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Introduction

Although the postulation of neutrinos by Wolfang Pauli in 1930 [Pau30] dates back 90

years and since then many experiments have been devoted to the study of these particles,

not all their properties are known to this day. The measurement of neutrinos is challenging

and involves a great deal of e�ort; for example, the �rst direct experimental proof of the

existence of neutrinos in the Savannah River Experiment was only provided 26 years after

their postulation [Cow+56]. Through the observation of the solar neutrino de�cit and

the discovery and experimental con�rmation of neutrino �avour oscillations in many

experiments [Suz95; SNO+02; Fuk+01; Ham+99; Abd+94] it has been proven today that

neutrinos have a non-vanishing mass. The undisputed evidence of the experimental data

thus exposes a clear shortcoming of the Standard Model of elementary particle physics,

in which neutrinos are massless. Despite the overwhelming success of the Standard

Model in describing the interaction of particles and thus fundamental physics on the

smallest length scales, it is undisputed that its description of neutrinos is incomplete. The

experimental study of neutrinos, including the determination of their mass, is an essential

step to understand the necessary extension of the Standard Model and thus physics on the

smallest length scales.

Neutrinos are not only relevant on the smallest but also on the largest length scales:

According to the ΛCDM model, the "Standard Model" of cosmology, they are the most

abundant massive particles in the universe. Their mass is one of the parameters that

in�uences how structures in the early universe evolved, leading to the distribution of

galaxies, voids and galaxy clusters observed today. Extensions of the ΛCDM model can be

used to derive an upper limit on the size of the neutrino mass, however, the most sensitive

results rely on the combination of several di�erent observational data sets [CH20]. For

this reason, although precision cosmology has become a sensitive probe for the sum of

neutrino masses, direct laboratory measurements are indispensable to corroborate and

test the interpretation in the cosmological framework.

Two experimental approaches have been established to determine the neutrino mass in

the laboratory, both of which use a form of beta decay. The neutrinoless double beta decay

(0aββ) assumes that neutrinos are Majorana particles, i.e. their own antiparticles, and is

prohibited in the Standard Model as a lepton number violating process. The exchange

of virtual Majorana neutrinos is a mediator of the hypothetical double beta decay. The

Majorana neutrino mass thus impacts the decay rate of 0aββ. Therefore, experiments that

can detect this type of decay and measure its half-life could indeed prove that neutrinos

are Majorana particles and contribute to an extension of the Standard Model. However, if

neutrinos are not their own antiparticles, these experiments cannot determine the neutrino

mass. Very long half-life times well in excess of ordinary �rst-order weak interactions
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are expected for 0aββ and if it takes place at all, then only so rarely that it has not been

observed until today [Ni+19].

The second established laboratory method is the precise measurement of the single beta de-

cay spectrum. The most advanced current-generation experiment targeted at determining

the neutrino mass in this way is the KArlsruhe TRItium Neutrino (KATRIN) experiment.

It builds on the experience of the predecessor experiments in Mainz and Troitsk, but will

exceed those in its sensitivity to the determination of the neutrino mass by a factor of

10. This is only possible with enormous technical e�orts and numerous innovations, so

that many components of KATRIN have set the limits of what is technically feasible at the

moment. This work aims to contribute to the equally complex and extensive data analysis

and modelling of the measurements.

The KATRIN experiment performs a kinematic measurement of the electron neutrino mass

<a by precision spectroscopy of the tritium β decay spectrum at its kinematic endpoint

with and energy of 18.6 keV. KATRIN’s �rst published result of<a < 1.1 eV (90 % C.L.)
[Ake+19] of the KNM1 campaign is the current most stringent limit from laboratory

neutrino mass measurements. Future measurement campaigns will successively bring

down the statistical uncertainty. In order to push for the target sensitivity of 200 meV

(90 % C. L.) [KAT04b], though, a detailed understanding of the systematic uncertainties is

needed, as well.

The topic of the thesis at hand is the development of a theory to characterise source

potential systematics of the KATRIN experiment, which are critical systematic e�ects.

This theory describes both the observables of the potential, which are obtained in
83m

Kr

calibration measurements and, given estimates of these observables, the expected sys-

tematics in tritium measurements. While the main focus of this work is on the detailed

understanding of the theoretical framework, the developed method is also applied to the

KATRIN KNM1 and KNM2 measurement campaigns carried out in 2019.

