly larger and equal to the statistical uncertainty after three years net data taking.
This leads to

Osystot S 0.017 eV2 . (1.23)

Sensitivity: Plugging both values into equation 1.21 the following sensitivity of KATRIN
is obtained

Sm, (90%) = 197 meV , (1.24)

which is approximately the usually quoted value.

As discussed, it depends on many factors which were not known by the time of the analysis
leading to this sensitivity. For example, the central topic of the thesis at hand is the
investigation of source potential systematics, which is one of the systematic uncertainties
which in the current analysis of the KNM2 neutrino mass campaign is much larger than
predicted by the design report. The essential tool for the study of the source potential
systematics is the 83™Kr mode of the gaseous source which is discussed in the following
section.
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1.3. 33™Kr Mode of the Gaseous Source for Investigation of
Systematics

83MKr is commonly used as calibration standard in neutrino experiments [Rob+91; Wil+87;
Pic+92; SD95; FP12] as well as in the search for dark matter [LUX+14]. At KATRIN in
principle it allows for an in situ monitoring of the difference of the spectrometer and
source electric potential. As discussed below, it is the only means to access the longitudinal
inhomogeneity of the source potential. The basic idea is to inject a gaseous electron source
with a well known electron spectrum into the WGTS and to monitor the distortion of
the spectrum shape, caused by the presence of systematic effects [Wil03; Bon03]. Prior
to the campaigns carried out in this work it has already been applied in several other
measurement campaigns [Seil9; Sle+19] which are described in more detail in chapter 6.

Requirements on calibration source for source potential systematics: The energy spec-
troscopy at KATRIN relies on the precise knowledge of the difference of the starting
and analysing plane electric potential. The calibration and monitoring of this potential
difference has to meet three main requirements:

+ Small energy width: The potential difference of WGTS and spectrometer must
be calibrated with a precision in the 10 mV range [KAT04b], which is more easily
achieved by using a quasi mono-energetic calibration source.

« Gaseous source: Since the WGTS is an extended source, the calibration electron
source must be dispersed together with the tritium gas within the WGTS to be
sensitive to the spatially extended electric source potential.

+ No contamination: KATRIN is a low background experiment. Accordingly, the
calibration source needs to have a small half-life such that it does not contaminate
the experiment, leading to interference with the tritium measurement.

Gaseous *™Kr fulfils all three requirements. Quasi mono-energetic electrons in the 5-
35keV energy range are created in the process of inner conversion. The conversion lines
have widths in the few eV range. The energy scale of the krypton electrons is comparable
to the tritium endpoint of Ey ~ 18.6 keV and therefore fits to the KATRIN hardware. The
half-life T/, = 1.83h [McC15] of 83mKy is short enough that it does not interfere with the
tritium measurements or leads to contamination. Most importantly, it is gaseous under
operating temperatures and pressures feasible for KATRIN operation. Therefore it can
be mixed with the tritium gas within the WGTS which allows for the determination of
source potential systematics.

Generation and activity of the krypton-83m:  Since the width of the krypton-83m conver-
sion electron lines in question is on the order of 1 eV a several mV sensitivity on the source
potential can only be achieved in a high-statistics measurement, which allows for the
precise determination of the spectrum shape. Consequently, the activity of the krypton-
producing source nuclide rubidium-83 is several 100 MBq [Vén+14], and in the future even
10 GBq. The half-life of T;/, = 86.2d [McC15] of rubidium-83 is sufficiently long that a
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once prepared krypton generator can continuously supply mesomeric krypton-83m during
a measurement campaign of a few weeks.

Although krypton-83m is the most suitable gaseous calibration source for the needs of
KATRIN, it has one disadvantage, namely that the source has to be operated at an elevated
temperature compared to the nominal tritium mode in order to avoid freezing of the
krypton. This and other details of the #™Kr mode operation are discussed in section 1.3.1.

The modelling of the krypton-83m conversion electron spectrum is described in sec-
tion 1.3.2.

The application of the 8™Kr mode to study the systematics related to the plasma potential
is discussed along with the plasma creating processes in section 1.4.

1.3.1. 8™MKr Mode Operation at KATRIN

In the following the key parameters of the 33™Kr mode operation at KATRIN are reviewed
briefly. This includes a discussion of the different source temperatures in ¥™Kr and nominal
tritium mode and the consequences for the achievable column densities. Furthermore, it is
outlined how the differences in the modes affect the pressure stabilisation and purification
of the gas. All differences in 3*™Kr and tritium mode operation can lead to systematics in
the translation of the calibration results from the krypton to the tritium measurement.

Temperature in 83™Kr and tritium mode: The Troitsk neutrino mass experiment used a
temperature of 30 K for regular operation and 110 K for 33™Kr mode [Bel+08]. The elevated
temperature in the krypton measurements had to be chosen to avoid freeze out of the
krypton-83m in the vacuum system. The krypton reduction in the gas system downstream
of the krypton generator depends on several factors like the conductivity of the pipes (scal-
ing linearly with pressure and temperature [Pfe09]) or freeze out on the walls (depending
on temperature and vapour pressure [Mar20]). These factors are of course different for
the different experiments. Prior to the first gaseous krypton measurements at KATRIN
the exact quantification of these effects was still pending, and for the first campaigns the
experience of the Troitsk experiment was drawn upon. Thus, the temperature of 100 K
was used in the krypton measurements of July17, STS3a, KNM1 and KNM2. In KNM3 it
was shown that the temperature can be reduced to 80 K without losing the krypton-83m
rate.

Gas dynamics and column density: In the central WGTS the gas dynamics is dominated
by the laminar flow regime, where the pressure scales linearly with temperature. Thus,
at elevated temperatures a higher pressure has to be maintained to reach the nominal
tritium column density of pdr, = 5-10%! # However, the pressure is limited by the suction
capacity of the turbomolecular pumps [Mar20]. Up to KNM2 krypton, for 100 K operation
only 30 % of the nominal tritium column density could be obtained, which was increased
to around 40 % for the 80 K operation of KNM3 krypton.
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Figure 1.12.: Tritium and krypton gas profiles for KNM2 krypton conditions, normalised
to injection density: Due to the difference in mass, the relative concentration
of krypton is increased towards the WGTS ends. The krypton column density
leads to the range of observed rates in the old krypton mode, the tritium
column density holds for KNM2. The gas dynamics calculations leading to
this plot are described in [Mac16].

Differences of the ®*™Kr and tritium mode temperature affect the energy spectrum of
the thermalised particles in the WGTS and thus directly impact the plasma formation,
as discussed in section 1.4.1. The latter also holds for differences in the tritium column
densities between the modes. Since the study of the source plasma is the main goal of the
83mKr mode, differences in the plasma potential between the modes need to be avoided.
As a consequence, efforts to create a mode with identical properties were intensified:
From KNM4 on, both the krypton-83m measurements and the tritium measurements are
carried out at 75 % nominal column density and 80 K. However, this is accompanied by a
significant reduction in the available krypton-83m conversion electron rate, so that the
old 40 % nominal column density operation must still be used in part. With regard to the
tritium measurement, it could be shown that the reduction of the nominal column density
by 25 % does not seriously affect the achievable sensitivity of the KATRIN experiment.

Demixing of the gas species: Identical source properties for both modes circumvent sys-
tematics from changes in the plasma potential. However, as shown in figure 1.12, even
for identical experimental properties of the source the shapes of the density profiles of
krypton and tritium differ slightly. The visible demixing of the two gas species is related
to the different masses, which causes the aggregation of the krypton at the ends of the
WGTS [KS10]. This leads to an unavoidable systematic, since the krypton signal electrons
probe a different portion of the WGTS than the tritium electrons. Methods to calculate this
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systematic are derived in chapter 3 and the associated uncertainties for typical KATRIN
measurements are calculated in chapter 5.

Krypton low density limit: The column densities printed in figure 1.12 from the KNM2
krypton measurement are comparable for all krypton measurement campaigns prior to
KNM4 (in the new krypton mode, the krypton column density will be even smaller). Due
to the difference of 9 orders of magnitude between krypton and tritium, the effect of
interactions of krypton atoms (with the walls, tritium or other krypton atoms) is negligible
with regard to the tritium gas dynamics. Thus, the tritium gas profile is not affected
when krypton is present. Also, the krypton gas profile is completely dominated by tritium
krypton interactions [KS10]. As a result, the krypton column density is a mere scaling
factor with the practical consequence, that its precise value is insignificant in the modelling.
It is fully correlated with the overall intensity of the krypton conversion electron spectrum.

Impurities and pressure stabilisation: In tritium operation permeators are used for a con-
tinuous purification of the gas mixture. Since this would filter out the krypton, up to
KNMS3 krypton a gas circulation loop was chosen for the krypton measurements which
bypasses the permeators. This inevitably also bypasses the buffer vessel used to stabilise
the pressure, such that the tritium column density showed measurable drifts. Also, without
gas purification, dirt that outgasses from the pumps accumulates over time. As discussed
in chapter 6, systematics from the drift can be controlled. How the increasing impurities
affect the measurement is currently under investigation [Rodep], but it is believed, that
it is a small effect. Both effects are eliminated with the 75 % nominal column density
krypton mode, which does not bypass the permeators. The latter is also the reason for the
reduction of the krypton column density.

1.3.2. 33™Kr Conversion Electron Spectrum

In the following the modelling of the integrated krypton-83m conversion electrons rate
is described. The model used in this work was largely implemented into the analysis
software SSC in [Mac16] and here only a short summary of [Mac16] is given.

The calculation of the integrated  spectrum by SSC was described in section 1.2.2. For
the modelling of the krypton mode, equation 1.20 is extended with the krypton-83m
conversion electron spectrum and the krypton gas profile, leading to

slices . .
. Q [ dN dN
N(qU) = = NK (= N [=] }R(E qU+V)) dE. 1.25
(qU) Zedet%[m{l (dE)Kf ; (dE)TZ} (E,qU +V}) (1.25)

The number NX* of krypton-83m atoms in each slice i of the source is taken from density
profiles like figure 1.12. The modelling of the differential krypton-83m conversion spectrum
(%_11\57) is discussed in the following.

Kr
The krypton-83m electrons are produced by the process of inner conversion. Several lines
exist, corresponding to the binding states of the emitted electrons. Further lines are created
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Figure 1.13.: Creation of the ¥™Kr isomer and its deexcitation: ¥™Kr is created by the
electron capture decay of its mother isotope %Rb. The ¥™Kr deexcitates
to the ground state by y emission or inner conversion via the intermediate
state of angular momentum I = 7/2+. « is the conversion coefficient, which
specifies the relative activity of the transition (after [Ost08]).

by secondary shake up/off effects, which account for the change of the atomic potential
upon electron emission.

Process of inner conversion: A simplified decay scheme is shown in figure 1.13 (an exten-
sive scheme if found for example in [McC15]). Rubidium-83 decays by electron capture
to the mesomeric krypton-83m, which deexcitates to the ground state via an intermedi-
ate state. Thus, the total excitation energy of E.y. & 41 keV is split into a transition of
E32 ~ 32.2keV and EJ:% ~ 9.4keV. The transitions t either occur by direct y emission
or by inner conversion, where the excitation energy is transferred to one or more shell
electrons through Coulomb interaction. When the excitation energy of the transition EL

is larger than the binding energy Ej}, of the electron in shell s € {K,L;,, M,, Ny, ...} with
sub shells [;, it is emitted with a net kinetic energy of

Et,S — Et

kin exc

~E,. (1.26)

As a consequence, line groups corresponding to the transition energies with subgroups
corresponding to the shells are observed in the conversion electron spectrum. This is
denoted as: Shellg,pshen-Transition (i.e. K-32, L1-9.4, ...).

For the specification of the intensity, the conversion coefficient a"* is used. It is the ratio

of the emitted electron rate to the emitted photon rate

a** = N INJ . (1.27)
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Using the law of radioactive decay, the decay rate NIt(r of the excited krypton-83m can be
expressed in terms of the half-life T} 1, and the number of krypton atoms Ny as

. In2 . ) )
Nt = o N = ) Ni2+ Ny = (Zs ats + 1) N (1.28)
Due to the production of the krypton-83m in rubidium-83 decay, the observed rate of
the krypton-83m conversion electrons is given by the decay law of two chained decays.
However, since the half-life of the mother isotope rubidium-83 of 86.2d [McC15] is much
larger than the half-life of krypton-83m of 1.83h [McC15], the measurement is quasi
stationary and the overall time dependence is only given by the decay of rubidium-83. This
time dependence is not included in the model, but accounted for by a phenomenological

intensity I, which is constant in each fit.

Combining equation 1.27 and equation 1.28 allows the electron activity per krypton-83m
atom to be expressed by the conversion coefficient and the half-life
NZ In2 o'

At,s = e —
Ny, Tlt/2 et +1

(1.29)

As indicated by Heisenberg’s uncertainty principle the lines obey a finite width I'"*. Their
energy distribution function F(E, E5on, T'**) with mean energy E5s.., is specified below in

equation 1.33.

Differential krypton spectrum: Combining the previous considerations the total electron
conversion rate per krypton-83m atom and energy is obtained as

transitions

dN shells
(E) (B)=1 > A" F(E Efp T™) . (1.30)
Kr t,s

Accordingly, krypton-83m conversion electron lines are characterised by their mean energy,
their line width and the intensity.

Experimentaldata: Many experiments have determined the parameters of the krypton-
83m spectrum using different experimental techniques [Sev79; BB67; Des+03]. From
KATRIN results can be found in [Seil9; Sle+19]. For all analyses carried out in this work
the parameters of the relevant lines are self-measured. Only for the following plots of the
total spectrum the recent literature values from [Vén+18] are taken. They can be found in
table 1.2. The line intensities are corrected with a probability p for shake up/off (discussed
below) effects to occur.

Usage of the 9.4 keV transition: For the determination of KATRIN systematics the 9.4 keV
transition cannot be used: Its energy is smaller than the tritium endpoint energy, such that
it is either completely covered in the tritium 3 spectrum or suffers from a large background
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1. The KATRIN Experiment

in combined tritium and krypton measurements. Since the first tritium exposure, this kind
of background would also exist in krypton only measurements, due to residual tritium
on the surfaces. Since the krypton measurement is very sensitive to energy dependent
backgrounds, as discussed in section 6.1, this leads to systematics in 9.4 keV measurements.

Furthermore, the 9.4 keV conversion lines are further split into several lines, as reported in
[DS90]: If the primary 32 keV transition occurs via electron emission, the krypton ends up
in an ionised state of charge +1. Successive Auger emissions can lead to a state of multiple
ionisations. Due to the low density in the WGTS the neutralisation time is longer than the
live time of the intermediate state, such that the secondary 9.4 keV transition is sensitive
to the electronic state of the krypton. The resulting line splitting was studied at KATRIN
in [Sei19], which was performed prior to the first tritium exposure of the source.

Thus, only lines of the 32keV transition are used in this work. In the following, indices
specifying the transition and the "32" are left out for the sake of readability.

Shake up/off effect: The deexcitation of the krypton-83m atom under electron emission
leads to a change of the potential of the atom. In sudden approximation successive emissions
and potential change are described separately [War+91]. Since the potential change affects
the energy levels of the electrons, additional lines can appear in the spectrum:

« Shake up: If an outer shell electron ends up in a higher state, the energy difference
is taken from the primary particle. This does not affect the line shape and leads to a
satellite line at lower energies.

+ Shake off: If the electron from the outer shell ends up in the continuum its energy
is not quantised. This produces a low-energy tail of the satellite and thus a different
line shape than that of the main line.

Due to lacking better knowledge, in this thesis all satellites are modelled with the same
shape as the main lines. Also, in this work and in [Sei19] some shake lines were measured,
where this approximation in most, but not all cases, fitted to the data. The mean shake
energies and shake probabilities p are shown in table 1.3.

Modelling of the line shape: Electrons created in the process of inner conversion have a
Lorentzian energy distribution L(E, Epnean, I') [BW36; WW30]
1 r/2

L(E’ Ereans r) = ; (F/Z)Z N (E _ Emean)z . (1.31)

Einean is the line mean and T' the intrinsic line width. The leading order effect of inhomo-
geneities of the energy scale is considered by convolving the Lorentzian with a Gaussian
kernel G(E, o) of width o, 3

E2

G(E, ag) = e 8 (1.32)

1
VZJTO'g

3Since o, enters the Gaussian convolution kernel quadratically O'é is a normal-distributed fit parameter. A
continuation to the regime of negative squares is performed using the method of [Bel+08].
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Table 1.2.: 3¥™Kr conversion spectrum - main lines.
Shown is the = 32 keV transition. The different energies of the lines are related
to the shells from which the respective electrons originate, which are given by
the character in the symbol. The probability p is that for shake up/off effects
(values from [Vén+18; CN73)).

Symbol Epyean/eV  T/eV a p in percent
K 17824.2(5) 2.71(2)  478.0(50) 79.5
L 30226.8(9) 3.75(93)  31.7(3) 100.0
L, 30419.5(5) 1.25(25) 492.0(50) 82.2
L 30472.2(5) 1.19(24) 766.0(77) 82.3
M, 31858.7(6)  3.5(4)  5.19(5) 100.0
M, 31929.3(5) 1.6(2)  83.7(8) 92.0
M; 31936.9(5) 1.1(1)  130.0(13) 93.4
M, 32056.4(5) 0.07(2)  1.31(1) 91
Ms; 32057.6(5) 0.07(2)  1.84(2) 91
N, 32123.9(5) 0.40(4)  0.643(6) 100.0
N, 32136.7(5) 0.03 7.54(8) 93
N; 32137.4(5) 003  11.5(1) 93

Table 1.3.: 33™Kr conversion spectrum - satellite lines.

In case of the M and N lines the values were calculated by subtracting the
relative positions of the satellites from [CN73; Eri+87] from the main lines. The
denotation with S1, S2, S3 is phenomenological (values from [CN73; Eri+87,;
War+91]). Only the strongest satellites are shown here. Rich photoelectron
spectra are found in [Kik+96; Cal+06].

Symbol Emean/€V | p in percent
S1 S2 S3

K 17664.18 | 3.56 17781.00 | 1.80 17805.12 | 13.45
L, 30262.58 | 3.56  30379.40 | 1.53 30403.52 | 11.99
Ls 30314.88 | 3.53 30431.70 | 1.52 30455.82 | 11.94
M, 31904.3 |2 319093 |6

Ms 319119 |0.6 319169 |6

Mys 32024 |1 32037 |8

N3 32116 |5 32118 |2
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1. The KATRIN Experiment

The inhomogeneity of the energy scale is composed both of source and spectrometer
potential inhomogeneities. Inhomogeneities can be spatial or temporal and in all cases the
widths of the contributions add quadratically.

The resulting line shape is given by the so-called Voigt profile

(o8]

V(E, Emean, I', 05) = / G(7,05)L(E — 7, Emean, I') d7 . (1.33)

Differential spectrummodel: Summing up the previous paragraphs, the differential krypton-
83m conversion electron spectrum is modelled as [Mac16]

satellites

dN - shells al pl l l
(d_E)K (E)=1-4 Z > a3 + 1 EV(E’ Eneans I Ug) . (1.34)
r !

The total rate of the 32 keV-transition is A% = 122 = 1.05- 107 per krypton atom.
I is a fit parameter for the total intensity. For the fits performed in this thesis only the
Ls; and the L§3 line were included in the modelling. As discussed in section 6.2 their
intrinsic parameters were determined in krypton only measurements and replace the

above literature values in the analysis carried out in this thesis.

Figure 1.14 shows the conversion lines of the 32 keV transition in the region of 30 — 32 keV.
The corresponding integrated spectrum is shown in figure 1.15. As visible in the close-up
of the integrated spectrum at the L, and the Ls line region, figure 1.16, due to energy loss
by inelastic scattering of the electrons off the gas inside the WGTS additional steps can
be observed. This observation is essential, since it leads to longitudinal sensitivity to the
source potential, which is described in section 1.4.2.

Distortion of the krypton-83m spectrum: The mean unaccounted potential difference of
spectrometer and source potential is parametrised by a line shift AEy,i,. Together with
the Gaussian broadening squared aé this makes for the first and second moment of the
distribution of possible energy scale systematics. Those moments can be obtained from
the distortion of the krypton-83m spectrum. Notably, the usage of a Gaussian broadening
to model this distortion is a deliberate choice, which has two main motivations: Firstly,
the shift of the squared neutrino mass (equation 1)

Am? = —24*

is governed by the standard deviation o of the distribution of the energy scale systematic.
As shown in [Sle16] this does not mean that this distribution needs to be a Gaussian.
The fact that a Gaussian is used in krypton-83m is only the conscious choice to be able
to calculate the systematics of the neutrino mass measurement according to equation 1.
Secondly, using the first few moments of the distribution simply is the natural expansion
in the magnitude of the systematic.

In the following the focus is put on systematics related to the source plasma. The rigorous
definition of these moments and their relation to the plasma potential is the topic of
chapter 3. The plasma-creating processes are described in the next section.
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Figure 1.14.: Differential krypton-83m conversion electron spectrum: The differential rate
per atom of the L, M and N conversion lines and the corresponding shake
off/up lines is shown. At its mean it is inversely proportional to the line width.
This is why the N transition seems large, although its total intensity is one
magnitude smaller than that of the L and M transition.
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Figure 1.15.: Integrated krypton-83m conversion electron spectrum: The krypton column
density on the order of 1012# leads to the range of observed count rates. The
M;j, My, M5 and N; krypton-83m conversion lines are not visible on this scale

Observed integrated rate in keps

Figure 1.16.: Close-up on a region of interest around the integrated krypton-83m L, and
L; conversion electron lines: Due to the gap of the energy loss function of
about 13 eV (see figure 1.10) steps of different scattering multiplicities appear
with a spacing of about 13 eV below each line of the integrated krypton-83m
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1.4. Source Potential Systematic

1.4. Source Potential Systematic

In this section the effect of source potential systematics on the tritium f and krypton-83m
conversion spectrum is described. The shape distortion of the spectra is fully characterised
by the spatially and time dependent source potential V. In this work only spatial depen-
dencies are considered. The potential is determined by the low density plasma of the
source, the formation of which is described in section 1.4.1.

The radial and angular segmentation of the KATRIN focal plane detector in 148 pixels
allows to search for radial inhomogeneities of the source potential. In principle radial
inhomogeneities lead to different endpoint and line position shifts for each pixel, but do
not affect the neutrino mass estimate of a single pixel. However, the shape distortion of
the tritium f spectrum caused by longitudinal inhomogeneities of the potential V' (z) along
the source cannot be distinguished from the physical imprint of a non-vanishing neutrino
mass. While the full potential V (z) for each pixel in principle fully characterises the shape
distortion of the spectra and thus the resulting systematics, in a perturbative approach
the distortion can be characterised by a few scalar estimates of V(z). Previous to [Mac16],
it was believed that the only necessary quantity is the variance of the potential o?[V],
leading to (equation 1) *
Am%[V] = —20%[V] .

However, as shown in this work, one additional parameter needs to be introduced to
characterise source potential systematics. The process leading to this result is longitudinal
sensitivity to the potential by inelastic scattering, which was discovered in [Mac16]. It is
described in section 1.4.2.

1.4.1. Plasma Potential of the Source

The three-dimensional potential of the WGTS volume is determined by the work functions
of the surfaces (beam tube and rear wall) and the source plasma. The interplay of these
components and the plasma formation are described in the following,.

Plasma generation at KATRIN:  The essential ingredient for a plasma to occur is net charges
on a microscopic scale. In KATRIN the main charge generation process is the tritium f
decay, which creates 10!! electrons and 3(HeT)" ions per second [KAT04b]. Due to inelastic
scattering of the electrons on the gas on the order of 50 secondary electrons and ions
are created per B electron °. Here it has to be considered that almost all electrons are
reflected at the spectrometer potential and that the probability for backscattering on the
rear wall is on the order of several ten percent [Bab14]. As a consequence, electrons on
average traverse the WGTS multiple times, undergoing multiple scatterings, before they
are eventually absorbed at the rear wall.

*Square brackets are used whenever functionals are treated. Most of the times the argument of the function
is omitted in the expression and used implicitly. Here, for example, the shift of the squared neutrino
mass is a functional of the z-dependent potential V.

3According to calculations by Ferenc Gliick and Marco Réllig, personal communication.
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Figure 1.17.: Electron number density and temperature for common plasmas and the
KATRIN source: The KATRIN source plasma is set apart from other plasmas
by its very low electron temperature. As a consequence, its plasma parameter
is rather small, such that it is on the edge of being an ideal plasma (figure recre-
ated, found in [Gal12; Lab17], idea from [Kuc16], original source unknown).

Typical plasma parameters: Plasmas are characterised by collective behaviour [Din+05].
Accordingly, they are described by collective parameters like their electron temperature
Te or the electron number density n.. Figure 1.17 shows those quantities for the KATRIN
WGTS plasma compared to other plasmas. With its low electron density on the order of
Ne = 5- 1011$ [KAT04a] it is comparable to atmospheric plasmas, like in the solar corona
or the ionosphere. However, its electron temperature T. = 29 K ~ 2.5 meV [KAT04b] is
much lower than that of most other commonly studied plasmas.

The scale above which the microscopic charges are exponentially shielded is the Debye

length
[Me
/1]) & i s (135)

which is between 0.3 mm and 1 mm for typical KATRIN source conditions [Kuc16]. At
scales larger than the Debye length the plasma is quasi-neutral. The number of particles
in the Debye sphere is called the plasma parameter

4
Np = gn'ne)% . (1.36)
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If the plasma parameter is much larger than one, the plasma is called an ideal plasma.
In this case, the collective behaviour of charges dominates over binary collisions and
individual charges can be described as interacting with a smooth background field. As
visible in figure 1.17, for the typical values of electron density and temperature at KATRIN
this condition is overall just about fulfilled. However, the theoretical description and
simulation of the KATRIN source plasma is complicated by further factors: The length-
to-radius ratio of the WGTS is large (r ~ 4.5 mm, Lywgrs & 10 m), such that boundary
conditions are important, the gas densities along the axis of the WGTS are not constant,
such that different gas dynamics regimes have to be considered, and the motion of charged
particles is bound to a strong magnetic field, such that the quasi-neutrality due to the
shielding of charges is hindered by a reduced mobility in radial direction.

Influence of the work function of rear wall and beam tube: Due to the confinement of the
charges to the magnetic field lines, the rear wall dominates the overall plasma potential.
However, work function differences between the stainless steel surface of the beam tube
and the gold surface of the rear wall can contribute to inhomogeneities of the spatial
plasma potential. To balance those differences, a bias voltage can be applied to the
rear wall, which is the major input parameter for the measurements carried out in this
work. It was expected, that for a certain choice of the rear wall voltage setting the work
function differences of the beam tube walls and rear wall are compensated, resulting in
minimum radial and longitudinal inhomogeneity [Kuc16]. This expectation is now partly
confirmed by krypton-83m measurements, as shown in section 6.3 and in [Ost20]: The
radial differences in the plasma potential are indeed found to be minimal at some optimum
rear wall voltage. However, perfect compensation is not possible over all source radii at the
same time. The longitudinal inhomogeneity is minimal, when the radial inhomogeneity is
minimal, however the minimum has a width of several 100 mV with regard to the rear wall
voltage setting. This might be related to systematics of the krypton-83m measurement,
to temporal plasma instabilities, also leading to a shape distortion of the krypton-83m
spectrum, or to a large capability of the plasma to compensate for local charges.

Plasma simulations: KATRIN uses two approaches to determine plasma systematics: The
experimental determination of plasma parameters in krypton-83m and other calibration
measurements, and the direct calculation of the spatial potential in simulation. Both
approaches are complementary: While it is established in this work, that in principle the
plasma estimates from the krypton-83m measurements are sufficient to fully characterise
the plasma systematics, those estimates are affected by unavoidable uncertainties. Those
stem both from the measurement itself and from the translation between the krypton-
83m and the tritium P spectrum. Thus, in the best possible approach the krypton-83m
measurements are used to verify plasma simulations, such that in combination plasma
estimates for the tritium spectrum with small uncertainties can be obtained. Detailed
simulations of the KATRIN source potential based on the drift-diffusion fluid-dynamical
approach were carried out in [Kuc16]. Figure 1.18 shows a resulting 30 K source potential
with an axially symmetric WGTS model. The potentials of the beam tube wall (r = 4.5 cm)
and rear wall (z = —5 m) were set to the same value (here zero), which leads to the smallest
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Figure 1.18.: Simulated plasma potential inside the WGTS for 30 K: Rear and tube walls are
set to zero potential, which is visible as a steep drop of the plasma potential at
the boundaries. The dip at z = 0 m is caused by the gas injection point of the
WGTS. An axially symmetric model is assumed and the rear wall is placed
directly at the WGTS rear termination at z = —5m (data from [Kuc16]).

overall inhomogeneities. The central dip is caused by the gas injection, from where the gas
flows into the two opposite directions towards detector or rear wall. The higher mobility
of the electrons compared to the positive charges leads to the formation of the positively
charged regions in front of the walls. The front side (z = 5m) is not grounded, since the
source is windowless, and accordingly here the potential differs from zero.

Currently new plasma simulations are performed in [Kelep] using microscopic particle-in-
cell simulations. Among other factors, the behaviour of ions in the front side transport
system is ongoing research and is already known to influence the krypton-83m plasma
estimates. Thus, since the plasma simulations depicted here do not include such effects,
in their current state they should only be taken as an example of the overall plasma
behaviour. This is the approach of the work at hand, which uses the high temperature
plasma simulation shown in figure 1.19 for all studies and examples.

Systematics from the plasma potential: The effect of radial dependencies of the plasma
can be in principle observed directly in pixel wise analyses of the KATRIN measurements.
Accordingly, radial inhomogeneities of the potential can be considered in a radial analysis.

However, the measurement of an individual pixel is a summation over all electron spectra
gathered over the magnetic flux through the pixel, in particular over the ~ 10 m long WGTS
z-profile. If not taken into account in the model of the theoretical tritium p spectrum, the
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Figure 1.19.: Simulated z-profile of the central plasma potential inside the WGTS for 30K
(black) and 110K (red): The peak-to-peak values are * 5mV and ~ 20 mV.
This is in agreement with the expectation from the KATRIN design report,
which states a linear scaling of the inhomogeneity with temperature. The
high temperature potential is used throughout this work as an example for
the 33™Kr mode potential (data from [Kuc16]).

longitudinal inhomogeneity of the potential along this line causes a neutrino mass shift. It
is considered with |ogyst(m?)| < 0.2 - 107% éV? in the original KATRIN systematics budget
from the design report (table 1.1).

For the 30K simulation of the potential shown in figure 1.19 the resulting shift of the
squared neutrino mass is ogyst(m2) = —0.3 - 107> eV* for nominal KATRIN measurement
conditions, which does not stay in the projected limit. This is the case, even though the
standard deviation of the potential is only a few mV, which would lead to only a small
neutrino mass shift according to equation 1. The reason is the considerable rear-to-front
asymmetry of the potential. It increases the systematics due to the longitudinal sensitivity
on the potential in the presence of inelastic scattering, which is discussed in section 1.4.2.

Plasma measurements using 33™Kr mode: Both the standard deviation and rear-to-front
asymmetry of the potential can be obtained in the #¥™Kr mode of the gaseous source. While
krypton-83m was used in the Troitsk neutrino mass experiment which also uses a gaseous
source [Bel+08], previously only the standard deviation of the potential was considered.
The connection of potential rear-to-front asymmetry and krypton-83m observables is
rigorously established and applied in measurements in the context of this thesis.

The basic idea of the measurements is to compare krypton-83m conversion electron spectra
of a krypton only source (called reference measurement) with a measurement of a mixture
of krypton and tritium (called plasma measurement). Since the B decay is the driving force
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for charge creation, in the krypton only measurement no plasma is present, such that these
measurements serve as a reference °. Thus, compared to the reference, the krypton-83m
lines are shifted and broadened according to mean and standard deviation of the potential.
The exact relations of krypton-83m estimates and potential are established in chapter 3.

In the following the mechanism of longitudinal sensitivity by inelastic scattering is dis-
cussed, which leads to the sensitivity of the gaseous krypton-83m and tritium 3 measure-
ments to the rear-to-front asymmetry of the potential.

1.4.2. Sensitivity to the Source Potential in the Presence of Inelastic
Scattering

The effect of the source potential is not sufficiently described by using only its mean (V')
and standard deviation o[V], but one additional parameter has to be considered. The
reason is longitudinal sensitivity to the potential by inelastic scattering.

Due to the presence of scattering the measured electron spectrum has a dependence on
the longitudinal starting position z of the electrons. Understanding this effect requires
two steps, which are most easily explained for the krypton-83m spectrum:

1. Energy separation of spectra of different scattering multiplicities: Electrons
of different scattering multiplicities are grouped into separate lines in the spectrum,
since they are separated by the minimum energy loss of ~ 13 eV. This is sketched
in figure 1.20 for the L3 line. Here the energy loss function from figure 1.10 is
overlaid with the integrated spectrum. The main L; line is caused by the electron
conversion electrons and contains only unscattered electrons. Electrons can scatter
inelastically on the residual gas in the source, where they lose a minimum of = 13 eV
in the process. As a consequence, the spectra of different scattering multiplicities
are shifted with respect to the unscattered one by multiples of ~ 13 eV 7. Notably,
this also holds for the tritium f spectrum, although there the intervals of different
scattering multiplicities are hidden by the continuous shape of the spectrum.

2. Separation of the average longitudinal starting positions of electrons of dif-
ferent scattering multiplicities: Electrons of different scattering multiplicities
not only occur at different energies in the spectrum, but also on average stem from
different regions of the source. This is shown in figure 1.21. Since the scattering
probabilities are the higher, the further from the rear the electrons start, the average
electron starting positions (z); are different for electrons of different scattering
multiplicities i.

®As shown in the context of this thesis and in [Ost20], the WGTS potential of the reference measurements
shows larger inhomogeneities than that of the plasma measurement, which is most likely caused by
residual inhomogeneities of the beam tube work function. As a consequence, the determination of
the reference estimates requires additional krypton measurements of the N5 doublet. This is further
discussed in chapter 6 and [Ost20].

"For completeness it should be mentioned that, due to the tail and width of the energy loss function, the
scattered spectra are also broadened compared to the unscattered spectrum. However, this is not relevant
to understand the mechanism leading to longitudinal sensitivity on the potential.
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Figure 1.20.: Energy separation of spectra of different scattering multiplicities: The shown
krypton-83m spectrum at the L3 line is composed of distinct lines of different
scattering multiplicities. The main L line on the right only contains unscat-
tered electrons. Approximately 13 eV below the main line an additional line
of one-time scattered electrons is visible. The gap is caused by the fact that
electrons need to lose at least ~ 13 eV in inelastic scattering.

As a consequence, the electrons of different scattering multiplicities, visible as distinct
lines in the krypton-83m spectrum, probe different potential means (V');. While in the
tritium B spectrum the different potential means are not directly measurable, still different
regions of the spectrum are affected by different compositions of the (V).

For the analysis range of the krypton spectrum depicted in figures 1.20 and 1.21 only
one-time scattered (mean potential (V');) and unscattered (mean potential (V'),) electrons
are relevant. The difference of their observed mean potentials

Ap[V] =(V); = (V) (1.37)

is the change of the line distance with respect to the expectation of ~ 13 eV. In a simplified
view, the scattering probabilities shown in figure 1.21 allow to interpret (V), and (V), as
the mean rear and front potential, such that the line distance A;¢[V] is indeed a measure
of the longitudinal antisymmetry of the potential with regard to the injection point. This
dependence on the potential shape is depicted in figure 1.22:

« If the mean rear potential is larger than the mean front potential (A;o[V] > 0), the
distance of the one-time scattered and the unscattered line increases.

« If the mean rear potential is equal to the mean front potential (A1o[V] = 0), the
distance of the lines does not change.

« If the mean rear potential is smaller than the mean front potential (A1o[V] < 0), the
distance of the lines decreases.
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1. The KATRIN Experiment

Figure 1.21.:
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Longitudinal sensitivity on the source potential in the presence of inelastic
scattering: Since the probability that detected electrons have been scattered
increases for starting positions towards the rear part of the source, on aver-
age scattered electrons start further towards the rear part than unscattered
electrons. Consequently, electrons of different scattering multiplicities i see
a different mean potential (V);. The different mean potentials are directly
measurable in the quasi mono-energetic krypton spectrum, where the lines of
different scattering multiplicities are separated in energy. Due to the negative
charge of the electrons, positive potentials lead to negative shifts of the line
position and vice versa.



1.4. Source Potential Systematic
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Figure 1.22.: Dependence of the krypton line distance on the potential antisymmetry: In a
simplified picture the scattered electrons stem from the rear side of the source,
while the unscattered electrons stem from the front. The distance A;[V] of
the krypton lines of one-time scattered and unscattered electrons thus is a
measure of the potential antisymmetry with regard to the injection point (the
sign is chosen opposite to the slope of the potential to fit the sign of A1y[V]).
The overall shift and the broadening of the spectrum due to some (weighted)
mean and variance of the potential are neglected in this plot.
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1. The KATRIN Experiment

Thus, clearly the modelling of the electron spectra needs to consider Ao [V], which is why
equation 1 is incomplete for this particular systematic. Deriving the correct equation for
the neutrino mass shift is the topic of the following chapters.

Scattering weights and starting potential distributions:  The rigorous definition of the (V);
as functionals of the potential V(z) not only requires the consideration of the z-dependent
scattering probabilities, but also of all other z-dependent functions, most importantly
the gas density. Clearly, the mean potentials measured by the krypton-83m or tritium f3
spectrum are dominated by the region of highest gas density, and the potential in regions
without gas is irrelevant. The relationship of (V); and V(z) was identified in [Mac16]
(a more rigorous derivation is found in appendix A.1) and it boils down to a weighted
average over z

wy= v = [ ]%;Pi(zw(z), (139)

with normalised weight functions P;(z). Throughout this work they are called scattering
weights. Their calculation is defined in chapter 3 and they are plotted in chapter 5 for typical
KATRIN measurement conditions modelled after the KNM1-3a measurement campaigns.

The scattering weights exactly define the longitudinal symmetry of the potential, which
the measurements are sensitive on by the mechanism described here. For typcial KATRIN
measurement conditions it is indeed given by a rear-to-front asymmetry, such that in a
simple picture (V'), is approximately the mean potential of the rear and (V), the mean
potential of the front side of the source. However, this should only serve to simplify
the understanding of the concept. The essential step is the realisation that the mean
potentials (V); are in general different for different scattering multiplicities. The related
symmetry of the potential is only a second step and the rear-to-front symmetry is a mere
coincidence, given by the shape of the scattering weights for the respective measurement
conditions. Also, the means (V'); are only the first order expansion of the Starting Potential
Distributions (SPD;) for different scattering multiplicities. Equation 1.38 defines, how these
distributions are weighted. Thus, numerically they can be calculated by sampling the
value of the potential V(z) over equally spaced z, weighting it with P;(z) and filling it into
a histogram. Examples are shown in chapter 3. The rigorous derivation of both the SPD;
and the P;(z) is found in appendix A.1. There it is also shown that the spectral distortion
from the starting potential is equivalent to a convolution of the SPD; with the energy loss
function for i-fold scattering, which is indeed how this systematic should be modelled.

The following chapter 2 is a summary over the detailed discussions carried out in chap-
ters 3, 4 and 5. The overall goal of those chapters is to rigorously establish the connection
between the source potential and the estimates of the krypton-83m and the tritium f
measurements, given the discussed longitudinal sensitivity on the source potential due to
inelastic scattering.
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2. Summary of Source Systematics Theory
and Nomenclature

In the following the nomenclature and the most important relations relevant for source
potential systematics are compiled without derivations. This is intended to provide an
abbreviated, but comprehensive picture of the following work, with the aim to facilitate the
understanding of the mathematically detailed description to follow in chapter 3. Reading
section 1.4.2 can further facilitate the introduction to the complex topic. The nomenclature
is found in table 2.1 in the form of a glossary.

Convolution of energy scale systematics: The theory discussed in this thesis uses a con-
volution approach. In this approach, Starting Potential Distributions (SPD) are used to
describe systematics of the energy scale E, rather than a full z-dependent inclusion of the
actual source potential V(z). This ansatz is not new, but forms an essential part of the
modelling of the measurable integrated count rate N(qU) at retarding energy qU

: * dN
N(qU) o« / E(E)R(E’ qU) dE, (cf.section 1.2.2) .
Therein, the complexity of the experiment (z-dependencies, fields, temperatures, ...) is
condensed into the response function R(E, qU), which is convolved with the differential
rate % of the theoretical spectrum. A different example is the shift of the squared neutrino
mass (equation 1) [RK88]

Am? = —20*,

which is derived by convolving the energy spectrum with the Probability Density Function
(PDF) of an energy scale perturbation. It turns out that, in leading order, the standard
deviation o of the PDF predicts the neutrino mass shift, even if the PDF is not a Gaussian
[Sle16]. Leading order here is in orders of the energy scale perturbation, i.e. in the moments
of the considered distribution. Thus, equation 1 is the expansion of the shift of the squared
neutrino mass up to the second moment o%. It was shown in [Sle16] that it does not depend
on the third moment and it can be expected, that even higher moments are only small
corrections. However, as shown in this work, in the case of source potential systematics
there exists a first order term, which previously was not considered and which, depending
on the shape of the potential, dominates the neutrino mass shift.

The essential deviation of this work to the derivation of equation 1 is the finding, that
electrons of different scattering multiplicity i observe different spatial regions of the plasma
potential and thus have different starting potential distributions SPD; (see section 1.4.2).
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2. Summary of Source Systematics Theory and Nomenclature

Table 2.1.: Nomenclature for quantities used in this work.
Due to the weighting, all potential moments depend on the tritium or krypton
spectrum, even if not stated explicitly. Usually the longitudinal coordinate z is
omitted. Instead z often appears as index, which is not related to the coordinate.

quantity

description

P; or P;(z)

Indices x,y, z

Negated indices X, 7, z

Longitudinal electron distribution for i scattering probability, nor-
malised to 1. Used for weighting the longitudinal averages and derived
quantities. In tritium this weighting is generalised to summations over
the P;, since contributions are mixed in the p spectrum.

Generalised electron distribution, usually constructed from summations
like P, = ﬁ >, a;P;. Normalised to 1.

Generalised electron distribution, usually constructed from summations
like Py = ﬁ > a;(P; — Py). Normalised to 0.

Index p Used to specify the special weight summation appropriate for the re-
spective tritium measurement condition. For the standard 40 eV analysis
interval, P, ~ P; — Py. For increasing analysis interval, P, contains a
summation over higher orders of P; — P,.
() z-integrated average, weighted with Py (ie. (V), = | L\SSTS P, (2)V(2)).
Vor V(z) Plasma potential in the WGTS.
SPD; Starting potential distribution of scattering multiplicity i (i.e. frequency
distribution of the plasma potential weighted with P;).
oi[V] Standard deviation of the potential, weighted with P; (ie. o?[V] =
(V%) = (V)?). Only o is relevant at nominal KATRIN.
Aii[V] Mean difference of SPD; and SPDj (i.e. Aj;[V] = (V); = (V))).

Al() [V] and Ap [V]

Kz and Kzg .

Relevant mean differences for krypton and tritium.

Weight standard deviation and covariance, k3, = o, [%], Kigz =
z

Cov, [%, 1;—2‘17]. Fully quantify relations between different observables.

Weight correlation, |pxg.| < 1. Given by the ratio pz;, =

Kxi,z

K)'r,ng,z'
Correlation operator, |pz.[V]| < 1. Given by the ratio piz.[V] =

%% [V]. Specifies the correlation of the measured potential to the

longitudinal shape defined by %.

Antisymmetry operator, which is the correlation operator of the relevant
krypton and tritium observables (ﬁ—z‘) [V] for krypton, é—g’ [V] for tritium).
The corresponding longitudinal shape is antisymmetrical (~linear) for
typical KATRIN.

€; and q;

eand a

Susceptibility of neutrino mass and endpoint to mean differences (i.e.
_ _ dm} _ _4dE

€ = I and a; = —m)

Absolute total susceptibilities (i.e. € = |}; €| and a = |); a;]). Give

tritium shifts by simultaneous shift of all scatterings, i.e. by Ajp = Aj.

_ 1 dm%, _ 1 . .
Shape energy, €, = —3 3545 45 = 3Kpo€ > 0. Quantifies the neutrino

mass shift for the potential shape that produces the maximum shift,
respecting the correlation of A, and 0y. a, equivalently for the endpoint.
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As a consequence, plasma potential systematics cannot be considered with only one
convolution, but instead the § spectrum obtained for each scattering multiplicity needs to
be convolved with its own SPD;. As in equation 1, in a perturbative theory the resulting
neutrino mass shift is determined by a few scalar moments of these distributions, namely
0o[ V], the standard deviation of the unscattered distribution, and A1,[V], the difference
of the mean of the one-time scattered to the unscattered distribution. In general those
moments are derived from longitudinal averages over the WGTS length Lwgts of the form

dz
(VY = / ~Z RV,

where the weighting with the longitudinal distributions P;(z) of the signal electrons for the
scattering multiplicity i needs to be considered. Throughout this thesis square brackets (for
the means (V'); rectangular brackets) are used for functional dependencies in contrast to
round brackets, which are used for scalar dependencies. Thus, all quantities in rectangular
brackets are z-dependent functions.

The resulting shift of the squared neutrino mass reads
Am[V] = —e1Ago[V] — 205 [V] .

€; depends on the fraction of scattered electrons in the measurement time distribution for
the respective column density. It is determined from simulation in chapter 5 and is around
1eV for the typical KATRIN measurement conditions. Notably, this additional term is in
fact dominant for usual plasma potential inhomogeneities oy[ V] on the order of 100 mV.

Determination of op[V] and A1¢[V]: Fortunately, it turns out that both oo [V] and A;¢[V]
are in principle observables of the krypton-83m measurement. They are obtained by
measuring a broadening of the unscattered line (o([V]), and the difference of the position
of the one-time scattered line to the unscattered line (A1o[V]). The latter requires the
precise knowledge of the expected mean energy loss on a level of 10 meV, i.e. the precise
knowledge of the energy loss function. Leaving such uncertainties aside, in principle
(00[ V], A10[V]) could be obtained from the krypton-83m measurement, and they could
be put into the tritium spectrum modelling to compensate for the source plasma induced
neutrino mass shift. While this is the result of a phenomenological ansatz, there is no
fundamental difference to already included physical effects like for example the Doppler
effect, which is also included in the spectrum model via a broadening of the energy scale.

Real-life complications: While the previous discussion covers the essential picture, many
details have been skipped. One of the problems is that the estimates (oo[V], A1o[V])
depend on the gas species and measurement conditions, since the electron distributions
Pi(z) of tritium and krypton are not the same and up to the 2020 measurement phase
KNM4 also the operating conditions of the source modes of krypton-83m and tritium
were not the same. Differences in the respective potential estimates are related to the
different weighting with the signal electrons from either krypton-83m or tritium and even
appear if the plasma potential is exactly the same in both measurements. Notably, all
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2. Summary of Source Systematics Theory and Nomenclature

differences in measurement modes and gas species can be condensed into differences of
the P;(z) and the cause is irrelevant. Moreover, it is not even relevant whether the different
P;(z) are the result of different scattering multiplicities, or have some other origin. An
example is the question how a measurement of o[ V] in krypton can constrain o1[V] in
krypton or oy[V] in tritium. The only difference is in the shape of the P;(z), regardless of
whether it is a difference in the scattering multiplicity in one case or a difference in gas
species in the other. In order to cover all cases in an efficient formalism, the scattering
index i is generalised to indices x, y, z for normalisation of the weight to 1, and to negated
indices x, ¢, z for normalisation to 0. The use of general indices also takes into account the
fact that the weights can be composed of several scattering weights, as discussed below.
These indices translate to the indices of all derived quantities like the o, and Az. How
the measurement (oy[ V'], A19o[V]) from krypton-83m constrains quantities with different
weights, for example the same observables seen from the tritium spectrum, boils down to
a correlation analysis of the involved weights. Deriving the respective equations is a large
part of the discussion in chapter 3.

Relationof gg[V]and A1o[V]: This discussion also has some welcome by-products. Namely,
it allows to establish relations between quantities like o, [V], Az[V] or also the peak-to-
peak value of the potential. One is especially helpful, since A1yo[V] can currently not be
obtained with sufficient precision from the krypton-83m measurement. The key insight
here is that it is given by the covariance

PP
Ao[V] = Covo [MV] ,
Py

which follows straightforward from its definition. Dividing by the standard deviations of
the arguments leads to the correlation

PP,
) Covy [ 1P0 0 V] 1 Ay
pLV] = - — Oy

oo B v R0

Py

K50 is the standard deviation of the involved weights, which is of the order of 0.77 for
typical KATRIN conditions. Since p[V] by definition is a correlation, |[p[V]| < 1 holds.
Thus, if only 0y[V] can be measured, A1o[V] can still be constrained in a meaningful way.

Relation of Ao[V] and p[V] to the potential shape: A second important conclusion is that
A19[V] measures the covariance of the potential to the longitudinal shape PIP;OH’(Z). For
typical KATRIN conditions this shape is approximately antisymmetrical (in very good
approximation even linear) to the injection point, i.e. such potentials produce the largest
A1o[V] for a given oy [V]. This coincides with the simple understanding that scattered
electrons are more likely to stem from the rear of the WGTS and unscattered electrons
from the front, such that the largest difference of their starting potential distributions is
observed if the potential inhomogeneity is mainly given by a rear-to-front asymmetry (see
section 1.4.2).

44



Following the above reasoning, p[V] is called the antisymmetry operator. Using it instead
of A1o[V] has the advantage that oy and p are independent quantities (such that their
dependence on V can be omitted), whereas oy [V] is an upper limit to A1o[V], as described
above. Also, since p is a measure of a certain potential shape and o for inhomogeneity mag-
nitude, using those to parametrise the potential V(z) reveals the fundamental connection
of the krypton-83m observables to the symmetries of the potential in a model-independent
way. This is the topic of chapter 4.

Relation of neutrino mass shift and potential shape: Reformulating the neutrino mass shift
equation in terms of p leads to an equation for which a simple analytical curve sketching
can be performed. However, one generalisation should be mentioned before, namely, that
in the above discussion terms proportional to A;y with scatterings larger than i = 1 have
been neglected. Of course, if the measurement time distribution of the f spectrum includes
significant portions of electrons of higher scattering multiplicity, those terms are also
relevant. It turns out that this in general only affects the A;y[V] term, and that standard
deviations o;[V] with i > 0 are negligible. For the KNM2 measurement campaign with
a tritium column density of 84 % of nominal, 0.6 % of two times scattered electrons are
included in the standard analysis interval of 40 eV. These details are considered by using
generalised weights P;(z), which are weighted summations over all relevant scattering
contributions. To specify the concrete weighting, which is relevant for the respective
tritium measurement condition, the index p is used. Thus, formally equivalent equations
as before are obtained, when replacing indices "10" with p. Notably, this generalisation
has no fundamental impact on the predictive power of the krypton measurement. Still
correlations between A[V] from krypton and A,[V] in tritium can be studied, and it
turns out that the resulting uncertainties are acceptable. This correlation analysis is also
necessary in the case where higher scatterings are negligible: As discussed, A1o[V] from
krypton-83m and A [V] from tritium are in general two different quantities, since the
gas profiles of the gas species are different.

Thus, the shift of the squared neutrino mass reads

Ami[V] = —eA,[V] - 205 [V],

24 _ A 2
= Am;(p, 00) = — €Kpo 0op — 203,
——
=2¢,

= —20'0( Gpﬁ + Oy ) .
—_——
shape  Vvariance

The newly introduced quantity €, is the shape energy. It represents the penalty neutrino
mass shift with regard to the worst possible potential shape. Since p specifies the correlation
to this shape, the term is extremal for antisymmetrical potentials with p = +1 and vanishes
for symmetrical potentials with p = 0. For typical KATRIN conditions €, is of the order of
500 meV, such that it is relevant even for small || on the order of 0.1.

In the following this theory is studied in all necessary detail.

45






3. Observables of the WGTS Plasma
Potential in the Presence of Inelastic
Scattering

In this chapter the general properties of observables of the z-dependent source plasma
potential are studied. As first observed in [Mac16], due to the presence of inelastic
scattering the usual simple linear connection between the shift of the squared neutrino
mass and the energy scale variance does not hold for the source potential. While deriving
the correct equation is the overall goal of this chapter, many steps on the way are necessary
to understand the implications on the tritium B plasma potential systematics and the
krypton-83m commissioning measurements. Reading section 1.4.2, which provides a more
qualitative introduction, is recommended before studying this chapter.

The chapter starts with the definition of the fundamental moments of the potential for
each scattering multiplicity and their related starting potential distributions in section 3.1.
These moments are the observables in krypton-83m conversion electron measurements.

Section 3.2 studies the connection of injectivity and surjectivity of the measurement to the
potential shape. The dependence of both the krypton-83m and the tritium 3 observables
on a certain symmetry of the potential shape is the essential addition to the description
without inelastic scattering.

The moments depend on the distribution of signal electrons in the source. In section 3.3 it
is analysed how moments obtained with differing electron distributions constrain each
others and which potential shapes produce the maximum differences.

Section 3.4 studies the compositions of moments of different scattering multiplicities,
which are observables in the tritium  neutrino mass measurement.

In section 3.5 it is shown how these general observables are constrained by measure-
ments of the fundamental moments, i.e. how the observables obtained in krypton-83m
measurements constrain the neutrino mass shift.

Finally, section 3.6 discusses how the potential shape influences the neutrino mass shift and
concludes the chapter with a curve sketching of the derived neutrino mass shift equation.
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3. Observables of the WGTS Plasma Potential in the Presence of Inelastic Scattering

3.1. Starting Potential Distributions at fixed Scattering
Multiplicity and their Moments

All quantities in the WGTS which are observed by the focal plane detector undergo a z-
dependent, longitudinal averaging and only estimates which are functions of the following
first moments (or means) can be measured [Mac16] (rigorous derivation in appendix A.1):

T e op)

V is the plasma potential, the weights are the products of all z-dependent functions
(densities N¥*T2_ scattering probabilities p; for scattering multiplicity i, maximum pitch
angle Q). The normalised weights P;(z) have been introduced, such that the following

normalisations hold: q
z

Pty = / =1, 3.2

< >’ z Lwats 3.2)

Kr, T, .
3 Ldl Q(Z)N (z)p,(z)V(Z) =/ dz PZ(Z)V(Z) = <P1V> . (3'1)

z LwaTs

W= [ p@ =1, (33)

WGTS

These normalisations are enough to derive all the relations in this chapter. In particular,
no knowledge of the shape of the P;(z) is necessary. This means that all relations are
true, even if the modelling of the P; in reality is erroneous and it allows to generalise the
obtained relations to weights which are not a composition of functions characterising
the WGTS. Even so, weights for krypton-83m conversion electron or tritium f§ spectra
are naturally used for examples or sketches, as they represent the use case. Still sketches
are preferred over showing plots for specific measurements, since the latter depend on
many parameters innate to the respective measurement conditions. Plots for the KNM1-3a
measurement campaigns are found in chapter 5. A sketch of typical weights is shown in
figure 3.1.

Typically the weights vanish for z — +oco, leading to unproblematic boundary conditions
and simple numeric integration. In practice, the following discussion is restricted to the
non-zero region in the central WGTS.

Here and in the following lower indices i, j, k are always indicative of the corresponding
scattering multiplicities. To represent general weights, indices x, y, z are used, indicating
that weights can also differ in operating conditions or gas profiles or that they can be com-
posed of several scattering weights. Brackets around upper or lower indices of operators
mean "up to". Small letters a, b (sometimes with indices) are always real numbers, capital
letters F, G are integrable test functions (in L! or L?) from R — R. To indicate scalars with
units of energy e is used, sometimes with indices.

Equation 3.1 is a functional of the potential, which can be interpreted as an integral
operator !. This interpretation allows to study the properties of the first moments and

L\A‘ZTS is used, but the coordinates are not transformed. That means, that

only the respective integrals are normalised and functional derivatives or integrals (i.e. the area in plots
over z) using dimensional dz are scaled by Lwgts. For this reason usually a normalised z-axis is shown.

IThe dimensionless line element
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3.1. Starting Potential Distributions at fixed Scattering Multiplicity and their Moments

' B(2)

P;(2)

0 VA

Figure 3.1.: Sketch of normalised weights in WGTS: The area of the weights is normalised
to 1, but their maximum can be larger. They are positive and vanish at the
longitudinal boundaries of the WGTS. Since they usually overlap, they have at
least one point of intersect. The sketch follows common shapes for i = 0 and
j=1.

derived operators using functional derivatives. Since the moments do not depend on
the derivative of the potential 9,V it follows from the Euler-Lagrange equation, that the
functional derivative is identical to the partial derivative of the integrand with respect to V.
Lwgts = 1 is used in all derivatives, since it cancels anyway in all use cases. Also writing
out the argument z is, in most cases, omitted for brevity. Square and angular brackets are
used to indicate the functional nature of the operators in contrast to round brackets for
scalar dependencies.

3.1.1. Potential Moments

As sketched in figure 3.2, in the quasi mono-energetic krypton-83m conversion electron
spectrum the scattering effects are separated in energy by the minimum inelastic energy
loss, such that the moments of the form 3.1 can be observed separately for each scattering
multiplicity. Thus, expansions of general operators O; in the order [ of the potential read

OilVI= > amn (V™ (V] . (3.4)

m+n=I

The potential is a perturbation of the spectrum, such that higher orders decrease in
magnitude and can be discussed separately. The zeroth order is a constant shift of the
measurement and is set to zero. The first order observables are the means (V);. Expanding
up to second order,

O [V] = e (V)i +a (V2 +b (V)] (35)

is obtained. Usually it is demanded that the expectation value vanishes for constant
potentials V = v,
Ol.(z) [00] = €vg + (a+ b =0 Vo, € R, (3.6)

—e=0, a=-b, (3.7)
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3. Observables of the WGTS Plasma Potential in the Presence of Inelastic Scattering

oy
I,

eSssaseeeatetetets!
SRR

Figure 3.2.: Separation of scattering effects in mono-energetic spectra: In quasi mono-
energetic spectra like the krypton-83m spectrum, the non-constant rate contri-
butions are well separated in energy. Since only the non-constant contributions
are affected by the potential, observations of the potential can be separated in
scattering multiplicity.

= 0% = a ((V¥); - (V)?) . (3.8)

The operator o?[V] = <V2>i - (V),2 is the central variance or second central moment and
its square root is commonly known as the standard deviation

ai[V] = \Var [V] = 4[(V2), — (V)?. (3.9)

Thus, different means (V'); and standard deviations o;[ V] of the potential can be obtained
at the krypton lines of i scattering multiplicity. In practice this is implemented by con-
volving a different Gaussian G({V');, 0;) * with each of the i times convoluted energy loss
functions (cf. appendix A.1). Higher orders in the potential are not obtainable in a feasible
measurement time and are not discussed further.

To characterise potential-induced differences in the means (V');, the first moment differences

(or mean differences)
Aij[V] =(V); =(V); (3.10)

are defined.

3.1.2. Starting Potential Distributions

In figure 3.3 the unweighted frequency distribution of the krypton condition plasma po-
tential obtained in plasma simulations (figure 1.19) is shown. This unweighted distribution

2The constant a in equation 3.8 depends on the observable that is used for the measure of inhomogeneity.
If the measure is a Gaussian variance, a = 1 by definition. This is not the case if for example a total
Lorentzian width I is fitted, where a = 0.085 is expected, as shown in section 6.2.1.
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3.1. Starting Potential Distributions at fixed Scattering Multiplicity and their Moments
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Figure 3.3.: Unweighted starting potential distribution: The potential is shown in the
sketch above the plot, where the non-zero region is the central WGTS and the
zero region extends to the rear wall. Thus, the distribution includes sizeable
zero contribution, which is a boundary effect of the simulation.
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Figure 3.4.: Scattering weighted starting potential distribution: If the potential is weighted
with the scattering weights, several distributions are obtained. Here, it is
obvious that the boundary conditions of the simulation are indeed irrelevant,
since they are cut by the vanishing weights outside the central WGTS. Thus,
also the first moments displayed in the legend are considerably higher than
without weighting. In contrast, the standard deviations are smaller, since the
large variance at the boundaries is cut.
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Figure 3.5.: Approximated starting potential distribution: If the full distributions are ap-
proximated with their means and variances, they can be represented by Gaus-
sians, which are directly obtained in krypton-83m measurements by fitting
Voigt profiles to lines of different scattering multiplicities. Thus, there is no
systematic related to this approximation and it is shown in [Sle16] that the
higher potential orders are also irrelevant for tritium P systematics.

is of little physical relevance, which is evident from the fact that a sizeable portion of the
distribution is at zero potential. Zero was the boundary condition of the simulation, which
assumed that the particle densities are dominated from the central WGTS. The sensitive
region of the distribution, however, was picked to include the region up to the rear wall, as
visible in the sketch. Thus, the term unweighted in this case refers to a piecewise constant
weight which is one for z in this sketch and zero elsewhere. Without the specification of
the weight, neither the distributions nor the moments are well defined, and both only give
reasonable insight on the measurement, if they are weighted with electron densities that
fit to the experiment.

Thus, if the same potential is weighted according to equation 3.1, several distributions are
obtained for the different scattering multiplicities, which is shown in figure 3.4. These are
the distributions of relevance for the measurements and if they are known, they can be
convolved with the spectra of the according scattering multiplicity to fully account for the
plasma effects (cf. appendix A.1) >.

However, only the three moments (V'),, (V), and oy[ V] are obtainable in krypton-83m
measurements in practice. Thus, conceptually the exact distributions are replaced with

SFigure 3.4 also illustrates the connection of the average electron starting position to the average starting
potential, which is visible in the different peak heights: More one-time scattered electrons start in high
potential than in low potential, which indicates a dominant starting position towards the rear, as visible
in the sketched potential. The unscattered electrons show the opposite behaviour.
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3.1. Starting Potential Distributions at fixed Scattering Multiplicity and their Moments

Table 3.1.: Overview of plasma potential-related quantities in krypton-83m mea-
surements.
The expectation values of the three operators are the true values. The krypton
observables are subject to systematics which are not related to the potential.
The negative signs are due to the negative charge of the electrons.

operator expectation value krypton observable name
(-0 N —AFEMain Line position shift
ool...] oo[V] g Gaussian broadening
Al() [] AlO [V] _AeEloss Eloss shift

Gaussians with the same moments, depicted in figure 3.5. Since o1 [V] cannot be obtained,
0olV] = 01[V] is assumed. As shown in section 5.1, this does not lead to sizeable system-
atics due to the intrinsic width of the energy loss function. Also, disregarding the higher
potential order moments is not a systematic in krypton-83m measurements, since the
remaining moments are the direct observables.

Krypton spectrum observables: Since the effect of the potential is now condensed to three
parameters, doing two full convolutions of the starting potential distributions with the
spectra of the respective scattering multiplicities becomes unnecessary:

+ The mean value (V) is the measurable line position shift —AEpin in krypton mea-
surements.

« The standard deviation oy[V] is the Gaussian broadening oy, fitted in krypton mea-
surements. In practice, a Voigt profile is used, however o, [V] can also be added to
already existing variances like the spectral broadening caused by the Doppler effect.

« The mean difference Ajo[V] is implemented as a shift of the energy loss function *
—Ae€gloss, shown in chapter 5. This is referred to as eloss shift.

The negative signs on the linear quantities are due the electric charge of the electrons.
In relations between the moments of the potential and those of the energy spectrum an
elementary charge e = 1 is used. Measured estimate and expectation value of the operator
are only equal if all systematic effects are understood, this is why distinct names are kept.
This leads to the definitions in table 3.1.

With these definitions the effect of the plasma potential on the krypton-83m conversion
electron spectrum is sufficiently described in up to second order in the potential. However,
more can be learned about the relations of moments to the potential shape as well as

4The shift should be applied to each i times convoluted energy loss function f;(€) separately. This assumes
Ajo = —Ae€gjoss (Vi > 0), which is physically likely due to the weight degeneracy discussed in section 3.2.2.
If the energy loss function fi(¢) (see figure 1.10) is shifted, the shift of each spectrum is multiplied with
the scattering multiplicity Ajo = —iA€gjoss. For tritium both cases differ in normalisation, which is further
discussed in chapter 5. For krypton only one scattering is relevant such that shifting each f;(€) or fi(e)
is equivalent.
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domain

non-injective

non-surjective

modelling

observation

Figure 3.6.: Non-surjectivity and non-injectivity of plasma measurements: Since multiple
potentials V4, Vp can lead to the same observables, measurements of the WGTS
plasma are in principle non-injective. It is shown in the sections below that
they are also non-surjective, i.e. that some combinations of observables can
never be obtained.

systematics in the krypton measurements by studying general properties of the involved
operators.

3.1.3. Generalised Potential Moments and their Algebraic Properties

In the following sections some of the algebraic properties of the defined operators are
studied. Some focus will be put on their surjectivity, injectivity and their kernels. The
benefit is sketched in figure 3.6:

« Surjectivity—Data integrity: It turns out that the obtainable set of expectation values
is not surjective, i.e. the image is bounded. This offers an assumption-free possibility
to perform data integrity checks and constraints, i.e. observations have to be in the
image of the operators, otherwise there are unaccounted systematics.

« Injectivity—Potential determination: Since the means are not injective, none of the
operators is injective. Thus, while in general the measurement ((V),, A1o[V], 00[V])
cannot determine the full potential V(z), it turns out that a certain potential leads
to a unique measurement. In essence this is related to the non-trivial kernel of the
Ajj[...], which measure only a very specific form of inhomogeneity.

Lastly, the question of injectivity is relevant for plasma modelling, which is discussed
in chapter 4. Naturally, if the potential model is expanded as function of the weights
P;, algebraic relations following from their normalisations (equations 3.2 and 3.3) can be
used to calculate the expectation values of the operators analytically. Some relations are
obtained in the following, which will prove useful later on.

Mean potentials: The means (...); are linear operators

(aF +bG); = a (F); + b (G); . (3.11)
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3.1. Starting Potential Distributions at fixed Scattering Multiplicity and their Moments

The linearity is apparent from the functional derivative

5V
W —Pl, (312)

which is constant in V.

Orthogonal potentials in different scattering means can be constructed using expansions

like
<Zk a (P — 1)>
Pj
where §;; is the Kronecker delta. More specifically, for i = j equation 3.13 describes a
subset of z-dependent functions in the kernel of (...);. This is achieved by subtraction of
the respective expectation value (1 in this case), which works in general due the linearity
of the means.

o« (1-6), (3.13)

1

The (...); are surjective, which follows from their linearity.

Potential mean differences: The mean differences A;;[V] = (V); — (V); are linear opera-
tors, which follows from the linearity of the means, equation 3.11.

Thus, their derivative

OA;;[V]
A P —Pj, (3.14)
is constant in V.
They are antisymmetric in their weights
Aijl...] ==Ajl...] . (3.15)

The kernel is non-trivial. An example for expansions of functions in their kernel is

Ay [Zk ar (P — 1)

Pl-, _ Pj, ] oC (1 - 51'1'/5]']'/) . (316)

The mean differences are a measure of longitudinal inhomogeneity
Aylb] =b (1), - 1)) = 0. (3.17)

From this property it follows:

0=A;[1],
= Aij[O(P; - Pj) +O(P; — P)],
= Aij[O(P; — P))] + Aij[O(P; — P)] ,
= A;;[0(P; - P))] = -A;[0(P; - P)], (3.18)

i.e. the positive and negative parts of their weights cover the same area, which is shown in
figure 3.7.

Like the (...);, the A;;[...] are surjective and non-injective.
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' Fi(2)

P;(2)
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Pj (Z) . Pl (Z) “.'. ......................

Figure 3.7.: Sketch of differences of normalised weights in the WGTS: Due to the normal-
isation of the weights, their differences have at least one zero crossing. At
this position their corresponding operators are not sensitive to the potential.
Furthermore, they cover the same positive and negative area.

Generalised indices: Equation 3.18 is the defining property of generalised mean differ-
ences:

§0:([V]
oV
Thus, negated indices X, 7, Z are used as abbreviated notation for weights that are nor-
malised to 0. Here the weight P; usually is constructed from compositions of scattering
weights P; like

=P;, (1);=0. (3.19)

1
2i Gi
The coeflicients a; specify the scattering contribution. As shown in section 3.4.3, such com-

posed operators are relevant to describe the tritium -spectrum systematics. Analogously,
indices x, y, z without negation are used for weights like

1
P, = a;P;, 3.21
: ziaiz P (3.21)

which are normalised to 1. All equations derived in this chapter only depend on the
normalisation conditions of the weights, such that they hold for the pure operators (...);,
Ajj[...], oi[ ...] as well as for the composed operators (...),, Ag[...], o;[...]. Since the latter
is the more general case, in the following indices for composed operators are used.

P; = a,~(P,- - Po) . (320)

i

Longitudinal standard deviations of the potential: The derivative of the standard devia-
tions o, [...] is
do;[V]

YA ral A[VIP,(V —(V),), reR, (3.22)
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which is linear in V for r = 2. Thus, the ¢?[...] are quadratic operators, leading to the
usual rules

o’[aF + bG] = {(aF + bG)?), — (aF + bG)?
= a® (F%), + 2ab (FG), + b*(G®), — a’ (F)? — 2ab (F), (G), — b* (G)?
= d*((F?), = (F)2) + b’ ((G*), = (G)?) + 2ab({FG), - (F), (G),)

= a®c?[F] + b*c?[G] + 2abCov, [F, G] , (3.23)

with the covariance
Cov,[F,G] = (FG), — (F),(G), . (3.24)

Using the covariance, the variance can be expressed as
o’[aF] = Cov,[aF,aF] . (3.25)

Like the Ag[...], the Cov,[...] and o,[...] by construction only measure non-constant
expansions of the potential

Cov,[aF,bG +c] = (aF(bG +¢)), — (aF),(bG +¢), ,
= ab(FG), + ac(F), — ab(F),(G), —ac(F), ,
= (aFbG), — (aF), (bG), ,
= Cov,|aF, bG] . (3.26)

The o,[...] are not surjective, which can be proven by calculating stationary solutions.
Requiring the variation equation 3.22 to vanish leads to the integral equation

V(z) =(V), .

which is the definition of a constant potential. Thus, constant potentials minimise o,][...],
and since it was shown in equation 3.26 that the expectation value of constant potentials
vanishes, it follows that

o, [V] =0 (3.27)

holds. Therefore, positiveness can be demanded of the broadening o, of the krypton
spectrum, which allows to constrain systematics.

3.1.4. Connection of Mean Difference and Covariance

An important conclusion of the previous discussion is that
ker(o,) ={V(z) =b,b € R} (3.28)
is the complete kernel of the o,[...] and that consequently it holds

ker(o,) C ker(Az) . (3.29)
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Injectivity %

constant ker(Az) constant

potential shape V (z)

Figure 3.8.: Image of mean differences and standard deviations: All non-constant potentials
V can be normalised such that they have the same standard deviation o,[V]. For
potentials with given o,[V] the image of Az[...] is bounded, such that |Az[V]|
is maximal for a certain potential shape. Potential shapes are represented by
the ratio ﬁj[[“,/]] and since the shape that produces the maximum is unique, this
ratio is a measure of the injectivity of the measurement (Az[V], o,[V]).

Thus, standard deviations measure all inhomogeneities, mean differences only a special
kind. The resulting images of Az and o, are sketched in figure 3.8. The inhomogeneity
which A is sensitive on is specified by the following fundamental relation:

Az[V] = (PsV) = <&V> = Cov, [&,V] , (3.30)
P, |, P,
where (Pz) = 0 was used. Accordingly, the Az[V] measure the P,-weighted covariance
of the potential V along the symmetry axis 3 % Here the choice of P, is arbitrary, since it
cancels. However, it is necessary to normahse equation 3.30 by measurable observables,
as shown in the next section.

3.2. Measures of Injectivity and Surjectivity

Naturally, measurements like the krypton-83m measurement, which obtain a few scalar
estimates of the potential and its inhomogeneity, suffer from non-injectivity, i.e. it is not
possible to reconstruct the full z-dependent potential. However, inversely this means that
the influence of the z-dependent potential on the krypton-83m spectrum can perturbatively
be described with only a few observables, and while those can depend on the potential
shape, no actual knowledge of the latter is required. The same is true for the modelling
of the tritium  spectrum: in a perturbative description the systematics of the tritium £
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3.2. Measures of Injectivity and Surjectivity

measurement is determined by only a few scalar observables of the potential, independent
of its actual shape.

Standard deviations only allow the classification in constant (o,[V] = 0) and non-constant
(0,[V] > 0) potentials. In contrast, the mean differences depend on the potential shape,
as shown by equation 3.30. Normalising it allows to quantify the injectivity of the mea-
surement (op, A1p), such that for each measurement there exists a shape operator which
constrains the potentials that could have led to these estimates. This is discussed in
section 3.2.1.

Inversely, it is possible to quantify the surjectivity of any operator of the potential by
studying the weight covariances of the moments, which is discussed in section 3.2.2. This
allows to constrain all moments of longitudinal inhomogeneity of the potential Ay, o,
with only one measured estimate of the total inhomogeneity scale oz, and more tightened
constraints for parameters obtained additionally. This is the topic of the subsequent
section 3.3.

3.2.1. Potential Shape and Injectivity

Following from equation 3.30 the shape operators (or correlation operators) are defined as

Cov, [%’Z ] 1 As

0, [1;—’;] oy [...] Kzz Oz

(3.31)

X, z represent generalised weights normalised to 0 and 1, respectively. The kz, = o, [%]

are positive normalisation constants. Since the px , are correlations their image is bounded
~1<ps.[V] <1 VVel?, (3.32)

which is proven in section 3.3. For a given test potential shape é%, Pzz[V] quantifies
how similar the true potential V is to the shape observed in the weighted region specified
by P,.

Potential shapes: The term similarity is defined by considering how test potential shapes
are constructed from arbitrary given test potentials V.t and given P,. The natural repre-
sentation of Vieg, if only its shape is of interest, is to subtract its mean and to normalise it
to its standard deviation

1 1

m (Vtest - <Viest>z) . (3-33)

P; _
Kz z P,

For given P, and Vi this equation defines Px. The ratio % is a formalised way to indicate
that the first moment vanishes

1 Py 1
ko \B. |, oV et T =0. 334
Kz <PZ >z 0z [Viest] Viest = € teSt>Z>z ( )
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3. Observables of the WGTS Plasma Potential in the Presence of Inelastic Scattering

K%% (i.e. pz[V] = £1) means that V (or the re-

flected —V) fulfils equation 3.33. In this case the measurement (o, [V], pz.[V] = £1,(V),)
is injective and the exact potential is given by

Thus, the statement of V being similar to

%:\V] Fx (3.35)
Kz z P,

V—(V),==

Also, due to this exact relation in the case px, = +1 it is convenient to say that px ; is
the (reflected) potential shape. The smaller the absolute px , is, the less injective is the
measurement and the less similar are the potential and test potential shape. While no exact
relation like 3.35 can be given for non-extremal correlations, a measurement of p;,[V]
with given P; and P, can still be used to test the possibility, that the true potential shape is
Py, (Which can be derived from any test potential by equation 3.33), which is discussed in
section 3.3.1.

Antisymmetry operator: For the weights related to observables of the krypton-83m mea-
surement this operator reads

R 1 Aq
pl.]=——[...]. (3.36)
KE,O 0y
It is called the antisymmetry operator, since for usual weights P, P; it quantifies the
prevalence of an antisymmetrical shape of the potential V (z).

This connection to the potential shape can also be understood as a consequence of scale
invariance, which is sketched in figure 3.9: The Ay and oy are different measures of
longitudinal inhomogeneity, such that their scale invariant ratio is a measure only of
potential shape.

The normalisations kx , are a measure of surjectivity. They are given by the covariances of
the involved weights, which is discussed in the following section.

3.2.2. Weight Covariances and Surjectivity

Using the boundedness |px .| < 1 it follows

Kez > (3.37)

0z
Thus, o, is an upper limit to Az and Ay is a lower limit to o,, which is sketched in figure 3.10.
The magnitude of this constraint is given by k3 ,, which is a measure of surjectivity, i.e.
the size of the image of % [L?]:

K)E,z

0 00
surjectivity
Az Az
Max(l x'):o Max(| xl):oo . (3.38)
Oz Oz
fully constrained not constrained
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Vv AIO =sa

Figure 3.9.: Antisymmetry and scaling: Measuring the potential using oy and Ay resembles
the usage of two different tape measures, both scaling proportional to the
overall magnitude of the potential, represented by the scale factor s. In contrast,
the antisymmetry p is scale invariant, quantifying the prevalence of a certain
symmetry of the potential shape. Thus, oy is used to quantify the potential
magnitude and other estimates like Ay and the derived p are estimates of
prevalence of symmetries. This is true for all potentials, not only the sketched
antisymmetrical shape.

A 2D-representation of the image is sketched in figure 3.11. For all potentials and for any
given measurement of Az and o, their ratio has to stay inside the circle of radius xx .

The constant x2 , is the variance of the ratio of the involved weights

P, P;
K, = 0% [P—x] 2 Ay [P—x] : (3.39)
z z

and its relation to the sensitive (i.e. non-vanishing) regions of the weights is sketched in
figure 3.12. Spatial regions where both weights are sensitive increase kx .. Regions where
only o, is sensitive do not change ks ., since increasing o, always stays inside the circle in
figure 3.11. Finally, regions where only Ay is sensitive lead to an unconstrained image,
since in this case Az can be increased independently from o,.

Accordingly, these variances quantify the variation of the operator Az observed on the
scale 0,. k7, =~ 1 indicates that Ay varies on the same scale and spatial region as o,. In
this case every observation of potential inhomogeneity where o,[V] is relevant must also
include Az [V].
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Figure 3.10.: Constraints of mean differences by the standard deviation: All three sketched
potentials have the same overall symmetry. Thus, depending on the weights,
the potentials can lead to the same expectation value of the Ag, since the latter
are a linear measure of the potential inhomogeneity, i.e. positive and negative
components can cancel. In contrast, the o2 are a measure of total longitudinal
inhomogeneity, such that by adding oscillatory patterns or antisymmetrical
poles, the o2 can be increased, while keeping the A; constant.

Figure 3.11.: Surjectivity of the ratio of Az and o,: The image of all square-integrable
functions is bounded by «x .. To better visualise the corresponding interval
[ Kz Kzz] in this 2D-representation ks, is the radius of the circular image,
which is centred at 0 on the line of the real numbers R.
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3.2. Measures of Injectivity and Surjectivity

This has two subtleties:

« Possible prefactors have to be included in the weights. In the example where Py is
composed of scattering weight differences P; — P; which are normalised, the x5,
quantify sheer spatial overlap. They do not quantify how likely it is to observe
electrons of different scattering multiplicities in the first place.

» The kx, do not quantify how different Az is from other A;. The possible degeneracy
is sketched in figure 3.13 for typical scattering weights. Observations of differences
between expectation values of Ajo[V] and Ajo[V] (i # j # 0) on the scale of oy[V]
require fine tuning of V. The difference of two operators can be quantified by
calculating the covariance of their weights.

Generalisation to covariances: The z-weighted covariances of weights are defined as

P. P; P;
Kxg,z = COVZ [Fx, }Ty] = A;C [P—y] y (340)
z z z
where
Kizz = K;Z . (3.41)

In contrast to the usual notation of covariances oy, k¢ is used here to better distinguish
from the operator o[ ...]. Also, the kz; are dimensionless, whereas o, [ V] has the dimension
of V, which usually is energy.

Since the k¢, are covariances, they are symmetrical in their first two indices
K)?Q,Z = ngjc’z s (342)

such that the covariance matrices are given by

2
Kiz Kgg KS Kz
Kegz = ( -~ ’f?) = ( i zy) (3.43)
Koz Kgg), Keg Ky,
The correlation coefficient has the usual form
Kxi,z Kxi,z
prgs = - , (3.44)
VEKzx,zKig,2 KzzKg,z
and from the Cauchy-Schwarz inequality it follows that
lprgel < 1. (3.45)

With these definitions all the tools are ready to study general covariances between potential
moments. In the case of KATRIN, estimates of A1o[V] and oy[V] derived in krypton-83m
measurements constrain all other generalised moments up to second order in the potential.
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Akz, >0 | Akz, =0 | Az, = o | Akz, =0

0 3 | "z
RO : :
I I I
: : Pz(2) :
I I I
Sensitive: both : gy : Ag : none
I I I

Figure 3.12.: Variance of weights: The sensitivity provided by weights of general Az and o,

A

A

can be divided into four possible regions, where either both, one, or none are
sensitive. Thus, the variance of their ratio, which is related to the coloured
areas, is either positive, vanishing or infinite.

/ ““"'. N \ P 0 (Z )

0

Figure 3.13.: Degeneracy of weights: Sketched are typical weights for increasing scattering
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multiplicities. The main asymmetry is between the weights Py and P>;. Thus,
observing differences in estimates from operators composed of weights P-4
requires increasing fine tuning of the potential.



3.3. Constraints for Potential Moments

3.3. Constraints for Potential Moments

In the krypton-83m measurements estimates of A1o[V] and o([V] can be obtained. Since
the weights Py, P; depend on operating conditions, uncertainties arise if these estimates
are required in other operating conditions or if the weights are not known well enough in
the first place.

The question how obtained estimates Ay, 62 constrain measurements of general operators
O[V] can be studied by using variational calculus on constrained Lagrangians. In a first
step this is done by considering constraints of the fixed order potential moments Az [V]
and o[ V]. The more general approach of studying mixed operators of up to second order
in the potential is presented in section 3.5.

Constraints are derived by finding stationary solutions of Lagrangians £ constrained with
Lagrange multipliers Aa, A,

Ln = D:[V] + DG [V] + A0 [V], (3.46)
L = Z[V] + Ay [V] + 402 [V] . (3.47)

Il
Q

X

The operators A and oy are representations of general purely linear O}[...] and quadratic
O2[...] operators with derivatives

S0iV] _,
o =Px, (3.48)
50XV _
5V 2(V = (V),)Px, (3.49)

and the only necessary conditions are the normalisations of the weights

(1), =1, (1);=0. (3.50)

3.3.1. Constraints for Linear Measures of Inhomogeneity and Potential
Shape

Stationary solutions of equation 3.46 are obtained by requiring a vanishing derivative

d
# = Py + AaPy + 225 (V = (V),)P, = 0 . (3.51)

In the following, the different cases of vanishing Ap or A, are considered separately.

Measured only Ay (A; = 0,Aa # 0): In this case the obtained A;[V] constrains Az[V]
solely if the operators differ only by a constant scaling Az = AA;. The potential shape is
unknown.
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Measured only 0, (A; # 0, Ap = 0): In this case the solution reads

1 P
V - <V>Z = —ﬂp— . (352)

Ay is determined by calculating the expectation value of the known o, [...]

1 P;
o: [Vl = 70 [P—] , (3.53)
o z
1 2
= E (3.54)

such that the stationary solutions are

P.
V- (V), =2 % (3.55)
Kz,z P,
The expectation value of Ag[...] reads
P.
A[V] = +ZA, [—x] , (3.56)
K)?,z Pz
=+ 22 (3.57)
Kiz
= +o,Kzs . (3.58)

Since the kernel of Ay is not empty, such that there exist expectation values in between
these two extrema (+), the image of Az[V] for all potentials with given o,[V] is bounded.
Another way of writing this equation is

1 As
- 1< pe.[V] = — ?"[V] <1 VVel?, (3.59)
x,z Uz

which is exactly the boundedness of the shape operators. The extremal solutions 3.55
define the symmetry which these operators measure. At the extrema the symmetry is fully
prevalent and the measurement is injective.

Measured both o, and Ay (A, # 0, A5 # 0):  The following definitions of @, b € R are used
for brevity:

Vo(V), =28 X 3.60
(V)2 21 P, 2, P, (3.60)
P, P,
=g + b= . (3.61)
P, P,
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They are found by calculating the expectation values of the known Ag[...] and ¢Z[...],
yielding

Py Py
Ag[V] = ahg | 2| +bAg | =], (3.62)
z PZ
= a;cg)z + bk (3.63)
P; P, P; P,
g g
oZ[V] = a*o? P, +b%c? [é + 2abCov, [}Tz, Pf] , (3.64)
= azicg,z +b%Kk%, + 2abkzy,; - (3.65)

If the first equation is solved for b and plugged into the second, a quadratic equation for a
is obtained. It has the solutions

Y
o, | . 1=-p .z
ax = — | Pgz * prgz————| (3.60)
1= ol

where p;; is the shape operator (equation 3.31) and py;; is the correlation coefficient
(equation 3.44).

The solutions for b now read

(3.67)

Solutions and elliptic constraints: Summarising, stationary potentials are of the form

) A2
VITP: |Pg 1 TP P

V—A(V), =0z || Py % ng,z—l v P —m P, xen (3.68)

The expectation value of the operator Ag[...] is found to be
Az (0 Pyz) = 02Kz (Pfg,zﬁg,z + \/1 - /5;,2\/1 - pyzfg,z) > (3.69)
= Prea(ys) = prgebyz % \[1 = Plo1 — Py (3.70)

which is a parametrisation of an ellipse, as shown in figure 3.14. The + give the maximum
and minimum solutions.