One of the major systematic uncertainties stems from energy calibration, i.e. from the

precise determination of the di�erence of the electric potential between source and spec-

trometer. The β decay takes place in the Windowless Gaseous Tritium Source (WGTS),

where the gaseous tritium is continuously cycled. Inelastic scattering of the decay elec-

trons o� the gas molecules leads to two e�ects of relevance for this thesis: on the one

hand, it leads to charge generation by ionisation of the gas, which entails the formation

of a low-density plasma. This plasma can lead to a spatially non-homogeneous source

potential and thus contributes to an uncertainty of the energy calibration. On the other

hand, inelastic scattering provides spatial resolution on the source potential, due to the

following reasoning: Scattering is more likely to occur for those electrons, which have

to traverse a larger portion of the 10 m long source tube, such that electrons of higher

scattering multiplicities are more likely to originate further from the rear part of the

source. In addition, the inelastic scattering is quantum mechanically forbidden for incident

electron energies smaller than ≈ 13 eV, so that the overall recorded electron spectrum

consists of a summation of spectra for the di�erent scattering multiplicities, starting from

unscattered electrons. In combination, this provides a mechanism for sensitivity on the

longitudinal starting position of the observed electrons: In mono-energetic spectra the
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electrons of di�erent scattering multiplicity, which stem from di�erent parts of the source,

appear in di�erent energy ranges. In continuous spectra like the tritium β spectrum the

scattering contributions overlap, which partly obscures this connection. Nevertheless, this

mechanism still leads to spatial sensitivity on the source potential. The consequences of

this observation are manifold and constitute the main part of this thesis.

The �rst consequence a�ects the description of energy calibration systematics. In the

KATRIN systematic budget an accuracy on the order of 10 mV on the di�erence of the po-

tentials of the main spectrometer and the tritium source is required. The exact quantitative

speci�cation of this requirement depends on the shift of the observable squared neutrino

mass Δ<2

a resulting from inhomogeneities of the energy scale. For the latter there are

di�erent measures. In the simplest description of the β spectrum the shift of the squared

neutrino mass is given by the standard deviation f of an unaccounted distribution of the

β-electron energy, caused by a systematic e�ect. In this case the relation [RK88]

Δ<2

a = −2f2
(1)

holds in leading order, for which the KATRIN design reports states a requirement of

f < 60 meV [KAT04b] for all energy scale systematics. However, inelastic scattering is

one of the reasons why this simple case is not always realised at KATRIN and why in some

situations equation 1 needs to be modi�ed. The mechanism leading to this modi�cation is

sketched in the following.

The use of an overall energy distribution to describe systematic in�uences as opposed to de-

tailed modelling of the physical e�ects involved makes this description phenomenological.

As a consequence, this type of theory for the neutrino mass shift has some formal similari-

ties with the theory of phase transitions. One of them is the relevance of symmetries and

symmetry breaking. Equation 1 uses only a single distribution of the β-electron energy,

which assumes that the measured β spectrum does not depend on spatial or temporal

coordinates. In this sense the energy scale is fully symmetrical. However, as shown in this

thesis, for certain experimental conditions more than one energy scale distribution must

be considered, rendering f not well de�ned. The emergence of more than one energy scale

distribution is caused by physical e�ects that break certain symmetries. Consequently,

additional degrees of freedom are required to fully specify the neutrino mass shift. Two of

these e�ects are investigated in this thesis:

One is the mentioned inelastic electron scattering in the source, breaking the longitudinal

symmetry of the source energy scale. As a consequence, electrons of di�erent scattering

multiplicity have di�erent starting potential distributions. In leading order this is accounted

for by a measure of the di�erence of their means Δd , in addition to the standard deviation

for the unscattered electrons f0.

The other is energy scale �uctuations on run time scale, breaking the temporal symmetry

of the energy scale. Energy �uctuations with periods much smaller than the usual mea-

surement are averaged, such that no information on the �uctuation phase is contained

in the recorded electron spectrum. However, comparable time scales of �uctuation and

measurement lead to a predictable relation between �uctuation phase and energy of the
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electrons. The occurrence of this e�ect is quanti�ed by the size of the Root Mean Square
value of the energy �uctuation fRMS on the time scale of the measurement.