The solution for the shape operator p5 . depends only on the weight correlation pg; .. Thus,
for a given estimate of p;, the central value y and half sided maximum uncertainty A of
Dz, are given by

#(ﬁf,z) = p}?g,ng,z > (3.71)

AM(prz) = \J1= 2y 1= 5L, (3.72)
These should not be understood as moments of a Gaussian distribution, since a priori all
estimates in the allowed interval are of equal probability.
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Figure 3.14.: Constraints of potential shapes: The shape operator px , is constrained by the
measured shape p; .. The allowed image is fully described by the correlation
Pxy,z of the involved weights. Here the example of p;, = 0.8 is depicted.
Inversely, if p; , is the true potential shape, i.e. pz, = 1, it is visible that the
only possible ellipse is given by pzj. = Py

Possibility and shape testing: Using the concept of possibility, an intuitive interpretation
can be obtained when using px , as a test potential shape: A required condition for px ,
to be the true shape, i.e. px, = 1,is pxyz = Py.- This can be seen from the position of the
maxima in figure 3.14. Using this condition, the necessity that it is the true potential shape
is obtained from equation 3.71, such that it holds >

pos(pzz = 1) = 8(psgz — Pyz) » (3.73)
nec(pzz = 1) = ps, . (3.74)

In this case the shape constraints are given by

— (3.75)

(3.76)

>This definition of necessity uses the size of the image of px ., i.e. the length 2(1 — pvg’z) of the allowed
vertical black line in figure 3.14. This length intuitively quantifies the cardinality of its inverse image,
i.e. of the set of potential shapes, that can lead to the given measurement of j; .. In order to define the
probability that a given potential shape is the true shape, the cardinality of the inverse image and not
that of the image would have to be used. In all cases except py. = +1 this cardinality is infinite, so
probabilities cannot be normalised. Further reading about possibility theory for example in [DP91].
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3.3. Constraints for Potential Moments

V™ is the test shape. Together with V~ it limits an error band of transformations of the
shape, which also produce the given p; .. This is illustrated in figures 3.15 and 3.16 for the
case of the krypton measurement. If the test potential shape and measurement show large
antisymmetry, the necessity that the test potential shape is the true potential shape is
large. In contrast, if the test potential shape and measurement show small antisymmetry,
the test potential shape can be the true potential shape, but the necessity is small. Thus,
the krypton measurement can confirm or dismiss antisymmetrical potentials, but it cannot
confirm symmetrical potentials. The shown potential shape transformations go along a
vertical line of fixed p;, in the ellipse with pg;, = py. in figure 3.14, for example the solid
black line, if p;, = 0.8. In both figures 3.15 and 3.16 the obtained error band depends on the

used test shape and only the total quadratic area of the band o, [V* — V7| = 20,,/1 — p;Z

is known.

3.3.2. Constraints of Quadratic Operators and Inhomogeneity Localisation

The variational derivation for the constraints of quadratic operators is cumbersome,
and therefore found in appendix A.2. The result is that the constraint depends on the
localisation of the potential, which is sketched in figure 3.17. If the inhomogeneity is
caused by a fully localised fluctuation at zj, then the ratio of variances with different
weights is given by the ratio of the weights at z;. Vice versa, if the inhomogeneity is fully
delocalised, all variances measure the same value. Thus, the constraint is

P 4 0.2/ P ’
Min || < = [V] < Max |—=| . (3.77)
P o P

2
z z z

In the following, this is made plausible using a simple potential model.

Localisation model: The following potential is a simple representation of strongly lo-
calised inhomogeneity at z

b b

v —2<z—-2z0<73,

V(z) = 2 0"z (3.78)
0 else.

For small b the weights are constant on the scale of b, such that the potential moments are
easily obtained from their defining integrals

b

(V). = P.(z0) Twors®? (3.79)
b
Az[V] = Px(zo)LWGTSU ; (3.80)
2 _ 2 _ b
o [V] = LWGTSU (1 PZ(ZO)—LWGTS) ) (3.81)

The equation for 62[V] can be used to fix the relation between v and b in the limit b — 0.
However, if ratios are considered, v cancels and the expectation value of the shape operator
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Figure 3.15.: Testing potential shapes, high correlation: The plasma potential simulation

Deviation from <>, in o,

(red, from figure 1.19) has an antisymmetry pg, = 0.88 (solid green). Thus,
if a different value of antisymmetry is measured, the simulated shape is not
the true shape. The continuous transformations from red to dashed red also
would have produced the measured value, which can be interpreted as an
error band. The red curves are the true shapes with a necessity of 0.882. Since
the absolute measured value is not one, p1g, is not the true shape and is not
part of the transformations.
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Figure 3.16.: Testing potential shapes, low correlation: For low correlation p1;, and the
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assumed parabolic test shape (red) differ in symmetry, such that the obtained
error band is distinct from fpyj . In addition, the transformations allow for
large variance, such that the necessity p_ for the test shape to be the true

shape is small. In both plots the d1str1but10n of the uncertainty depends on
the used test shape.



3.3. Constraints for Potential Moments
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Figure 3.17.: Potential variance depending on inhomogeneity localisation: The middle
graph shows sketched weights of two variances o7 [...] and 0Z[...]. The upper
graph shows the ratio of their expectation values (blue) of a potential (red
dashed) which is constant despite a localised fluctuation at position zy. In
this case, the ratio of their expectation values is given by the ratio of the
weights at zy. The inverse relation is also true, i.e. in the case of delocalised
inhomogeneity the expectation values are identical, which is depicted by the
sinusoidal potential in the lower graph.
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3. Observables of the WGTS Plasma Potential in the Presence of Inelastic Scattering

as well as the ratio of the different variances can easily be calculated:

b
O'ZZ, (V] = P, (zp) 1 =Py (ZO)LWGTS b<<ﬂ>"GTS PZ'(ZO_) (3.82)
o’ ~ P(z0) 1-P T P:(z0) ° |
z z(%0) 1 2(20) Lwars 20
b
1 P; Twc b<L
pealv] = 1 Fal=) Lyors _ b<lyors (3.83)

Kx,z VPZ(ZO) 1- PZ(ZO) LWIZ}TS

Thus, maximally localised potentials are uncorrelated to any given shape which is not
localised itself, and consequently also Ay vanishes. In an approximate way, non-vanishing
correlation to a shape and maximum localisation are opposites and the allowed % for

given shape py , is again approximately elliptic. This is shown in figure A.2 in the appezndix.

3.3.3. Constraints of Unweighted Standard Deviation and Peak-to-Peak
Value

For physics-driven potential models the relation of the weighted to the unweighted first
moment (or unweighted mean)

V) V(2) (3.84)

_/ZdZV(Z)_/ dz

fz dz Lwars

is of interest. Here, the integration is taken over the length of the WGTS, and the results
do depend on these limits. This is in contrast to the weighted case, where the weights are
vanishing outside the WGTS, due to the diluted particle densities.

Thus, the normalisation condition

<1>:/ z _, (3.85)

Lwars

is obtained.

Unweighted standard deviation: The operator for the unweighted standard deviation now

has the usual form
o[V] = VVar[V] = \[(V2) = (V)2 (3.86)

If these operators are interpreted as having weights that are constant in the region of
interest in the central WGTS and vanish outside, constraints can be calculated using the
equations from the previous sections.

However, these methods do not work if the operator cannot be defined in terms of weight
functions or simple derivatives. One case of interest is the peak-to-peak value.
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PP[V]

___‘.ﬁ"__________

Figure 3.18.: Minimum peak-to-peak value for given Aj: If the potential V is equal to its
maximum at positive weights and equal to its minimum at negative weights
(or vice versa), the maximum Ax[V] for given PP[V] is observed. However,
such potentials have high derivatives at Pz(z) = 0.
Peak-to-peak value for given Az:  For simple approximations the peak-to-peak value
PP[V] = Max[V] — Min[V] (3.87)

is of interest, with the definitions of the maximum and minimum

Max[V] = maximum {V(z),z € [~Lwgrs, Lwcts]}
Min[V] = minimum {V(Z),Z € [_LWGTS,LWGTS]} .

Trivially, for given Max[V] and Min[V] a piecewise constant potential of the form
V(z) = Max[V]O(Px) + Min[V]O(—P%) (3.88)

leads to extremal Ax[...], which is sketched in figure 3.18. It follows:

A,—C [V] = Af [Max[V]@(P,—C) + Mln[V]@(—P,g)] s (389)
= MaX[V] Az [@(Pf)] + Mll’l[V]A;‘c [@(—Pf)] s (390)
2" Max[V]A¢[©(P5)] — Min[V]A:[O(Py)] , (3.91)
= (Max[V] = Min[V]) A:[O(P;)] , (3.92)
= PP[V]A;[O(P;)] . (3.93)

Thus, the extremum does not depend on Max[V] or Min[V] individually, but only on the
peak-to-peak value of the potential. Consequently, the potential

Vpp — (Vpp) = PP[Vpp] (O(P;) — (O(P%))) (3.94)
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3. Observables of the WGTS Plasma Potential in the Presence of Inelastic Scattering

produces the extremal Az [ V] for all potentials and given peak-to-peak value, the extremum
being

Az[Vpp] = PP[Vpp]| Az [O(P;)] . (3.95)
The other way around, this means that a given Axz[V] requires a PP[V] satisfying
PP[V] S PP[Vpp] _ 1
A[V]] ~ Ax[Vep]  A:[O(Pr)]°
= PP[V] > —————|A:[V]]| . 3.96
V] 2 §rgagy 18<IV) (3.96)

This gives a lower limit of the peak-to-peak value if a measurement of Ag[...] was obtained.

Physical approximations: The solutions of the form 3.94 or continuously differentiable
approximations to it have physically unlikely high derivatives at z with Pz(z) = 0. A more
physical shape of potential is found analogous to section 3.2.1, i.e. by demanding that the
potential leads to extremal values in

1 Ag[V]
Kiz 0z[V]

pszlV] = (3.97)

Thus, the solutions are the most constant in terms of the chosen o,, while still producing
the given Ay. By calculating the peak-to-peak value of the potential of equation 3.55, the
approximate constraint

z

Py
A [P—z]

PP[V] 2 T [P_]

1Az [V]] (3.98)

is obtained.

Peak-to-peak value for given o,: From the mean value theorem it follows

dv(z)
dz

i.e. a given peak-to-peak value requires a large enough derivative value at a certain point
in the WGTS. Trivially, the linear potential

PP[V] < Max [

] Lwars » (3.99)

V(z) = PP[V]—2

(3.100)
Lwarts

has the smallest maximum derivative and all other potential shapes require a larger value.
This is also visible in figure 3.18, where the linear connection of the maximum at the rear
and the minimum at the front has the smallest possible derivative. The same potential also
gives the minimum unweighted standard deviation

U[PP[V]L il ] < o[V], (3.101)
WGTS
& PP[V] < VTS iy (3.102)
o|z]
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3.4. Expansions of Operators of Mixed Scattering Multiplicity

for a given peak-to-peak value. The factor is calculated to be

1/2

IWGTS _ s ((22) — (&) )12 = (f
olz] —_— 3

1/2
) = V12 ~ 3.46 . (3.103)
~1/2

Using equation 3.77 to derive an upper constraint of the unweighted standard deviation
o[V] by a general standard deviation o,[V] yields

o[V] € ———— 6, [V] . (3.104)

~ Min[P,]
As discussed in section 3.3.2 this constraint depends on the localisation of the inhomo-
geneity of the potential. Only if the inhomogeneity is fully localised at the position of
the minimum of the weight P, the left and right side of equation 3.104 are equal. If the
inhomogeneity is delocalised, the standard deviations are the same. Also, a non-vanishing
estimate of a shape px, can improve this constraint, as discussed in section 3.3.2.

Summarising, it is possible to constrain the peak-to-peak value from the measurement of
A and o, from both sides

AV < % A:V]| S PP[V] < —2° o [v].  (3.105)
Ax[©(Py)] As [;] JMin[P,]

If the unweighted standard deviation is used (o, = o) the weight is constant in the central
WGTS, such that Min[P,] = 1. Also, for the unweighted standard deviation the upper
constraint is obtained by linear potentials. Thus, potentials that include more structure
(i.e. higher derivatives) produce a larger standard deviation for a given peak-to-peak value.
If both the peak-to-peak value and o (or as an approximation o,) are given this allows to
make a prediction on the necessary derivatives of the potential, which is applied on KNM2
krypton data in section 6.3.1.

Since the constraints are derived from ¢, and Az which are only measured in the central
WGTS, they only apply to the peak-to-peak value in this region. The lower constraints are
plotted for different conditions in section 5.2.

3.4. Expansions of Operators of Mixed Scattering Multiplicity

In this section operators are studied which have mixed contributions from different scat-
tering multiplicities. Those operators are relevant for continuous spectra which have
overlapping rate contributions from electrons of different scattering multiplicities, like in
the tritium B measurements at KATRIN. A sketch of a typical measurement can be seen in
figure 3.19.

The expansion of general operators in the first moments up to second order in the potential
reads

OV ==Y e (V) + Y [ar (V¥ + > ay (V) (V)| - (3.106)
i Jj

i
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Figure 3.19.: Mixture of scattering effects in continuous spectra: In continuous spectra
like the tritium B spectrum the rate contributions of the different scattering
multiplicities overlap in energy. Thus, the observables of the plasma potential
have contributions from plasma moments of different scattering weights.

The zeroth order in the potential is a constant shift and is set to zero. €, a; and a;;
are coefficients € R. The a;; are symmetrical in their indices. The negative sign of the
linear component is used to account for the fact that positive changes in the potential
lead to negative changes in electron spectra due to the fact that electrons carry negative
elementary charge. Square and angular brackets are used to indicate the functional nature
of the operators in contrast to round brackets for scalar dependencies. The description can
be limited to second order in the potential in all problems relevant to tritium f systematics,
which follows from the fact that the neutrino mass is mathematically equivalent to the
second order energy perturbation of the f spectrum [Sle16].

Perturbation approach in scattering and separability: In the usual KATRIN measurement
the contribution from scatterings decreases with increasing scattering multiplicity, thus
enabling a perturbative treatment.

Also, since the total spectrum is a summation over spectra of pure scattering multiplicity
as visible in figure 3.19, observables of the total spectrum can only depend on sum of
observables of the individual spectra. Thus, equation 3.106 can be simplified to

0@ [V] = Z (=€) (V); + a;o?[V]) . (3.107)

i
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3.4. Expansions of Operators of Mixed Scattering Multiplicity

In the following, two classes of those operators are discussed:

« Measures of non-constant portions of the potential in section 3.4.1: Those quantify
potential-induced changes of the observables of the non-uniformity of the energy
scale, like the neutrino mass in the tritium f spectrum.

« Measures of a mean of the potential in section 3.4.2: Those quantify potential induced
changes of observables of the total energy scale, like shifts of the tritium B-spectrum
endpoint.

In the krypton-83m case this distinction was simply given by the first and second order
in potential. However, due the mixed contributions of moments of different scattering
multiplicity, this distinction is no longer given in the tritium B spectrum.

For simplicity, at the beginning the description is restricted to a maximum scattering
multiplicity of one. In section 3.4.3 it is shown by using generalised potential moments that
the approximated equations for one scattering and the exact equations for all scatterings
are of the same form, if the scattering is a perturbation.

Since the derived operators are only composed of operators Az[V] and ¢2[V] the longitu-
dinal inhomogeneity can be constrained from the estimates obtainable in krypton-83m
measurements, as presented in section 3.3. These constraints are calculated for operators
of fixed potential order, i.e. they constrain A;[V] and o2[V] separately, which neglects
correlations. To avoid that, in section 3.5 it is shown how to constrain operators of mixed
orders in potential like equation 3.107 or the neutrino mass shift derived thereof.

3.4.1. Operators of Longitudinal Inhomogeneity

Operators of longitudinal inhomogeneity need to vanish for constant potentials V(z) = v.
Since for constant potentials any mean is equivalent

(vo); =vo VieN, (3.108)
it holds
0P [ug] =0y ) &/ =0 Voo eR, (3.109)
i
= Z € =0. (3.110)

Using A;;[V] = Aj[V] = Ajo[V] to reformulate the first term of equation 3.107 fulfils this
condition:

0@ [v] = Z (—eiDio[V] + aic?[V]) . (3.111)

i

The €; are free coefficients. Notably, since also the neglected higher central potential
moments (skewness, kurtosis etc.) vanish for constant potentials the proportionality to
Aip[ V] remains also in higher potential order and higher powers of A;y[V] do not appear.
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Zeroth order scattering: In zeroth order scattering
(2) _ 2
O, [V] = apoy[V] (3.112)

is obtained. Thus, in the no-scattering case second order measures of potential inhomo-
geneity are given by the variance which is weighted with zero-scattering weights. It
is well known that ayp = —2 in case of energy systematics on the tritium p spectrum as

observed by shifts of the squared neutrino mass O% [V] = Am2[V] [RK88]. However, in
case of the starting potential already the zero-scattering description is different from the
previously known relation, since the necessary weighting with the zero-scattering weight

was identified.

Up to first order scattering: In up to first order scattering the operator reads

Og; [V] = —e1Ar0[V] + aoog [V] + ayo7 [V] (3.113)

i.e. a term proportional to the mean difference A1o[V] has to be considered, which is linear
in the potential. Thus, Og)) [V] has mixed first and second order potential components
and is no longer strictly parabolic. In case of the shift of the squared neutrino mass a; is
small, which is shown in chapter 5, such that it reads

2
Am;,

[V] = —e1A10[V] = 262[V] . (3.114)

The fraction of scattered electrons in the measurement determines €; and the magnitude of
the potential thus determines which of the terms is dominant. The general curve sketching
is found in section 3.6.1.

Susceptibility to mean differences: ¢; has units of energy. A more general way of defining
it is

00?2

N
i.e. it is the susceptibility of the measured observable with regard to perturbations in form
of mean differences Aj;y. In principle, the definition using the derivative accounts for the
fact that it is only the linear approximation of a more complete theory. However, due to the
separability of the spectra for different scattering multiplicities, leading to equation 3.111,
no higher-order terms in A;y are possible, such that a truely linear connection is expected.

€ = (3.115)

The product €;A;[V] accounts for the broken longitudinal symmetry of the source energy
scale. Notably, the two ingredients are that the energy scale is actually inhomogeneous
(Aip[V] # 0) and that scattering is present, which leads to longitudinal sensitivity on the
potential (¢; # 0). In addition, since only one symmetry is affected, this leads to only one
new degree of freedom. This is shown below by absorbing the summation in equation 3.111
into a new operator.

In the perturbative approach coefficients like €; and thus the expansion of the operator can
be determined order by order in simulation. This is done by calculating the derivatives 3.115
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Am[V]

A

Figure 3.20.: Determination of coefficients in simulation: Due to the perturbative approach
expansion coeflicients for any operator can be determined in simulation by
considering partial derivatives. Here the determination of the mean difference
susceptibility of the neutrino mass for different tritium column densities is
sketched. When repeated for many column densities, figure 3.21 can be
constructed.

(i.e. by using the pull method, cf. section 1.2.1) which is sketched in figure 3.20 for O [V] =
Am?2[V]. Due to the dependence on scattering contribution, the susceptibilities depend
on the operating conditions and the measurement time distribution. A sketch of ¢; in
dependence of the tritium column density can be found in figure 3.21. The detailed analysis
for typical KATRIN conditions is carried out in chapter 5.

3.4.2. Operators of Mean Potential

For operators measuring means, it is expected that they are of first order in the potential:

o'[V] = —Z ai (V); , (3.116)

= —(V)OZal- _ ZaiA,-o[V]. (3.117)

For constant potentials the scattering effects need to vanish, i.e.
Z a; =a (3.118)
i

is a constant, regardless of the amount of scattering. Usually a = 1 holds, as it is the case
for the endpoint shift AEy[V] of the tritium B spectrum.

Thus, the zeroth order reads

ogo) (V] =-a(V), . (3.119)
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Figure 3.21.: Sketch of the mean difference susceptibility as function of scattering contri-
bution: The larger the contribution of scattered electrons to the measurement,
the larger €; gets. Here, the measure of potential inhomogeneity is the shift of
the squared neutrino mass Am2[V] and the scattering contribution is given
by the tritium column density pd in percentage of nominal.

Again, the zero-scattering weighting is necessary even for situations where higher scatter-
ing orders are negligible.

In scattering up to first order the operator is

Oy [V] = =ao (V) = ar (V) , (3.120)
=—a(V)o— a1Ap[V], (3.121)

which is
AE()[V] = — <V>O — a1A10 [V] (3122)

for the endpoint shift of the tritium P spectrum.

As before the coeflicients can generally be defined as

00
= ——— (3.123)
(V)
i>0 20
= - . 3.124
T (3.129)

Since observables of mean and inhomogeneity like tritium endpoint and neutrino mass
shift are usually fitted at the same time, the last step allows to find ¢; and g; at the same time
in dependence of Ajy. The plots of the g; for different conditions are found in chapter 5.
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>

0 as1P51(2) z

Figure 3.22.: Generalised weights for measures of means: For the relevant scattering con-
tributions at KATRIN q; is in the region of up to 15 %, such that general
measurements of mean potentials (V)y (dotted green) look like measure-
ments of mostly (V) (solid green) with a correction of (V); (purple), which
shifts the sensitive region slightly to the back. Higher scattering orders (blue)
are smaller.

3.4.3. Generalised Weights for Infinite Scattering Order

In this section it is investigated how the infinite summations over the scatterings can be
condensed into new weight functions ¢. It is shown that even up to infinite scattering
order the operators can be expanded in (...),, oZ[...] and Ag[...] with generalised weights
Pg, P, and P,.

Operators of means: The trivial case is the measure of the mean

OLIVI == ai(V);, (3.125)

1

= —a(V), , (3.126)

with

1
a= Z a, Py=- Z a;P; . (3.127)
1- :

1

Due to the condition 3.118, a # 0 holds. P, satisfies the usual normalisation condition 3.3.
Thus, the exact expression for any operator measuring a mean potential in presence of
scattering has the usual form of a longitudinal average. However, the scattering weight is
replaced with a generalised weight function Py, which depends on all scattering contribu-
tions. Figure 3.22 shows the typical KATRIN case. Notably, the different analysis methods
in KATRIN (i.a. B-spectrum endpoint, krypton-83m, PRO-KATRIN, 300 V analysis ’) effec-
tively see different scattering contributions, such that they all measure different means.

®In practice the summation is always cut by the maximum multiplicity of scatterings which is actually
observed in the chosen analysis range of the tritium p spectrum.
7 A full description of the last two methods is found in [Fri20].
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i €1P1(2)

Figure 3.23.: Generalised weights for measures of mean differences: In the relevant regimes
of scattering contributions €; (purple) is dominant over higher terms €1, such
that general measurements of Az[V] (dotted blue) look like measurements of
mostly A1o[V] (solid blue) with some shift of sensitivity to the back.

Operators of longitudinal inhomogeneity: Similarly, in case of operators of longitudinal
inhomogeneity, it holds for the linear terms

O((j),linear[v] - _ Z eihio[V], (3.128)
i

= —eA:[V], (3.129)
with &

1
, Py = - iPi_P . 3.130
=D a(Pi—Py) (3.130)

1

GE‘E €i
i

Thus, the exact expression for any linear measure of inhomogeneity of potential in presence
of scattering has the form of a mean difference Az[V] with a generalised weight function
P;. Figure 3.23 shows the typical KATRIN case.

1
P.=- Z aPi, a= Z ai, (3.131)

1

Using the definitions

8The case € = 0, J¢; # 0 is possible, in this case a different normalisation needs to be chosen. The
consequences are further discussed below and in chapter 5. The positive normalisation is chosen to
avoid phase jumps of the operator at }; ¢; = 0.
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3.4. Expansions of Operators of Mixed Scattering Multiplicity

the quadratic components can be written as

0%L[V] = > aot[V], (3.132)
= Z ai (V)= > ai (V) (3.133)
= al<v2>z -, ail<<v>z - Au[V])?, (3.134)
= a(V?), - al<v>§ +2(V), ) @[Vl = > aidi[V], (3.135)
= ac?[V] - Z aNZ V] . | | (3.136)

1

Using the shape operators 3.31 this becomes

0% [V] = ac?[V] (1 - Z %ﬁ%’Z[V]K%’Z) , (3.137)
= ac’[V] (1 - Saiv]) . (3.138)

Thus, the exact expression for any measure of potential variance in presence of scattering

has the form of a variance 2[V] with a generalised weight function P,. In addition, the

total amplitude of the variance term has a dependence on the potential shape. Figure 3.24
shows the typical KATRIN case.

Adding both terms, the exact form of separable operators of longitudinal inhomogeneity
in the presence of scattering is

0P [V] = —eAs[V] + (a — Sa[V]) 62[V] . (3.139)
It consists of a generalised mean difference A;[V] and a generalised variance oZ[V] with

amplitudes —e and a — da[V].

3.4.4. Discussion

At KATRIN usually the scattering contributions decrease with scattering multiplicity and

%"V] < 1 holds. This leads to the final result of

0P [V] = —eAz[V] +ad?[V] . (3.140)

The fundamental difference to the non-scattering case is given by the energy scale €. It

is the susceptibility of o? [V] to the potential shape defined by P;. Here it should be
recalled that Az[V] equals the covariance of the potential with Ps.
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0 as1Ps1(2) z

Figure 3.24.: Generalised weights for measures of variances: The presence of higher scatter-
ing orders (purple and blue) moves the sensitive region of general measures of
variances ¢2[V] to the back (dotted green) compared to the case of only zero
scattering multiplicity o5 [V] (solid green). Also, the total amplitude of the
quadratic terms has a small potential shape dependence (coloured area). For
the sketched typical weights, this manifests in a dependence of the variance
contribution on the potential antisymmetry. However, as shown in chapter 5
the contributions of i > 1 can be neglected for typical KATRIN conditions
due to the intrinsic width of the energy loss function.

Normalisation and implementation: Since in continuous spectra Axz[V] is not an observ-
able, it depends on normalisation effects. For ¢ = 0, J¢; # 0, Az is singular. In all
observables like the left hand side of equation 3.140, which only depend on the product
€Ay, those singularities caused by the above normalisation cancel. Still, the chosen rep-
resentation and normalisation by the total susceptibility has practical applications when
implementing the systematic uncertainty. In the simulation this can only be done by
shifting spectra of different scattering multiplicity compared to the unscattered spectrum.
However, there are infinitely many combinations of shifts which produce the same neu-
trino mass shift. Since € is the summation over all susceptibilities, in this normalisation
the correct neutrino mass shift is obtained when all spectra are shifted simultaneously by
the value of Az[V]. However, this is only a normalisation choice. The same shift can be
obtained if the summation in equation 3.128 is normalised by a different value, for example
one of the ¢;. In this case a different mean difference Ay [...] is obtained, and when using
its estimate, the correct neutrino mass shift is obtained by only shifting the spectrum of i
scattering multiplicity in simulation. While in both cases the value of Az[V] or Ax[V]
can be constrained by A;¢[V] from the krypton measurement, it is not the value of the
mean difference of the actual potential. If this is favoured, the A;o[V] can be constrained
individually from the krypton measurement. However, since the A;o[V] are correlated, this
leads to a more complicated analysis. Since the weights for higher scattering multiplicities
are degenerated (cf. figure 3.13) and the differences of the A;y[V] are expected to be small,
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3.5. Constraints for General Operators of Longitudinal Inhomogeneity

using the same shift of all mean differences and thus the above normalisation is preferred
at the moment.

Normalisation and shape operators: When Az [V] is normalised by the standard deviation
0,[ V], the shape operator psx . is obtained and the prefactor is the penalty for potentials
that share its shape. This is discussed in section 3.6.1. Thus, this normalisation reveals
the connection of neutrino mass shift to the potential shape. Also, since the standard
deviation only vanishes in the trivial case of constant potentials, this formulation avoids
singularities. However, there is no practical method to implement the shape operators in
simulation, such that here still Az[V] needs to be used.

Constraints and scattering order:  The operator ij) [V] can be constrained by measuring
any (Az, 0,), like (A1, 09) from krypton-83m. In principle obtaining more estimates from
different weights, like for example higher scattering orders, can improve these constraints.
However, the gain is limited by the degeneracy of the weights for increasing scatterings
(see figure 3.13) and the associated weight covariances of the krypton and tritium weights.
In terms of potential modelling, more estimates would allow to construct plasma models
with more parameters, but they also suffer from the same degeneracy. Consequently,
obtaining estimates of higher scattering multiplicities from more complicated krypton-
83m measurements is only of limited gain. Fortunately, the measurement of only A;, and
o0y in krypton already reasonably constrains the neutrino mass shift, as shown in chapter 5.

The constraints already derived in section 3.3 work on Az [V] and o,[V] separately. The
ultimate goal is a constraint of the neutrino mass shift, i.e. of a combination of moments
of the form equation 3.140, which is the topic of the next section.

3.5. Constraints for General Operators of Longitudinal
Inhomogeneity

Estimates of A1o[V] and oy[V] obtained in krypton-83m mode can be used to constrain
their counterparts for tritium mode weights according to section 3.3. However, this
approach is too conservative, since a given extremal solution for one of the operators is
not an extremal solution of the other, such that both cannot be extremal simultaneously.
The best possible approach for unknown potentials is to constrain equation 3.140 directly.
However, since equation 3.140 is phenomenological and has no representation in the
theoretical model of the tritium B spectrum, in sensitivity studies constrained values of
Az[V] and o,[V] have to be used. Here only the methods for the constraint of oﬁf) [V]
are described, and an example is found in appendix A.3.

The derivative with regard to the vector of operating parameters s reads

d0@[V](s) _ 30D [V]dV(s)  d(e(s)As[V](s)) , das)ez[VI(s)

ds 5V ds ds ds (3.141)
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3. Observables of the WGTS Plasma Potential in the Presence of Inelastic Scattering

The first term is the change of the potential with the operating conditions, the others
are caused by the change of the weights. A priori the change of the potential with the
operating conditions is unknown. Originally it was argued from plasma physics and
simulation that the krypton mode potential at high temperature is an upper limit to
the tritium mode potential at low temperature [KAT04b]. However, due to the unusual
properties of the plasma at KATRIN, which are discussed in section 1.4.1, this is currently
controversial. Without better knowledge the assumption %_Z = 0 is made here. If the
krypton measurement gives an upper limit on the plasma inhomogeneity, this assumption
is conservative for the change of 0,[V] between the modes. However, Az[V] depends also
on the potential shape, such that the upper limit of the inhomogeneity is not sufficient to
completely constrain its change with the potential. Future measurements will be performed
at the same operating conditions, i.e. at the same potential, such that those problems will
be avoided.

The terms from e(s) and a(s) do not contribute an uncertainty, since their function of the
operating conditions is known from simulation. In all the following equations they are
meant to be evaluated at tritium conditions, such that the relevant terms are

do@[vVi(s)  dA:[VI(s) . da?[VI(s)
ds ~e ds ta ds '

The two relevant applications of this equation are seen in figure 3.25:

(3.142)

« Same conditions: Even if the estimates are obtained at the same operating conditions,
the weights are different due to the different gas profiles of krypton and tritium.

Thus, a difference AO(ECZ,) [V] needs to be constrained.

« Extrapolation to different conditions: If the operating conditions are different and
the potential is unknown, the only possibility is extrapolation under the assumption

(2)
% = 0. Thus, in linear extrapolation the derivative % needs to be constrained.

Since by replacing % with A both cases are formally equivalent, the notation d(s) is used
in the following for both cases and the method of constrained Lagrangians is applied,
which is shown in section 3.5.1. A second approach exists by expanding the derivatives of
the operators in the original operators, which is shown in section 3.5.2.

3.5.1. Numerical Solution using Constrained Lagrangians

The operator 0P [Vv] is given by the integral

o [v] = / L (v (v),) [Py + (a—8a[V])(V — (V),)P.] . (3.143)
Lwarts
Neglecting da[V] and the known terms from € and q, the differential reads
OIS = [ (V= (1)) [-edPe(s) +alV = (IR0 . G144
Lwars

i.e. the change of the operator is only given by the change of the weights. Thus, given the
measurement of A1o[V] and o7 [V] at krypton-83m conditions, the constrained Lagrangian
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Figure 3.25.: Extrapolating varying operating conditions: Already at equal operating con-
ditions s the prediction of oﬁ? [V] from krypton measurements has an un-
certainty AOS) [V] due to the different gas profiles of krypton and tritium.
For different operating conditions As the krypton prediction has to be extrap-
olated. The linear extrapolation is inside the trapezoid. The boundaries are
calculated using constrained Lagrangians.

reads
£ =402 + Ay + Ae0? . (3.145)

Stationary solutions are found by demanding the derivative with regard to V to vanish,

leading to
1 AA(Py = Py) — €dPx(s) — 26 AP
V-(V) =—- . 3.146
(V) 2 adP,(s) + A, P, ( )

(A, Ap) are determined by demanding ag [V] and A19[V] to be the measured values, giv-
ing two coupled integral equations. While there are no trivial solutions, in simulation

(2[V], Ao[V], dOg) [V]) can be calculated in dependence of (A4, Ap) and subsequently
the extrema of dOg) [V] can be found in dependence of (o7 [V], A1o[V]). Multiplying the

extremal change with As gives the maximum uncertainties on Oc(,f) [V] in linear extrapola-
tion.

3.5.2. Expansions of Weight Derivatives in Weights

The following discussion only applies to the case of extrapolation between operating
conditions, i.e. when the derivative of ij) [V] with respect to operating parameters is
needed. The idea is to replace the derivatives of Az[V] and o,[V] in equation 3.142 with an
expansion of known operators. As visible in equation 3.144, if the change of the potential

is neglected, these derivatives always translate to derivatives of the weights dby (2), dP; (2).
ds ds
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Due to the derivative with regard to the operating parameters, both of these functions are
normalised to 0, regardless of their original normalisation. Thus, an ansatz like ?

dP,

5o = D GOPm —P),  als) <O, (3.147)

1

can be made, with expansion coefficients c;(s) and the weights of the krypton measurement
P;(z). Since the weights do not form a basis of L?, this can only be an approximation.
Also, since only A[V] and o[ V] are known from krypton, higher order terms in this
expansion again lead to non-measurable quantities.

In practice, it turns out that this ansatz works reasonably well for derivatives with regard
to column density, and not so well for derivatives with regard to temperature. However,
those are one order of magnitude smaller, such that the column density is the main concern.
Also, using only one term of the expansion already leads to good results, such that the
derivatives of the standard operators can be written with expressions like

dAz[V
sV L 9)a0lV] - er9)nn V] (3.148)

doZ[V
s “3 VT L eo(s)An[V?]. (3.149)

s
= co(s)(aZ[V] = a2[V]) . (3.150)
Plugging those expressions into equation 3.142, the derivative of o [V] reads
do?[v

s% ~ —€ (co(s)A10[V] = c1(8)Aa1 [V]) + aco(s) (a2 [V] = a5 [V]) . (3.151)

If this ansatz works, it has a benefit over the extremal solutions: Namely, that the first term

is known from the krypton measurement. Thus, the mean of O((j) [V] can be extrapolated
by the predicted value, and only the two other terms contribute an uncertainty. An example
application is found in appendix A.3.

3.6. Operators of Longitudinal Inhomogeneity and Potential
Shape

In section 3.4.1 the following expression for general operators of longitudinal inhomo-
geneity in the presence of scattering was derived:

O [V] = —eAs[V] + (a— 8a[V]) 2[V] .

It depends on a generalised mean difference Az [V] and a generalised variance oZ[V]. From
the discussion in section 3.2.1 it should be understood that both are not independent, but
correlated by their shape operator

R 1 A

ezl = ——=[..],

K)Z,z op3

% Alternatively also an ansatz in P; — Py can be used.
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which is bounded
-1< ps.[V] <1 VVel?.

The shape operator can be used for the alternative representation
0 [V] = ~0:[V] (26ppx:[V] — (a = 8a[V]) o2 [V1]) (3.152)

where the shape energy

1 9°0
€= ——-——, (3.153)
2 ao-zapf,z
1
= Sz 2 0 (3.154)

has been defined. It represents the penalty term with regard to the worst possible potential
shape. The case €, = 0 only occurs for ¢; = 0 Vi, i.e. if there is no scattering. A vanishing
total susceptibility € = 0 alone is not sufficient, since then xy, is singular and the product
finite. Thus, if there is scattering, there are always potential shapes (given by pz, and
those which are correlated to it), which lead to a penalty. The inverse is not true, i.e. not
every potential shape is penalised.

Since o, and px , are uncorrelated, they can be treated as independent variables and their
functional dependence on V can be omitted. Thus, in the case where da[V] is negligible,

Og) is fully determined by the measurement of two bounded scalars, allowing for simple
curve sketching. As discussed in the following, this is the case for the neutrino mass shift.

3.6.1. Neutrino Mass Shift and Antisymmetry

As it is shown in chapter 5, for the neutrino mass shift higher scattering order variances
are negligible:
P,~Py, a~ -2, 6a[V] ~0. (3.155)

For the shape operator of the tritium 3 spectrum an abbreviated notation like in the case
of krypton is used:

P, = % Z €(Pi — Pp) (3.156)
L] = pol] (3.157)
RN (3.158)

Kp,0 00

In chapter 5 it is shown that p is again a measure of potential antisymmetry for typical
KATRIN conditions and it is thus called the antisymmetry operator *°.

1%Tn contrast to the operator defined for krypton in equation 3.36 at least 2x scattering is relevant at typical
KATRIN conditions in the tritium p measurements, such that the formal definitions are different. Thus,
the detailed shapes of the krypton and tritium antisymmetry operators differ slightly, but this is also
the case for the weights of the usual potential moments. All operators are only well defined, if their
conditions (krypton or tritium, operating parameters) are specified.
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Figure 3.26.: Neutrino mass shift and potential antisymmetry: For shapes of potential
with vanishing antisymmetry p = 0, the neutrino mass shift has the known
negative parabolic shape as function of the standard deviation oy (green).
For p > 0 (purple), the negative neutrino mass shift increases faster than
a parabolic form for small oy and asymptotically parabolically for oy larger
than pe,. For p < 0 (blue), the shift has a positive region and a maximum.

o

Using p, the equation for the shift of the squared neutrino mass reads

AmZ(p, 09) = —200( €,p + 0y ). (3.159)
—_——
shape  Vvariance

The curve sketching is shown in figure 3.26 and discussed in the following.

Upper, lower and absolute limits: The upper and lower limits are found at the extremal
values of p
1 ? -1

—200(09 + €,) < Am(p, 09) < —200(00 — €,) - (3.160)

Using the triangle inequality it follows that the absolute value of the shift is limited by
|Am(p, 00)| < 200(00 +€,) - (3.161)

These limits are those of extremal antisymmetry. For the high temperature potential
simulation of figure 1.19, which has an antisymmetry of p = 0.88, these limits might be
appropriate. However, currently the true value of antisymmetry is unknown: The plasma
simulations use simplified models and the experimental verification by the krypton-83m
measurement suffers from systematics, as discussed in chapter 6.
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Shift regimes: Along the line of increasing oy the asymptotic cases of linear and parabolic
regime are

oo
0 o)

. 00<€p|pl . €, Pl <o
—200€,p ——— Am*(p, 0y) ———> —207 . (3.162)

The shift of the squared neutrino mass strictly depends on the product ¢,p. Thus, for
large enough oy the shape energy is negligible, while for small oy shape changes are
dominant. For typical KATRIN conditions the shape energy ¢, is of the order of some
hundred millielectronvolts such that oy of the order of some ten millielectronvolts leads to
shape dependent effects.

Zero crossing: The zero crossing is at
Am%(ﬁ, 00,zer0) = 0, (3.163)

S Opzero =0 O Ogzero(p) = —€pp, p<0. (3.164)

While the first case is equivalent to the potential being constant, in the second case a
non-constant potential leads to a vanishing shift of the neutrino mass.

Maximum shift: The oy max of the shift maximum is found by demanding the derivative
to vanish

oAm(p, o)

= —40 —-26,p=0,
(90'0 0,max p,D

00,max
€pp 4

= O-O,max(ﬁ) == 5 p < 0. (3-165)

Consequently, the shift of the squared neutrino mass at the maximum is

2 52
€p

R R p R

AMZ (P, Tomax) = 20 max (P) = — P < 0. (3.166)

3.7. Conclusion

The preceding discussion of the neutrino mass shift concludes this chapter. In the presence
of inelastic scattering its dependence on the source potential was shown to be fundamen-
tally different than previously believed. The resulting consequences and complications for
the krypton-83m and tritium measurement are manifold; one additional parameter has to
be measured in krypton-83m, and not only do the observables depend on the potential, but
also on the scattering probabilities and the measurement time distribution. These two new
dependencies led to the introduction of one new energy scale and correlation coefficients
between krypton-83m and tritium potential estimates. They are calculated for typical
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KATRIN conditions in chapter 5. As has been shown by variational calculus the correlation
coefficients are used for the translation of the potential estimates from the krypton to the
tritium measurement. However, since the change of the potential for different conditions
is not known, this translation still has to rely on plasma simulations or different operating
conditions have to be avoided entirely. Due to the possible size of the newly introduced
potential shape related neutrino mass shift this was chosen for future measurements:
Different operating conditions for the krypton-83m and tritium measurement are avoided,
such that remaining uncertainties stem only from the krypton-83m measurement itself
and from the different gas profiles of the species.

This chapter established the connection of the krypton-83m potential observables to
symmetries of the potential. Based on that, in the following chapter 4 it is discussed how
krypton-83m potential observables can be used to construct potential models.
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4. Plasma Potential Models from
Krypton-83m Observables

In this chapter it is discussed how a given set of estimates from a krypton-83m measurement
can be used to construct plasma potential models V' (z) for KATRIN. The elaborations laid
out in chapter 2 and chapter 3 are an essential foundation for the discussions carried out
here.

For a given rear wall voltage the estimates obtainable in the krypton-83m measurement
are the Gaussian line broadening, the energy loss shift and the line position shift:

(Urw, Og, A€gloss, AEMean) -

In this chapter it is assumed that the measured estimates can be translated to the potential
moments established in section 3.1, which requires understanding of systematics and
plasma fluctuations. The obtained moments are the zero scattering weighted standard
deviation, the mean difference of one and zero scattering and the zero scattering weighted
mean of the potential:

(Urw, 00[V], A1o[ V], (V)o) .

Equivalent formulations using the single-scattering weighted mean or the antisymmetry
defined in section 3.2.1 are given by

(Urw, 00 [ V], {V)1,(V))

and
(URW’ O.O’ /3’ <V>O) .

The rigorous validation of a given potential model using these estimates has been described
in section 3.3.1. The inverse problem of constructing a model from a given set of observables
with certain model assumptions is the topic of this chapter.

The necessary symmetries that any model needs to incorporate to describe the krypton-83m
observations are discussed in section 4.1. This allows to assess the efficiency of arbitrary
models and gives an understanding how their parameters relate to the observables.

The implementation of models using linear combinations of z-dependent functions is
discussed in section 4.2. The natural example of such models are polynomials with
coeflicients which are determined from the measurement.

93



4. Plasma Potential Models from Krypton-83m Observables

4.1. Potential Symmetries and Antisymmetry Models

Parametrisations of potential models using the antisymmetry reveal the relation of the
observables to the symmetries of the potential. Let Viest(z) be an ansatz for the potential.
The natural normalisation is to measure the potential relative to its zero weighted mean
in units of its zero weighted standard deviation, giving the potential shape

1 P; 1
—— = ——— (Viest — (V4 . 4.1
K.)_C,O PO o [Vtest] ( test < test)o) ( )

Kz0 = 0p [};—’;] is the weight standard deviation defined in section 3.2.2. Py(z) is the zero

scattering weight and Px(z) is a weight normalised to zero, which is defined by this
equation. The left side is a formalised way of writing the above normalisation in terms
of weights: Its zero weighted mean vanishes and its zero weighted standard deviation
is one. In section 3.3.1 it was identified that given such a potential shape, the following
parametrisation of potential leads to the measured observables:

V1-p%2 |P-Py 1 V1 -p? P 1
Ve Wz || popag el (PR L VIEP B
o - pA_ Py Kygy 1-—p? P Kz,
x10,0 ’ xEO ~——

ocVtest_ <Vtest>0

Ps15,0 is the weight correlation discussed in section 3.2.2. With the exception of the marked
Viest term, this model is completely determined by the observables. Choosing Viest such
that the correlation vanishes

Pz Py =Py 340
Py

Ps10,0 * Covo lpo

reveals the underlying symmetries. It follows:

P =Py 1 — Px 1
V(z) = 00| p (2) +y1 = p2—=(2)— [+ (V) . (4.4)
Po k10,0 Py Tkzo | ——
Mean
Antisymmmetry Symmetry
Inhomogeneity

Thus, for a potential model to be able to describe any given set of krypton-83m observables
it needs an antisymmetric, a symmetric and a constant component !, which is depicted in
figures 4.1 and 4.2. The test potential Viest, which is not predicted by the data, defines the
symmetrical component of the potential.

Due to the quadratic addition of the inhomogeneity components, the antisymmetric shape
is approached slowly, as sketched in figure 4.3. Also, the term symmetry component

!The mentioned symmetries hold for the usual operating conditions. In general they are defined by the
1 P° and by the condition Ag [ ] =0.

shape
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Figure 4.1.:

ao[V] p

o o

Mean

]
Inhomogeneity

Composition of the image of the KATRIN krypton-83m measurement: There are
the three observables (op[V], A10[V], (V),). A measure of the mean potential
is given by (V). Since 0y [ V] is non-zero for non-constant potentials, it can be
used as an overall measure of inhomogeneity magnitude. Consequently, the
total measured inhomogeneity o[ V] is composed of inhomogeneities, which
are manifest in both A1¢[V] and 0y[V] and inhomogeneities, which are only
manifest in 0y [Va=o]. Thus, the potential shapes are divided into those with
vanishing and non-vanishing expectation value of Ayg[...].

o kil o ]ﬂA +<V)°
—> 7

antisymmetric symmetrlc Mean

o

Inhomogeneity

Figure 4.2.: Composition of the domain of the KATRIN krypton-83m measurement: The

potential component which produces non-vanishing values of p typically is ap-
proximately antisymmetrical to the injection point, which is an exactly defined
symmetry given by the weight functions P;(z). In contrast, the symmetry of
the potential components which have vanishing expectation value of Ajg[...] is
only defined as being not antisymmetric, and the depicted symmetrical shape
is only one simple possibility. Provided an ansatz for this component, the
total potential can be modelled as being composed of both components plus
its constant mean. The amplitudes of the inhomogeneity components add in
quadrature.
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Figure 4.3.: Antisymmetry amplitude: The ratio of the amplitudes of the antisymmetry and
the symmetry component are equal for an antisymmetry p ~ 0.7. Due to the
quadratic scaling, even for p = 0.9 the antisymmetric component is only twice
as large as the symmetric component. A factor 10 is reached for p =~ 0.995.

should be used with some caution, since rigorously it is only given by the absence of
antisymmetry (p = 0). Since p[V] oc Ajo[V], the defining condition for the potentials of
the symmetry component is the vanishing mean difference. Thus, while for p = +1 the
potential shape has the approximate triangular shape sketched in figure 4.2, it does not
need to have the simple symmetrical shape for p = 0.

Shape of the symmetry component: The potential shape of the symmetry component
is defined by equation 4.1 and optionally equation 4.3. The defining characteristic of
equation 4.1 is that the zero weighted mean of the supplied potential vanishes, and that
it is normalised to its zero weighted standard deviation. If both is already put into the
implementation of equation 4.2, any potential can be used.

Equation 4.3 is the optional condition for potentials in the kernel of the mean difference
Ajg[...]. Solving for these potentials is a homogeneous Fredholm problem of first kind
[Waz11] and the general solutions are non-trivial. Also, the subset of the kernel which
can be expanded in weights

(4.5)

A [Zk ar(Pr — 1)] _ 0

Py - Py

leads to non-physical solutions, since those expansions have non-regularised poles for
Py(z) = P1(2).
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Figure 4.4.: Peak-to-peak value and maximum derivative: For a given (oy, p), different
maximum derivatives of the potential result in different peak-to-peak values.
The linear connection (orange) with the smallest maximum derivative leads
to a larger peak-to-peak value than if a structure is added (here in the center,
red). In one case the maximum in the central WGTS is larger than the rear
wall voltage, in the other smaller.

Simple solutions without the need for regularisation can be found from polynomial expan-
sions. The simplest ansatz, which uses only two terms, is

Ayo[2™]

Va=o(2) = a (—Aw[z”]

z”—zm), acR, mneN. (4.6)

The coefficients Ao[z™] are discussed together with polynomial expansions in section 4.2.
In practice implementations of the full equation 4.2 with arbitrary Vis can be used, such
that the vanishing correlation (condition 4.3) is not required. However, in this work always
models like equation 4.4 were used, since they lead to simpler propagations of uncertainties
and directly show the symmetries of their components.

Symmetry component and peak-to-peak value: The symmetry component is independent
from the measured (oy, p). Nevertheless, in some cases it can be constrained from the
applied rear wall voltage and the measured potential mean (Urw, (V)). The reasoning is
as following: As discussed in section 3.3.3, the maximum derivative of the potential affects
the obtained peak-to-peak value PP[V] for a given standard deviation oy [V]. Thus, the
more structure the symmetry component has, the smaller is the resulting peak-to-peak
value for a given set of observables. This is sketched in figure 4.4. For some rear wall
regimes this allows to make a statement on the necessary structure, for example, if for large
rear wall voltages the externally applied electric field dominates over the internal plasma
processes. Due to energy conservation, in this case the maximum potential needs to be
smaller than the rear wall voltage. Increasing the structure decreases the peak-to-peak
value and consequently the maximum, while the other observables, especially the given oy,
remain unchanged.
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4. Plasma Potential Models from Krypton-83m Observables

While the quantitative relation of the structure of the potential to the peak-to-peak value
depends on the symmetry component, an approximate relation is sketched in the following.
For upper constraints of the peak-to-peak value from the rear wall voltage it holds

PP[V] = Max[V] = Min[V] , (4.7)
= 0(2) (Max[V] = (V),) , (4.8)
2 0(2) (Urw — (Vo) - (4.9)

The equation is expanded to lower constraints, if the absolute value is taken. The true
factor O(2) of the distance of the mean (V), to the boundaries depends on the actual
potential and the weight P.

Using the mean value theorem 3.99 leads to

. [ dav ] L 0@) [Urw = (V)ol
dz|| Lwars

Thus, the difference of the rear wall voltage to the measured mean sets a lower bound to the

necessary derivative of the potential. Since the antisymmetry component is approximately

linear, it does not contribute large derivatives and increasing the derivative can only be

done by adding structure to the symmetry component. As a consequence, if the peak-

to-peak value of the potential model is larger than expected, for example from energy
conservation, the structure of the symmetry component needs to be increased.

(4.10)

z

Due to the unknown factor O(2) the above relation only serves to show the principle.
This factor also needs to consider the distance from rear wall to central WGTS, which was
neglected here.

Connection to the rear wall: ~ Since the density of signal electrons in the ~ 3 m long region
between rear wall and WGTS is negligibly small, observables of the spectrum do not
contain information of the potential shape in this region. As a consequence, including
the rear wall voltage into the potential modelling is model dependent and any structure
that is restricted to this region requires non-measurable parameters. This is sketched in
figure 4.5.

Assuming no structure results in a linear connection potential

Zrear z
WGTS
VConnect(Z) = Ttear - (VRW - V(Z{f/ag”fs ) + V(Z{;%Ts s (4-11)
ZWGTS ~ “RW

where zii%0 1 is the position of the end of the rear part of the WGTS and zrw is the position

of the rear wall.

The linear connection is only for illustrative purposes, since it is known that a plasma
sheath decouples the rear wall from the WGTS for some voltage regimes. Thus, at least one
parameter A is required which defines the sheath width. Models using such parameters A,
can fit the data, when the corresponding connection shape extends into the WGTS, such
that the parameters are correlated with the observables. Otherwise only upper limits

Ak < Z{f]ngS — ZRW (4.12)
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.s""front
<" ZWGTS

’ _a'AO Pl (Z) - PO (Z) .................

Figure 4.5.: Rear wall connection potential: Due to the vanishing weights Py, P; between
the rear wall and the WGTS, the spectrum does not contain any information
on the potential V in this ~ 3 m long region. It is known that a plasma sheath
decouples the rear wall from the WGTS for some rear wall voltage regimes.
This can be modelled as an exponential decoupling with sheath width A, which

were — Zrw- Any more physical effects, resulting

%s non—measurgble if s < zyg8rg '
in more complicated shapes, require more non-measurable parameters Ay.

can be obtained from the data. However, in practice these conditions are problematic,
since they lead to constraints of A; only for very a small portion of the krypton data (i.e.
only when a strong external electric field is applied). Thus, in this work only the linear

connection is shown.

Summary: The previous discussion allows to rigorously predict the effect of the three

observables on the modelling:
« 0y : Serves as magnitude of the potential inhomogeneity.

+ p : Gives the antisymmetry of the potential.

« (V) :Is the mean potential.
The only input to the model is the symmetry component. When including a physical
principle like energy conservation, in some cases its structure can be constrained:

o Upw — (V), : Is a lower limit for the necessary derivative of the symmetry compo-

nent for some rear wall voltage regimes.
The results of the application of this model on KNM2 krypton data is found in section 6.4.
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4. Plasma Potential Models from Krypton-83m Observables

4.2. Linear Models and Polynomial Expansions

In the following the implementation of linear models is discussed. They are defined by

V(z) = ¢f(2), (4.13)
with a vector of N unknown, scalar, erroneous coefficients ¢ and N functions
fo :{z € [zrw: 2wGTs front]} @ R, n < N. (4.14)

They form the ansatz for the potential model. In the following for functions in f the
notation f, g, h and for coefficients in ¢ the notation a, b, ¢ is used. Together with N
boundary conditions 1% (for example (V), and (V'),, or the direct potential measurement
Vew) this gives a system of N linear equations

o (o (9o (Mo -++\[a
‘7: (V) <f>1 <9>1 (h), |l b = AZ, (4.15)

Vaw | 7| f(zrw) g(zrw) h(zrw) ---||c

which can be solved by matrix inversion. The matrix A and its inverse do not depend on
the boundary conditions (i.e. the set of observables) and are specific to each model. The
determination of the coefficients ¢ from the provided observables then only requires the
matrix multiplication

c=A"V . (4.16)

Since only the three listed boundary conditions are known, the modelling is restricted to

N = 3. The variance ¢2[V] cannot be used in this linear ansatz.

The potential model can be used in two ways:

« Using equation 4.16 for a given set of observables. The use case is the krypton
measurement.

« Using equation 4.15, if the coefficients ¢ (i.e. the potential V(z)) are known. One
use case is to study the translation from potential moments obtained in krypton
measurements to tritium measurements on test models.

Naturally, the measurable moments of the model should be calculated. For the calculation
of the variances o[ V] two further matrices are needed. Using the outer product ®, the
squared mean matrix

fHi g9 (fh)

> o |9 (99); (gh);
(Fof), =\t har, chiy, - (#.17)

and the mean squared matrix

i Hikg)i ih)
£ d <g>i <f>l <g>i <g>i <g>i hy; ---
(7), 2 (F) = iy (horiay Chy iy, - (@.19)

100



4.2. Linear Models and Polynomial Expansions

Table 4.1.: Plasma antisymmetry for power functions.
Odd orders of z* show large absolute antisymmetry. The negative signs indicate
that the antisymmetry shape decreases from rear to front. The linear shape is
almost similar to the reflected antisymmetry shape, i.e. the amplitude of other
components is smaller by a factor of seven. The values are calculated for KNM2
krypton operating conditions of pd =30 %, T = 100 K, k35, = 0.69.

Exponent k
Estimate | 0 1 2 3 4 5
—Ap[zF] 0 166 0435 19.65 7.17  300.65
oo[Z] 0 2445 6.341 34891 126.78 646.81
—pl2F] 098 010 082 008  0.67

are obtained. The calculation of the central variance o?[V] = (V?), — (V)? can thus be
performed simply from precalculated matrices:

o[Vl = E(<f®f>i - <f>z ® <f>z) c. (4.19)

The propagated uncertainties o((V);) and o(c?[V]) from the uncertainties a(c) of the
¢ are obtained using the first derivative of equations 4.15 and 4.19, leading to the Jacobi

matrix
( U(<2V>i) ) _ <f>zT T a(c) .
@GV o ((Fe i) - (7) o (7))2)

Calculations for scattering multiplicities i > 1 and higher moments of the starting potential
distributions are possible, but both lead to quantities not measurable in krypton.

(4.20)

Polynomial models: A common use case of linear models is the ansatz of a Taylor series

z\k
V(z) = Z Uk (m) (4.21)
with coefficients v;. Coincidentally, the symmetry of power functions around zero approx-
imately fits to the symmetry of the antisymmetry operator. Thus, even orders (which are
axially symmetric with regard to the coordinate origin) are suppressed in A;o[V], which
can be seen in table 4.1. As a consequence, polynomial expansions need to have at least
one even and one odd term, to reasonably cover the range of obtainable observables.

The solutions of general expansions with mixed coefficients can be obtained by the follow-
ing matrices:

0 0 0 0 ---\(fv
0 5978 1.721 76.03 ---||o
G2V = (09 01 vy v --)|0 1721 40.22 3182 ---|foy |, (4.22)

0 76.03 31.82 1217 ---||us3
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4. Plasma Potential Models from Krypton-83m Observables

0 0 0 0 -\ (0o
0 3.868 -—8.404 4879 ---||ov;
G V]=(vo v 0 v --)|0 —8.404 3816 -156.2 ---[lvzf, (4.23)
0 48.79 -156.2 854.1 ---||uv3
(4]
01
Ap[V]=(0 -1.66 —-0.435 —-19.65 ---)[v2]. (4.24)
U3

They hold for KNM2 krypton operating conditions of pd =30 %, T = 100 K.

By calculating the eigenvalues, it is easily shown that both of (kl) and o?(kl) are positive
definite and that oy [ V'] and oy [V] increase upon including higher orders of the potential vj.
As discussed, this does not hold for A;¢[V]. Specifically, there are infinitely many potential
shapes for which A;o[V] = 0 holds. The coefficients are obtained from equation 4.24.
Evidently, since all the entries in 4.24 have the same sign, this requires non-monotonous
potentials. If for example only up to second order is used, one obtains

zZ\%2 z
Vigm(2) o 3.815 (—) _Z (4.25)
m m
for which Aqg [Vsym] = 0 holds. It is used in section 6.3.1 as symmetrical component for
the potential modelling of KNM2 krypton data.

Since every ansatz of linearly formulated potentials is model dependent, no further ap-
plications are shown in this work and the antisymmetry parametrisation is preferred.
Nevertheless, during the work on this thesis many examples of polynomial models were
calculated from KNM1 and KNM2 krypton data. For a given set of observables these
models always showed the symmetries expected from the measured antisymmetry. Also,
these models were used to check the theory developed here: They were put into full
z-dependent toy spectra with a sliced source model (described in section 1.2.2) and their
effect on krypton and tritium observables was fitted. In all tested cases the results were
in agreement with the equations derived in this work. Thus, the fits to the krypton line
spectra recover the moments (oo[V], (V);,(V),) of the input potential. An ansatz for
the resulting neutrino mass and endpoint shift was derived in section 3.4.3 in the form
of expansions in potential moments. Calculating the coefficients of these expansions for
typical KATRIN conditions is the topic of the next chapter.
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5. Systematic Uncertainties of Tritium
Observables due to Plasma Potential
Moments

In this chapter the relations of the systematic shifts of the squared neutrino mass Am?[V]
and the endpoint AE,[V] to the starting potential V are calculated for typical KATRIN
measurement conditions. Here only the relevant coefficients and potential shapes of the
theory which was derived in chapter 3 are calculated. Thus, the detailed elaboration in
chapter 3 or the summary chapter 2 are an essential foundation for the discussions carried
out here.

The developed theory uses a convolution of the krypton or tritium spectra with Starting
Potential Distributions (SPD). Due to the longitudinal sensitivity on the source potential
by inelastic scattering (discussed in section 1.4.2) this has to be carried out separately for
each scattering multiplicity i. The relevant quantities for the characterisation of plasma
potential systematics are the moments (equation 3.1) of the SPD; obtained. Up to second
order these are the means (V');, the mean differences A;o[V] and the standard deviations
o;[V]. All source potential related quantities are weighted with the normalised longitudinal
electron distributions (referenced as scattering weights in the following) P;(z) of the source,
which are different for krypton and tritium. As a consequence, also the moments are
different. Indices marking this difference are omitted here for brevity, but the difference
should always be kept in mind.

As shown in chapter 3 the general equations for the systematic shifts of the squared
neutrino mass and endpoint of the tritium f spectrum are of the form

Am2[V] = - Z el V] - 202 [V] + Z a’o?[V], (5.1)
i>0 i>0
AEG[V] == (V)o = ) aifo[V]. (5.2)
i>0

The goal of the first section 5.1 is the determination of the susceptibilities ¢;, aj and a;.
Their determination allows to reduce the above equations to the relevant terms at given
measurement conditions.

As visible in this ansatz, in the tritium spectrum the scattering contributions are mixed
and the susceptibilities specify the individual contributions. In section 3.4.3 it was shown
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5. Systematic Uncertainties of Tritium Observables due to Plasma Potential Moments

that the mixing of the A;y can be condensed into a weight

(5.3)

PPEEZGI-(PI'—P()), 6:'261'
i

i

P, is the weight of the mean difference A,[V] = (VP,), which absorbs all scattering
contributions and is the relevant quantity for the description of the neutrino mass shift. It
was also shown that in an even more fundamental description the antisymmetry operator

(5.4)

replaces A,[...]. It is a correlation operator, i.e. [p[V]| < 1. The extrema of j[...] are

produced by the antisymmetry shape %(Z)’ which is the potential shape that leads to the
extremal neutrino mass shift. As shown in section 5.2, it is antisymmetrical for typical
KATRIN measurement conditions. k,, is the standard deviation of the antisymmetry
shape. Analogous definitions hold for P,,, A, and p, derived from the susceptibilities of
the endpoint a;.

Accordingly, section 5.2 is dedicated to the study of the antisymmetry shape and the
standard deviations and correlations of different scattering weights for typical KATRIN
measurement conditions.

The standard deviations and correlations of the scattering weights are relevant to calculate
how the krypton-83m estimates (Ao[V], 09[V]) constrain (A,[V], 0o[V]) and thus the
neutrino mass shift under tritium conditions. The corresponding relations were derived in
chapter 3. In section 5.3 the resulting scaling factors and uncertainties are calculated for
typical KATRIN measurement conditions.

The studies are based on the key conditions of the KNM1-3a measurements, shown in
table 5.1. The different source conditions of the KNM1 and KNM2 tritium and krypton
measurements are expected to result in a different plasma potential. This leads to an
uncertainty in the prediction of the associated systematics, which can only be specified
by assuming a potential model for extrapolation. This is not the topic of this work.
The uncertainty was erased in KNM3a by choosing the same source conditions for both
measurements. Still, the uncertainty due to the different scattering weights for the different
gas species remains, which is calculated in this chapter. While the column density in
krypton mode up to KNM3 was restricted to below 40 %, the column density in tritium
mode can be varied freely up to the nominal amount *. To fit also to future campaigns, in
the studies the column density in the tritium measurement is varied. All plots are produced
using the SSC&KaFit software framework (cf. section 1.2.2) and the gas model it contains.

IColumn density here always refers to the value of tritium. The krypton column density is irrelevant due
to the low density limit discussed in section 1.3.1.
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Table 5.1.: KNM1-3 measurement conditions.
While in KNM1 and KNM2 tritium column density pd and temperature T of
the krypton and tritium measurement were different, in KNM3a equal source
conditions were chosen to avoid plasma differences. This is also referred to as
high temperature or equal source mode in the following.

Campaign pdin % of nominal T inK

Tg Kr Tg Kr
KNM1 22 30 29 100
KNM2 84 30 29 100
KNM3a 40 40 80 80

5.1. Susceptibilities of Tritium Observables to Scattering
Moments

In this section the susceptibilities of m? and E, with regard to the starting potential
moments Ajo[V] and o;[ V] for i scattering multiplicity are calculated. They are given by
the partial derivatives

_8Am§ - dAm? 0k

, aA; = , Aj = — .
aAio ! 80'122 ' aA,’O

€ =

(5.5)

As discussed in section 1.2.2, modifications of the differential spectra by source or transmis-
sion properties of KATRIN are considered in the response function R(E, qU) (figure 1.11).
E is the electron energy and qU the retarding energy of the spectrometer. Consequently,
plasma potential systematics are also considered by a modification of the response function.
The effect of the potential moments on the beta spectrum is equivalent to convolutions
with a Gaussian G(Aj, o;) for each scattering multiplicity (as derived in appendix A.1)

=0

E—-qU ha
REqU) = [ T(E=eqt) Y (o) il©) Gl i)de (5.6
€ i=0

Here 7 (E — €,qU) is the transmission function. The (p;) are the average scattering
probabilities and f;(€) is the i times convoluted energy loss function

fi(e) = 8(€) = fi(e) = ... = fi(e) . (5.7)

i—times

fi(e) is shown in figure 5.1. The (p;) are plotted in figure 5.2 in dependence of the tritium
column density.

Notably, an inhomogeneous plasma potential is only one possibility to arrive at non-
vanishing moments of these Gaussian convolutions and for example uncertainties in the
energy loss model or other spectrum contributions, which are shifted in energy compared
to expectation, lead to similar effects.

105



5. Systematic Uncertainties of Tritium Observables due to Plasma Potential Moments

] g -="[Probability  0.284]"
- : : . | MeanineV  12.825
025 b | P TR «...| SigmaineV  0.562]-.

Energy loss probability
e
)

e e

e Rt I S R

0Ot N

0 ] N
0 10 20 30 40 50

Surplus energy in eV

Figure 5.1.: Energy loss function f;(¢€): The width of the excitation peak, here fitted with
a Gaussian (red), is already so large that additional variance due to plasma
effects can be neglected. The function was measured by KATRIN during KNM2
[KATep].

The studies shown in the following use the shift method (see section 1.2.1) on toy data of
the respective KNMx campaigns: the A;g and o7 are varied in Asimov data and the resulting
shifts of the tritium spectrum observables are fitted. The measurement time distribution
(i.e. the distribution of the measurement time over the set points of the retarding energies)
of KNM2 was used. For the study of the analysis interval dependence the respective
retarding energies were excluded accordingly.

Susceptibilities to variances al.z: For changes of the i~ on the order of 100 mV shifts of
not more than a few millielectronvolt for m, and less than a millielectronvolt for E, were
found. It can be concluded that those susceptibilities are negligible for typical KATRIN

conditions:
2
2 = oAm;

! o0?

1

~0fori>0. (5.8)

The vanishing relevance of additional variances of the scattered spectra is explained by
the intrinsic width of the energy loss function fi(€). The excitation peak has a width
of 562 meV so that an additional width of 100 meV added in quadrature is in practice
negligible. Including the ionisation tail or higher scattering order convolutions leads to
even broader f;(e) and to less effect of additional variances.
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Figure 5.2.: Average scattering probabilities vs. column density: The scattering probabili-
ties increase with increasing column density. Above 80 % of nominal column
density the probability of single scattering decreases in favour of the probabili-
ties of higher scattering multiplicity. The temperature is 29 K.

Susceptibilities to Mean Differences A;y

When the higher variances are neglected, the neutrino mass and endpoint shift equa-
tions can be reformulated using the antisymmetry shape (equation 5.3 ff.). As discussed
in section 3.4.3, hereby the summation over €;Ay is replaced by a product of the total
susceptibility € and A, (analogously for the endpoint):

Ami[V] = —eA,[V] - 2065[V], (5.9)
AEG[V] = = (VYo —al,,[V]. (5.10)

Notably, the antisymmetry shapes (and the corresponding mean differences A, and A, ) for
the neutrino mass and endpoint are in general different, since in general their contributing
susceptibilities ¢; and a; are different. Whether or not this is relevant can be investigated
by studying the ratios of the susceptibilities: If they differ by more than a constant scaling,
then the antisymmetry shapes are different.

The total susceptibilities € and a are obtained by simultaneously shifting all A;y in the
Gaussian convolution (equation 5.6) by the same value. They are shown together with
their components ¢; and g; in figures 5.3, 5.4, 5.5, and 5.6 in dependence of column density,
background rate and lower analysis interval.

Ratio of the susceptibilities: While the susceptibilities for neutrino mass and endpoint
look very similar, their ratio is in general not constant. Also, for analysis intervals smaller
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than 90 eV the ratio is larger for higher scattering multiplicities. Thus, the neutrino mass
is more susceptible to shifts of higher scattering multiplicity than the endpoint. The non-
constant ratio also remains when normalising it to the summation of the susceptibilities.
As a consequence, generally A,[V] and A, [V] are different, i.e. different potential shapes
lead to extremal neutrino mass and endpoint shifts. However, for the 40 eV range the
contributions of i > 1 and the column density dependence of the ratio are small. In this
case also the difference of the antisymmetry shapes can be neglected and in the following
only the neutrino mass case A, is considered. However, if a detailed analysis of the starting
potential induced endpoint shift is the goal, especially for larger analysis intervals, then
these differences are relevant.

Dependence on background rate and temperature: No sizeable difference between the
source temperatures of 29 K and 80 K has been found. Below a background rate of
~ 50 mcps the susceptibilities are greatly reduced.

Dependence on scattering contribution: The expectation that higher scattering contribu-
tions lead to larger susceptibilities is partially fulfilled; the susceptibilities increase with
column density, as do the scattering probabilities (figure 5.2). However, the detailed scaling
of the susceptibilities and scattering probabilities with the column density is different.
Also, the dependence on the analysis interval is non-trivial: For intervals larger than
40 eV the total and 1x scattering susceptibilities start to decrease and in the region above
80 eV there is a zero crossing. Why this happens is not understood conclusively. However,
vanishing total susceptibility should not be mistaken with vanishing neutrino mass or
endpoint shift, as discussed in section 3.4.4 and in the following.

Normalisation and implementation: Neglecting the variance term, the expression of the
shift of the squared neutrino mass (equation 5.9) is given by a product of the mean difference
A,[V] and the susceptibility e. The susceptibility defines, which mean differences need to
be shifted in the simulation. If the total susceptibility is used, all A;y have to be shifted by
the same amount A, [V]. However, this depends on the normalisation of P, (equation 5.3).
If it was normalised to one of the ¢; instead of ¢, resulting in a different operator A,/[...],
in equation 5.9 the susceptibility ¢; would appear as prefactor. To obtain the same shift
of the neutrino mass, in this case only A;y needs to be shifted, but by the different value
Ay [V].

Consequently, by choosing which A; are shifted, the analysts decide which values A,[V]
or A, [V] are needed. In all cases those values are constrained by the krypton A;o[V] and
the shifts are in general not the expectation values A;y[V] of the actual potential.
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As visible in the first term of equation 5.1

Ami[V]|ai:0 = - Z eilio[V],

i>0
i>0
——

oce

if all mean differences actually have the same value A[V], they can be drawn in front
of the sum. Thus, only in this case this term vanishes for e = 0. However, if the mean
differences are different, the multiplication of € with A, then singular leads to a finite shift.
Such singularities are avoided when A, [...] is normalised to a susceptibility that does not
vanish for the respective conditions. Consequently, for analysis intervals larger than 80 eV
a shift of Ay should be chosen.

Conclusion: For the usual analysis interval of 40 eV the susceptibilities of neutrino mass
and endpoint to mean differences are by coincidence the largest. Depending on the column
density, the endpoint shift is not only determined by the mean potential (V),, but has large
contributions of A, [V]: up to 17 % for nominal column density, ~ 6 % in KNM1, ~ 15 %
in KNM2 and ~ 9 % in KNM3a. The contributions of A,[V] to the shift of the squared
neutrino mass are large, too. Due to the correlation of A,[V] and 0y[V] they are easier
to quantify when using the shape energy instead of the susceptibility. This discussion is
carried out in the next section.
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Figure 5.3.: Mean difference susceptibility vs. column density: As expected the susceptibil-

110

ities strongly depend on the column density. Since the summation of the 1x
and 2x susceptibilities are in practice identical to the total susceptibility, higher
scattering orders are negligible. The ratios show a column density dependence,
such that the antisymmetry shapes for endpoint and neutrino mass are not
the same.
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Figure 5.4.: Mean difference susceptibility vs. background: The susceptibilities to scattering
moments increase with the background rate. Thus, the values obtained for
Bg = 276 mcps are an upper limit for KNM2, which had a lower background in
its last period 3. Reducing the background below ~ 50 mcps would be strongly
beneficial with regard to plasma potential systematics.
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Figure 5.5.: Mean difference susceptibility vs. lower analysis interval: Increasing scattering
multiplicities are only relevant if the analysis interval is large enough. In the
standard 40 eV range the first two orders are sufficient. In the 90 eV range also
3x scattering has to be considered. Notably, the 40 eV range is accidentally the
most susceptible, while above the shifts decrease. As discussed in the text, the
zeros of the total susceptibilities do not imply vanishing endpoint or neutrino
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Figure 5.6.: Mean difference susceptibility vs. lower analysis interval, high temperature
mode: Comparing to figure 5.5, the susceptibilities in first approximation scale
with the column density. However, the zero crossings are slightly shifted, such
that the scaling with column density is non-trivial in detail. As in figure 5.5,
the ratios strongly vary, implying differences of the antisymmetry shapes of

endpoint and neutrino mass.
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5.2. Weights, Operator Constraints and Extremal Shapes

In this section the normalised longitudinal electron distributions P;(z) (also called scat-
tering weights) for i scattering multiplicity and the derived antisymmetry shape f,—‘;(z)
(equation 5.3 ff.) are studied. From their shapes follow the constraints of the plasma
potential observables of the krypton-83m and tritium measurement and the extremal
potential shapes leading to those constraints.

The theory was derived in section 3.3: there it was shown how standard deviations x5, of
the normalised weights P;, P, can be used to constrain observables ?, typically resulting in
inequalities. Related to these constraints are potential shapes, which produce the extremal
effects. In this section only the inequalities and the shapes are shown.

Index rules: The following rules simplify the understanding of the derived equations:

« For all constraints a standard deviation o, needs to be measured; its weight gives
the index after the comma.

« The weights before the comma are given by the involved Ay; weight correlations
P 10,0 @ppear if krypton constrains tritium. Standard deviations x5, appear, if a Ay
is constrained by a o.

The pure scattering weights P;(z) of tritium are shown in figure 5.7, a comparison between
krypton and tritium weights at equal source conditions is seen in figure 5.8.

Constraints can be obtained for the peak-to-peak value of the potential in the central
WGTS PP[V] and for the mean differences A;z[V], including the relevant mean difference
for the tritium measurement A,[V]. However, as discussed in section 5.1, the latter is
normalisation dependent. If instead the antisymmetry operator p defined in equation 5.4
is used for the parametrisation of the shift of the squared neutrino mass, then one obtains
Ami(p,00) = —200( €,p + 0o ) (5.11)

—_——

shape  variance
as discussed in detail in section 3.6.1. The resulting prefactor is the shape energy
1
€ = Eekp,o >0. (5.12)
Since |p| < 1, it quantifies the extremal value of the above shape term, which is realised

by the antisymmetry shape.

Mean differences: The weight standard deviations kz, constrain the size of Ax via the
shape operator ps , if o, is known:

|A2[V]] = 1pzz[V]Ikzz0:[V] < kgz0:[V] . (5.13)

2Negated indices were introduced to specify the normalisation (1), = (Px) = 0, while for regular indices
(1), = (P;) = 1 holds. Negated indices always appear in the context of mean differences Az, while
regular indices appear for variances o,. These operators and their weights are used to generalise from
pure scattering weights P; to mixed scattering contributions, which is relevant in the tritium B spectrum.
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Figure 5.7.: Normalised electron distributions, tritium: For small column densities (a) the
scattering probabilities are small and P, is essentially given by the gas profile.
P.., show degeneracy, which decreases with increasing column density (b). The
ripples visible in all source profiles at around +20 % Lwgts are due to variations
in the pitch angle. They are caused by inhomogeneities of the magnetic field
in the pump ports. Shown is the central WGTS with a length of = 10 m.
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Figure 5.8.: Normalised electron distributions in high temperature mode: Even at same
source conditions the weights of the krypton and tritium spectrum are different.
This is related to the higher mass of krypton, which, compared to tritium, leads
to accumulation at the WGTS ends.

They are shown in figure 5.9. The constraints of the Aj; only depend on the scattering
weights, thus mainly on the column density and due to changes of the gas viscosity
in principle on the temperature. However, as shown in section 5.1, the temperature
dependence is negligible. In tritium, the constraint of A, (defined by the summation over
the A;o, weighted with the susceptibilities) additionally depends on the susceptibilities and
thus on the MTD, background and chosen normalisation of the summation. Due to the
normalisation dependence, the detailed numbers should be discussed in terms of shape
energy, as done below.

For krypton the relevant operators are Ay, 0y and the unweighted o (in the range of the
central WGTS). Considering the tritium column density in the krypton measurements
of 30 — 40 % of nominal, it follows from figure 5.9 that the Py weighted and unweighted
standard deviations need to be at least ~ 0.66™! ~ 1.5 times larger than Aj,. If that does
not hold, the krypton measurement suffers from systematics.

The shapes leading to the maximum of the respective antisymmetry operator (i.e p = +1)
are shown in figure 5.10. For the shown analysis range of 40 eV the tritium A, is dominated
by Ajg, leading to the typical antisymmetrical shape also observed in krypton. Thus, for
given oy, this potential shape produces the largest neutrino mass and endpoint shift shape
term, and the largest energy loss shift in krypton.
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Figure 5.9.: Weight standard deviations and operator constraints: The operators are con-
strained by the weight standard deviations k3, = o, [?—j] displayed on the

y-axis. Here they are shown for all relevant A; and o,. Increasing scattering
multiplicity or column density leads to larger departure of Px from a constant

behaviour.
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Figure 5.10.: Antisymmetry shapes: In all shown conditions the plotted weights KLOP_:))
X
(tritium) or K%PIP;OP" (krypton) are approximately antisymmetrical. These
10,0

shapes maximise the respective antisymmetry operators (i.e. p = +1).
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Figure 5.11.: Peak-to-peak value constraints: The measurement of A sets a lower limit to
the peak-to-peak value of the potential. The exact solution is not differentiable.
Approximate physical solutions are chosen to minimise oy or o (i.e. to be as
constant as possible) for a given Ajo. The values are given for krypton.

Peak-to-peak value: The peak-to-peak values of the shapes shown in figure 5.10 are also
approximate constraints for general potentials

Px
PP [P—]

K}?,z

PP[V] >

|Az[V]] . (5.14)

The constraints are shown in figure 5.11 for krypton A;o[V]. As discussed in section 3.3.3
the exact solution is the potential V o« ®(P; — Py), which is non-physical. However, all
constraints are of the same order and it can be concluded that the peak-to-peak value of
the potential in the central WGTS is at least ~ 4 times larger than Aq,.

Shape energy: The shape energy is visualised in figure 5.12. It increases with column
density and is in the range of several 100 meV. Thus, the neutrino mass shift is not only
determined by the standard deviation oy, but the shape energy needs to be considered:
it is = 550 meV for nominal column density, ~ 150 meV in KNM1, ~ 500 meV in KNM2
and =~ 250 meV in KNM3a. Comparing to a standard deviation of oy ~ 50 mV, this gives
sizeable contributions even for a small antisymmetry of |5| = 0.1. If a KNM2-like column
density and the above potential estimates are assumed, the following shift of the squared
neutrino mass is obtained:

Am?(oy ~ 50 mV, p ~ 0.1) ~ —2-50 (0.1-500+ 50 ) meV?=-0.01eV>. (5.15)
~—~———  ~——

shape variance
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Figure 5.12.: Shape energy vs. column density: The shape energy €, causes a shift of
the squared neutrino mass of —20y€,p. Thus, the shape energy dominates
compared to the usual variance term —202, if pe, > op. For the expected
range of O(op) = 50 mV the contributions are of the same order already for
potentials with small antisymmetry O(p) = 0.1.

This shift is twice as large as the budget for energy scale systematics in the design report
[KAT04b]. Notably, the antisymmetry is not necessarily small: the krypton plasma simula-
tion shown in figure 1.19 has an antisymmetry of p = 0.88, leading to a five times larger
absolute value of the shift of the squared neutrino mass. Thus, the precise determination
of both 0y and p ~ A, is necessary, since the obtained estimates can be used in the tritium
model to correct for the systematic.

The connection of the shape energy term of the neutrino mass shift to the formulation
using the total susceptibility is

€N, = 200p€, . (5.16)

For given oy and p this allows to calculate A, directly from the shape energy. As obvious
here, A, depends on the susceptibility € used to normalise it: If € vanishes, A, must be
singular, since both sides of the equation must be finite. Notably, o, p and €, do not
depend on normalisations and are never singular, such that the right side is the more
physical formulation. Moreover, the shape energy vanishes only for vanishing scattering.
Since p can in practice not be implemented in simulations, still A, needs to be used for
actual systematic studies, as done in section 5.1.

Since the components of the shape energy are derived from covariances

= ~€iK55 » (5.17)
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their summation follows the usual square rules

2 _ 2
€, = Z €,i+2 Z €0,i€p,i P75 70,0 - (5.18)

i i<j

P75 6,0 are the weight correlations defined in section 3.2.2. Thus, the shape energy is
smaller than the summation of the absolute values of its components:

e < D lend] - (5.19)
i

The equality only holds for full correlation. Consequently, constraining p or A, with
estimates from the krypton measurement gives the best possible constraint on the neutrino
mass shift. These constraints are obtained from weight correlations between krypton and
tritium weights, which is discussed in the next section.

5.3. Scaling between Krypton and Tritium Plasma Moments

In this section it is quantified how the estimates (A1o[V], 0o [V])X* or (5, 60)¥* from kryp-
ton mode constrain (A, [V], g9 [V])T2 of the tritium spectrum and thus the neutrino mass
shift. The indices for the gas species are omitted in the following. Tritium observables are
always on the left side and krypton observables on the right side of the equations.

The total derivative of Az[V] and 05 [V] consists of a component which is related to the
change of the weights and a component which is related to the change of the potential:

dz
dAL[V] = / [ dP.(2)V(z) + Pi(2)dV(2) ] (5.20)
z LWGTS —_———— —_————
weight uncertainty potential uncertainty

d2V] = [ a2 (V@) = (0* 12 P2 @V () = 4D (V@) = (D) |
z FWGTS

weight uncertainty potential uncertainty
(5.21)
This section is only concerned with scaling uncertainties, arising from differences in
weights. Uncertainties due to possible differences in the plasma potential have to be
determined separately and are not the topic of this thesis.

Constraint of tritium Az:  The general equation for constraints of Az has been derived in
section 3.3.1. For the specific case here it reads

R T,—Kr Kx,0 "
As(00,p ~ A1g) "= Ago K%p,zﬁ,() + 00Kz,04/1 — p;ﬁo 1-p%. (5.22)

10,0
[
scaling factor

scaling uncertainty

Thus, the scaling factors are used to correct the measured Aj, from krypton in the transla-
tion to tritium. The scaling uncertainties are used to calculate the additional uncertainty
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on the resulting value. Weight standard deviations k5 and correlation p 15, are shown
in figures A.19 and A.20 of appendix A.9 for different operating conditions and tritium
operators. The weighting indicated with the index 0 always uses the krypton P;. The
resulting scaling factors and scaling uncertainties are shown in figures 5.13 and 5.14 as
function of the column density of the tritium measurement.

The scaling factor of the relevant A, is between 80 % and 100 %. Thus, estimates of tritium
A, have the tendency to be smaller than A;q in krypton. This follows from the fact that the
standard deviation kg, in krypton is larger than k¢ in tritium. The standard deviations
quantify the variance of P; — P in krypton or P, in tritium, and due to the accumulation
of the krypton at the ends of the WGTS, the krypton weights differ more strongly.

The scaling uncertainty of the relevant A, is generally between 10 % and 30 % of oy. The
main dependence is on the column density difference of the tritium and krypton modes.
Thus, even at the same column density the scaling uncertainty is never below 10 % of ay.
For the krypton plasma simulation shown in figure 1.19 the antisymmetry is p = 0.88,
giving 4/1 — p% = 0.47. Thus, if the simulation is correct, the scaling uncertainty is only
half as large. Notably, for |p| = 1 the uncertainty vanishes, since the potential is exactly
known.