As shown in this work, those additional degrees of freedom lead to the modi�cation of

equation 1 to

Δ<2

a = −2f2

0
− nΔd︸        ︷︷        ︸

Longidutinal distribution

+ n′fRMS + 0f2

RMS︸             ︷︷             ︸
Temporal distribution

. (2)

The coe�cients n, n′ and 0 are order parameters which vanish for full symmetry. Their

determination as a function of the relevant operating parameters, such as the tritium

column density in the source or the time sequence used in the energy spectroscopy, is one

of the topics of this thesis.

One tool for the energy calibration and the determination of f0, Δd and fRMS is the
83m

Kr

mode of the gaseous source. In this mode, gaseous, mesomeric krypton-83m is dispersed

along with the tritium gas inside the tritium source. Krypton-83m exhibits several electron

conversion lines in a range measurable by KATRIN, such that it can be used as a nuclear

standard. It approximately follows the tritium distribution in the source tube volume, such

that the conversion electrons su�er from comparable source potential systematics as the

β spectrum. However, due to the mono-energetic lines, the e�ect of inelastic scattering

is directly visible in the krypton spectrum. In particular, the unscattered portion of the

investigated line is directly related to the longitudinal plasma inhomogeneity f0, by an

additional broadening on top of the intrinsic width. A line of one-time scattered electrons

is observed approximately 13 eV below the unscattered electrons. From the di�erence

of those two lines Δd can be determined. Temporal �uctuations lead to an additional

broadening of the line, such that it can also be used to constrain fRMS.

As discussed, the parameters f0 and Δd are given by the central moments of the starting

potential distributions for di�erent scattering multiplicities. The expansion of the distri-

butions in moments is a perturbative approach, which reveals the essential observables

of the krypton-83m and the tritium measurement. This is particularly noticeable when

examining the predictive power of the krypton-83m measurement on the actual potential.

It can be shown that the ratio of the measured moments is given by the correlation of the

potential with a certain longitudinal potential shape. In particular, potentials which are

antisymmetric in relation to the gas injection point in the centre of the 10 m long source

tube lead to extreme values of

Δd
f0

for typical KATRIN measurement conditions, while Δd
vanishes for symmetric potentials.

Finding exact, model-independent relations like these is a focus of this work: The measure-

ments of the KNM1 and KNM2 campaigns at KATRIN have shown that the determination

of the plasma potential systematics is very di�cult, since also the krypton-83m calibration

measurement and other methods su�er from systematics. In addition, many dimensions

like temporal drifts, radial dependencies of the observables and the multitude of the avail-

able methods lead to complicated discussions, such that additional model dependencies

need to be avoided. This goal is fully achieved in this work, which rigorously relates

symmetries of the potential to all observables of the krypton measurement and gives a
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comprehensive description of the neutrino mass systematics resulting from those potential

symmetries.

This rigour comes at the expense of a well founded mathematical approach of the developed

formalism. As it turns out, there are many subtleties like for example di�erences in the

longitudinal gas pro�les for krypton and tritium, which lead to di�erent moments for the

two gas species. While such details are not relevant to understand the overall picture of

the developed theory, they are relevant for the full KATRIN measurement. For this reason,

the main part of this work starts with a short summary, which skips the mathematical

details and derivations. The goal is to facilitate the understanding of the general picture,

before the details are studied in the individual chapters.

This thesis is structured as follows:

Chapter 1 gives a short overview of the basic components of the KATRIN experiment as

well as its analysis and simulation framework. It also includes descriptions of the KATRIN

83m
Kr mode modelling and of basic plasma physics.

Chapter 2 provides the short summary of the following three chapters without mathemat-

ical detail. It also lists the nomenclature used in the later chapters.

In chapter 3 the general formalism �tting to describe source plasma potential systematics

is derived. Since all relevant relations are deduced here, it is the basis of the following

chapters. The fundamental krypton-83m observables are identi�ed and a general ansatz

for the potential induced neutrino mass and endpoint shift is given. While in essence

the used formalism is standard (Gaussian) statistics of the starting potential distribution,

due to inelastic scattering several of those distributions and their relations need to be

considered.

Chapter 4 describes the potential models deducible from the krypton-83m measurement.