Constraint of tritium o2:  Constraints of variances o% (o7, p*) for given krypton ¢ and p*
cannot be formulated analytically. The numerical solution is found in appendix A.2. Only
in the limits of p = 0 and p? = 1 analytical equations can be given. In the latter case the
potential is exactly known and the ratio of o, and oy is calculated from equation A.71 in
the appendix. In the case of p = 0, the following constraint was derived in section 3.3.2:

29Kr Px . Px
o2(a?) gk oF +0p (Max [Pogz;] - 1) ~ ol (1 — Min [POZ;]) . (5.23)

scaling uncertainty

Thus, the scaling uncertainty is used to calculate the uncertainty on o in tritium, which
is caused by the weight difference to the o¢ in krypton. As discussed in the derivation,
the maximum uncertainty assumes localised inhomogeneity at a specific z. If it can
be assumed that the inhomogeneity is distributed over the whole WGTS length, this
uncertainty vanishes. If it is known, that the inhomogeneity is concentrated in a specific
region, only the extrema of the weight ratio in this region need to be considered.
. . PP . . . o .
The weight ratio S is shown in figure 5.15 for different operating conditions. The resulting
0
weight uncertainties are shown in figure 5.16.

The lower bounds are only relevant if the mean value of oy is used in the tritium analysis. In
the case where only upper limits are used, upper bounds are sufficient. They are generally
between 110 % and 120 % of krypton 0y, mainly depending on the column density difference
of the tritium and krypton mode.
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Figure 5.13.: Scaling factors, mean differences: In KNM2 (a) the column density of the
tritium measurement was 84 % of nominal, resulting in a scaling factor of
~ 100 % for A,. In KNM3a (b) the column densities in both measurements
were 40 % of nominal, resulting in a scaling factor of ~ 90 % for A,. Due to
the demixing of the gas species, a measurement under the same conditions
does not mean that no scaling is necessary.
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Figure 5.14.: Scaling uncertainties, mean differences: Differences in the krypton and tritium
gas profiles contribute an uncertainty on the tritium plasma observables.
For KNM2 (a) both column density and temperature of the krypton and
tritium measurement were different, resulting in a scaling uncertainty of
Amax (A) = 0.2409, mainly due to the different column densities. In KNM3 (b)
both measurements were taken at the same conditions. Still, the uncertainty
is Amax (Ap) = 0.130y, due to the demixing of the gas species.
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Figure 5.15.: Ratio of tritium to krypton zero weights: The extrema of the shown ratio
of POT > and P(I)<r constrain the ratio of tritium and krypton o7. Since krypton
accumulates at the WGTS ends, the ratios are larger than one in the center
and smaller than one at the ends for comparable tritium column density in the
krypton and tritium measurement. For large column density extrapolation
(blue) the maximum is shifted to the front.

Analysis methods: The best way of analysis depends on whether a usable estimate of A
exists or not. There are two systematics which can prohibit the use of the measured value
from krypton for neutrino mass analysis:

+ Krypton systematics: The estimate of Aj¢ can suffer from too large systematics of the
krypton measurement. A main systematics driver at the moment is the uncertainty
of the energy loss function for the energies used in the krypton measurement.

« Potential uncertainty: Significant changes of the shape of the potential between the
operating modes can make the scaling impossible.

Currently both problems are relevant for the KNM2 analysis, and while the potential scaling
was removed in KNM3a and KNM4 by choosing the same conditions of the measurements,
still the systematic on Ay is present. Thus, at the moment the systematics are too large to
use Ajo. However, in the future this systematic will be removed by measuring the correct
energy loss function. It follows:

« Ao not available: In this case the shape component of the neutrino mass shift is
constrained directly by the shape energy, which assumes the worst possible potential
shape. It can be either positive or negative, so only a symmetric constraint around
zero can be constructed. For systematic studies the maximum |A,| is needed and
not the shape energy, which is obtained by equation 5.16 for |5| = 1 or equivalently
equation 5.13.
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Figure 5.16.: Scaling uncertainties, variances: The lower (a) and upper (b) bound are
obtained by finding the minima and maxima of curves like the ones shown
in figure 5.15 for different column densities in tritium mode. Since only the
Py are relevant, this only depends on the column density difference of the
measurements and not on the MTD. Prior to KNM4, the temperature limited
the maximum column density in krypton mode to 30 % of nominal for 29 K
and 40 % of nominal for 80 K and was chosen accordingly.
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« Usable Ajo: In this case the mean neutrino mass shift can be predicted and the
uncertainty on the shift can be calculated as described. Depending on the size of the
shift, the calculated A, can be used in the tritium model to correct for the systematic

shift.

In both cases the measurement of oy in krypton and a reasonable potential scaling to tritium
conditions is unavoidable. In general the potential scaling is correlated with the weight
scaling. However, as long as oy is not strongly dominated by localised inhomogeneities, it
could be argued that small shape changes do not affect the estimate. This allows to treat
it as a measure of potential magnitude only, and to decorrelate the two scalings. Which
kind of inhomogeneity currently dominates the measurement data is not conclusively
understood and can possibly only be determined in combination with plasma simulations.
The neglect of the correlation and the quadratic addition of the uncertainties associated
with the two scalings is conservative, so that the approach presented here is in any case
useful for understanding the weight scaling.

In all cases uncertainties related to weight scaling are maximum uncertainties, i.e. the
estimates stem from a uniform distribution bounded by the uncertainties. While it was
shown that these distributions can in some cases also be approximated with Gaussians,
uniform distributions were implemented by all groups performing the ongoing KNM2
analysis.

Scaling with the Lower Analysis Interval

The previous discussions were limited to the scaling of the plasma estimates with column
density, which is relevant for the analyses performed so far in KNM1 and KNM2. However,
in both cases the tritium spectrum was recorded over a larger energy interval than the
one currently used for the spectrum fit. As visible in the analysis interval dependence
of the susceptibilities in figure 5.5, increasing the interval reduces the overall sensitivity
to scattering effects, such that using that data might be beneficial with regard to source
potential systematics. Thus, in the following it is studied, how the analysis interval affects
the predicted neutrino mass shift.

The analysis interval dependence cannot be studied using A, since it is singular for
vanishing total susceptibility € = 0 3. Instead, the shape energy and the shift of the squared
neutrino mass and its uncertainty are calculated directly. The latter two are obtained by
multiplying equation 5.22 with —e, resulting in the shape energy term

2 A TyoKr T'e€p - _
Ami (oo, p ~ A10)|00:o = —2A10—K_ P50 £ 2007i€p 1 = P00 1-p°.  (5.29)
10,0 ,
prediction uncertainty

Thus, the prediction is determined by the shape energy ¢,, the correlation p 10,0 of P,
in tritium to Py — Py in krypton and the krypton weight standard deviation xgj,. The

3Thus, if future analyses use larger spectral fit intervals, the shift of Az cannot be modelled as simultaneous
shift of all scattering moments, which is the current standard implementation. Instead it could be
modelled by only shifting Ay, since €; does not vanish.
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Figure 5.17.: Shape energy vs. lower analysis interval: For the 40 eV analysis interval, the
penalty due to unknown potential shapes is maximal, while it is reduced by a
factor of ~ 5, when going to a 90 eV interval. Notably, in contrast to the total
susceptibility the shape energy does never vanish, if scattering is present.

latter two are weighted with Py from krypton. r ~ 0.94 is the ratio of x,, o weighted with
krypton P, divided by the value weighted with tritium Py, shown in figure A.23 in the
appendix. While r, also has a small contribution, the analysis interval dependence is
mostly given by the shape energy €, and the correlation p 2T0,0°

The shape energy, the predicted shift of the squared neutrino mass and the uncertainty
on this prediction are shown in figures 5.17 and 5.18. There are no qualitative differ-
ences between the individual KNMx phases and only KNM3a is shown here. Equivalent
investigations for KNM2 conditions are found in appendix A.9.

Discussion:  As visible, the shape energy decreases strongly above the analysis interval of
40 eV to a minimum at 90 eV. Accordingly, also the predicted neutrino mass shift decreases
strongly and vanishes for 90 eV. However, this is not related to a vanishing shape energy,
but to a vanishing correlation of tritium and krypton operators, shown in figure 5.19. Thus,
while the predicted mean for an analysis interval of 90 eV vanishes, the uncertainty of
the prediction increases, indicating that lowest uncertainty is a trade-off between low
shape energy and high correlation. With regard to plasma systematics, the minimum is
the optimal interval for tritium measurements, if the krypton estimate of A;, is known. As
long as it is not known, the interval of minimum shape energy should be used. However,
such considerations also need to take into account other systematic effects which scale
with the analysis interval and were not investigated here.
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Figure 5.18.: Neutrino mass shift from mean difference vs. lower analysis interval: The
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mean value of the prediction of the shift of the squared neutrino mass (a)
for given krypton A is closest to zero around 90 eV. This is not related to
a vanishing shape energy, but to the vanishing correlation of tritium and
krypton weights at this interval, which is visible in an increased uncertainty
of the prediction (b). The minimum of the uncertainty in the range of 80 eV
is a trade-off between small shape energy and high correlation of krypton to
tritium operators. For smaller intervals the shape energy increases, for larger
intervals the correlation decreases.
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Figure 5.19.: Correlations of tritium and krypton weights vs. lower analysis interval: In
general the measurement of the krypton Aj, shows high correlations to the
tritium Az. At around 80 eV the tritium antisymmetry shape changes, as
shown in figure 5.20, which leads to decreasing correlation.

The individual scattering contributions show the constraints for the actual A;o[V] of the
potential: As discussed in section 5.1, constraining A, [V] assumes that all mean differences
have the same value. Since this way only one quantity needs to be considered, the analysis
is considerably simplified. As discussed in section 5.2, using A,[V] or the total shape
energy already includes all correlations and gives the best possible constraints. In contrast,
if instead the A;o[V] are constrained directly, their values are those of the actual potential,
as predicted by the krypton-83m measurement. However, their correlations need to be
considered, since the sum of the absolute values of the contributions shown in figures 5.17
and 5.18 overestimates the systematics. The only reason to still use the actual values of
the potential A;y[V] is correlations to non-plasma potential systematics, which can in

principle lead to different results in both approaches. However, in the standard 40 eV
interval the differences in the approaches are small.

The drastic change of the correlation (figure 5.19) also indicates a strong change of the
antisymmmetry shape, which is shown in figure 5.20. In the range of 85 eV analysis
interval the antisymmmetry shape no longer lives up to its name, as it acquires a significant
symmetrical component. This explains the vanishing correlation of krypton A;¢[V] and
tritium A, [V] for this interval. It should be recalled that the antisymmetry shape is the
potential shape which produces the extremal neutrino mass shift shape term. Thus, if the
potential shape is known, tuning the analysis interval accordingly allows to minimise the
shape systematic. From this a hypothetical test experiment for the theory developed in this
thesis can be constructed: As shown in section 6.3, the krypton-83m measurements prove
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Figure 5.20.: Antisymmetry shapes vs. lower analysis interval: Increasing the analysis
interval has a significant influence on the antisymmetry shape, since it adds
contributions from Ay of higher scattering multiplicity.

that applying a strong positive rear wall voltage Urw leads to an antisymmetrical potential.
This is the only known possibility to produce a potential which can be reasonably well
determined directly by the experiment. Thus, it is the only configuration which allows
to construct test cases for the theoretical description of plasma potential systematics. If
tritium measurements are performed in this configuration, the absolute neutrino mass
systematic is largest for an analysis interval of 40 eV and smaller for 90 eV. The use
of 6y = 500 mV, which is motivated by the value measured at a rear-wall set point of
Urw = +5 V in krypton-83m, leads to a shift of the squared neutrino mass of

Am? (oo =500mV, p ~ 1)V ~ —2.500 (1-500+ 500 )meV?=—-1.0eV?, (5.25)
Am? (oo =500mV, p ~ 0)° %V ~ —2-.500 (0-100+ 500 ) meV?=—-0.5eV?. (5.26)
——
shape variance

A measurement at 84 % nominal column density like KNM2 was assumed and the cor-
responding shape energies were taken from figure A.22 in the appendix. Thus, while
this effect is detectable by KATRIN, it would require several weeks of measurement time
(comparable to the neutrino mass scans of KNM2) in this configuration, which is not
realistic. If instead the endpoint was used for the same kind of analysis, the measurement
time could likely be reduced to a few days only. Such considerations are relevant, since
currently the plasma potential systematics dominates the KNM2 systematics budget and
the precise understanding of experimental observables and theory is important. In addition,
the dependence of the plasma potential systematics on the analysis interval is relevant for
the measurements of more massive keV sterile neutrinos at KATRIN, which necessarily
use larger intervals.
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5.4. Conclusion

In this chapter the systematic effect of the plasma potential on the tritium neutrino mass
measurement has been studied. This included the calculation of the susceptibilities to
scattering effects and the relevant scattering weights and their correlations to their krypton
counterparts.

Shapeenergies: As aresult, the quantitative equation for the shift of the squared neutrino
mass in dependence of the plasma observables was given:

Ami(p,00) = —200( pe, + 0o ). (5.27)
—_—
shape variance

The neutrino mass shift is fully determined by the zero weighted standard deviation o[ V]
and the antisymmetry p[V] of the potential V. All experimental conditions are condensed
into the shape energy ¢€,, which is approximately 500 meV for the example of the KNM2
measurement. It mainly depends on the column density and the analysis interval of the
spectral fit. Both dependences were studied in detail: while €, increases monotonously
(approximately linearly) with the column density, the analysis interval dependence shows
a minimum at around 90 eV. Thus, neglecting other systematic influences, adjusting the
interval of analysis accordingly reduces the shape energy by a factor of five.

Related to the antisymmetry p is the mean difference A,[V], where

(5.28)

holds for KNM2 tritium conditions. Although p[V] fully specifies the shape term, A,[V] is
needed to implement the systematics in the tritium model by shifting all scattered spectra
compared to the unscattered spectrum by its value.

Weight scaling from the krypton to the tritium measurement: All estimates of the plasma
potential depend on the measurement conditions, since they are weighted with the longitu-
dinal distribution of the signal electrons. The resulting necessary translation of the plasma
potential estimates (A[V] ~ A19[V], 0o[V])X* determined in krypton-83m measurements
to tritium estimates (p[V] ~ A,[V], oo [V])'? was investigated in detail. Changes of the
potential for different experimental conditions are expected, but were not quantified, and
their impact on the scaling of the potential moments was neglected. In a conservative
approach, which neglects the correlation of these two scalings, the resulting uncertainties
of the potential moments can be added in quadrature.

It was shown that the translation Ajo[V] — A,[V] has an uncertainty of at least 10 %
of 0y[V], even if both measurements are performed at the exact same conditions. This
is related to differences in the gas profiles of krypton and tritium. For differences in
the column density of the measurements, the uncertainty increases accordingly. Apart
from the uncertainty, the mean value of A1y[V] also needs to be scaled in the translation,
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where the factors range from 0.8 (same conditions) to 1 (KNM2 like scaling). Here, the
differences in the gas profiles mean that the krypton values are smaller, even under exactly
the same conditions, which is compensated when the column density is higher in the
tritium measurement.

The scaling of 0y[V] depends on the inhomogeneity localisation. If nothing about its
localisation is known and the tritium column density in the tritium and krypton measure-
ment is the same, the upper bound of the tritium oy [V] is given by ~ 1.15 times the value
measured in krypton-83m.

Weight standard deviations and correlations:  All factors printed in this conclusion are
related to standard deviations k. or correlations pg; . of the involved weights. Here, they
are rounded and given for KNM2-like conditions. Apart from these conditions they also
depend on the parameters they constrain. The following rules for the indices simplify the
understanding:

« For all constraints a standard deviation o, needs to be measured; its weight gives
the index after the comma.

+ The weights before the comma are given by the involved Ay; weight correlations
P 16,0 appear if krypton constrains tritium. Standard deviations k3, appear, if a Ay
is constrained by a o.

For example, the factor in equation 5.28 is given by an inverse standard deviation .. In
the printed case, both A, and oy are the tritium quantities and the factor is K;}) ~ 1.3. For

the relation of krypton A and oy in KNM2 conditions the factor is Kllolo ~ 1.5, but here

weighted with krypton Py. If the tritium A, should be constrained from the krypton oy,

the factor is K;}) ~ 1.35, also weighted with krypton P,.

If the parameters are used in the tritium model to compensate for the plasma potential
systematics, such details are relevant. Thus, while the developed theory needs many
indices to specify the respective weightings, all are necessary for the variety of different
use cases.

In a final step, the plasma observables are obtained in a krypton measurement and the
resulting neutrino mass systematic is calculated. This is the topic of the next chapter.

Outlook: The weight profiles, antisymmetry shapes and scaling results depend on the
validity of the gas model. Parameters like boundary conditions, viscosity or temperature
profile can have few-percent effects. While these changes are unproblematic for the KNM1-
3 measurements, for full KATRIN the gas model needs to be validated by measurement,
which is currently in preparation. Also, influences of small quantities of gas residing in
other parts than the central WGTS (for example in the differential pumping section) might
be considered.

132



6. Krypton-83m Measurements in KNM1
and KNM2

In this chapter the systematics related to inhomogeneities of the plasma potential V in
the KNM1 and KNM2 tritium measurement are discussed. All methodology necessary
to describe the systematic shifts due to potential inhomogeneities has been derived in
the previous chapters. It has been shown that they can be constrained by the potential
moments (A19[V], 0o[V]), which are obtained in krypton-83m measurements. The data
analysis leading to those estimates in the KNM1 and KNM2 measurement campaigns is
described in the following.

In section 6.1 methodology and data analysis of the KNM1 and KNM2 krypton measure-
ments are described. For the determination of the broadening oy [V] a precise estimate of
the intrinsic Lorentzian line width is needed. Section 6.2 discusses available values for the
Ls line along with the value obtained from the KNM1 krypton only measurement.

In section 6.3, the results of the krypton plus tritium measurements are shown. It is also
shown how the operator constraints derived in the previous chapters can be applied to
krypton measurements to find physically allowed regions of (A1o[V], o9[V]). Finally, in
section 6.4 the obtained plasma estimates are scaled to tritium conditions and the expected
systematics are calculated.

6.1. Methodology and Data Analysis

The KNM1 and KNM2 krypton campaigns were conduced after corresponding tritium
campaigns to access the systematics resulting from plasma inhomogeneities in the WGTS.
Both campaigns used approximately 30 % of the nominal column density of molecular
tritium with an admixture of mesomeric krypton. The tritium column density was the
maximum possible in #*™Kr mode of the source. In both campaigns the rear wall voltage
was varied in an interval between —5 and +5 volts to access different plasma regimes. In
KNM1 also a krypton-83m only measurement was conducted to determine the intrinsic
line parameters of the L3-32 transition. While the KNM1 krypton campaign was the first
campaign to use a krypton tritium mixture, it was not the first krypton campaign at
KATRIN:

+ July 17: The first ever gaseous source measurement at KATRIN was the krypton-83m
measurement from July 2017. Besides the focus on the properties of the krypton-83m
conversion electron spectrum, including also the measurement of the line parameters
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of the L3-32 transition [Sle+19], the energy scale linearity and the influence of
different analysing plane magnetic fields were studied [Sei19].

+ STS3a: The July 2017 krypton measurements were followed by the STS3a krypton
measurements in October 2018, which for the first time used a mixture of krypton
and a hydrogen isotopologue, here non-active molecular deuterium. This allowed
to show that scattered electrons form a distinct step in the recorded L3-32 spectra.
Furthermore it could be proven that this step can indeed be shifted by a source
potential. By applying ultra-violet radiation to the rear wall, electrons were created,
which allowed to create a plasma without the usual charge creation by f electrons.
The plasma could be influenced by different rear wall voltages, thereby producing the
eloss shift, as predicted in this work. Furthermore, in STS3a yet another measurement
of the intrinsic line parameters of the L3-32 transition was performed. It was also
observed that the functioning of deuterium as a carrier gas leads to a rate of the
32 keV transition of around 0.5 Mcps, which is a factor of o« 10 increase compared
to the krypton only measurement. These rates are also typical for the KNM1-3
measurements.

Already the STS3a measurement campaign employed basically the same model to fit
electron energy spectra from krypton plus hydrogen mixtures or pure krypton spectra, as
the later KNM1&2 measurements. Also, it showed many of the challenges which gaseous
krypton measurements at KATRIN need to overcome. The model, the systematics and
analysis strategies to mitigate them are described in the following sections.

6.1.1. Krypton Model and Observables

As described in section 1.3.2 the modelling of the integrated krypton rates consists of a
gas model and a model of the differential spectrum. For the two use cases of reference
measurements with pure krypton and mixtures of carrier gas and krypton, the model
needs slight adjustments.

Krypton reference measurements: Here a constant spatial krypton distribution in the
WGTS is assumed, which is expected for the low pressure regime without carrier gas.
The spectral modelling usually consists of two Lorentzian lines for L3 and L3®, which
are characterised by their individual width I', position AE and intensity I. In addition a
constant background By is fitted, leading to seven free parameters. The relative position
and relative intensity of the shake line were constrained with literature values from [Sei19].
Otherwise the fits showed difficulties, presumably due to a too small analysis interval. The
uncertainties of the constraints on relative position and intensity were doubled compared
to the literature, to avoid too strong bias.

Krypton plasma measurements:  The fit of the plasma measurement uses the relative shake
line intensity and position and both Lorentzians of L3 and L§’3 as fixed input. Additionally
a Gaussian with variance O'é is convolved with the spectrum, leading to the Voigt profile
described in section 1.3.2. Also, the gas model now needs to include the distribution of the
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Figure 6.1.: Krypton fit: Shown are the parameters characterising the integrated krypton
spectrum in the usually fit region. The shake parameters were fixed in the
plasma measurements, while the scattered electrons and their parameters do
not appear in reference measurements. opain = OEloss = O has been assumed
in all fits, which is justified as shown in chapter 5. The scheme does not include
a parameter for the background slope, which was not fitted in KNM2. Still, it
needs to be considered as discussed below.

carrier gas and krypton in the source, which are calculated as described in section 1.3.2.
Since the column density of the carrier gas is usually not well enough known, it is fitted
from the ratio of the scattered and unscattered Ls lines. Here the scattering cross section
Oinel = 2.435 - 10722 m? [Lev19] for 30.4 keV electrons is used. The fit result of the column
density also depends on the gas model and slicing, as discussed in appendix A.4. Lastly,
the energy loss shift Aegjoss of the energy loss function figure 1.10 is fitted. This fit suffers
from two systematic effects: Firstly, the correct energy loss function for 30.4 keV electrons
and T = 100 K is not known, and secondly the transmission function change by scattering
[Gro15] (in the following called detailed transmission) could not be used, since it increases
the calculation time by several orders of magnitude. The influence of these systematics
is discussed in section 6.3.1. In total the six parameters (Bg, pd, A€goss, oﬁ, AEain, I) are

fitted.

In both cases the magnetic and electric fields in the analysing plane are taken from FPD pixel
dependent simulations, adjusted for the corresponding field settings. These simulations
use particle tracking and the measured position of the hardware components [Hac17] to
determine the mapping of the flux tube in the source to the point of energy spectroscopy
in the analysing plane [Def17]. Thus, the field values are affected by uncertainties of
those measurements and simulations, which is apparent by the misalignment discussed
below. The modelling of the krypton-83m spectrum also includes energy losses due to
synchrotron radiation and an additional broadening due to the Doppler effect, which is
calculated for the respective temperatures.

Figure 6.1 shows an overview over all parameters.
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Relative Line Position in meV, Ug,,=0.2V
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Figure 6.2.: Line position pixel map: As visible, the line positions are not uniformly dis-
tributed over the detector, but show about 200 meV differences in a dipole
like structure. The shown rear wall voltage shows the smallest radial vari-
ance. The values are relative to the mean line position of the KNM1 reference
measurement.

Calculation of uncertainties: The fits were always performed using ROOT::Minuit and
Minos statistical uncertainty estimation [Ant+09]. In some cases the latter did not work
and only the Minuit uncertainty was available, which usually is underestimated. In these
cases the average Minos uncertainty from the working fits was used. The uncertainty does
not strongly depend on the individual fit, since all fits have roughly the same statistics. No
systematic uncertainties were included in the fits, but the influence of certain parameters
or analyses were tested separately, as found in appendix A.4. Nevertheless, due to the
drifts and radial effects discussed below, the distributions of the observables can still show
overdispersion compared to the statistical uncertainty. This systematic uncertainty on the
average usually dominates the total uncertainty. It was calculated by quadratic subtraction
of the expected statistical width from the total width of the distributions. When necessary,
Gaussian uncertainty propagation was used, as described in appendix A.5.

6.1.2. Alignment and Pixel-Wise Analysis

Figure 6.2 shows that the measured line positions are not equally distributed over the whole
detector, but show an azimuthal dipole pattern, which is thought to have two possible
origins:

+ Misalignment: Radial or azimuthal misalignment of the flux tube through analysing
plane and detector causes an offset of the parabolic minimum of the simulated
spectrometer potential with the actual measurement. This would lead to the observed
dipole structure and was already studied on krypton July 17 data, where usually a few
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Figure 6.3.: Background fit and simulation: The shown background fit is from a run at
Urw = 200 mV, however it does not strongly dependent on the voltage, as
shown in [Ost20]. The correction was applied as described in [Ost20] and in
the text. The simulation was carried out using particle tracking [Wei20]. As
seen, the overall agreement is quite good. Thus, the non-adiabatic transmission
of the krypton background can be predicted and the method can be used to
determine the magnetic field alignment in the respective field setting. The
simulation was scaled to fit the first ring of the measurement.

millimetres shift of the flux with regard to the ~ 10 cm diameter detector [Ams+15]
was found. However, the misalignment does not only depend on the positions
of the magnets and detector, but also on the magnetic field setting. This is why
any correction needs to be valid for the conditions of the respective measurement
campaign. Furthermore, for a radially inhomogeneous plasma potential the effect
could also be caused by a misalignment of rear wall and detector, leading to the
danger of correcting actual plasma effects.

« Azimuthal plasma potential: A purely physical cause are azimuthal dependencies
of the plasma potential. A priori those are not distinguishable from misalignment
effects, when only considering the line position.

To disentangle both effects, a method has been developed in cooperation with Raphael
Ostertag in [Ost20], which determines alignment not from the energy scale, but the
background rate. Thus, while the former assumes a radially and azimuthally homogeneous
energy scale of the source, which cannot be generally expected, this method assumes a
radially and azimuthally homogeneous source strength, which is expected from simulation.
The background rate in krypton reveals misalignment of the analysing plane magnetic
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Table 6.1.: List of excluded pixels.

The listed pixels were excluded from the analysis of the respective campaigns
to avoid shadowing and detector effects. They differ only in the pixels 99 and
113. The former was shadowed by the Forward Beam Monitor FBM [Ell19]
in KNM1, which was moved to a new monitoring position in KNM2. The
latter was excluded in KNM2, since it showed a small rate reduction due to
shadowing. This was possibly caused by the slightly modified magnetic field
setting compared to KNM1.

KNM1 97,98, 99,100, 110, 111, 112, 121, 122, 123, 124, 125, 126, 127, 128, 129,
130, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147

KNM2 97,98, 100, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129,
130, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147

field and the detector due to the following reasoning: For measurements at L3-32 the
background is caused by electrons of the higher lines, which have on the order of 1500 eV
surplus energy compared to the spectrometer potential. Energy loss, drift and storage
effects of these electrons due to non-adiabatic transport increases with the radius of
their trajectory in the spectrometer. This leads to a loss of background rate towards
larger radii, visible in figure 6.3 along with a comparison to particle tracking simulations.
Misalignments of the magnetic flux of analysing plane and detector lead to the observed
wave pattern, since different pixels in a pixel ring observe a different radius of the analysing
plane. From that the misalignment can be deduced, as shown in [Ost20]. In general the
values are different to those found on the line position, indicating at least two different
effects. Distinguishing those is the topic of ongoing studies on KNM3 data. Also, more
simulation and measurement efforts using the electron gun are planned to overcome the
issue. However, so far no satisfactory correction is available and in order to minimise
systematic effects, all analyses are performed pixel by pixel. Thus, the pixel-wise fits of
observable O are averaged using the uncertainty o(O) weighted average

e R
6= 2=t 6.1)
2 oy 2 7oy

where the sum goes over the included pixels. Averages of I and o, were calculated on the
squared values, since they are Gaussian distributed, as shown in appendix A.6.

Pixel exclusions: Due to collisions of the flux tube in the transport section some of the
outer pixels show significantly reduced luminosity. These pixels were excluded from the
analysis. A second criterion was the minimisation of detector effects like strongly deviating
energy resolution. The list of excluded pixels is found in table 6.1. In both campaigns 117
out of the 148 pixels were used.

Pixel combinations: Usually the pixels are grouped to rings, giving 12 rings (labelled 1-12)
with 12 pixels each and the bullseye with 4 pixels (labelled 0). To further reduce statistical
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uncertainties and to produce clearer plots, the rings are often grouped to four pseudo rings
or combined rings, consisting of three adjacent rings each, starting from the bullseye. By
this grouping ring 12 is left over, however it is completely excluded anyway.

6.1.3. Transmission Properties and Background Slope

As discussed, the background at the L3-32 line is created by electrons from higher energetic
lines. Figure 6.4 shows the respective normalised rate contributions and their derivatives.
The color coding indicates whether the lines are above or below L3-32 line. As visible,
the main background contributions stem from higher energetic M lines. However, as
visible in the derivatives, their contribution is constant in the relevant analysis range. The
background from the lower energetic L,-32 and Lg?’ lines, however, creates a contribution
that is not constant in the analysis interval. This leads to a systematic if a constant
background model is assumed. The line for o, indicates when the additional broadening
due to an unaccounted background slope exceeds 20 meV. Positive slopes produce negative
broadenings and vice versa. Consequently, for contributions from L,-32 and L3* the
additional broadening is positive, since slopes from lower energetic lines are negative. All
other observables are also significantly affected by a slope. From these plots it follows that
the L,-32 and L§3 lines need to be included in the model.

Non-adiabaticity: However, the previous discussion assumes that the non-adiabaticity of
the M electrons with ~ 1500 eV surplus energy does not affect the rate contribution in the
analysis interval. As it was shown in KNM3 krypton measurements this is not the case,
since an orders of magnitude higher background slope was found than predicted here
[B6t20; Gup20]. It was also shown in particle tracking simulations that this can indeed
stem from non-adiabatic effects of the M lines. Thus, while still at least the L§3 line should
be included in the model to avoid an additional curvature of the background, a background
slope needs to be considered as well. In KNM3 it was measured by increasing the analysis
interval to ~ 150 eV above the Lj line. It was shown that the slope correlates with the
magnetic field setting and that it is stable, if the setting is fixed. Thus, the slopes measured
in KNM3 were used in the present KNM1 and KNM2 analysis, which did not have the
increased analysis interval to fit it. The L,-32 line was included in none of the models,
such that its contribution is absorbed in the fitted slopes. Since the slope increases to outer
radii, including it removes radial structures in all observables. This was also observed in
KNM3 and is expected from simulation. Still, it is believed that the transmission properties
of high surplus energy electrons are not understood to a level where the effect becomes

negligible.

6.1.4. Time Dependencies of Rate and Energy

All observables suffer from time dependencies, which are caused either by drifting rates
or drifts of the energy scale.
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Figure 6.4.: Background contributions: Green colors indicate that the line is above Ls,
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red colors indicate that it is below. As visible in the normalised rate the
constant background component is dominated by the higher energetic M lines.
In contrast, the background slope is dominated by lower energetic L, and
L§’3 lines. However, this assumes adiabatic transport of the higher energetic
electrons, which is not the case.



6.1. Methodology and Data Analysis
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Figure 6.5.: Column density in KNM2: As visible, in the 6 days of KNM2 measurement the
fitted tritium column density increased by about 1 %. Only if the background
slope is included, like in this plot, no radial structure is observed as expected.

Rate driftin reference measurements: A strongly increasing rate of 0.7%, corresponding
to &~ 1% per scan, is observed in the KNM1 krypton only measurement, and a comparable
number is found also in the STS3a reference measurement. It has been shown in [Mar20]
that this is related to accumulating dirt (mainly air and hydrocarbons), which is outgassing
from the pumps and acts as a carrier gas. Since the gas composition prior to KNM4 could
not be cleaned in *™Kr mode this dirt accumulates over time, thus increasing the krypton
rate. In KNM3 part of the problem was solved by letting the dirt accumulate a few days
before injecting krypton. For the KNM2 reference measurements the data from the initial
measurement days was excluded when upwards and downwards scans showed significant
differences in the observables.

Rate drift in plasma measurements: A small rate decrease can also be observed in the
krypton plus tritium measurements. It has been shown in [Ost20] that its half-life time
(79.92 + 0.40) d is largely explained by the decay of the krypton-83m producing rubidium
with a half-life time of 86.2 d. As apparent from the numbers, a small extra reduction has
to exist to explain the still significant difference.

Columndensity drift: As visible in figure 6.5, in the plasma measurements also the tritium
column density shows a drift, since it can only roughly be stabilised in 3™Kr mode. For
KNM?2 this drift was on the order of 1 % of nominal over the six measurement days. This
drift contributes to the change of the krypton rate, due to the tritium acting as carrier
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6. Krypton-83m Measurements in KNM1 and KNM2

gas. However, the different time dependencies of rubidium decay, column density drift
and other, unknown processes are hard to disentangle. The drifting column density also
contributes to a change of the plasma and surface properties, which are discussed below.

All rate drifts in the plasma measurements are small enough that no significant difference
of up and down scans is produced in the observables for the usual run times of oc 40 min.
Thus, no rate correction was applied.

Absolute energy scale drifts: Energy scale drifts can appear due to drifts of the spectrom-
eter or the source potential. Many different measures are applied to access the stability of
both potentials:

« Spectrometer: The different components of the spectrometer potential are cali-
brated via different methods, including the krypton-83m nuclear standard of the
monitor spectrometer and Josephson normals [Res19]. In total it is concluded that a
possible drift is smaller than 1 ppm over half a year, which is negligible for KNM2
krypton.

« Rear wall current [Fri20]: The rear wall can be used comparable to a Langmuir
probe [Che03]. Thus, the IU-curve of rear wall or DPS dipole current I vs. rear wall
voltage U is measured, and characteristic points are studied. An established method
to access the stability of the energy scale is to study the zero crossing of the total
WGTS current over time. It is given by the sum of the rear wall and DPS current. In
the case where they do not compensate a third loss channel has to exist, which most
likely are radial currents to the beam tube walls. They are not measurable with the
current hardware. A homogeneous plasma potential both in radial and longitudinal
direction is expected to result in minimum radial currents and thus a vanishing total
WGTS current.

« PRO-KATRIN [Fri20]: In Plasma Rear Wall Optimisation the tritium rate is mea-
sured at a fixed retarding energy several hundred eV below the endpoint. Rate
changes can be converted to energy scale changes using the slope of the tritium
spectrum. This allows to perform fast scans of the energy scale for different rear
wall voltages without the necessity to perform a full spectrum measurement. This
method is also usually used to find the optimum rear wall voltage set point for the
tritium measurement by demanding the minimum measured radial energy slope.
PRO-KATRIN has the benefit that it can be performed in the same conditions as the
tritium measurement.

« Krypton: In krypton measurements energy scale drifts are directly visible in the
measured line position.

Figure 6.6 shows the line positions of KNM2 over the rear wall voltage. Both in PRO-
KATRIN and krypton measurements also characteristics of these spectra like the rear wall
voltage of minimal radial inhomogeneity or the start of good coupling can be studied. While
the average krypton line position in KNM2 shows a change of approximately —23 mTeV
[Ost20] if it is fitted linearly over the whole measurement campaign, the spectral measures
like the start of good coupling are much more stable. Also, as shown in [Ost20], there
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Table 6.2.: Line parameters of L3-32.
Results without citation are unpublished from own analyses (STS3a and KNM1)
or internal documents (KNM3). The listed systematics apply to the widths,
however all the positions from KATRIN also include shifts due to the unknown
mean Beam Tube Work Function (BTWF) or substrate work function in case of
the Condensed Krypton Source (CKrS).

Source WidthT'ineV  Position in eV assumed unac-
counted systematics

Literature [Vén+18] | 1.19(24) 30472.2(5) unknown

July 17 [Sei19] 1.163*901 30472.642(5) uniform analysis, Bg
slope, BTWF

STS3a ~ 1.15 ~ 30472.68 unstable rate, Bg
slope, BTWF

KNM1 1.062 + 0.019 30472.200 = 0.001 Bg slope, BTWF

KNM1 N33 [Ost20] | 1.011 £ 0.028 - unknown

CKrS [Ful20] 1.0606(21)(150) 30473.7336(9)(880) unknown

KNM3 ~ 1.06 ~ 30472.04 BTWF

are several drift regimes of the line position and an overall increase of the energy loss
shift in the coupling region. The different drift regimes are separated by other calibration
measurements, which presumably change surface properties of the WGTS or rear wall.
Thus, it cannot be distinguished whether the drifts are caused by the changing column
density, or the calibration measurements, or by shifting surface properties without any
external change. The drift of surface properties can be caused by the absorption of particles,
such that every time the system is changed, drifts may occur until they saturate. Notably,
also in the tritium measurement, where the column density is much more stable, sometimes
endpoint drifts can be seen. Thus, a final conclusion on cause and size of a possible energy
scale drift could not be drawn.

It should also be mentioned that the change of the energy loss shift only appears in the
coupling region. The rear wall voltage of +5V measured at the beginning and the end
of the campaign gives the same value, both for ¢y and Ayy. In contrast, the line position
shows a difference of 100 meV. Thus, the strong external electric field at this large rear
wall voltage leads to a reproducible potential shape in the WGTS.

6.2. Krypton-83m Spectrum Observables from Reference
Measurements

In the following the krypton reference measurements are studied. They are used to obtain
the intrinsic line parameters, most importantly the Lorentzian line width. A precise

estimate is needed since the plasma inhomogeneity, observed as broadening of the line, is
measured compared to the intrinsic width.
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Relative line position in eV

Relative line position in eV
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(b) Scan 6, ring wise

Figure 6.6.: Line positions in KNM2: A linearly coupled region from approximately —0.5 V
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to +1 V is surrounded by less coupled regions. More negative voltages only
lead to small changes of all observables, while for more positive voltages
increased inhomogeneity is observed in (g, A19). The different scans (a) show
an overall drift of the line position compared to each other. The rear wall
voltage of minimal inhomogeneity is visible in (b) as the line crossing, and a
detailed analysis in [Ost20] shows that it is relatively stable over the runs at
Urw =~ 160 meV. The values are relative to the KNM1 reference measurement
position of 30472.2 eV. Statistical uncertainties are included, but not visible on
this scale.



6.2. Krypton-83m Spectrum Observables from Reference Measurements

Measurements of the intrinsic line parameters from KATRIN have up to now been taken
in July17, STS3a, KNM1 and KNM3. Table 6.2 lists the measured values of the Ls line
width and position and the assumed systematics on the width. Changes of absolute line
positions or intensities are expected due to different source conditions. While the L line
position from the KNM1 reference measurement is used as a reference value for the KNM2
plasma measurement, it should not be understood as the intrinsic line position. Also, shifts
compared to it are composed of work function and plasma changes. As discussed above,
the work function of the source depends on the history of gas exposure, such that it may
vary from campaign to campaign.

However, as visible, also the line width I shows significant decrease over the measurement
campaigns, which must be caused by systematics unaccounted. The KNM1 L; width,
determined with the N33 method, and the Condensed Krypton Source (CK1S, see section 1.1
and [Ful20]) value both apply a correction in the analysis. The N3 method uses the
vanishing intrinsic width of the N, 3 doublet: additional Gaussian systematics aé are
extracted from the doublet fit and included into the fit of the L3 line. Some of the ongoing
KNM3 analyses use the same procedure, but without reproducing the small value of KNM1
N, 3. Despite this value, the latest KATRIN results of KNM1, CKrS and KNM3 are all in
agreement, but disagree with previous results. However, they are affected by different

systematics, which is apparent from the following example of the KNM1 analysis.

The Lorentzian width measured in KNM1 is shown in figure 6.7. The line width shows
a significant radial dependence. It is known that the, here neglected, background slope
makes the inner values larger, which suggests that the true value from this measurement is
of the order of 10 meV smaller. However, in this case it is not in agreement with the values
recorded from CKrS or in KNM3, which do not suffer from these particular systematics.
On the other hand, the CKrS value is the only value which does not suffer from possible
inhomogeneities of the work function of the beam tube, since it is not measured using the
extended gaseous source, but a point source.

Thus, while the KNM3, CKrS and KNM1 measurements hint to a true Lorentzian with
a width of roughly 1.06 eV, the remaining differences are not understood. The problem
is obvious in some of the plasma measurements, since in some of the measurements a
significant portion of the obtained Gaussian variances is negative, hinting to a too large
Lorentzian. If the Lorentzian used in the fits of the plasma measurements is larger than
the actual line width this is compensated by a negative Gaussian variance. Nevertheless,
for the plasma fits shown in section 6.3, the CKrS value was used since it has the least
known systematics, while being in reasonable agreement with the other values.

The connection between Gaussian and Lorentzian can be quantified. In the following
it is shown that for the purpose of plasma systematics determination from the Ls line,
obtaining a meV precise result of the Lorentzian is necessary.
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Figure 6.7.: KNM1 reference measurement of the L3 line width: The histogram shows all
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included KNM1 krypton reference runs. The uncertainty of the mean is quoted
as statistical uncertainty. However, the histogram shows some overdispersion
due to radial systematics, as visible in (b). Subtracting the statistical width
from the total width in quadrature gives asyst(l“z) =0.04 eV2.



6.2. Krypton-83m Spectrum Observables from Reference Measurements

6.2.1. Connection between Gaussian and Lorentzian Distribution

The full width of half maximum fy.ig of the Voigt profile for given Lorentzian I' and
Gaussian o is [OL02]

Foigt = 0.5346T +1/0.2166I'2 + 8ln(2)0? . (6.2)

From that it can be deduced how uncertainties of T translate to o or vice versa, if the total
width fioigt does not change:

= (fvoigt — al')? = f\foigt — 2al fyoigt + a’T? = bT? + 8In(2)0? ,

df 0igt =0
2 —2adT fioige + a*dI? = bdT? + 8ln(2)do? ,

1
=4 dO'2 = 81n(2) [—2adeVoigt + 21"d1"(a2 - b)] s

= (—0.1928 fioige + 0.0250)dT .
In the KATRIN use case at L3 line o < T holds, leading to fyoigt ~ I', and thus

do? = —0.168TdT", (6.3)
= —0.084dI? . (6.4)

For o ~ 0 and I' = 1.0606 eV this gives

do dr
~ —13.35
meV me

(6.5)

Thus, for an aimed sensitivity on o below 20 meV, a trueness on I' of 3 meV is necessary.

This only holds for dfy,igt = 0. In the fit, parameters like the measurement time distribution
and line shape distortions by systematics or potentials affect the true relation. Thus, these
equations should only be understood as rough estimates giving the magnitude. Foremost
they show that there is no one-to-one connection, but that small changes in the Lorentzian
lead to large changes in the Gaussian. The best approach is to fit the data sets for different
Lorentzians, which takes lots of computation time. For the requirements of this work the
approximation is sufficient.