In an exact, analytical approach, all observables are related to symmetries of the potential

and the remaining, model dependent portion of the potential is identi�ed. To illustrate

this abstract discussion by a concrete example, the potential moments resulting from a

polynomial potential model are calculated.

In chapter 5 the coe�cients of the equations derived in chapter 3 are simulated for

conditions comparable to the KNM1, KNM2 and KNM3 measurements. Here all plots for

the calculation of the plasma potential systematic from the potential observables measured

with krypton-83 are found.

In chapter 6 the KNM1 and KNM2 krypton-83m measurements are described. A short

discussion is dedicated to modelling, systematics and complementary measurements.

However, the main focus is on the application of the previously derived methods, which

for example includes model-independent constraints of the peak-to-peak value of the

measured potential. The discussion on plasma potential systematics from longitudinal

inhomogeneity is concluded with the calculation of the expected systematics in the KNM2

neutrino mass measurement.

In chapter 7 systematics stemming from time dependent energy scale perturbations are

discussed. While this topic is not covered by the theoretical framework of the previous
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discussion, time dependencies of the plasma potential are still one possible candidate to

cause energy scale perturbations. Quantitative relations are found for the neutrino mass

shift for di�erent perturbation frequency regimes and time sequences of the measurement.

The size of the systematic is constrained from the KNM2 krypton-83m measurement, both

for the respective neutrino mass campaign, and for full KATRIN.

The thesis concludes with a summary and an outlook in chapter 8.
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3.19. Mixture of scattering e�ects in continuous spectra . . . . . . . . . . . . . 76

3.20. Determination of coe�cients in simulation . . . . . . . . . . . . . . . . . 79

3.21. Sketch of the mean di�erence susceptibility as function of scattering con-

tribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.22. Generalised weights for measures of means . . . . . . . . . . . . . . . . . 81

3.23. Generalised weights for measures of mean di�erences . . . . . . . . . . . 82

3.24. Generalised weights for measures of variances . . . . . . . . . . . . . . . 84

3.25. Extrapolating varying operating conditions . . . . . . . . . . . . . . . . . 87

3.26. Neutrino mass shift and potential antisymmetry . . . . . . . . . . . . . . 90

4.1. Composition of the image of the KATRIN krypton-83m measurement . . 95

4.2. Composition of the domain of the KATRIN krypton-83m measurement . 95

4.3. Antisymmetry amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4. Peak-to-peak value and maximum derivative . . . . . . . . . . . . . . . . 97

4.5. Rear wall connection potential . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1. Energy loss function 51(n) . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2. Average scattering probabilities vs. column density . . . . . . . . . . . . 107

5.3. Mean di�erence susceptibility vs. column density . . . . . . . . . . . . . 110

5.4. Mean di�erence susceptibility vs. background . . . . . . . . . . . . . . . 111

5.5. Mean di�erence susceptibility vs. lower analysis interval . . . . . . . . . 112

5.6. Mean di�erence susceptibility vs. lower analysis interval, in high temper-

ature mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.7. Normalised electron distributions, tritium . . . . . . . . . . . . . . . . . . 115

5.8. Normalised electron distributions in high temperature mode . . . . . . . 116

5.9. Weight standard deviations and operator constraints . . . . . . . . . . . 117

5.10. Antisymmetry shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.11. Peak-to-peak value constraints . . . . . . . . . . . . . . . . . . . . . . . . 118

5.12. Shape energy vs. column density . . . . . . . . . . . . . . . . . . . . . . . 119

5.13. Scaling factors, mean di�erences . . . . . . . . . . . . . . . . . . . . . . . 122

5.14. Scaling uncertainties, mean di�erences . . . . . . . . . . . . . . . . . . . 123

5.15. Ratio of tritium to krypton zero weights . . . . . . . . . . . . . . . . . . 124

5.16. Scaling uncertainties, variances . . . . . . . . . . . . . . . . . . . . . . . 125

5.17. Shape energy vs. lower analysis interval . . . . . . . . . . . . . . . . . . 127

5.18. Neutrino mass shift from mean di�erence vs. lower analysis interval . . 128

5.19. Correlations of tritium and krypton weights vs. lower analysis interval . 129

5.20. Antisymmetry shapes vs. lower analysis interval . . . . . . . . . . . . . . 130

xii



List of Figures

6.1. Krypton �t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2. Line position pixel map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3. Background �t and simulation . . . . . . . . . . . . . . . . . . . . . . . . 137