If equation 6.2 is solved for o2, it can be treated as a function of Tpo;; =T + AT*f with the
previously calculated, fixed fy,igt and a shift ATTef

(froigt — 0.5346Lcorr)* — 0.2166T%
8In(2)

O-z(rcorr) = (6-6)

!
This allows to determine the necessary AI'*f for conditions on ¢, for example for o > 0.
Also, it allows the propagation of the measured uncertainty of I to o.
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6.3. Plasma Observables from Plasma Measurements

In the following the estimates (o, A1p)! from KNM1 and KNM2 plasma measurements
are shown. Further plots of the fitted data are found in appendix A.6.

The measured broadenings are shown in figure 6.8 2. The uncertainties include the
statistical uncertainty of the measurement and the propagated uncertainty of I' using
equation 6.6. Since the latter dominates, they are correlated over all rear wall voltages.

Both campaigns show a similar structure, but a significant shift in absolute values for
the coupled region. While differences in plasma properties cannot be excluded, they are
not expected to this amount. A likely explanation is additional systematics in one of the
campaigns. Notably, the hardware and magnetic field setting was adjusted by adding new
aircoils in between KNM1 and KNM2. Thus, the applied background slope correction
might be wrong for KNM1: while the correction removes all radial dependent structures in
KNM2, for KNM1 the picture is not as clear. However, also the statistical uncertainties of
KNM1 were larger, since much less data was taken. Lastly, in between KNM1 and KNM2
the rear wall hardware was adjusted, leading to an overall shift of the applied voltage in
the few 10 mV range.

If no additional systematics existed, a correction of the Lorentzian AT ~ —80 meV would
be necessary to make the measured broadenings in KNM1 positive. While this cannot be
excluded it is not backed up by the reference measurements listed in table 6.2 and by the
results of the KNM2 measurement. Thus, in the following no correction to the Lorentzian
is applied and a focus is put on the KNM2 measurement.

6.3.1. Correction of the Mean Difference from Potential Antisymmetry

Due to uncertainties of the energy loss function at 30 keV and the disregard of detailed
transmission, which is a modification of the transmission function caused by secondary ef-
fects resulting from inelastic scattering, the measured values of Ay suffer from systematics.
Thus, a correction is applied using

Aso(ARH[V] = Ap(0)[V] — AR (6.7)

which eliminates all linear systematics. This is driven by the assumption that the wrong
energy loss function used to fit the data linearly shifts the mean fit value. This is expected
if Aqo is measured relative to the total mean energy loss. This assumption is discussed
below in some more detail.

!0y is used here instead of 0y, since it may contain an additional broadening from fluctuations.

2Here and in the following 500 mV bins for the rear wall voltages in the coupling region are used for clearer
plots of KNM2 data. Many different voltages were measured without significant dependencies on rear
wall voltage. Also, the rings are shifted in rear wall voltage compared to each others for better visibility.
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Figure 6.8.: Gaussian broadening in KNM1&2 krypton measurements: Both show compa-
rable structure with small broadening in the coupling region and increasing
broadening for large positive rear wall voltages. Both use the same Lorentzian
of T' = 1.0606(21)(150) eV. However, while most of the values in the coupling
region in KNM1 are negative, all are positive for KNM2. The uncertainties are
dominated by the propagated uncertainty of I'. The values for different rings
are shifted in rear wall voltage for better visibility.
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To account for the uncertainties of the measured parameters (o3, Ayo) the following
function is constructed for the correction:

2 2 Ref \ 2
o (AT,
e(p% - 1)+ (—0 =

() O(-ad)| . (68)

~2 ¢ ARef
2/ ARef A Ref pe(Afg) —1
AT, AT = —_—

X (At L3 ) E ( o(52)

Urw:
Combined
rings

Thus, only when the squared measured antisymmetry 4 ® is unphysical or the Gaussian
broadening is negative, the uncertainty weighted difference is added. Here o, = oy is
assumed, which is the most conservative case. Since additional components of o like
fluctuations do not affect Ayg, they would make the absolute value of the antisymmetry
smaller, thus leading to tighter constraints.

x? profiles: The two-dimensional profiles of the y? for KNM1 and KNM2 are shown in
figure 6.9. As visible, the Lorentzian correction is not bounded to negative values, since
larger values of 0y lead to smaller antisymmetry. A priori, both results are in an unphysical
region. For KNM1 this can only be solved for seemingly unreasonably high corrections of
the Lorentzian.

For the given Lorentzian, the KNM2 data can be shifted to a physical region with *
AR = (98 +52) mV . (6.9)

This symmetrical shift with regard to the uncertainties is chosen for the following results,
but in principle all corrections in this interval have the same possibility. As visible, the
0 o contour ° has a parabolic minimum, which would lead to tighter constraints for a
larger Lorentzian, i.e for smaller measured broadenings. Thus, the uncertainty of the
correction is proportional to the measured values of oy. In principle it is possible to fully
constrain Alfgf by oy for plasmas with vanishing inhomogeneity. However, including the
statistical uncertainties leads to broad, basically flat minima, such that this would also

require significantly more statistics.

Also, the Aq results of KNM1 show an overall 60 mV shift compared to KNM2, which is
not understood. Due to the neglect of the detailed transmission function the correction
could depend on the column density, but the latter was rather comparable in the KNM1 and
KNM2 krypton measurements. A second influence are the different energy loss functions
of impurities in the source, which is studied in [Rodep]. Since the existence of impurities
was not considered in the analysis, this also leads to a mismodelling of the energy loss
function. If KNM1 and KNM2 krypton had a different concentration of impurities, this
might contribute to the observed difference. Notably, increasing impurities could lead
to the observed drift of the energy loss shift in KNM2. If that was the case, the different

3For the calculation of the antisymmetry all pixel estimates were averaged first. Details are found in
appendix A.7.

“Not binning the rear wall voltages leads to O (1) mV differences.

>Since the y? function is constructed from inequalities, the 0 o contour restricts the unconstrained region.
This is in contrast to usual y? functions, where it is the point of the minimum.
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Figure 6.9.: Reference value exclusion plot: The x-axis is a linear correction of all mea-
sured energy loss shifts, the y-axis translates to a correction of the measured
broadenings. The blue lines are the 0,1,2 and 3 ¢ contours. Thus, the region
within the innermost blue line is unconstrained. While in KNM2 no correction
needs to be applied to the Lorentzian, the necessary correction in KNM1 is
at least —40 meV (1 o contour). Also, it is visible that the mean differences
measured in both campaigns show a shift of around 60 mV. Thus, a correction
which brings both in agreement within the 1 ¢ contour is around 60 mV, which
would lead to strong antisymmetry with opposite sign in both campaigns.
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duration of the campaigns would be relevant: Since the KNM1 krypton campaign was
three times shorter than the KNM2 krypton campaign, the overall increase of A;y would
be smaller, leading to a smaller average in KNM1. However, the fact that the eloss shift
of the Urw = +5 V measurement in KNM2 does not change over time speaks against this
hypothesis: While the applied external field leads to a reproducible potential shape, it does
not affect the gas composition and thus the mismodelling of the energy loss function. Thus,
if caused by the latter, the increase of Ajy should also be visible for large inhomogeneity,
i.e. it should be consistent over all rear wall voltages. This is also not observed in KNM1,
where the drift of Ay is either smaller than in KNM2, or even negative.

Mean difference: Figure 6.10 shows Ajy over the rear wall voltage with and without
correction. The chosen symmetrical correction shifts the values of Ay in the coupling
region to ~ 0, at the expense of increased uncertainties. The thereby obtained systematic
error band is independent from the choice of correction, since an asymmetrical correction
only shifts the mean values inside the band.

Antisymmetry and physical interpretation: Figure 6.11 shows the antisymmetry over the
rear wall voltage with and without correction. Without correction most of the values are
unphysical. With the symmetrical correction the potential has small antisymmetry in the
coupling region. The large antisymmetry for large positive rear wall voltages only depends
weakly on the correction, since here the data is dominated by the inhomogeneity. This
region is an excellent test case for the theory developed in this work. The antisymmetry is
expected, since a large positive rear wall voltage blocks positive ions from escaping the
WGTS at the rear wall. Since they also cannot move against the gas flux away from the
injection point, the ions in the rear part of the WGTS are trapped in longitudinal direction.
They only escape if a large enough positive space charge forms, which drifts them out
radially. This is in contrast to the ions in the front part, which can in all cases be extracted
in the DPS dipole electrodes. Thus, at positive rear wall voltages a positive space charge
is expected in the rear side of the WGTS, which overall produces an antisymmetrical
potential as measured.

Peak-to-peak value: Figure 6.12 shows the allowed range of the peak-to-peak value of
the potential in the central WGTS over the rear wall voltage. The uncertainty band was
calculated as discussed in section 3.3.3 from oy and the corrected A;j. The lower constraint
uses a factor of 4 between peak-to-peak value and Ay, as derived in section 5.2. For
the upper limit it is assumed that the potential inhomogeneity is not strongly localised,
leading to 0y = ¢ and a factor of 3.46 between the peak-to-peak value and oy. As discussed
in section 3.3.3, the upper limit is obtained by a linear potential. The more structure
the potential has, the smaller the peak-to-peak value for a given 0. Consequently, the
structure of the potential increases, when going from top to bottom in the uncertainty
band. The width of the band is only given by the different possible potential shapes and
the uncertainties of oy and Ay were neglected.
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Figure 6.10.: Mean difference in KNM2 krypton measurement: The values increase for large
positive rear wall voltages. The radial structure indicates a dependence on
the coupling strength. The measured values (a) have an unknown offset. The
symmetrical correction (b) shifts the values to the center of the unconstrained
x? function (figure 6.9), leading to vanishing mean difference for small rear
wall voltages. The increased uncertainties are caused by the width of this
unconstrained region.
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Figure 6.11.: Antisymmetry in KNM2 krypton measurement: Without correction (a) most
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of the values are not in the allowed range. Convergent behaviour for large
positive rear wall voltages is observed, since here the data is dominated by
inhomogeneity, not by systematics. Thus, the constraining region is the
coupling region. After correction (b) all values are in the allowed range. The
large uncertainties are caused by the unconstrained region of the y* function
(figure 6.9). The large antisymmetry for large positive voltages remains.
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Figure 6.12.: Allowed peak-to-peak value over rear wall voltage in KNM2: The uncertain-
ties mark an uncertainty band of equal possibility. Vertical translation implies
a shape change, while for constant relative position on the band only the
magnitude of the potential changes.

Change for large voltages: Due to energy conservation the change of the rear wall voltage
should be an upper limit to the change of the observables. However, for the innermost rings,
the change of Ay and oy is approximately a factor of 2.5 between 2V and 4V rear wall
voltage. Thus, the derivative is ~ 1.25 > 1. Still, for the peak-to-peak value a derivative
less than 1 is possible in the uncertainty band, as it should be expected. As discussed
above, this is associated with a shape change, which is illustrated in the following with
two potential models.

Antisymmetry modelfor KNM2 data: The application of the antisymmetry model discussed
in section 4.1 is shown in figures 6.13 and 6.14. The two models are used to illustrate
the decrease of the peak-to-peak value with the increase of structure. For the symmetric
component of the first model two half ellipses were used, as described in [Mac16]. The
ratio of the semi-minor axis front to rear was fixed to 1.024, which produces a shape with
vanishing Ay for the column density of 30 %. The second model uses an approximately
parabolic symmetric component of

z\%2 z
Vigm(2) o 3.815 (—) _Z (6.10)

m m
which also has vanishing Aj¢, as shown in section 4.2. The uncertainties are propagated

from ((V'),, 00, A10). Only the statistical uncertainty is considered for the mean potential
(VYo =—( Eﬂasma - E{ef). Thus, there could be a constant shift of the mean potentials for

155



6. Krypton-83m Measurements in KNM1 and KNM2

Potential in mV

000y =

000t—
000e-
000Z-
000T-
000T
000¢
000
0005

10009—

0 Bun pauiquiod I:I

0S.- | 000S-

0S¢-

052

€ Bu pauiquod I:I Z Buu psuigwod I:I T Buu pauiquod

000G | 000F | 00OT | 000C | 0SCT

PUJSY UOIINWIS PO [eNUelod

Awur M0

Figure 6.13.: Potential over rear wall voltage in KNM2, simulation kernel: The symmetric
component of the potential is constructed from two half ellipses, which resem-
ble the plasma simulations. The potential is most homogeneous in the 250 mV
bin. A version without bins is found in appendix A.10. A linear connection
between rear wall and rear of the WGTS is used, which is not physically
motivated. The gap between the rear wall potential and the maximum in

156 the WGTS for positive voltages is not expected, but likely caused by this
modelling.
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Figure 6.14.: Potential over rear wall voltage in KNM2, quadratic kernel: Here the sym-
metric component is approximately parabolic. As visible, there are large
differences for large voltages to the previous ansatz. Here it is not possible to
bridge the gap from rear wall and the maximum monotonously for the inner
rings, while the outer rings do already connect. As explained in the text this
is related to the smaller structure of the symmetric component. The version
without bins is shown in appendix A.11. 157
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all rear wall voltages, caused by differences of the mean potential in the reference and the
plasma measurement.

As visible, due to the kink at the injection point in the centre of the source, the first ansatz
resembles the plasma simulation. As discussed above, this excess of structure compared
to the parabolic ansatz leads to smaller peak-to-peak values for the given observables,
which is apparent at large voltages. Thus, in order to still make a monotonous connection
from rear wall to the rear end of the WGTS for increasing voltages, increasing structure
is needed. Presumably, the gap to the rear wall in the first ansatz could be made smaller,
if the central gap was increased. A monotonous connection to the rear wall at large
positive voltages is expected from plasma simulations [Kuc16]. Also, since the current
measured at the rear wall saturates for large voltages [Fri20], it is expected that the
electrons reach the rear wall and get drained. This would be prevented by a large potential
drop between end of WGTS and rear wall. It is concluded that the potential likely has the
central non-monotonous feature as predicted by the plasma potential simulation and that
the application of large positive voltages leads to an asymmetrical amplification of this
structure due to the accumulation of positive ions in the rear part (discussed above).

MTD and rear wall voltage dependence of Alfgf: As discussed in chapter 5, the fit of Ay is
implemented as shift of the energy loss function fi (€). This makes two assumptions: First,
that the plasma effect only leads to a shift of the measured energy loss and no change of
the distribution. While this is an approximation, it is valid due to the intrinsic width of
the energy loss function, which is much larger than possible plasma broadenings. The
second assumption is that the correct function is known for the respective measurement
conditions. If both assumptions hold, then the shifted function describes the data with
good agreement. However, the second assumption does not hold, since the energy loss
function used in the analysis stems from a measurement at ~ 18 keV electron energy and
a gas temperature of =~ 29 K, while the krypton measurement uses ~ 30 keV electrons and
a temperature of ~ 100 K. Both can lead to a change of the energy loss function, such that
it does not fit the scattered krypton spectrum at L even without plasma.

Using this wrong model leads to systematics on the fitted Ajy. In minimisation its value is
chosen such that the shifted wrong f;(€) produces the minimum y? on the data set, which
due to the wrong model depends on the total spectrum shape in the scattering region.
Thus, Ay is not only affected by the real plasma induced A, but also by the measurement
time distribution and the column density.

While in detail the y? minimum depends on each of the measured bins of the total spectrum,
as a perturbation it is most likely that it is mainly given by the mean of the function fitting
to the mean of the data. Still the mean energy loss measured in the data depends on the
analysis interval.

The mean energy loss as predicted from the ~ 18 keV energy loss function is plotted in
figure 6.15 over the surplus energy. The latter is cut by the lower analysis interval, which
is usually ~ 22 eV below the line mean. As visible, the slope of the mean energy loss in
this region with a change of the analysis interval is around mg, , = 508 n;—\e]V While this is
a large value, it is always considered in the model. Only the difference to the true value of
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Figure 6.15.: Analysis interval dependence of the measurement of the mean difference:
It is assumed that the fitted energy loss Aj, is measured compared to the
mean expected energy loss in the data. If the change of the latter with the
analysis interval is wrongly predicted, since a wrong energy loss function
is used, this leads to a systematic. This systematic has a dependence on the
rear wall voltage, since the MTD is fixed to the retarding energy and thus is
independent from the rear wall voltage. On the contrary, the zero point of
the energy loss function is given by the line position, which shifts by the rear
wall voltage with some coupling factor.
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Figure 6.16.: Rear wall voltage dependence of the mean difference: As visible, the inner
rings show a slope with the rear wall voltage, which vanishes for the outer
rings. Due to the dependence on the coupling this would be expected both
from systematics and from physical effects.

the true function leads to a systematic beyond the already considered constant shift Arlf)f.
This systematic adds a dependence on the lower analysis interval like

A(All{(?f) (AqUiower) = AqUiowerAmey,, » (6.11)

where AqUjower is the difference to the lower analysis interval at which Alfgf was deter-
mined.

While the uncertainty on the predicted slope is not known, the determination of Aj
should always use the same MTD to minimise the effect. However, since the MTD is fixed
compared to the retarding energy, it does not depend on the rear wall voltage. The onset of
the energy loss function, on the other hand, depends on the line position, which depends
on the rear wall voltage. Thus, in principle the MTD would need to be adjusted for each
rear wall voltage to avoid the effect completely, however this would also require that it is
precisely known in advance what the actual coupling factor of the line position to the rear
wall is. Also, since the coupling is radially dependent, a perfect solution is not possible.

A small dependence of Ajy on the rear wall voltage was actually observed in KNM2.
Figure 6.16 shows the corrected A;yp measurement without rear wall bins. The uncertainties
are statistical only, for better visibility. The outer rings show no dependence, while the
inner rings have a slope. For the fitted innermost ring it is 20.7 m7V The radial dependence
is expected due to the dependence on coupling, regardless of whether the slope is physical,
or whether it stems from the described systematic. If it is due to this systematic, the
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measurement allows to constrain the relative difference

Ame A(A 1
€Eloss — ( 10) S (4 + 1) % ) (6.12)
méEloss A URW méEloss

Regardless of the underlying effect, the slope is comparably small. If for example the
60 mV difference of A;y found between KNM1&2 krypton was to be attributed to this shift,
this would require differences of the lower analysis interval or rear wall settings in the
3 V range. However, the change of the rear wall voltage is usually on the 100 mV scale,
while the MTD was not changed at all.

Column density dependence of Alfgf : Since the detailed transmission function is not used

the transmission function might depend on the amount of scattering. It is currently under
investigation how large this dependence could be and if it could lead to sizeable effects.
However, the column density difference between the KNM1&2 krypton campaigns was
small, such that this cannot explain the observed difference of the A of the campaigns.

Usefulness of the Ajp measurement: While the correction and obtained antisymmetry
allows to proof the underlying theory and to obtain physical values of Aj, the resulting
uncertainties in the coupling region are large. As discussed, they are proportional to the
measured broadening in the coupling region and the overall statistical uncertainties. This
holds only due to the small (radial) structure of the data in the coupling region: the less
structure, the easier Ay can be shifted to 0. If no radial structure is present, the single
measurement value Ay is fully correlated with its correction Aﬁ%f and the total value can
have any value allowed by |A 9| < k35,00 Thus, in the case of vanishing (radial) structure
like here and given the systematic uncertainties of A9, the measurement of A,y does not
lead to useful values in the coupling region. Instead, the neutrino mass shift or the value
of Ay can be directly derived only from o, which is done in the next section.

6.4. Systematics of the KNM1 and KNM2 Tritium
Measurements

Finally, the systematic shift of the neutrino mass caused by the plasma potential in KNM1
and KNM2 is derived. As discussed in the previous section, the obtained measurement of
Ay is not beneficial in the coupling region. Thus, only o, and the maximum shape energy
is used. It is assumed that o, is caused only by 0.

For the inner rings in the coupling region it is given by
ox" = (90 + 30) meV (6.13)

for krypton conditions. The large uncertainty is caused by the uncertainty of the Lorentzian
reference, which is the dominating systematic. Due to the large uncertainties of the analysis
0y is only used as upper limit with a mean of 0 in the tritium B-spectrum model. Adding
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the uncertainty of 30 meV to the mean using Gaussian propagation for the squared value
leads to

0(00)® ~ 116 meV . (6.14)

As discussed in section 5.3 additional uncertainties due to the possibility of different
plasma potentials and differences in the scattering weights between tritium and krypton
conditions arise. The former is not known, and disregarded here. The translation between
the weights is shape dependent and different shapes produce the extremal changes of
oo and Ag. This leads to a correlation of the parameters, even if gy and p are used. In
the following the correlation is neglected and the extremal values of both are calculated
independently, which overestimates the effect. However, the independent estimates are
needed for systematic studies.

As discussed in section 5.3, the maximum of the neutrino mass shift variance term is
obtained by multiplying the above result with a factor of 1.1 (KNM1) or 1.2 (KNM2). This
leads to

Maximum variance : ¢(0y) ™! ~ 128 meV, 0 (09) "2 ~ 140 meV . (6.15)

The values are realised by a maximally localised inhomogeneity, which in turn has vanish-
ing antisymmetry, as shown in section 3.3.2.

The maximum A, are calculated directly from krypton oy using the krypton weighted
k, = 0.6 (KNM1) and x, = 0.72 (KNM2), which are found in figure A.19 in the appendix.
Multiplying equation 6.14 with those values gives

(AENMl) < 70 mevV, ‘AENMZ‘ < 84 meV . (6.16)

Thus, while the standard deviations of equation 6.15 are the maximum allowed, the
maximum antisymmetry would be produced by smaller values, which are calculated using
the tritium weighted x, = 0.63 (KNM1) and k, = 0.78 (KNM2) from figure 5.9 and the
given A,

Maximum shape energy : ¢(00) ™! ~ 111 meV, o(09) "M% ~ 108 meV .  (6.17)

For oy larger than those values oy and p are correlated, i.e. for larger values the shape
energy needs to decrease, and for the values of equation 6.15 it needs to vanish.

Using the above maximum standard deviations and the shape energy from figure 5.12 to
calculate the absolute shifts of the squared neutrino mass leads to °

|Am2[V]FYMI < 2 (111160 + 128 - 128 ) meV? = 0.07 eV?, (6.18)
|Am2[V][FNM2 < 2 (1108 - 490 + 140 - 140 ) meV? = 0.15 eV? . (6.19)
shape variance

%In addition to using this perturbative equation the shifts were also modelled on Asimov data by including
different potentials with the moments measured in KNM1&2 krypton. The results are in agreement.
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Due to the correlation these shifts are overestimated. Using only the maximum shape
energy values, which are the largest simultaneously allowed for both terms, gives

IAm2[V]™ < 2,111 ( 160 + 111 ) meV? = 0.06 eV?, (6.20)
IAm2[V]Y™2 < 2.108 ( 490 + 108 ) meV? =0.13 eV?. (6.21)
shape variance

Obviously the differences are minor. Thus, also the benefit of constraining the neutrino
mass shift directly including the correlations, as discussed in section 3.5, is small. For
the currently performed analysis of the KNM2 results oy is directly constrained from the
krypton measurement. The analysis is based on the larger KNM3 krypton dataset. It also
includes an uncertainty due to the difference of the potential in the measurements, which
is obtained by extrapolation between measurement conditions.

6.5. Conclusion

In this chapter the analysis of the KNM1 and KNM2 krypton measurements was described.
The KNM1 krypton data showed non-understood systematics, which presumably are at
least partly related to an insufficient background model. Thus, the KNM1 krypton data was
not used further. However, the KNM2 krypton measurements showed consistent results.
Its estimates of potential inhomogeneity were used to predict the respective neutrino mass
shifts in the KNM1 and KNM2 tritium measurement. Furthermore, it was shown that the
theory developed in this thesis, which relates the krypton observables to symmetries of
the potential is fully applicable to the gaseous krypton measurements. If a strong positive
voltage is applied to the rear wall, a negative longitudinal gradient of the potential through
the source is expected. Since it dominates all other inhomogeneities and depends only on
the precisely applied voltage, it should be reproducible. It was shown that the krypton
measurements fully support these expectations. Moreover, it could be argued that in this
case the potential shape is not smoothly linear decreasing, but that it likely has the central
structure which is predicted by plasma simulations. While this was made plausible using
two model-dependent simulations, the basic argument can already be made completely
model independently only on the peak-to-peak value of the potential. In summary, it
was shown that the theory developed in this work fully relates the krypton observables
to the potential symmetries, that it gives a complete description of the gaseous krypton
measurements at KATRIN and that it consequently should serve as the basis of the future
measurements.

The analysis also revealed several challenges: Using only KNM1 and KNM2 krypton data,
the impact of plasma potential inhomogeneities on KATRIN neutrino mass measurement
systematics is huge. The systematic budget of full KATRIN of Gsys,tot(m‘%) < 0.017 eV?
[KATO04b] is already exceeded by each of the plasma systematics of the first two campaigns.
In KNM1 it is a factor of 3.5 times larger, in KNM2 a factor of 7.6. These large systematics
are mainly caused by the unknown energy loss shift A1o[V], which was newly introduced
in this work. While due to systematics of the krypton measurement its measured value can
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currently not be used, it was shown that it can nevertheless be constrained from the mea-
sured potential variance ag [V]. However, the latter also suffers from large uncertainties,
stemming from difficulties in the determination of the intrinsic L3 line width T

Despite these, currently still large, uncertainties, the plasma related shift of the squared
neutrino mass of KNM1 is insignificant compared to the KNM1 budget of ogys xnm1 (m2) =
0.32 eV? [Ake+19], when added in quadrature. Thus, its disregard in the published analysis
is justified.

However, for full KATRIN this will not be possible and already in KNM2 the plasma sys-
tematics is a dominating contributor of the systematic budget. To overcome the described
challenges and to reduce the influence of plasma systematics, the KNM3 measurement
campaign was dedicated to the study of the plasma potential and the krypton measure-
ments were hugely expanded. This included extended measurements using L3 and the
N, 3 doublet. Also, different column densities and temperatures were used to understand
their influence on the plasma potential. Notably, the large systematic obtained in the
analysis of this thesis would be already significantly reduced, if the measured mean of
the plasma potential variance o2 [V] was used in the modelling of the B spectrum. Only
its uncertainty needs to lead to a systematic of the measurement of the neutrino mass.
While the determination of the plasma systematics in KNM1 followed the approach shown
here (where only an upper limit was calculated), in KNM2 the measured mean will be
considered in the modelling.

The systematic strongly depends on the size and knowledge of the total broadening o,.
Ongoing analysis of the N, 3 doublet on KNM3 data suggests that it is considerably smaller
(0 ~ 50 meV) [Gup20; B6t20] than the presented analysis shows. However, at the present
stage still considerable tension to L3 data exists, indicating, that both measurements suffer
from different systematics. Nevertheless, using the N5 doublet, in part the difficulties in
the determination of the intrinsic L3 line width I' have already been solved.

Outlook: In the future an estimate of Ajo[V] needs to be obtained, since the shape
energy dominates the plasma potential systematics of the neutrino mass measurement.
The present analysis shows that this measurement is possible and that the theory of the
spectral effect of the plasma systematics is well understood. However, the determination
of the correct energy loss function is vital to minimise the uncertainties. This problem is
currently tackled from two sides: The change of the energy loss function with energy is
calculated in theory and a new electron gun is under construction, which will be capable
of producing quasi mono-energetic electrons at energies of ~ 30 keV. This will allow to
measure the energy loss function at these energies.
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7. Runtime Schedules and Time
Dependent Perturbations

In this chapter the systematics resulting from time dependent perturbations of operating
parameters are discussed. The systematics depend on the interplay between the time scale
T or frequency f = % (angular frequency w = 2xf) of the perturbations and the runtime
schedule, i.e. the time ordering of the retarding energy qU (¢). The observables of interest
are the neutrino mass m,, the endpoint E, (tritium spectrum), the Gaussian broadening
og and the line position Eyin ! (krypton spectrum). In both spectra also the nuisance
parameters intensity and background and the y? are affected.

In section 7.1 the relevant time scales of the runtime schedule and the corresponding
regimes of systematic shifts are discussed along with general definitions. Furthermore
correlation analysis of the schedules both in time and frequency domain is described,
which allows to classify their frequency response independently of the spectrum and thus
to generalise the findings to other than the studied schedules.

In section 7.2 the chosen semi-analytical implementation is described.

In section 7.3 the results are discussed based on the KNM2 tritium and krypton measure-
ments for the example of energy scale perturbations.

7.1. Runtime Schedules in Time and Frequency Domain

The distribution of the total measurement time to the different retarding energies is de-
termined by the Measurement Time Distribution, short MTD. The MTDs used in KNM2
krypton and tritium measurements are found in figures 7.1 and 7.2. The tritium MTD is
optimised to yield the best sensitivity on the neutrino mass for a given total measurement
time [Kle14]. Constant uncertainties of model parameters can be considered in the opti-
misation, but since no time dependent effects are considered, the timewise ordering of
retarding energies does not affect the projected sensitivity. In this work the systematics
resulting from non-constant parameters are discussed for different classes of runtime
schedules.

ISystematics on the eloss shift Aegoss have not been investigated. It is assumed that the magnitude of the
systematics can already be determined from the used observables.
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Figure 7.1.: KNM2 krypton measurement time distribution: As in most krypton measure-
ments at KATRIN a flat MTD was used for KNM2 krypton. The regions with
more dense points are at the expected line mean of L3 and the line of one-time
scattered electrons. For the studies performed in this chapter a stripped-down
MTD without the scattered electrons is used, which already allows to determine
the magnitude of systematics related to time dependent effects.
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Figure 7.2.: KNM2 tritium measurement time distribution: The typical MTD for tritium
measurements has a peak some eV below the endpoint with most m, sensitivity.
The region above the endpoint serves to fit the background, the region below
the endpoint determines the signal and the endpoint itself. One point several
hundred eV below the endpoint is used for studies of systematics like radial
energy dependencies. For the studies performed in this chapter the MTD is
restricted to the 40 eV interval below the endpoint, which is the interval usually
used for neutrino mass analysis.
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7.1. Runtime Schedules in Time and Frequency Domain

7.1.1. Relevant Time Scales and Perturbation Regimes

In the following different time scales and their corresponding distributions are described,
which occur based on how the runtime schedules are constructed from the total projected
measurement time Ti,;. The time scales are the moments of these distributions and they
are used to identify the frequency regimes of the time dependent effects which produce
qualitatively different systematic shifts of the observables for a given runtime schedule.
With regard to the runtime schedules the focus lies on order versus randomisation, which
is expected to be the cause of differences in systematics caused by time dependent effects.

Subrun time duration: Most data taking at KATRIN is performed at piecewise constant
retarding energy qU (1), in contrast to, for example, continuous ramping measurements 2.
A measurement at a fixed retarding energy is called subrun and the runtime schedule is
fully described by the time ordered set of the Ngpun Subruns. From this set the frequency
distribution N (tsuprun) of each subrun duration tg,un can be constructed, which has the

time scale
N, subrun

as its first moment. The existence of this time scale is unavoidable, since it is a measure of
time duration spend in a measurement. Only the higher moments can lead to large or no
dispersion of the distribution, or the time scale itself can be raised or lowered.

Tsubrun

Subrun duration versus returns:  The total projected time #\tp(qU) spent in each bin of
the MTD in general is a summation over n(qU) subruns of duration typruni(qU), i €
{1,..,n(qU)}, where n(qU) is the number of returns to the subrun. Using the mean subrun
time

n(qU)
<tsubrun>( U)=s ——= tsubrun,i( U) P (7'2)
1 n(qU) Z 1
this reads
tMTD(qU) = <tsubrun> (qU)n(qU) . (7‘3)

The tguprun,i(qU) can be taken from a probability distribution pyu (tsubrun) 3, whose higher
moments add to the dispersion of N (tsubrun)- In this case equation 7.3 is approximate and
convergence to the projected MTD on the scale t\rp(qU) is only achieved, if the number
of returns n(qU) is large or likewise the average subrun duration (tsyprun) (qU) is small.

Using the average (n) qU of the returns over the Nyitp bins of the MTD, the total number
of subruns can be expressed as

Nmtp

Newbrun = Y, 2(qU) = (ngu Ny - (7.4)
qU

Even here the extracted data is taken from periods which are small compared to the ramping speed, such
that the retarding energy is assumed to be constant.

3In this case in this work the duration of a subrun was drawn from the distribution until the total time was
larger than fyrp (qU), leading to varying n in each subrun.
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7. Runtime Schedules and Time Dependent Perturbations

From that it follows for the subrun time scale (i.e. the first moment of the subrun duration
frequency distribution N (tsubrun)) *

1 Nyrp n(qU)

Tsubrun = Z tsubrun,i(qU) > (7.5)
subrun qU ;

1 Nmtp
= T ; (tsubrun) (qU)n(qU) . (76)
_ <<tsubrun> (qU)n(qU)>qU (7 7)

- <n>qU , .
S (7.8)
Nmtp (n)qu

The last step assumes exact convergence of the MTD of the generated runtime schedule
to the input MTD. Expectedly, Tyybrun Scales anti-proportional to the average number of
returns (n)qy-

Run time scale:  The specification of pyy (tsubrun) can be used to construct an unordered
set of subruns. Regarding the time ordering, the division is between schedules using some
ordering criterion on the subruns, or randomisation. In both cases the average (n),y
returns to the subruns imply a time scale

not
<n>qU ’
= NumtD Tsubrun - (7.10)

Trun = (7.9)

The name run comes from the special case of monotonous ordering of the subruns with
increasing/decreasing qU, with constant subrun duration tybryn,; = M for each return,
and with n independent from the retarding energy °. In this case the schedule is comprised
of 7 exact copies of up and down runs, which are usually called scans.

While the time scale T, has the same definition for both the ordered and randomised
case, its interpretation is fundamentally different:

« Highly ordered schedules: In this case the inverse of T,y is the return frequency to
a self-similar measurement, i.e. run or corresponding structure.

« Fully randomised schedules: In this case the inverse of Ty, is the centre of a non-
self-similar noise regime of the frequency response of the schedule.

To study the frequency response of the schedule to perturbations and thus these two
regimes and their non-trivial transition independently from the measured spectrum, the
proper way of analysis is correlation and Fourier analysis, which is discussed in section 7.1.2.

“Subtleties regarding these equations arise due to the dead time discussed in one of the following paragraphs.
>If n depends on qU, the probability of a subrun appearing in one of these ramps can be taken to be
proportional to n(qU).
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It is expected that these analyses and the actual simulations show different regimes of the
systematic shifts of the observables according to the found time scales.

Perturbation regimes: Depending on the size of the perturbation period T compared to
Tyubrun and Tio; the following regimes are expected °:

o T < Tyubrun, averaging: In this case time dependencies are averaged. Perturbations
can be considered by convolution of their distribution with the spectrum. In leading
order only mean y and variance o2 of these distributions are considered.

In the case of energy scale perturbations the following leading order shifts are

expected ’:
Am? = -20%, AEy = p, (7.11)
Aag = o2, AEMain = [ - (7.12)

o T > Ty, drifts and constant shifts: In this case the perturbation is either a drift,
or even constant on the time scale of the measurement. Energy drifts lead to
proportional shifts of Ey and Epain, and shifts of m, and o, due to correlations to
the former.

o Tawbrun < T < Tior, non-trivial regime: This case results in systematics of the
observables, which depend on the magnitude of ordering in the runtime schedule.
Highly ordered schedules lead to resonant systematics, randomised schedules lead
to noise.

Dead time: The ramping of the retarding energy between two set points qUy — qU;
needs the dead time t4e,4(qUi, qUp) and the counts recorded in this time are not included
in the analysed data.

Accordingly, the total time is given by the measured time Tj,.,s and the total dead time
Tgead through
Tiot = Treas + Tdead - (7-13)

To avoid inconsistencies and to predict the correct regimes also the run time Ty, and
subrun time Tyypru, have to contain the dead time, which is accomplished by adding the
dead time following a subrun to the subrun time. Thus, by dividing equation 7.13 by the
number of subruns Nguprun

Tsubrun = <tsubrun> + <tdead> (7'14)

is obtained, where (tge.q) is the average dead time per subrun.

®This holds if the total data set is analysed in one stacked fit, i.e. if all recorded spectra are added before
fitting. Also, constant phase velocity of the perturbation is assumed. Implications of non-predictable
phase and different stacking methods are discussed in sections 7.3.4 and 7.3.5.

"The perturbations used in the following will usually be defined such that y = 0.
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7. Runtime Schedules and Time Dependent Perturbations

Schedule efficiency: The schedule efficiency €.y, i.e. the measured vs. the total time, is
given by

T, T
€off = meas _ 1— dead ’ (7.15)
Ttot Ttot
or equivalently < \ ( >
t t
€oft = subrun —1- dead . (7.16)
Tsubrun Tsubrun

7.1.2. Correlation Analysis of the Runtime Schedule

In the following correlation and Fourier analysis of the schedules is described, which
allows to classify the schedules independently from their individual properties and to
understand the simulated shifts in terms of spectral analysis.

Regions of interest:  To study correlations of the Runtime Schedules, Regions Of Interest
(ROIs) of the MTD are defined, which provide the sensitivity to the observables ®.

Only considering intervals between retarding energies qU, and qUj results in the definition
ROIO = [qUo, qu) (717)

for the observable o. This allows to define a Boolean function s,(t) °, specifying whether
at a given time o is measured or not, i.e.

so(t) =1, if qU(t) € ROIL,, else 0. (7.18)

Autocorrelation function: The autocorrelation functions are defined as [Kri15]

T
Corryo (1) o< / so(t)so(t + 7)dt, (7.19)
0

specifying the similarity of the schedule qU (0) to the r-shifted schedule qU (7) with regard
to the measurement of o. It is bounded between 0 and 1, meaning no or full similarity of
the measurement. It allows for the visualisation of the schedule over all time scales:

¢ Tsubrun: The autocorrelation drops from the initial full similarity to the percentage
of measurement time spend in the respective ROL

 Trun: The autocorrelation shows order (peaks) versus randomisation (flat) of the
schedule.

o Tiot: The autocorrelation linearly drops to 0 (logarithmically in the representation

over log(7)).

8Due to correlations of the observables the detailed choice is to some extent arbitrary, however the resulting
analysis of the schedules’ correlation does not strongly depend on it. The usage of ROIs is necessary to
construct non-trivial autocorrelations, as defined in the following.

°In a more general approach without strict ROIs s, () is a continuous function between 0 and 1 specifying
the sensitivity to a given observable at a given retarding potential, i.e. at a given moment in time.
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7.1. Runtime Schedules in Time and Frequency Domain

These regimes are simplified, since for non-Gaussian subrun duration distributions the
higher moments of the distribution are relevant and the autocorrelation function might
show more structure especially on the subrun time scale (more than one drop or peaks).
Also, the time scale were derived from the total frequency distributions of the subruns
which disregards the ROIs, while actually the frequency distributions and thus the time
scales are different for the observables. In the plots in the results section only the global
time scales without ROIs are given, but the above qualitative understanding easily allows
to relate the respective time scales in the autocorrelation functions to the given subrun
duration distributions of the observables.

Spectral density: In the frequency domain the analogous quantity to the autocorrelation
function is the spectral density. It is the squared absolute value of the Fourier transformation
of the autocorrelation function '° [SH08]

2

Soo(a)):/ Corry, (7)€ “Tdz| . (7.20)
0

The spectral density allows to predict the response of the schedule to frequencies f:
« peaks indicate resonant frequencies, leading to resonant shifts of the observables.

« linear portions of slope —n in double logarithmic representation indicate - noise
components, leading to chaotic shifts of the observables, but of predictable envelope:

— White noise (n = 0) has a constant envelope and is produced in randomised
schedules.

— Brown noise (n = 2) leads to an envelope decreasing with frequency and is
globally expected due to the limited total measurement time and the overall
linear decrease of the autocorrelation function.

Discrete calculations: For the case of boolean s, (t) they can be interpreted as a set of time
intervals and the integrand in the calculation of the autocorrelation function (equation 7.19)
is found by calculating intersections as shown in figure 7.3. The integral can be replaced
by a summation over the resulting time intervals I; € s,(¢) N s,(t + 7)

Corryy (1) o Z so(t) N so(t+7), (7.21)
I;
allowing for fast calculations.
Using the convolution theorem the spectral density can be calculated as
2

Sw@ o — | Y (-t (7.22)

[t0,t1)€50(0)

WOFor finite schedules with total measurement time T;o; the autocorrelation function is always 0 for 7 > Tiot,
which cuts the upper integration limit.
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So(t)so(t +7) — P Fo

So(t + 1) — -

So(t) S

>t

Figure 7.3.: Integrand of the autocorrelation function: For boolean s,(t) the integrand can
be calculated by finding the overlap in time between s,(t) and s,(t + 7).

and
12
1
Soo(®) @z0 T cos (%(to + tl)) sin (%(tl - to)) (7.23)
| [t0,t1) €50 (0) ]
- 12
1 ) w
+W Z sin (E(to + tl)) cos (E(tl - to)) . (7.24)
| [f0.11)€50(0) |

The following normalisations are used in this work:

Corr,, (0) =1, (7.25)
vamv(o) = Sogag(o) =1, (7'26)
SEoE, (0) = Sgy Ey, (0) = 1077 (7.27)

The spectral densities of Ey and Epp,in have been shifted with regard to those of m, and o
for better visibility in the plots.

Bandwidth and structure: Since the time is limited by the total measurement time T;t,
the minimum structure size of the spectral density is on the order of %t

7.2. Semi-Analytical Implementation

Time dependent perturbations Ax(t) of the set of operating parameters x(t) can be
separated from their mean values x by

x(t) = % + Ax(t) . (7.28)

The implemented shapes of the perturbations Ax(¢) are discussed in section 7.2.2.

172



7.2. Semi-Analytical Implementation

For a given subrun with starting time ¢, and end time t; at operating parameters x, the
observed counts N are given by

51
N(x) = / EN (x(1)) AT, (7.29)
, AT
where AT = t; — tj is the measurement time of the subrun. Due to the Nyquist-Shannon
sampling theorem the minimum number of sampling points for a direct numerical cal-
culation scales with the frequency of the perturbation, such that direct calculations can
only be carried out for small frequencies ''. Calculations in all frequency regimes can be
carried out using the method explained in the following.

7.2.1. Time Dependent Spectrum Calculations

In the following only the perturbation of one of the operating parameter x is considered 2.
If Axmax is the maximum perturbation amplitude, the following expansion around the
mean holds:

N(x) = /tl ﬁN (x(t)) AT,

AT
1 d"N| Ax"
= ATN ——ax 7.30
(x)Z n! dx" |, N(x) " (7:50)
A max 2 \ A max
—ATN(x)(1+d—N Xmay 1 AN xaI+...),
|, N@ 2 &, N
with - o
Lde [ Ax(t
I,(to, 1) = . 731
(to,11) / = ( Axm) (731)

This expansion allows to separate the calculation of the time dependence I, from the
spectrum calculations Y d N This is extremely beneficial if simple parametrisations for the
I, exist, for example if Ax(t) is known analytically. In this case the calculation time for
the I, is independent of the perturbation time scale and can be carried out for all scales.