6.4. Background contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.5. Column density in KNM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.6. Line positions in KNM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.7. KNM1 reference measurement of the L3 line width . . . . . . . . . . . . . 146

6.8. Gaussian broadening in KNM1&2 krypton measurements . . . . . . . . . 149

6.9. Reference value exclusion plot . . . . . . . . . . . . . . . . . . . . . . . . 151

6.10. Mean di�erence in KNM2 krypton measurement . . . . . . . . . . . . . . 153

6.11. Antisymmetry in KNM2 krypton measurement . . . . . . . . . . . . . . 154

6.12. Allowed peak-to-peak value over rear wall voltage in KNM2 . . . . . . . 155

6.13. Potential over rear wall voltage in KNM2, simulation kernel . . . . . . . 156

6.14. Potential over rear wall voltage in KNM2, quadratic kernel . . . . . . . . 157

6.15. Analysis interval dependence of the measurement of the mean di�erence 159

6.16. Rear wall voltage dependence of the mean di�erence . . . . . . . . . . . 160

7.1. KNM2 krypton measurement time distribution . . . . . . . . . . . . . . . 166

7.2. KNM2 tritium measurement time distribution . . . . . . . . . . . . . . . 166

7.3. Integrand of the autocorrelation function . . . . . . . . . . . . . . . . . . 172

7.4. Retarding energy over time for di�erent schedules . . . . . . . . . . . . . 180

7.5. Zoom on scan time resonance in ordered schedule . . . . . . . . . . . . . 181

7.6. KNM2 tritium schedule, ramping . . . . . . . . . . . . . . . . . . . . . . . 182

7.7. KNM2 tritium systematics, ramping . . . . . . . . . . . . . . . . . . . . . 183

7.8. KNM2 tritium schedule, random order . . . . . . . . . . . . . . . . . . . . 184

7.9. KNM2 tritium systematics, random order . . . . . . . . . . . . . . . . . . 185

7.10. KNM2 tritium schedule, ramping, randomised subrun duration . . . . . . 186

7.11. KNM2 tritium systematics, ramping, randomised subrun duration . . . . 187

7.12. KNM2 tritium schedule, random order, randomised subrun duration . . . 188

7.13. KNM2 tritium systematics, random order, randomised subrun duration . 189

7.14. KNM2 krypton schedule, ramping . . . . . . . . . . . . . . . . . . . . . . 190

7.15. KNM2 krypton systematics, ramping . . . . . . . . . . . . . . . . . . . . 191

7.16. KNM2 krypton schedule, random order . . . . . . . . . . . . . . . . . . . 192

7.17. KNM2 krypton systematics, random order . . . . . . . . . . . . . . . . . 193

7.18. KNM2 krypton schedule, ramping, randomised subrun duration . . . . . 194

7.19. KNM2 krypton systematics, ramping, randomised subrun duration . . . 195

7.20. KNM2 krypton schedule, random order, randomised subrun duration . . 196

7.21. KNM2 krypton systematics, random order, randomised subrun duration . 197

7.22. Sawtooth perturbation, ramping . . . . . . . . . . . . . . . . . . . . . . . 198

7.23. Sawtooth perturbation, random order . . . . . . . . . . . . . . . . . . . . 199

7.24. Perturbation coherence for di�erent schedules . . . . . . . . . . . . . . . 201

7.25. Random distribution vs. frequency dependence . . . . . . . . . . . . . . . 206

A.1. Intersection of scaled weights . . . . . . . . . . . . . . . . . . . . . . . . 222

A.2. Constraint of tritium f0 for given krypton observables . . . . . . . . . . 225

xiii



List of Figures

A.3. Column density uncertainty of neutrino mass shift prediction . . . . . . 227

A.4. Fitted tritium column density for 1 WGTS slice in comparison to true value 229

A.5. Measured mean di�erence in KNM1 krypton . . . . . . . . . . . . . . . . 231

A.6. j2
distributions of the �ts . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

A.7. Histograms of the measured tritium column density . . . . . . . . . . . . 232

A.8. Histograms of the measured variances . . . . . . . . . . . . . . . . . . . . 233

A.9. Histograms of the measured mean di�erences . . . . . . . . . . . . . . . 233