Derivatives: If other time and retarding potential derivatives are negligible the derivatives

%;I,\;] _ do only need to be calculated once for each MTD bin.
X

The number of necessary terms n can be calculated by comparing the remainder terms to
the Poisson uncertainty with demanded accuracy e, leading to

Ax mathot <€ \/N(x)Ttot , (7.32)

The time scale where full numerical calculations become unfeasible is in the regime of seconds, which is
the relevant regime for non-trivial effects to occur.

2The general case can be implemented using the same method as described here, but needs to consider
tensor formalism to store the necessary (mixed) derivatives and integrals.

d"N
dx™ |,
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7. Runtime Schedules and Time Dependent Perturbations

where T, is the total measurement time. € = 0.01 has been used for all calculations, such
that the uncertainty from the Taylor approximation on the counts in each bin of the MTD
is 100 times smaller than the Poissonian uncertainty. The maximum allowed number of
derivatives was limited to 7 and in all checked cases using 1 or 2 derivatives less than
calculated by equation 7.32 did not affect the results.

The derivatives of the spectrum with regard to the energy E were calculated numerically
using the noise-robust differentiator [Hol15]

dN(E) _ 2(N(E+h) = N(E - h)) + N(E + 2h) — N(E — 2h)

iE ah (7.33)

Higher derivatives were calculated by subsequent application of equation 7.33. Calculating
the step size h following

h =5 meV + 0.04|Ey — qU| (Tritium) , (7.34)
h = 80 meV + 0.08|Epfain — qU| (Krypton) , (7.35)

yielded the best found results in terms of smoothness of the derivatives.

7.2.2. Perturbation Shapes

Different shapes of periodic fluctuations have been implemented. To cover the general case
of single time scale perturbations a wide frequency spectrum between 107 Hz < f < 1Hz
(1s < T £ 300Yy) is considered, which is 100 times larger than the maximum total data
taking time of « 3 years and ten times smaller than realistic minimum subrun times of
o 10 seconds. In this way all regimes are considered by using periodic functions and
non-periodic drifts do not need to be implemented separately, since they are obtained in
the regime T > Tiy.

Sinusoidal shape: This analytical shape is used to calculate the systematics caused by a
single frequency perturbation

Axsine(t) = Axmax Sil’l(a)(t - TO) + ¢0) . (7-36)

The time integrals read

1\" 1 < (n\|n=2i, wAT,
Tnlto. 1) = (5) AT Z (z) {n %2, o sin((n - 20) ((t = To) — 2+ o)) .
(7.37)

Periodic continuation: This shape is used to calculate the response to perturbations
composed of discrete frequencies. Using the phase

w(t=Ty) + ¢

p(t) = . (7.38)
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7.2. Semi-Analytical Implementation

the perturbation can be defined by periodic continuation

x(t) = AxmaxR (9(2) = [(1)]) (7.39)
where R(¢) is an arbitrary function defined in the interval [0,1) and [-] is the floor
function.

The integrals read

1 2

= = | Ra (¢~ L9, + trunc (D)) Ra(P)l5| - (7.40)

n

with R, being the nth antiderivative of R and trunc(.) the truncation function.

Sawtooth wave: The definition
1 n+1 1
Ru(9) = 5 (26 = 1™+ (7.41)
results in a sawtooth perturbation

Axsawtooth(t) = Axmax(¢(t) - Ld)(t)J) > (7'42)

whose rich Fourier spectrum

ok sin(2rk ft)
Axsawtooth(t) & Z( 1) k (7'43)
is used to probe the response of the schedule to composed frequencies.
RMS values: The root mean square values are
Ax
orms (Axsine) = \/I%ax , (7.44)
Ax;
O'RMS(Axsawtooth) = == (7.45)
V3
Using equations 7.11 and 7.12, for energy scale perturbations of amplitude A in the averag-
ing regime
sine : \/Am? = —A Ac? = A (7.46)
. v s 5 .
v R
2 2 ;A
sawtooth : \/Am; = —[=A, Aog = —, (7.47)
3 V3

are expected °.

B3To allow negative square roots, - = sgn(...)y/[...| is used, where sgn(_..) is the signum function.
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7.3. Results and Discussion

In the following the results of the studies are discussed. Section 7.3.1 discusses input
parameters that are used for the studies and the result figures, which are used to present
the results. The systematic shifts caused by sinusoidal fluctuations of the energy scale
in ordered and randomised schedules is discussed in section 7.3.2. In section 7.3.3 the
response to sawtooth fluctuations is discussed. Due to the contained integer harmonics
this allows to investigate the linear combination of systematics. In section 7.3.4 it is shown
that the results on order vs. randomisation can be understood in terms of coherence or
decoherence of fluctuation phase and subrun starting time.

On run time scale, the separation into coherent and decoherent measurements allows to
analytically derive the scaling of the systematics with perturbation amplitude and schedule
return number, which is shown in section 7.3.5. Finally, section 7.3.6 gives the combined
statistical and systematic uncertainty for the KNM2 tritium measurement with regard to
possible run time scale fluctuations.

The results were cross checked !* with an independent code using both the Taylor expan-
sion described in section 7.2 and full numeric evaluation on the time scales, where this is
possible. The results of all methods and codes are in agreement. Studies were performed
both on the tritium and the krypton spectrum leading to equivalent results.

7.3.1. Input Parameters and Result Figures

In the following the premises for the studies as well as the figures used to visualise them
are described.

Simulated data and resolution: Asimov spectra (cf. section 1.2.1) were simulated for N =
10* sinusoidal fluctuations with frequencies between fi,in = 1071 Hz and fiax = 1 Hz. The
frequencies were uniformly distributed on a logarithmic frequency scale according to

where r ~ 1.0023 for the given values.

This leads to constant relative time and frequency resolutions

- ~1
Ry = Jomhe TZ1 g 1073, (7.49)

fa r
S
thf"“—lf” =r—1=~23-1073. (7.50)
f
Thus, the detection of structures of a width smaller than R¢f, in frequency domain is
suppressed in the following studies. The smallest possible width is given by %Ot such

“Many thanks to Ferenc Gliick.
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that structures caused by this scale are suppressed on run time scale, if T;yy, < R;Tior and
likewise on subrun time scale. As a consequence, especially on subrun time scale not all
features might be visible in the following plots. To detect all structures on scale —— over
the whole frequency range, the number of points needs to be increased by four orders of
magnitude which was unfeasible, since for the chosen N the calculation time was already
in the range of one hour.

Fit: The fit of each spectrum was performed using ROOT::Minuit and the standard four
parameter analysis, with fit parameters (m?, E, background, signal) in case of tritium and
(O'g, Enain, background, signal) in case of krypton.

Campaigns considered: The following studies are modelled after the KNM2 krypton and
tritium measurements.

Countrate: The rate of the spectra was modelled to fit to the measurements by using
84 % of nominal column density for KNM2 tritium and 190 kcps rate on the L3 plateau for
KNM2 krypton. The rate is relevant for the normalised y? since shifts of the observables
are detectable, if the y? significantly differs from 0.

Resultfigures: Figures of the kind of 7.6 and 7.7 are exemplary for the visualisations of the
tested schedules and the results in all studies. The left side 7.6 shows the schedule and the
subrun duration histogram in time domain, in the inset of the schedule the autocorrelation
function is shown. The right side 7.7 shows the fit results (the square root is taken for Am?
and Aoﬁ) over the fluctuation frequency together with the y? and the spectral density of
the schedule in frequency domain. This allows to relate patterns in the fit results directly
to patterns in the spectral density.

Perturbations of operating parameters considered: ~ Only perturbations of the energy scale
x(t) = E(t) = E+¢€(t) (7.51)
were considered, which can be caused by fluctuations of the retarding energy or the starting

energy. It is conceivable that derivatives of the spectrum to other operating parameters
produce less severe effects than derivatives of the energy scale.

Region of interest and MTDs: The KNM2 measurement MTDs for krypton and tritium
were used. For tritium the lower bound of the MTD was restricted to 40 €V below the
endpoint, which is the usual analysis interval. In krypton only 10 eV below the line mean
was included, such that scattering effects were not considered.
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The sensitive regions of peak-like MTDs are described in [Kle14]. Accordingly, the ROIs
where picked to be

RO, = [-20,0) eV, (7.52)
ROIg, = [—40, —20) eV, (7.53)

for the KNM2 tritium schedule.

Due to the flat MTD the definitions used for krypton are arbitrary and both ROIs are
equivalent.

ROL,, = [-7,1) &V, (7.54)
ROIg,, = [-4.-1) eV, (7.55)

were used.

Total measurement time and number of returns: The total measurement time Tiy; of the
KNM2 tritium golden run list was 33 days, consisting of 361 runs.

For the krypton measurements 20 runs were used, each with a run time of roughly half an
hour, leading to a total measurement time of 8 hours. This approximates the measurements
taken at a rear wall voltage of Urw = 200 mV. Other rear wall voltages were measured
less often, but the total time was usually on the scale of some hours.

Dead time: The performance of the high voltage system in the KNM2 measurements was
considered. The dead times only depended on the difference AqU = qU; — qU, and can be
modelled as second order polynomial [Rod20]

7.56
S eV eV ( )

t AqU AqU AqU 2
dead( q ) / q C( q ) i

KNM2,T; : a =32.27 £ 0.936,, b = —0.045 £ 0.012, ¢ = 0.00042 + 0.00011, (7.57)
KNM2,Kr :a =19.10 £ 0.711, b = —0.805 = 0.191, ¢ = 0.5135 + 0.1176 . (7.58)

The means and uncertainties were used as mean and standard deviation of Gaussians, such
that the dead time calculation obeys randomness, which mimics the true performance.

Fluctuation amplitude: The amplitude of the sine is fixed to 50 meV for the following
results, which is the requirement from the KATRIN design report [KAT04b]. The scaling
of the shifts with the amplitude is discussed in section 7.3.5.
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7.3.2. Systematics for Sinusoidal Perturbations in Ordered and Randomised
Schedules

The following pages show four different scenarios both for tritium and krypton, focusing
on the effects of ramping vs. randomisation. The presented results include increasing
randomness, as shown in figure 7.4:

« Ramping back and forth, subrun duration distribution from MTD (as used in the
measurement),

« Random order, subrun duration distribution from MTD,
« Randomised subrun duration distribution, ramping back and forth,

« Randomised subrun duration distribution, random order.

Ramping: The ramp schedules show that resonant shifts of the observables occur at the
time scale of scans and its harmonics. A zoom on the resonance at scan time in figure 7.7
is shown in figure 7.5. It shows that the first moment description of Tycan = 2Ty perfectly
predicts the resonances, despite the random dead time and non-trivial subrun duration
distribution.

Randomisation: In the randomised schedules random noise appears over the whole non-
trivial frequency regime. While the detailed features are different, the appearance of noise
instead of peaks does not depend on whether the subrun length distribution or the return
order is randomised. To access the noise amplitude, the standard deviations of 1000 shifts
(one order of magnitude in frequency) centred around the run time scale are calculated.

Shift in the averaging regime: Overall the shifts observed in the averaging regime agree
with the expectation equation 7.46. However, in detail the shift near f = 1 Hz consistently
shows fluctuations towards some meV smaller values than the leading order prediction,
both for krypton and tritium.

Mean shiftonruntimescale: On run time scale the observables also show a non-vanishing
mean shift. For the endpoint and line position it is on the sub millivolt level for the tested
amplitudes and presumably a result of higher order effects.

For the neutrino mass and Gaussian broadening in the ordered case it is approximately
given by the expectation of the averaging regime. In the randomised case it is on this
order, but there are larger discrepancies.

Total time scale shifts: In both cases for fluctuations on the time scale of the total duration
of the measurement a wave pattern is observed. As visible in the shifts of Ey and Epain
this is directly linked to the average energy shift of the fluctuation in the schedule. Given
the fluctuation period T, the average vanishes for integer multiples Tiot = nT.
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Figure 7.4.: Retarding energy over time for different schedules: in (a) the subruns are
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ordered and their duration is picked according to the MTD and the run number.
(b) is obtained by randomising the subrun order from (a). In (c) the subruns
are ordered and their duration is randomised. (d) is obtained by randomising
the subrun order from (c).
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Figure 7.5.: Zoom on scan time resonance in ordered schedule: The scan time of the
simulated ramp schedule was Tscan, = 15796 s, leading to the fundamental
resonance frequency TL = 63.3 - 107% Hz, which perfectly fits the simulation.

The width of the shown periodic structure is exactly given by %

Krypton versus tritium: The simulations show equivalent results for krypton and tritium.
In the case of krypton, however, it is likely that systematics of this size would be detected
in a raised normalised y?, which is only rarely possible in the case of tritium. To test the
available krypton data for run time scale fluctuations a stacked fit of the available runs
has to be performed °. The significantly raised y? in the stacked uniform approach of this
simulation might not be detectable in pixel or ring fits, which have a factor of npe1s = 117
OI Nyings ~ 12 fewer counts.

15The usual analysis performed for krypton does not use stacking of the pixel or ring wise results to uniform
fits. Also, all runs are analysed separately.
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Figure 7.6.: KNM2 tritium schedule, ramping: The plotted scenario approximates the
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performed measurement in KNM2. 361 runs are in the golden runlist, and the
measurement was performed in up and down ramps. The mean measured set
time of the high voltage is included. The ramps are visible in the autocorrelation
function.
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several 100 meV range appear in the neutrino mass shift, which are mostly
not detectable in a raised normalised y?. The peaks are related to peaks in
the spectral density, appearing above the frequency ﬁ corresponding to one
scan.
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Figure 7.8.: KNM2 tritium schedule, random order: In this scenario the ordering of the
retarding energies is randomly distributed, resulting in a slightly raised dead
time due to high voltage setting. The structure in the autocorrelation function
mostly disappears.
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Figure 7.9.: KNM2 tritium systematics, random order: The peaks visible in the ramp mea-
surements get smeared over a broad range of frequencies. The systematics are
in no case detectable in the normalised y?. The standard deviations on run

time scale are \o(m?) = 164 meV and o(E;) ~ 2.3 meV.
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Figure 7.10.: KNM2 tritium schedule, ramping, randomised subrun duration: In this sce-
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nario the subrun duration is randomly picked from a Gaussian with compara-
ble moments as before, while the ordering still obeys an up and down ramping
pattern. However, since each of the small bins near -40 eV only makes up

~ 5 h each, they get filled already after 7

5h
tsubrun) <n>

~ 20 % of the total runtime.
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Figure 7.11.: KNM2 tritium systematics, ramping, randomised subrun duration: On run
times scale increased noise can be observed, which is related to an excess
of the spectral density in this region, caused by the ramping. Outside this
region the noise is lower in amplitude. The standard deviations on run time

scale are y/o(m?) ~ 287 meV and o(E;) ~ 8.0 meV.
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Figure 7.12.: KNM2 tritium schedule, random order, randomised subrun duration: In this
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scenario the duration of the subruns is randomly picked as before, and addi-
tionally the subrun order is randomised. The randomisation of the subrun
duration is clearly visible in the frequency distribution, but other than remov-
ing some structures, the autocorrelation functions are very comparable to the

ones without subrun duration randomisation.
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Figure 7.13.: KNM2 tritium systematics, random order, randomised subrun duration: Com-
pared to only randomising the order of the subruns, also using a random
subrun duration distribution only has minor effects on the spectral density,
the systematic shifts and the y?. The standard deviations on run time scale

are \/o(m?) ~ 209 meV and o(E;) ~ 4.0 meV.
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Figure 7.14.: KNM2 krypton schedule, ramping: The plotted scenario approximates the
performed measurement in KNM2 at Urw = 200 mV. On the order of 20 runs
were taken, and the measurement was performed in up and down ramps. The
mean measured set time of the high voltage is included.
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Figure 7.15.: KNM2 krypton systematics, ramping: In the non-trivial regime peaks in the
few 100 meV range appear in the line broadening. In contrast to tritium, they
will be detectable in a raised normalised y2. The peaks are related to peaks in
the spectral density, appearing above the frequency ﬁ corresponding to
one scan.
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Figure 7.16.: KNM2 krypton schedule, random order: In this scenario the ordering of the
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retarding energies is randomly distributed, resulting in more than double the
dead time due to high voltage setting.
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Figure 7.17.: KNM2 krypton systematics, random order: The peaks visible in the ramp mea-
surements get smeared over a broad range of frequencies. Again, in contrast
to the tritium B spectrum the systematics are most likely detectable in the nor-
malised y*. The standard deviations on run time scale are \/o(0%) ~ 99 meV

and o (Enain) ~ 3.7 meV, which is too large compared to the requirement of
20 meV precision.
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Figure 7.18.: KNM2 krypton schedule, ramping, randomised subrun duration: In this
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scenario the subrun duration is randomly picked from a Gaussian with com-
parable moments as before, while the ordering still obeys an up and down
ramping pattern.
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Figure 7.19.: KNM2 krypton systematics, ramping, randomised subrun duration: Between
run and subrun times scales increased noise can be observed, which is related
to fluctuations of the spectral density in this region, caused by the ramping.
Outside this region the noise is lower in amplitude. The standard deviations

on run time scale are /cf(cfé) ~ 103 meV and o (Epain) =~ 6.3 meV.
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Figure 7.20.: KNM2 krypton schedule, random order, randomised subrun duration: In
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this scenario the duration of the subruns is randomly picked as before, and
additionally the subrun order is randomised. The randomisation of the subrun
duration is visible in the subrun duration distribution, but other than removing
some structures, the autocorrelation functions are very comparable to the
ones without subrun duration randomisation. Convergence to the MTD was
not achieved due to the small total time.
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Figure 7.21.: KNM2 krypton systematics, random order, randomised subrun duration:
Compared to only randomising the order of the subruns, also using a random
subrun duration distribution only has minor effects on the spectral density,
the systematic shifts and the y?. The standard deviations on run time scale

are \[o(c¢) ~ 94 meV and o (Enain) ~ 4.3 meV.
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Figure 7.22.: Sawtooth perturbation, ramping: The envelope of the shift of the neutrino
mass shows the scaling expected for linear combination of frequencies.

7.3.3. Systematics from Composed Perturbations

In the previous section only a single sinusoidal perturbation of the energy scale was
considered. To assess the response to perturbations with a richer Fourier spectrum a
sawtooth perturbation is used, which contains all integer harmonics of frequency fi = kf

i 1ol
with power ¢ o« %

Linear combination: Figures 7.22 and 7.23 show the resulting shifts. In the ramp schedule
the envelope of the neutrino mass shifts decays from Tcay, to Tior With

JAm () = yJAm? () \/g . (7.59)
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Figure 7.23.: Sawtooth perturbation, random order: In all tested randomised schedules
the most prominent effect of using a sawtooth compared to a sinusoidal
is visible in the reduction of standard deviations on run time scale, here

\Vo(m2) ~ 141 meV and o(Ey) ~ 1.7 meV.

This is expected, since in this frequency range the harmonics with power ik scatter on the

resonance at the scan time, visible in the spectral density. Thus, the observed shift is a
summation of the components of the perturbation.

Systematic amplitude: Compared to the sinusoidal, both the amplitude of the resonances

and the standard deviations of the noise of mi and E are scaled by a factor of ~ % which
is the ratio of the respective RMS values of the perturbations.
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7.3.4. Effect of Run Time Scale (De-)Coherence on the Systematics

The simulations presented in the previous two sections show non-trivial shifts (either
resonances or noise) of the observables on run time scale and damping of those shifts on
subrun time scale. The included fluctuations leading to these shifts had a constant phase
velocity over the whole simulated time. This section aims to show that on run time scale
there is equivalence between

resonance < coherence s

noise & decoherence .

From that it is possible to derive the scaling with the fluctuation amplitude and the number
of returns of both the noise observed in decoherent measurements and the resonances
observed in coherent measurements. Also, rather than only meaning constant phase
velocity of the fluctuation, the term (de-)coherence should be understood as quantification
of the interplay between the fluctuation phase and the subrun starting times, leading to
the following distributions.

Phase distributions: Figure 7.24 shows the normalised '° distributions of the starting
phases of the fluctuation for the subruns in the ROIs of the neutrino mass and endpoint
for different schedules. The following can be observed:

+ Order on a given time scale is related to a structure in these distributions and to
resonant shifts of the observables, i.e. coherence equals resonance.

« The absence of structure does not imply no shifts, i.e. coherence is not a prereq-
uisite for the noise appearing on run time scale. On this scale it rather holds that
decoherence equals noise.

For these distributions it is only relevant whether the fluctuation is in phase with the
subrun starting times, or not. Thus, on run time scale random phase fluctuations and
ramping is equivalent to fluctuations with constant phase velocity and random order, and
both is called decoherent on run time scale. For the studies performed in this chapter
only periodic fluctuations x(t) were considered, where decoherence is solely given by the
schedule. For signals x(t) with non-predictable phase the proper measure to access the
coherence of schedule and perturbation is the coherence function.

Coherence function: The coherence function is given by [SH08]

|Sox (@) [?

So0(@)Sex(@) (7.60)

Ygx(w) =

where Sy, is the spectral density of the measurement s, () of observable o of the schedule,
Sxx 1s the spectral density of the perturbation time signal x(t) and S, is the cross-spectral

16To reduce the overlap in the plots, the endpoint distribution was scaled down by a factor of 0.7 compared
to the neutrino mass distribution.
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Figure 7.24.: Perturbation coherence for different schedules: Shown are the normalised
starting phase distributions for the subruns in the ROI of the neutrino mass
(green) and endpoint (purple). The input fluctuation had a constant phase
velocity over the whole simulated time. Structures for the frequency given by
the inverse run time scale are visible for the ordered schedules (a) and (b), in
case of (a) also for the inverse subrun time scale. Non of the schedules shows
coherence for frequencies much larger than the inverse subrun time scale.
Randomised subrun order (c) doesn’t show any coherence.
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density, which is the Fourier transform of the cross-correlation between x(t) and s,(t).
The coherence function is normalised

0<yi <1, (7.61)

such that values close to one indicate coherence.

In the following the scaling of the amplitudes of resonances and noise is derived based on
completely coherent and completely decoherent measurements.

7.3.5. Scaling of the Systematics with Perturbation Amplitude and Schedule
Returns

The non-trivial shifts of the observables appear around run time scale. Fluctuations on
this scale imply predictable phase at least on the order of Ty, > Tyubrun, With the essential
conclusion that run time scale fluctuations are constant on the subrun time scale. In this
case extremal cases are given by coherent measurements, where a given subrun always
observes the same fluctuation phase, and decoherent measurements, where the observed
phase is random. As discussed, these cases lead to resonances or noise in the observables.
In the following the relative count rate deviation caused by fluctuations on run time scale
at retarding energy qU

a(N)
N

AN .
riea(qU) = ==(qU),  riee(qU) =

run run

(qU), (7.62)

is calculated for both cases. The calculation is restricted to energy scale perturbations €(t)
with amplitude A and RMS value ogps(€).

Coherent measurements: In this case the energy shift |e(qU)| < A of the subrun i only
depends on the retarding energy. This leads to the deviation of the counts

AN;(qU) = [N(qU + e(qU)) — N(qU)]AT; (7.63)
dN
~ 75 (qU)ATie(qU) (7.64)

where leading order expansion was used in the last step and AT; is the measurement time
of the subrun. Summing over all subruns at retarding energy qU leads to

AN(qU) = Z AN;(qU) , (7.65)
£
= @)t (gU)e(qU) (7.66)

Finally, normalising by the undisturbed counts gives

1 dN
= N D) E(qU)e(qU) , (7.67)

xA. (7.68)

Frun(qU)
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Decoherent measurements: In this case the energy shift |¢;| < A of the subrun i is
randomly sampled from a probability distribution Py, (€), independent from the retarding
energy. More general also a noise distribution Py ise can be included, such that the total
distribution for the ¢; is given by the convolution

P(E) = (Prun * Pnoise) (6) . (7.69)

It is assumed that the mean of P(¢€) vanishes. The standard deviation is given by o(e),
which is proportional to the amplitude A for small noise components.

The count deviation AN; is obtained as
AN; = [N(qU + &) — N(qU)]AT; (7.70)

dN
~ E(qU)ATiei , (7.71)

where leading order expansion was used in the last step and AT; is the measurement time
of the subrun.

2 n(N)(qU) after summation of AN; over all n(qU) returns to the subrun is
obtained using the central limit theorem

The variance o2

02n(N)(qU) = n(qU)c? (%(qU)ATe) : (7.72)
)
~ (%) (qU) (toubrun)” (qU)n(qU)a(e) . (7.73)

Here the individual subrun times AT; were approximated with their mean (tsprun) (qU).
Dividing by the undisturbed counts leads to the relative deviation

reose(qU) = %(N)(qU) , (7.74)
1 dN
~ (Nn <tsubrun>) (qU) E(QU) v”(CIU) <tsubrun> (qU)O'(G) s (7'75)
1 dN o(e)
= - —(qU s 7.76
N(qU) dE (qU) [n(qU) (7.76)
A
oc (7.77)

Vn(qU)

Comparisontothe y?: From the expression of the y* (equation 1.17) the following scalings
5 € {0, A} (uncertainties o or shifts A) of the observables and the normalised y? with the
relative deviations of the counts are evident

5(m12,) o 5(0;) o« 6(Ep) o< §(Epain) ‘/(r2>qU , (7.78)

X* o <r2>qU . (7.79)
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If all phases of the perturbation are present in the MTD, the averages of the squared rate
deviations 7.67 and 7.76 over all retarding energies lead to proportionalities to the RMS
value of the perturbation. Here correlations between the spectral parts and the energy
perturbation (coherent) or the return number (decoherent) over the retarding energies gU

were neglected !’
1dN)° 1 dN\?
<(m) f > “<(m) > Vo (0
qU qU

If the count deviations from the fluctuations on run time scale are dominant '8, this leads
to the following prediction of the scalings

Am% o AO'; oc AEy oc AEpMain < O'RMS(E) >

Resonances
X% o ogas(€)
(7.81)
o(m?) oc o(6?2) o< 6(Ep) o< o(Enfai OCO'RMS(e),
Noise ) ( g) ( 0)2 (Bntain) Vmqu
2 TRumis (€)
<n>qU ’
(7.82)
2 2 2
Averaging Amy, o Aog o opys(€)

AEy ~ AEyain ~ Y2 = 0.

The averaging regime was included for comparison. All scalings were tested in simulation,
showing good agreement. The discussion can be found in appendix A.8.

The linear scaling with the amplitude or RMS value is in contrast to the averaging regime,
from which the usual limits on energy scale fluctuations in the systematic budget are
derived. As a consequence, the systematic shifts in the noise and resonance regime
disappear more slowly with decreasing RMS value than in the averaging regime. Given
the size of the systematic shifts, especially in the resonance regime, this means that tighter
limits have to be set for the RMS value on run time scale than for the RMS value on time
scales larger than the subrun time scale.

Example of noise on run time scale: To show that noise is truly related to decoherence on
run time scale, the KNM2 tritium ramping schedule of figure 7.6 used in the measurement
was taken, and constant energy shifts ¢; for each subrun were randomly picked from a
sinusoidal like

random € [0, 2), (7.83)
50 meV sin(¢;) , (7.84)

i

€

This should be treated with caution, however it agrees with with the simulations in the used ramp schedule
(see section 7.3.3) and is exact for constant return number, which is the most realistic case.

18Since no Poisson uncertainty and other systematics were included, this is the case in the simulations
shown in this chapter.
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which is independent from ordering and frequency. The comparison to the frequency
dependent case of randomised subrun order is shown in figure 7.25. Both show equal
standard deviations of the fitted neutrino masses and endpoints.

7.3.6. Combined Statistical and Systematic Uncertainty

Finally, the combined uncertainty from statistical uncertainty and uncertainty due to run
time scale perturbations is calculated.

RMS value of the KNM2 high voltage measurement: The RMS value of the KNM2 high
voltage measurement is [Rod20]

O'RMS(HV) =11 mV, (7.85)

which is roughly a factor of five better than the design report requirement on energy scale
fluctuations o(e) < 60 meV [KAT04b].

RMS value of the KNM2 source potential: The total width of the zero scattered starting
potential distribution measured in KNM2 krypton is analysed in chapter 6. It includes
both longitudinal inhomogeneities and temporal instabilities. Thus, the obtained value of
equation 6.15 is an upper limit on the RMS value for fluctuations on run time scale

orms|[V] < 140 mV . (7.86)

This value is overly conservative, since it assumes that it is only caused by fluctuations,
and that the longitudinal inhomogeneity vanishes.

RMS value of energy scale perturbations: The overall RMS value is obtained by quadratic
addition of both components

O’RMS(G) < 140 meV . (7.87)

Since the relevant RMS value for this systematic needs to be taken from a band-limited sig-
nal around the run time scale, which certainly has significantly less spectral contribution,
the systematic on the neutrino mass calculated with the above values is an overly conser-
vative upper limit on the total systematics. Also, since the source potential completely
dominates, while its analysis suffers from significant uncertainties, in the following both
values are treated separately.

KNM2 systematic shifts and uncertainties: The systematic shifts (assumed coherence) and
uncertainties (assumed decoherence) due to run time scale energy fluctuations were taken
from the ordered and random order schedules figures 7.6 and 7.8. The coherent case leads
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Figure 7.25.: Random distribution vs. frequency dependence: For (a) a constant energy shift
of each subrun was picked from a sinusoidal of random phase and 50 meV
amplitude. The standard deviations are y/o(m?) ~ 164 meV, o(Ey) ~ 2.3 meV.
(b) is a zoom in on the run time scale of figure 7.9, i.e. the shifts are obtained by
including a sinusoidal fluctuation of 50 meV amplitude with constant phase
velocity and random subrun order. The standard deviations are identical

Vo (m?) ~ 164 meV, o(Ey) ~ 2.3 meV.
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to
Max [Amﬁ] ~ 20.8 opms(€) €V, (7.88)
HV )
< 0.229 eV?, (7.89)
1%
< 2.912 €V? . (7.90)

Especially the second value is devastatingly large. However, the coherent case assumes

that a perturbation of the energy scale of constant phase velocity with frequency 2T1
1

exists with an accuracy of the order 7—. While also harmonics of this frequency lead to
shifts of the above order, this case seems very unlikely.

Thus, in the following only the decoherent case is considered. This leads to

orms (€)

Ooyst(m?) ~ 14.5——-2 €V, (7.91)
"2°10.76 orus(€) €V, (7.92)
<8410 eV?, (7.93)

& 0.106 V2 . (7.94)

Whether the values are significant is investigated below by comparing them to the statistical
uncertainty of KNM2. Notably, if opys is taken to be the 60 meV requirement from the
design report, the systematic uncertainty is 4.6 - 1072 eV2, which is nine times larger than
the 5 - 1072 eV? planned for full KATRIN [KAT04b]. Thus, for run time scale fluctuations
more stringent limits need to be imposed.

Scaling of the total uncertainty with time scales: Due to the scaling of the noise in deco-
herent measurements with the return number, decreasing the subrun length while keeping
the measurement time constant reduces the noise. On the other hand it increases the dead
time and thus the statistical uncertainty. It is expected that the mean dead time per subrun
does not depend on the subrun time scale or on the subrun ordering *°.

From the included dead time distribution defined in equation 7.57, the following mean

dead time per subrun is expected

KNM2
(tdead> = Tsubrun — <tsubrun> = 32s. (7-95)

The efficiency thus is
(tsubrun) KNM2

- < tdead) + < tsubrun>

€off 0.89 . (7.96)

at <tsubrun> =250 s.

YA study was performed where the subrun length was varied between 10 and 250 seconds, and the
measurement time without dead time was kept constant. The study was performed for ordered and
random order schedules, plots can be found in appendix A.8. These expectations are met.
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The statistical uncertainty scales anti-proportionally to the square root of the measurement
time

1
Osat(m2) N2 0.3 eV o ——— (7.97)

Veéest Trot .

From equation 7.8 it follows for the scaling of the systematic uncertainty from run time

scale fluctuations: .
2
Osyst (1) & ———+/(tsubrun) NMTD - (7.98)
Sys 1% EeﬁTtot subrun

Combining both and using the obtained values from simulation leads to

Utot(mlz/) = \/Uftat(m%) + Gszyst(m%/) > (7-99)
1
= —\/A2 + BZUIZQMs(E) <tsubrun> Nm1D (7-100)

Veett Trot

\/ 229014 s + 5879 o5, (€)/€V2 (tsubrun) V2
= €

= , (7.101)
eefthot
KNM2
= \/0.09 +0.58 07 s (€) /eV2 eV7, (7.102)
HV
< V0.09+7.0 - 1075 eV?, (7.103)

14
< V0.09 +0.01 eV? . (7.104)

It can be concluded that in KNM2 tritium decoherent run time scale fluctuations from
the high voltage are completely negligible compared to the statistical uncertainty. Given
that the RMS value is largely overestimated, this likely also holds for the source potential
fluctuations on run time scale. Moreover, the ratio of the uncertainties

Osyst

5. 10-3Rus(€)

(7.105)
Ostat meV

will stay approximately constant if more runs are added with comparable run time sched-
ules. Thus, only for an RMS value of 400 meV the uncertainties become equally large.
This most likely allows to neglect systematic contributions from run time scale energy
fluctuations also in the full KATRIN measurement.

7.4. Conclusion

In this chapter the sensitivity of different run time schedules to time dependent pertur-
bations of the energy scale was investigated. The appropriate methods of analysis were
described and consequently a set of simulation tools were implemented in the KATRIN
simulation framework. They allow to easily assess the resulting systematic and statistical
uncertainties also for other than the used KNM2 schedules.

The scaling of the simulation results with perturbation amplitude and return number could
fully be understood in an analytical calculation. Different forms of systematic shifts were
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identified, which occur for coherence or decoherence between schedule and perturbation
phase. Together with the usual averaging case, three systematic regimes are possible
(ordered by typical magnitude):

« Coherency on run time scale: Large systematic shifts, produced by the frequency of
inverse scan time and its harmonics.

« Decoherency on run time scale: Medium Gaussian uncertainty, produced by a broad
frequency range around inverse run time scale.

+ Negligible RMS value on run time scale: Small systematic shift from the usual
averaging regime.

Assessing the contributions of the regimes requires the knowledge of the power spectra of
both the source and the spectrometer potential. Only overly conservative upper limits
on the total RMS values of both power spectra could be inferred from the KNM2 krypton
and KNM2 high voltage measurement. Even so, it turned out that the systematics of the
decoherent case is negligible compared to the statistical uncertainty. Also, due to the
known scalings, it is likely that this is also the case for the full KATRIN measurement.
However, the shown reduction of the systematic shifts in the noise regime with the number
of runs is only valid, if the obtained spectra are added and analysed in a stacked fit.

Outlook: The limits are overly conservative. Experimental limits on run time RMS values
can be obtained from krypton-83m measurements in two ways:

« Overdispersion of the y? distributions: In the usual analysis of individual runs, run
time scale fluctuations lead to overdispersion of the y? distributions. Usually, some
small overdispersion was observed in KNM2, but also other systematic influences
are possible.

« Change of the Gaussian variance by stacking: When comparing stacked and non-
stacked analysis, a change of the measured Gaussian variance is a hint of the existence
of run time scale perturbations. Due to time dependencies of the rate and tritium
column density, this kind of analysis requires a multi-parameter fit model, which
exceeded the scope of this work.

Also, the coherent case could not be fully excluded. Due to the necessary fine tuning of
the perturbation frequency and the necessary constant phase velocity of the perturbation,
its existence seems unlikely. In addition, more fine tuning would be needed to explain the
magnitude of the Gaussian variance obtained in the KNM2 krypton measurement by coher-
ent run time scale perturbations, instead of the more likely longitudinal inhomogeneities
and plasma fluctuations of > Hz frequencies.

With regard to future data acquisition, randomised runtime schedules would reliably avoid
the large systematic shift of the neutrino mass resulting from fluctuations of the energy
scale in the resonant regime and, given a stacked analysis of the obtained spectra, would
lead to negligible systematics due to run time scale fluctuations.
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8. Conclusions and Outlook

The existence of neutrino flavour oscillations proves indisputably that neutrinos have mass.
The non-vanishing mass of neutrinos has a fundamental influence on the understanding
of the physics of elementary particles, which requires the extension of the otherwise
overwhelmingly successful Standard Model of elementary particle physics. Thus, neutrino
physics is at the forefront of current physical questions and contributes to the understand-
ing of physics from the smallest to the largest scales. With respect to the formation of
the universe, this includes, for example, fundamental topics such as the search for dark
matter or the origin of the asymmetry of matter and antimatter, which is at present not
understood. Three complementary approaches are currently established to determine the
size of the neutrino mass, including observational cosmology and the search for neutri-
noless double beta decay. In both of these approaches, underlying assumptions need to
be made - in the first case, the observations are interpreted in the framework of the A
Cold Dark Matter standard cosmological model; in the second case, the neutrino has to
be assumed of Majorana rather than Dirac type. By contrast, the only direct laboratory
method that can determine the neutrino mass without additional theoretical assumptions
is the measurement of the kinematics of weak decays involving neutrinos, such as beta
decay or electron capture.

The latest beta decay experiment is the KArlsruhe TRItium Neutrino (KATRIN) experiment.
It holds the currently strongest laboratory-based kinematic limit on the neutrino mass of
m, < 1.1eV (90 % C.L.) from its first published KNM1 campaign. In the tritium § decay
spectrum a non-vanishing neutrino mass leads to a tiny imprint just below the kinematic
endpoint of 18.6 keV. By precise spectroscopy of the 3 electrons in this region KATRIN
aims to push the sensitivity on m, down to 200 meV (90 % C.L.) over the course of an
overall 5-year data-taking campaign, which requires precise understanding and, wherever
possible, mitigation of the systematic uncertainties. One of the most important systematics
results from the calibration of the difference between the potentials of the spectrometer
and the tritium source. This quantity must be monitored with an accuracy of the order
of 10 mV. Such a precise calibration is at the limit of what is technically feasible and a
chain of several interlinking calibration methods is employed to precisely determine both
the high voltage of the spectrometer and the source potential. Since KATRIN uses an
extended-volume source of gaseous tritium a calibration standard with which the spatially
inhomogeneous source potential can be determined must also be gaseous under feasible
measurement conditions. Mesomeric krypton-83m meets this requirement and its quasi
mono-energetic conversion lines are used at KATRIN for calibration purposes.

In principle, shape distortions of the #*™Kr conversion electron spectrum can be used to
determine systematics affecting the difference of the spectrometer and source potential. In
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the thesis at hand the influence of the spatially inhomogeneous source potential on the
krypton-83m spectrum is investigated thoroughly. The findings were applied in several
krypton-83m measurement phases in order to quantify the systematics of the neutrino
mass measurement campaigns KNM1 and KNM2 carried out at KATRIN in 2019. It was
shown that the previous modelling of the shape distortion of the tritium  spectrum
caused by a spatially inhomogeneous source potential was incomplete and the necessary
extensions were comprehensively described.

In addition to the investigation of systematics that result from the spatial inhomogeneities
of the source potential, krypton-83m can also be used to investigate temporal fluctuations
that can occur in both the source and the spectrometer potential. Both cases lead to a
broadening of the krypton lines, which in leading order can be modelled with a Gaussian
of width 0. In the commonly used, simplest description the resulting systematic shift of
the squared neutrino mass for any potential inhomogeneity with standard deviation or
RMS value o is

Am?

14

=—-20° . (8.1)

This description assumes that the effect of the systematic on the B spectrum is also that of
a broadening. However, as shown in the thesis at hand, for the situations described in the
following this rule is not applicable since equation 8.1 is incomplete.

Temporal fluctuations: Measurements at KATRIN usually consist of repeated recordings
of electron energy spectra, with one individual scan of the spectrum typically taking about
2-3 hours. Individual scan steps at a given retardation voltage setting have a duration
between tens of seconds to several minutes. Non-broadening like shape distortions of
the total spectrum can appear for perturbations of the energy of the individual bins. One
extremal case are resonant perturbations, where each bin always observes the same energy
offset. The other extreme are random perturbations, where the energy offset of each bin
is random, mimicking statistical fluctuations. Both occurs for fluctuation frequencies on
the time scale of the recording time of one spectrum. In this case, the resulting neutrino
mass shifts do not follow equation 8.1, which is usually used to impose limits on the
allowable RMS value of the fluctuation. For the resonant case, much tighter limits need
to be used, however it only appears at fine tuned perturbation frequencies of tiny width.
The random case was constrained by upper limits of the fluctuation RMS value in KNM2,
which were taken from measurements of the spectrometer potential and from krypton-83m
measurements. Given these limits, it could be shown that this systematic is negligible
compared to the statistical uncertainty in KNM2. Since both random fluctuations and the
statistical uncertainty decrease equally with the total measurement time, this systematic
is likely also negligible for the full KATRIN measurement.

Source potential systematics: In case of systematics caused by inhomogeneities of the
longitudinally extended source potential V' (z), the description was refined in two points:
Firstly, it was shown that moments of the source potential have to be weighted with the
longitudinal electron distributions P;(z). The index i indicates the multiplicity of inelastic
scattering of the electrons on the gas molecules in the source. The dependence on the
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scattering multiplicity is essential due to the following reasoning: The larger the portion of
the gas column an electron needs to traverse to reach the detector, the more likely it is to
undergo inelastic scattering on the gas molecules on the way. As a consequence, electrons
of distinct scattering multiplicities on average stem from different spatial domains of the
source, such that they observe different source potentials. With regard to the standard
deviation of the potential, that of the unscattered electrons oy[V] is relevant for the
neutrino mass shift. While its value is different from the unweighted case, the effect on
the spectra still is that of a broadening and the neutrino mass shift is calculated following
equation 8.1.

In contrast, it was shown that in addition to oy [V] a second measure of inhomogeneity
pLV1, 1p[V]] < 1, needs to be considered. It quantifies by how much the potential of the
rear part of the 10 m long gaseous source differs from that of the front part, i.e it quantifies
the prevalence of an antisymmetric potential shape in relation to the gas injection point
in the centre of the source. Antisymmetric potentials (p = +1) produce shape distortions
in all electron spectra of the gaseous source, which cannot be described by a broadening
due to the following reasoning: Since upon inelastic scattering the electrons lose at least
~ 13 eV of energy, electrons of different scattering multiplicities appear at different energies
in the electron spectrum. Thus, on average different energies in the electron spectrum
are affected by different spatial regions of the potential. For measurement conditions
like the ones used in the KNM1 and KNM2 measurements, mainly one-time scattered
and unscattered electrons are relevant, and the difference of their spatial distributions
is characterised by an antisymmetric shape with regard to the gas injection point. As a
consequence, potentials with that symmetry produce non-broadening shape distortions of
the electron spectra.

As shown in this thesis, the resulting equation for the shift of the squared neutrino mass
reads

Am?(p, a9) = —200(€pp + 00) , (8.2)

now consisting of a shape term in addition to the known broadening term. The shape
energy €, depends on the contribution of the scattering multiplicities to the recorded f3
spectrum, i.e. on the respective measurement conditions. It was shown, that equation 8.2
fully specifies the neutrino mass shift caused by the extended source potential up to second
order in the potential. For antisymmetric potentials the shape term strongly dominates the
systematics at KNM2-like measurement conditions. For the source potential expected from
simulations, which has a considerable antisymmetry of p = 0.88, the resulting neutrino
mass shift is 30 times larger than the one following from equation 8.1.

Krypton-83m measurements at KATRIN:  Thus, the precise determination of both p[V] and
0o[ V] from krypton-83m measurements is required to correct for the potential induced
systematic in the theoretical model of the  spectrum. In the quasi mono-energetic krypton-
83m conversion electron spectrum the one-time scattered electrons are visible as a line
~ 13 eV below the unscattered electrons and the shape distortion due to antisymmetric
potentials changes the distance separating the two lines. The potential induced change of
the distance is given by the difference A1o[V] of the mean potential for one-time scattered
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(V) and unscattered electrons (V). The spectral broadening of the line of unscattered
electrons is given by oy [V]. From first-principle calculations it was shown that

o 1 Ag[V]
plV] = Foo o[V

(8.3)

with k35 ~ 0.7 for KNM2 krypton measurement conditions, which rigorously connects the
spectrum distortion Ao [V] with the potential antisymmetry p[V] and spectral broadening
oo[V]. The change in the distance of the krypton lines of one-time and unscattered
electrons divided by the spectral broadening of the krypton line of unscattered electrons
accurately predicts the antisymmetry of the potential. In particular, this ratio cannot
assume arbitrary values and the maximum change in the distance between the lines for a
given broadening is given by antisymmetric potentials.

While with the measurement of A;y[V] ~ p[V] and 0p[V] in krypton-83m the neutrino
mass systematic can be constrained, it was shown that the translation to the  spectrum
is subjected to some subtleties: Since the gas distributions of tritium and krypton in
the source are known to show small differences, the distribution of the krypton-83m and
tritium P signal electrons is different. As a consequence, the potential estimates for both gas
species are different even at equal measurement conditions, which leads to uncertainties
and scalings of the estimates in the translation from the krypton to the tritium spectrum.
Those were rigorously quantified in the context of this work. The unavoidable uncertainty
on Ao[V] is at least 10 % of o[ V], even if the measurements are taken at the exact same
source conditions. Given that Ajy[V] needs to be determined with mV accuracy for full
KATRIN, such uncertainties are indeed relevant.

All the more important it is to precisely understand the relation of krypton-83m observ-
ables to the source potential. This connection was fully established in this thesis. As
discussed, the estimates of inhomogeneity o[ V] and p[V] are the overall inhomogeneity
magnitude and the antisymmetry of the potential. The additionally obtained line shift of
the unscattered line is the mean potential (V),. The remaining part of the potential, which
is not predicted by the three observables of the krypton-83m measurement, is its symmetri-
cal component with regard to the gas injection point. Inversely, source potentials obtained
from simulations can rigorously be tested against the krypton-83m estimates. This exceeds
a mere matching of the estimates of the simulation and the measurement, which alone
would not allow to determine the possibility, that the simulation is the measured potential.
However, since p[V] is linked to an exact defined symmetry of the potential, the more
antisymmetric the potential is, the smaller is the space of potentials which can lead to the
measured observables and the better is the possibility of the krypton-83m measurement
to confirm the potential. For p[V] = +1 the potential is exactly known.

These principles were applied on the data of the KNM2 krypton measurement. The
analysis and interpretation of the data are fully compatible with the predictions of the
model developed in this thesis. When a strong positive bias voltage is applied to the
rear wall of the extended source, the krypton-83m measurement indicates a strongly
antisymmetric potential, i.e. the voltage drops over the length of the source. Moreover,
from the difference of the applied voltage to the measured mean potential it could be
deduced that a non-monotoneous feature of the potential needs to exist to ensure energy
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conservation. Such a feature is predicted at the central gas injection point by the potential
simulations. These conclusions were drawn without relying on any model dependencies
and use only first-principle calculations and the krypton-83m observables. Importantly, the
rear wall bias regime of strongly positive voltages is ideal to test the theoretical description,
since the artificially induced inhomogeneity dominates over systematics of the krypton-
83m measurement. In summary, the theoretical description of the effect of the source
potential on the electron spectra provided by this work is exhaustive and was well tested
in measurement.

However, due to the induced inhomogeneity, strong rear wall biases are not used for the
neutrino mass measurements. For small bias voltages, it was shown that the gaseous
krypton-83m measurement suffers from considerable systematics. Firstly, the intrinsic
Lorentzian line width I" of the used L3-32 transition could not be determined with sufficient
accuracy, leading to a systematic on oy[V]. The determination of I" using the extended
KATRIN source suffers from a systematic due to residual inhomogeneities of the work
function of the source tube. Secondly, the intrinsic position of the scattered electron line in
the krypton-83m spectrum is not known with sufficient accuracy, leading to a systematic
on A[V]. For tritium measurements, the energy loss function, which characterises the
energy loss of electrons upon single scattering was experimentally determined by KATRIN.
However, since the krypton measurement is performed at considerably higher energies
than the tritium measurement (30.5 keV compared to 18.6 keV), it cannot be assumed that
the measured function can be transferred to the higher energy range without further
validation.

Thus, T was taken from a measurement of the condensed krypton-83m calibration source
at KATRIN, which is point-like and does not suffer from source tube work function system-
atics. Its statistical uncertainty, however, is larger than that of the gaseous measurement
and the thereby reached sensitivity on oy [V] is not sufficient for full KATRIN.

The measured value of A1[V] was discarded and the shape term of the neutrino mass shift
was constrained by its extremal values p[V] = +1. While this leads to a large shift, the
systematic contribution from the source potential in the KNM1 measurement was shown
to be negligible with regard to the total systematic budget. The main reason is the small
tritium column density of this measurement and thus the small shape energy €, ~ 160 meV.
The column density critically influences the shape energy, since it determines the amount
of scattering in the source. As a consequence, for KNM2 and future measurements, which
use a larger tritium column density, the corresponding shape term (e, ~ 490 meV for
KNM?2) and the resulting systematic is much larger. With the estimates from the KNM2
krypton measurement, a systematic neutrino mass shift was found, which dominates the
KNM2 systematic budget.

Outlook: The findings obtained and predictions made in this work have resulted in
considerable collaborative efforts to improve the current and future measurements of
KATRIN. The three main consequences are explained in more detail in the following:

« The systematics of the krypton-83m measurement need to be reduced. By the time
of writing of this thesis the KNM3 krypton measurement campaign had already been
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concluded. Due to the findings and predictions made in this work, this particular
krypton measurement campaign was considerably extended compared to previous
ones and specifically dedicated to the study of source potential systematics. The prob-
lem of the insufficiently known intrinsic width of the krypton-83m L3-32 transition
was tackled using a measurement of the Ny 3-32 transition: Since its intrinsic width
is very small, it can be neglected compared to the source potential inhomogeneity. In
principle this eliminates the systematic uncertainty on oy [V]. However, currently it
is still under investigation, whether the approximation as mono-energetic transition
is completely justified. Also, due to the very small branching ratio of the Nj3-32
lines in relation to the 13-32 line, in the future more of those measurements are
planned, to reach the required sensitivity.

To reduce the systematic uncertainty on Ajo[V] a new measurement of the energy
loss function at krypton-83m energies needs to be performed. This requires a more
advanced set-up and hardware improvements of the electron gun used for this
measurement, which needs to be rated up to voltages of 35 keV, thus surpassing the
current limitation at around 21 keV. As a consequence of the findings in this thesis
the construction of the improved electron source is pursued within the collaboration
with a high priority.

+ The krypton-83m calibration measurement and the tritium neutrino mass measure-
ment must be performed under the same source conditions to avoid systematic
uncertainties due to scaling. Prior to the KNM4 measurement campaign, however,
the processing of the different gases in the source required different working tem-
peratures and tritium column densities in both modes. Considerable collaborative
efforts have been made to implement and establish a new source mode in KNM4
that ensures that the tritium B and krypton-83m spectra can be recorded under
exactly the same source conditions. However, due to hardware limitations, this new
mode comes at the cost of a significant reduction in the amount of krypton-83m gas
reaching the source tube, resulting in two orders of magnitude loss of activity.

+ To partially compensate for the inevitable loss of krypton-83m gas in the new
source mode, a stronger krypton-83m generator is required to generate the amount
of krypton-83m needed for continued high-statistics measurements. This new
generator is currently under construction and will deliver a krypton-83m activity
up to five times larger than the one used so far. This increased source strength will
also benefit the precision measurement of the weak N 3-32 lines.

When these improvements of the krypton-83m and tritium  measurements are successfully
completed, further studies will be necessary to achieve the required accuracy on the
estimates op[V] and A1o[V], including studies of the stability of these estimates for repeated
krypton-83m measurements. Also, currently new simulations are being developed to
calculate the source potential with refined models. Testing these simulations with krypton-
83m measurements is an essential step towards a consistent picture of the source potential
systematic. Applying all these measures will pave the way for KATRIN to achieve its
planned sensitivity in determining the neutrino mass and to contribute to answering some
of the most important contemporary physical questions.
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A. Appendix

A.1. Convolution of Starting Potential Distributions

Here it is shown that the modelling of the source potential V(z) can be absorbed in
modifications of the i-times convoluted energy loss functions for i-fold scattering. To
shorten the notation the integral operator d¥ (acting to the right) is used in the following,
absorbing all constants and integrals which are not of interest. The starting point is
equation 1.20, giving the count rate N at a given retarding energy qU

slices -
: Qr [~ dN
N(qU) = )" eger— / N (—)R(E+qvk, qU) dE, (A1)
- 41 J_o dE
B °° dN dz Q(z)
= €det /_OO dE ( i ) /ZLWGTS = N(z)R(E+qV(z),qU) . (A.2)
=dF

Here €4t is the detector efficiency, Q the acceptance angle, N the number of gas atoms,
(%—g) the differential spectrum, E the electron energy and R(E, qU) the response function.

In the second line the discrete calculation over slices was replaced with an integral along
the WGTS of length Lywgrs. Plugging in the definition of the response function yields

dz Q(z2)
Lwgrs 4

E+qV(z)—qU o0
N(2) / 0 deT (E+qV(2) — &,qU) > pi(2)fi(e) .
€= i=0

(A.3)
7 (E, qU) is the transmission function, the p;(z) are the scattering probabilities and f;(e) is
the i-times convoluted energy loss function. Then the substitution € — € — gV (z) moves
the dependence on the electric potential to the energy loss function

N(qU) = dF /

dz Q(z)
Lwgrs 47

. E—qU &
N(qu) = a7 [ NG [ T (E=eqU) ) p(Aie = aV (D) (A9
z €= i=0

E-qU ©
= dF / deT (E - €,qU) Y’ / 4z QG v p(2) fle—qv(2) . (A5)
€=0 i=0 z

Lwgts 4r

Ed?(qU) EPi(z)-Norm,-
Thus, normalised weight functions

1 Q(z)
Pi(z) = m?N(z)Pi(l) (A.6)
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were defined, which are the distributions of the signal electrons for i scattering. The
normalisations, which are the amount of signal electrons for i scattering, read

3 dz Q(z2)
Normi—/LWGTS = N(z)pi(z) . (A.7)

Lastly, using the delta distribution §(7), the z-integration is absorbed in a convolution
(symbolised by the operator *) with the Starting Potential Distribution (SPD;) for each
scattering

. > dz
N(qU) = dF (qU) Z Norm, / I fle=qVEP(), (A8)
> dz 0
=47 qU) Y Nomm [ 5 [ anfe-np@st-ava). a9
=d¥ (qU) Z Norm; f;(€) * SPD; , (A.10)
i=0
with ! &
SPD;(n) = / F 50~ V@R (A1)

One important implication is that there are different SPD; for each scattering. Thus, even
to first order in the potential magnitude different means (V'); of the potential need to be
considered, if electrons of i scattering multiplicity are measured. In practice the full SPD;
cannot be obtained and need to be approximated. Using only up to their second moments
leads to Gaussians G({V');, 0;[V]) or G(Aj[V],0:[V]) (depending on the treatment of
(V)o), where o;[V] is the standard deviation of the SPD; and Ajp[V] = (V); — (V),.

A.2. Quadratic Operator Constraints using Variational
Calculus

Here the general constraint of a variance o2 by a measured variance o2 and mean difference
Ay is calculated. The statement of the problem is given in section 3.3.2.

Stationary solutions of the Lagrangian 3.47 are found by

dL,
dv

=2(V = (V) )Py +24,(V = (V),)P, + Ap Py,

= ZV(Px + A'O'PZ) - Z(sz [V] + <V>z)Px - 2/10 <V>z Pz + )LAP‘ s
=2(V = (V))(Px + AsP;) = 205 [V]Px + AnPy
=0,
Py A Dy
Po+A,P, 2 Po+AP,’
In the following the different cases of vanishing A, or Ap are considered separately.

=V - (V), =Ax[V] (A.12)

IThe so defined distributions are energy distributions. The corresponding potential distributions are
trivially obtained by scaling the x-axis with 1/q.
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No measurement (A, = Ap = 0): The solution reads
V=(V),, (A.13)

which is the definition of a constant potential. Thus, constant potentials minimise quadratic
operators.

Measured only Ay (A5 = 0,Ap # 0): The solution reads

An Py
V- (V),=———. A.14
V)= -5 (A1)
Aa is determined from the known Ay [V]
Aa Py
339 A
2 —fKE,x, (A.16)
AV
Kyx
A V] P;
=V -(V), = #—y : (A.18)
= P,

Due to their different normalisations it also follows that P, # Py, leading to a finite value
of K;’x. Calculating the expectation value of oy[...] leads to

Ay [V
ox[V _ 18l ]l. (A.19)
Kg,x
As before, this gives the minimum o,[V] in case Az[V] has been measured.
Measured only o, (A # 0, Ap = 0): The solution reads
V —(V), = A [V] P (A.20)
BT P+ AP, '

As is determined by demanding consistency with the expectation values of (...), and
Ags]...]:

0= (V)= (V). = AtV (Do) (.21
Py B
= sz[V] =0 or <m>z =0. (A22)

Plugging the first case A,,[V] = 0 into equation A.20 leads to the trivial constant solution
V=(V), ie ox[V] =0,[V] =0.
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The second case is an integral equation for the determination of A,. Using (Py), = (PxP;)

it follows:
0= <ﬁ>z , (A.23)
- A_la <Px)fiPz >X : (A2
Hlrinl)

—r ) =1. A.26
< <Px +/10Pz>x ( )

In the 3 line the enumerator was expanded to match the denominator, which will be a
useful trick also in the following. Subtracting the original condition equation A.23 from
this new condition gives
Py
= A | —————|[=1. A27
"Z [megpz] (A.27)
Thus, the consistency with the expectation value of A,,[...] of the extremal solution
equation A.20

Py
Aez[V = (V)] = Az [V] Ay | —2—1 , A.28
[V —(V).] [V] Px+A0Pz] (A.28)
= Ay [V]=0 A B =1 (A.29)
Xz - or Xz PX+AO-PZ - > .

is automatically fulfilled and equation A.23 is the only necessary condition for non-trivial
solutions. Also, it can be shown that the inverse implication

A Px =1= Px =0 (A.30)
P+ AP, | Py + AP/, ‘
is in general only valid for A, # —1. Indeed, < PP_"P > # 0 was found for the tested weights,
X z z

although A, [PPTXP] = 1 trivially holds. Thus, equation A.23 is the necessary condition
and equation A.27 alone is not sufficient.

The expectation value of the measured o,[...] reads

otV = (V0. = V]l | 5o (a3)
= V= ) = s VDoV o | )
=V = V)=t Vig—p /o | f;P] ‘ (A-33)
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The expectation value of oy]...] is
ox[V = (V).] = oz[V] (A.34)

Using the necessary condition equation A.23 this can be further simplified. First, the
relations obtained in the derivation of equation A.26 should be collected again. It holds:

P, 1
<m>m = 5nm (5nx + 5’12Z) , hme {X,Z} R (A35)
or written out:
PP, Py P,
— =(—2 ) =o, (A.36)
P, + AP, Py +AsP. [, Py + AsP; [,
P? P, P, P?
x — =1 =) = A (—E—)=1. A.37
<PX+AC,PZ> <Px+)LC,PZ>x 0<PX+AUPZ>Z U<PX+AUPZ> (A.37)
Using that it follows
P A37 P2
e—— | E (=) -1 A.
P+ /L,Pz] <(Px + AoP;)? >x ’ (A.38)
2 p2
_ 2A¢P. Py + AL PL (A39)
(Pe+AcP)? [
2A6P, Py + AP, (AP, + P, — Py)
= — A.40
< (Px + AgP;)? . (A.40)
AoP.Py AoP.(Px + A;P;)
=- - A.41
<<Px AP > < Eipy |0 A
A.36 2 Px Pz
= -1 — | - A — A.42
7% | p, +)LC,PZ] o <Px T AP, >x ’ (A42)
A36 2 Py
=* Aol | —= | . A.43
%P+ )LC,PZ] (A.43)
Finally, this leads to the solutions
Py
sz zV _/10; —_— =0, A.44
oVl = . [VIY <Px+agpz>z (A4

which are discussed in the following:

+ The simplicity of the solutions is already apparent from the Lagrangian 3.47, from

which ) 2y
doZ[V] dog [V
=) A.45
dv dv ( )
follows for Ap = 0. Thus, 62[V] and ¢Z[V] vary proportionally with potential
magnitude.
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Figure A.1.: Intersection of scaled weights: Scaling P, with A, leads to an intersection with

P, at zj in the interval of z, where both weights are not vanishing.

« In the asymptotic cases of A, — +co it follows that <ﬁ>z - t # 0. Also, since

the weights are positive, solutions are limited to an interval I of negative A,.

« Due the normalisation of P and P, to 1 they need to intersect. Thus, P, (zy) = P,(zo)
holds for at least one zy, such that P, + A,P, has roots for A, < 0. They are at

P
P_Z(ZO) = _AO' .

(A.46)

Thus, the potential has a pole at zy(A,). I is trivially obtained by finding the maximum
and minimum of %(z). As visible in figure A.1, changing A, in this interval shifts

the pole exactly to all zg, where Py and P, are not vanishing.

. <ﬁ>z = 0 can only hold, if the argument is not strictly positive or negative.

This happens only for A, € I.

Thus, for potentials with strongly localised inhomogeneity at zy, equation A.44 can be

reformulated to

ar[V] Py
oZZ[V] = P_Z(ZO) )

which is the result from the main text.

Measured both 6, and A; (A5 # 0, Ap # 0):  The solution reads

P, A p;
V—(V), = A [V] a___ Y
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The function A5 (4,) can be determined by demanding consistency with the expectation
values of (...), and Ay, [...]:

Px AA Pﬂ
0=(V), (V). = AL[V] (—2 ) _ 28 ("9 ) A.49
V)= (V) [ ]<Px+AgPZ>Z 2 <Px+AaPZ>Z ( )
Px AA Pg
ALV {—2 ) =28 ("9 ) A.50
= Al ]<Px+)LC,PZ>Z 2 <Px+)LC,PZ . (A-50)
Px /IA Pg
AV = (V)] = Aea[V]Ags | —2— | = 228, |—2 |, A51
V=] vVl Px+/1(,PZ] 2 Px+AgPZ] (A-51)
Px /1A Pg
AV A | —2 | —1) = 22A, |—2 | | A52
= Al ]( Px+/1(,PZ] ) 2 P AP, (A-52)

Again it can be shown, that from the condition on (...), the condition on A,,[...] follows
and that for A, # —1 both conditions are equivalent. By solving for %A they can be used to
rewrite the solution equation A.48 as

V= (V). = A lV] [ = r(h) (.53
- = —_— - — . .
2P+ AP, 7 Py + AsP;
Here
Py P,
<Px+/L,PZ > . Axz [PX+AUPZ] -1
r(Ay) = = (A.54)
PetioP; |, X2 | PytaoP;
has been defined °.
For brevity of notation, the following expectation values of weights as function of A, are
defined:
Py PnPrm _
= =(—27 ), ,me {x,i,z}, A.55
= i) =) e txa) (59
Hnm = Hmn » (A-Sé)
Hxn = Pn) = Agplzn » (A.57)
P P P, P, Py
M =C - —T | = s - : A.58
kT Ok lPx ¥ A,P, Pyt )LGPZ] <(Px A Pz HnkHmk (A-58)
=3, (A.59)
= A28 (A.60)
= =42, (A.61)
Z?;m = _Aazgm + Unm — HnxMmx — Ao/wlnz,umz 5 (A.62)
2The {...), condition avoids problematic expressions of the form g at A, = —1. However, due the existence of

poles in practice the Ay, [...] condition might lead to more stable results, if simple numerical integration
algorithms are used.
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i.e. one change x — z in an upper index requires a factor —A,. This can be proven by
expanding the enumerator and by using binomial formulas.

The expectation value A,,[V] is determined from the measured Ay[V]

P, ]

AglV =(V),]| = A [V]Ay - , A.63
y[ ( >z] xz[V] i P+ ,P, rPx+AaPz ( )
= DNz [V] (kg — Tpgg) - (A.64)
1 ’
= A [V] = Ag[V]——— = [g[ V] (A.65)
Hgx = THyg
The expectation value cr,z [V] is given by
GHV = (V).] = A2V (53 + 25 - 2r5) (A.66)
Thus, the ratio of the standard deviations is given by
o[Vl |28+ 23l - or3 (A67)
o[Vl \myr 4 sl — oz '
and the absolute value of the shape operator reads
1 |Ag[V]I
1pg V]l = — , (A.68)
Puz Kijz Oz [V]
1 1
= (A.69)

K|’ - -
gl \/zgx +r23) —2rsy’

The last two equations can be calculated in dependence of A, implicitly defining an
exclusion area g—’z‘( |Pg.z 1)

Expectation value for p; , = +1:  As shown in section 3.3 in this case the full potential is
given by
o, Py

=, (A.70)
Kg,z P z

V—(V), ==

with the weight standard deviation x; .. The ratio of the standard deviations is thus given
by

(A.71)
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Allowed o, ratio trittum/krypton

Measured antisymmetry|p|

Figure A.2.: Constraint of tritium oy for given krypton observables: In the limit of vanishing
antisymmetry the extremal solutions are poles at zj, and the constraint is
given by the square root of the ratio of the P, at z,. In this region instabilities
occur due to the numerical integration over the pole in the potential. For
maximum antisymmetry the exact potential is known, and the constraint
gives a ratio as predicted in the text. The simulation used 40 % tritium column
density for both krypton and tritium mode.

Example for oy of tritium constrained from krypton: The resulting constraint is plotted in
figure A.2. It is given by equations A.67 and A.69, which are calculated numerically. Each
marker corresponds to one A,. The allowed ratios are inside the ellipse. As discussed in
the main text and visualised in figure 3.17 the constraint of o, strongly depends on the
localisation of the inhomogeneity. For small antisymmetry the inhomogeneity can be
localised in a pole at zy, such that the ratio of the variances is the ratio of the weights at z.
For large antisymmetry the potential shape is exactly known. This produces the overall
approximately elliptic contour.
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A.3. Uncertainty on the Predicted Shift of the Squared
Neutrino Mass from Column Density Uncertainty

As discussed in section 3.5, differences in operating parameters between the krypton and
tritium measurement translate into an uncertainty of the prediction of the shift of the
squared neutrino mass for given krypton estimates (p, 0y). Two methods were shown,
one by calculating the extremal derivatives of the predicted shift of the squared neutrino
mass, the other by expanding the derivative of the squared neutrino mass in the known
operators.

Figure A.3 shows the derivative of the neutrino mass shift prediction with respect to the
tritium column density, calculated with both methods. Here, the tritium column density in
the krypton measurement was taken to be 45 % of the nominal value and the uncertainty
of the neutrino mass shift prediction is obtained when the values are multiplied with the
relative uncertainty of the column density determination or the relative column density
difference to the tritium measurement. Thus, for usual column density uncertainties of
1 %, uncertainties on the prediction of the shift of the squared neutrino mass of oc 1073 eV
are obtained, which increase accordingly for actual column density differences of the
measurements.

Since both methods agree well, one can use the approximate weight expansion to further
reduce the uncertainties. In this example, the following expansion was found

dP, dP
pdﬁ (z) ~ —0.44(P; — Py)(z), pd d—; (z) ~ —0.56(P, — P1)(z) .
Pa|pd=45 % Pa|pd=45 %
(A.72)
This allows to write the derivative of the shift of the squared neutrino mass as
dAm?[v
a8Vl = 0.86(0%[V] = 62[V]) — 980 meVA o [V] +487 meVA, [V] . (A.73)
dpd pd=45 %

Thus, the derivative has a component o« Ay[V], which is known from the measurement
and the uncertainty of the extrapolation stems only from the other two terms. The known
term can be used to extrapolate the mean Am?[V](pd) and only the unknown terms are
left, to calculate its uncertainty Apd(Amﬁ [V](pd)). Compared to the extremal solution,
this reduces the uncertainty from column density extrapolation by approximately a factor
of 2 in this example.

The linear extrapolation using only the first derivative was tested with known potentials,
and in all tested cases it was sufficient, even for column density changes above 10 % of
nominal.

226



A.3. Uncertainty on the Predicted Shift of the Squared Neutrino Mass from Column Density Uncertainty

pdT =45 %
> 300 -
g
R
& 250
200
150
100
-0.1
50
- -0.15
0 . 1 . 1 | . . : 1 1 . . . . 1 .
-1 -0.5 0 0.5 /1
p
(a) Exact stationary solutions
pdT =45 %
2
> 300 02 %
g ©
g g
s 250 0.1~
=S
200 0.1 <
ol
g
150 0.05 2
S
o
100 S
50 -0.05

gy Bl ) o o W s W S W y S y GO W | S S S S S |

Ql -0.5 0 0.5

1
p
(b) Approximate expansion of weights

Figure A.3.: Column density uncertainty of neutrino mass shift prediction: For a given

set of krypton estimates (p, 0y), the plots show the change of the predicted

shift of the squared neutrino mass with tritium column density pd. When

multiplied with the relative column density uncertainty, the uncertainty of

the predicted shift of the squared neutrino mass is obtained. The stationary

solution (a) and the approximate weight expansion (b) largely agree. Both

show non-trivial topology and oscillatory patterns. Since they differ slightly
in the extrema, the color scales are not the same.
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A.4. Performed Studies on Krypton Data

Many analysis methods were tried on the fitted data, some of which are described in the
following.

Pile-up correction: Pile-up correction has been applied to all krypton plasma fits. In
krypton reference runs, where the total rate is approximately 10 times smaller than in
plasma runs, the correction does not make a significant difference.

Fit tolerance dependence: Fit tolerances in the range from 0.5 to 0.05 were tried, which
showed almost exactly the same estimates.

Fitting only energies above 30462 eV (unscattered electrons): When only fitting the un-
scattered L3-32 line, within uncertainties the same results are obtained as when fitting the
total spectrum. This has been tested for total Lorentzian fit, Gaussian broadening fit and
the line position.

Remove KNM1 runs where the tritium the column density drifted strongly: In KNM1 the
column density drifted strongly for run numbers smaller than 52680. Removing them only
affects the measurements at the rear wall voltages of -150 mV and 175 mV. The general
shape of the estimates over the rear wall voltage is conserved and the overall changes are
small.

Krypton in DPS1F,: The krypton generator is connected to a DPS1F, pump port. Thus,
krypton cannot flow in opposite direction of the gas stream coming from the central
WGTS, such that it reaches the injection chamber only after being circled once. This gave
reason to believe that there might be some significant over density Nppsar, of krypton
inside the DPS1F; compared to the modelling with 0 density in the SSC gas profile. This
would lead to an increased number of unscattered electrons and thus look like a smaller
tritium column density in a fit. This was tested on KNM1 krypton data by fixing the
tritium column density to 27 % of the its nominal value as expected from the BIXS rate
and fitting a constant density inside DPS1F; (zppsir, = 6.58931 m, Lpps;f,/2 = 0.1273 m
compared to injection point). Run 5276 was used in a uniform fit with 100 slices, the result
% =0+ 7 - 107°. However, this result did not include a background slope yet
and should be repeated on newer data. If it is true, it can be concluded that there is no
significant amount of unscattered krypton-83m electrons not predicted by the SSC gas

profile.

being

Effect of source slicing on the fitted column density: To obtain correct values for the col-
umn density from the krypton fit, the WGTS model needs to be sliced. 100 slices were used.
For a non-sliced model the difference of the krypton and tritium gas profiles cannot be
considered. Since, compared to the tritium the krypton accumulates at the WGTS ends, the
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100
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' 11WGTSlicefit
pdtrue:1'853 ’Odfit

Fitted column density in % of nominal

0 10 20 30 40 50 60 70 80 90 100
Column density in mode in % of nominal

Figure A.4.: Fitted tritium column density for 1 WGTS slice in comparison to true value:
If only 1 slice is used in the fit, the correct value of the column density is
obtained by pdirue = 1.853pdpg;.

fraction of unscattered to one-time scattered electrons is larger in krypton, which without
slicing is misinterpreted by a too small tritium column density. As shown in figure A.4 on
Asimov data, for a non-sliced fit the true column density is approximately 1.853 times the
fitted one. This does not have a sizeable effect (< 1 mV) on the plasma estimators, which
was found in simulations using 100 compared to 1 slice. Thus, in principle, if the column
density is not of interest, no slicing needs to be used, which speeds up the calculations
significantly. The same reasoning holds for other parameters specifying the intensity, i.e.
the fitted conversion coefficient, which is only correct for more than = 10 slices.
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A.5. Uncertainty Propagation

The following square root and square transformations were used regularly. Gaussian
propagation and direct transformation are equal for the calculated condition. Thus, for
larger means the Gaussian propagation and for smaller means the direct transformation
of the uncertainties is used.

Square root transformation:
x? - x, (A.74)

i.e. x? is the free variable, given are mean x? and uncertainty o(x?). o(x) should be
calculated. The transformation function is f(...) = /==

aVx2 1

= , A75
ox? o2 (A75)
1
=—, A.76
2] (A.76)
1
= o(|x]) = —o(x?). (A.77)
2x|
For small mean compared to uncertainty:
1 !
mO'(xz) > ‘\/G(Xz) s (A78)
x
1
& —zaz(xz) > o(x?), (A.79)
4x
& o(x?) > 4x* | (A.80)
Square transformation:
x — x%, (A.81)

i.e. x is the free variable, given are mean x and uncertainty o(x). o(x?) should be calculated.
The transformation function is f(...) = (...)%

ox?
— =2x, (A.82)

ox
= o(x?) = 2x0(x) . (A.83)

For small mean compared to uncertainty:
!

2xo(x) > o%(x), (A.84)
& o(x) > 2x. (A.85)
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Figure A.5.: Measured mean difference in KNM1 krypton: The curves resemble the mea-
surement of KNM2 but are shifted by roughly 60 mV. For 1eV and 5eV
rear wall voltage the shift reduces to ~ 30 mV. Since at large voltages the
measurement is dominated by the external field and not by systematics, a
vanishing/reducing shift in this region is a hint for real physical effect. An
overall constant shift would be likely caused by an analysis error.

A.6. Plots of the KNM1and KNM2 Krypton Results

In this section plots of the KNM1 and KNM2 krypton measurement are shown. Figure A.5
shows the measured mean differences in KNM1. The overall spectrum is comparable to
KNM2, however the absolute values are shifted by roughly 60 mV.

The following histograms are shown:
- Figure A.6: y* distributions of the fits.
« Figure A.7: Histograms of the measured tritium column density.

« Figure A.8: Histograms of the measured variances cré.

« Figure A.9: Histograms of the measured mean differences Aqy.
All obey the expected overall Gaussian (or y?) distributions. Since the histograms also
include strongly positive rear wall voltages, which leads to shifts of the estimates, they can
obey non-Gaussian structure. However, most of the data was taken in the coupling region,
such that the mean of the fitted Gauss peak to very good degree reflects the measured mean
for small rear wall voltages. Significant differences exist for the plasma inhomogeneity
estimates of the two campaigns, the reason of which is not understood entirely.

Figures A.10 and A.11 show the z-dependent potentials, deduced from the KNM2 measure-
ment, without bins of the rear wall voltages.
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x? distributions of the fits: As visible both distributions show good agreement
with the expectation, i.e. the model described most of the data without obvious
errors. The small amount of higher values is caused by the fits at large positive
rear wall voltages. In KNM1 the number of subruns in up and down scans
differed by 1, such that the average number of degrees of freedom is not
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Figure A.7.: Histograms of the measured tritium column density: The column density
is fitted from the ratio of one-time scattered to unscattered electrons. Both
campaigns show a column density of roughly 30 % of nominal, which was
the maximum possible in the respective campaigns. The fitted column den-
sity values were compared to the BIXS and FBM values and agree within
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Figure A.8.: Histograms of the measured variances: The KNM1 results are significantly
more negative than the KNM2 results. The reason is not understood. The
used intrinsic Lorentzian I' = 1.0606(21)(150) €V is taken from the CKrS
measurement.
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Figure A.9.: Histograms of the measured mean differences: The results are shifted com-
pared to each others by approximately 60 mV. The values are not corrected
for the wrong energy loss function and neglected detailed transmission.
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A.7. Calculation of the Antisymmetry Estimates for
Parameters with Uncertainty

Since the measured estimates have uncertainties, the uncertainty calculation of the anti-
symmetry estimates has to include the covariance term

A Y
oy (P1VIkrgy) = =7 Cov(uo.o}) (A.56)
g

However, since the absolute correlation of Ay and o, is < 0.2 in average over the whole
data set for all rear wall voltages and thus negligible, this does not significantly change
the results.

Nevertheless, the estimates of the antisymmetry depend on whether the pixel results
for the standard deviation and the eloss function shift are averaged first to combined
rings and after that the antisymmetry is calculated, or if it is done the other way around.
However, this is not the case for large positive rear wall voltages, i.e. when the estimates
themselves are not systematics dominated. To model this effect, it is assumed that the
estimate consists of the true value, a random systematic uncertainty, which scales with
the reciprocal sample size or cancels due to symmetry (like statistical uncertainty or the
alignment) and a constant systematic uncertainty (like the wrong reference values)

Estimate = True + Random + Const .

If the averages are taken first, the random component can be neglected and the resulting
antisymmetry reads

samples

-1
_ A1 [V] + Aconst + nSamples k ARandom,k
p[V] K00 = -1 samples ’
0y [V] + OConst T nSamples Zk ORandom,k

- A10[V] + AConst

(A.87
00[V] + oconst )
The other way around the resulting equation is
samples
AplV]+A +A
ﬁ[V] Kﬁ’o _ 10[ ] Const Random,k . (A.88)

NSamples 00[V] + oconst + ORandom,k

Since the distribution of the ratio of random variables is not necessarily a Gaussian [Hin69],
the resulting mean is not necessarily the same as in equation A.87. Averaging first will
minimise the uncertainties and thus problems due to misunderstood distributions will
be avoided. Also, if the true values dominate the fluctuating components (i.e. for large
positive rear wall voltages), both approaches give the same result.

The equations are only approximated, since in practice the uncertainty weighted average
is used.
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A.8. Scaling of Run Time Scale Shifts

The expectations for the scaling of the shifts of the observables caused by energy fluc-
tuations on run time scale are described in section 7.3.5. In this section the scaling with
fluctuation amplitude A and mean number of returns (n) .y is simulated to test the expec-
tations. The shifts of the observables o were fitted using *

Power

Power
) or Ao = Scale - ((n)qU) ) (A.89)

Ao = Scale - (
meV

Scaling of the Shifts with the Perturbation Amplitude

Figures A.13 and A.14 show the scaling of ramping and random order schedules with the
perturbation amplitude.

All fits of endpoint, neutrino mass and y® match the expected scalings both in tritium and
krypton. An exemplary fit of the ramping case in tritium is shown in figure A.12.

£ 1200- £ M
> o
g 9 120F
£ 1000 E I
g} £ 100
= goof 1 80
P 60
600 L
i : 40r ‘
I ScaeinmeV  111.361 + 2,113 20i /| Scaeinmev  1.16 + 0.08
400 /| Power 0522 +0.005 - /| Power 104 + 0.02
A P R AN N N N
20 40 60 80 100 20 40 60 80 100
Amplitudein mvV Amplitudein mV

(a) (b)

Figure A.12.: Maximum shift of (a) neutrino mass and (b) endpoint with the amplitude of
a sinusoidal fluctuation of the energy scale for a ramping schedule.

In section 7.3.3 it has been confirmed, that instead of the amplitude also the RMS value
can be used, which is more specific since it depends also on the perturbation shape.

3When using transformations of the observables, such that the scalings are linear, a first order polynomial
yields fit results with better y?. However, showing the results for endpoint and neutrino mass on the
same linear energy scale is preferred here.

237



A. Appendix

T tot T run T subrun
: : | : : : : Amplitude
A : : +10mV

:

o
TT T T [T T T T T T T T [T T T T[T
I I I I I

: : : +20 mVv
I: : : 4+30mVv
: : : +40 mV
450 mVv
-+-60 mV
70 mv
80 mvV
E 490 mV
4100 mVv

Am, in meV

500

-500

I

_ 1000 . . ZI . . .
10 10° 10® 107 10°® 10° 10* 10° 10% 10t 1
Fluctuation frequency in Hz

Figure A.13.: Ramping, amplitude scaling: The shown study uses the KNM2 ramping
schedule from figure 7.6, but equivalent results have been found for krypton
and for all other schedules. The magnitude of the largest peak scales with
the square root of the fluctuation amplitude.
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Figure A.14.: Random order, amplitude scaling: The shown study uses the random schedule
from figure 7.8, but equivalent results have been found for krypton and for
all other schedules. The magnitude of the envelope scales with the square
root of the fluctuation amplitude.
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Figure A.15.: Maximum shift of (a) neutrino mass and (b) endpoint with the number of
returns for a schedule with random order. Using the standard deviation on
run time scale instead of the maximum leads to the same scaling.

Scaling of the Shifts with the Subrun Duration

Figures A.16 and A.17 show the scaling of ramping and random order schedules with
the mean subrun duration, which is anti-proportional to the return number. For the
randomised case the expected scalings are found, as shown in figure A.15.

Due to the limited resolution of the simulation, the scaling for the ordered schedules is
harder to investigate. As discussed in section 7.3.1 the resolution is only good enough
to see all structures starting from % to three orders of magnitude above in frequency.

Since the width of the peaks is proportional to ﬁ which depends on the varied return
number, this causes a systematic in the simulation. In accordance with the expectation the
power of the return number tended towards zero with increasing frequency resolution. In
any case it is expected that no coherent fluctuations exist on run time scale, and that the
randomised case is more realistic.
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Figure A.16.: Ramping, scaling with subrun duration: Ramps where performed according
to the KNM2 MTD and plain total measurement time. The number of returns
was varied, leading to the shown (tgprun). The range of the resulting run
time scale is given by the vertical lines. Due to the increased dead time for
small mean subrun duration, the total time varies between 33 and 124 days.
The frequency range was decreased to increase the resolution.
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Figure A.17.: Random order, scaling with subrun duration: Same subrun duration distribu-
tion as in the above plot, but the order of the subruns is randomised. As in
the ramping case, the dead time increases when decreasing (tsuprun), here by
approximately a factor of 3.8 in the plotted range.
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Figure A.18.: Tritium weight standard deviation, krypton weighted, equal column density:

A.9.

Here the source conditions are equal in both modes, which is the plan for
the future measurements. The above factors can be used to constrain the Ax
of tritium directly from the krypton oy.

Weight Standard Deviations and Correlations

The following pages show weight standard deviations and correlations supplementary to
the ones shown in chapter 5. The following is shown:

Figure A.18: Tritium weight standard deviations, krypton weighted. The source
conditions are equal in both the krypton and tritium measurement, as planned for
future measurements.

Figure A.19: Tritium weight standard deviations, krypton weighted. The essential
difference to figure A.18 is the tritium column density in the krypton measurement,
which is either 30 % or 40 % of nominal (like in the measurements of KNM2 and
KNM3a).

Figure A.20: Correlations of tritium and krypton mean differences.

Figure A.21: Neutrino mass shift from mean difference vs. lower analysis interval,
KNM2.

Figure A.22: Shape energy vs. lower analysis interval, KNM2.
Figure A.23: Ratio of krypton and tritium weighted standard deviations of weights.
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Figure A.19.: Tritium weight standard deviation, krypton weighted: There is no practical
difference of the standard deviations for the different conditions, since the
temperature dependence has been found to be negligible and the change of
krypton Py from 30 % to 40 % column density is small. The above kx( can be
used to constrain Ay of tritium directly from the krypton o.

242



A.9. Weight Standard Deviations and Correlations

0.98
0.96
0.94 _d
0.92F

0.9

Correlation with krypton A,

0.88F
0.86F

0.84—

Column density in % of nominal
(a) KNM2 pd = 30 % — 84 % correlations

0.98
0.96f
0.94F
0.92

0.9F

Correlation with krypton A,

0.88F

0.86}

0.84

Figure A.20.:

Column density in % of nominal

(b) KNM3 equal source mode correlations

1 AP T .
10 20 30 40 50 60 70 80 90 100

T, Operator
L 40, (MTD 40 eV KNM2)
By
D Dy
Ay,
TK'=100K, T'=29K
pd in krypton mode:
30 % of nomina

T, Operator
L 40, (MTD 40 eV KNM2)
AlO

(P

(A

TX'=80 K, T'=80K
pd in krypton mode:
40 % of nominal

Correlations of tritium and krypton mean differences: The correlations of
the measurement of Ay in krypton and A, in tritium are highest, when the
column density difference between the measurements is small. However,
when the higher A;y are relevant in the tritium measurement (i.e. for large
analysis intervals of the MTD), which affects A, this does not hold.
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Figure A.21.: Neutrino mass shift from mean difference vs. lower analysis interval, KNM2:
The neutrino mass shift prediction (a) and uncertainty of the prediction (b)
is qualitatively similar to that of the high temperature mode, shown in the
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Figure A.22.: Shape energy vs. lower analysis interval, KNM2: Compared to figure 5.17
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