A.10. Potential over rear wall voltage in KNM2, no bins, simulation kernel . . . 234

A.11. Potential over rear wall voltage in KNM2, no bins, quadratic kernel . . . 235

A.12. Maximum shifts versus amplitude . . . . . . . . . . . . . . . . . . . . . . 237

A.13. Ramping, amplitude scaling . . . . . . . . . . . . . . . . . . . . . . . . . 238

A.14. Random order, amplitude scaling . . . . . . . . . . . . . . . . . . . . . . . 238

A.15. Maximum shifts versus returns . . . . . . . . . . . . . . . . . . . . . . . . 239

A.16. Ramping, scaling with subrun duration . . . . . . . . . . . . . . . . . . . 240

A.17. Random order, scaling with subrun duration . . . . . . . . . . . . . . . . 240

A.18. Tritium weight standard deviations, krypton weighted, equal column density 241

A.19. Tritium weight standard deviations, krypton weighted . . . . . . . . . . 242

A.20. Correlations of tritium and krypton mean di�erences . . . . . . . . . . . 243

A.21. Neutrino mass shift from mean di�erence vs. lower analysis interval, KNM2 244

A.22. Shape energy vs. lower analysis interval, KNM2 . . . . . . . . . . . . . . 245

A.23. Ratio of krypton and tritium weighted standard deviations of weights . . 245

xiv



List of Tables

1.1. KATRIN systematic uncertainties . . . . . . . . . . . . . . . . . . . . . . 19

1.2.
83m

Kr conversion spectrum - main lines . . . . . . . . . . . . . . . . . . . 27

1.3.
83m

Kr conversion spectrum - satellite lines . . . . . . . . . . . . . . . . . 27

2.1. Nomenclature for quantities used in this work . . . . . . . . . . . . . . . 42

3.1. Overview of plasma potential-related quantities in krypton-83m measure-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1. Plasma antisymmetry for power functions . . . . . . . . . . . . . . . . . 101

5.1. KNM1-3 measurement conditions . . . . . . . . . . . . . . . . . . . . . . 105

6.1. List of excluded pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2. Line parameters of L3-32 . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

xv





1. The KATRIN Experiment

The KArlsruhe TRItium Neutrino (KATRIN) experiment performs a kinematic measure-

ment of the neutrino mass by precision spectroscopy of the tritium beta decay electron

spectrum at the endpoint of 18.6 keV. By the time of writing of this thesis, three neutrino

mass campaigns (KNM1-3) were successfully �nished at KATRIN. The �rst published

result from KNM1 is [Ake+19]

<a < 1.1 eV (90 % C. L.) . (1.1)

Although only using roughly four weeks of measurement time at reduced source strength,

this improves the results of the predecessor experiments in Mainz and Troitsk [Kra+05;

Ase+11] by almost a factor of two. The targeted total sensitivity of 200 meV (90 % C. L.) for

1000 days of data taking exceeds the sensitivity of the predecessor experiments even by one

order of magnitude [KAT04b]. Reaching this goal can only be achieved by increasing the

statistical sensitivity of the measurement, while keeping stringent limits on the systematic

uncertainty budget. This chapter summarises which methods are used at KATRIN to do so

and discusses the plasma systematics, which are at the focus of this thesis.

Section 1.1 discusses the measurement principle and setup of the experiment. In section 1.2

the simulation and data analysis framework of KATRIN is explained
1
.

Section 1.3 describes the
83m

Kr mode of the gaseous source, which is a calibration mode

used for the study of systematic e�ects.

Finally, in section 1.4 the source plasma potential systematics is explained, which is studied

using the
83m

Kr mode and is the main concern of this thesis.

1.1. Measurement Principle and Setup

KATRIN performs a high-precision spectroscopy of the tritium β-electron spectrum close

to the endpoint. The used molecular tritium T2 decays mainly by the β reaction

T2 → HeT
+ + e

− + āe . (1.2)

The electron antineutrinos ā4 are not detected. However, using energy momentum conser-

vation their mass can be inferred from the energy spectrum of the electrons e
−

. Neglecting

the �nal states of the daughter molecule HeT
+

from the β decay the spectrum is obtained

1
Those topics were already covered in many publications of the KATRIN collaboration. Here they are

reduced to the necessary parts for this thesis. [Sei19] was found to be a good, much more comprehensive

recent overview.
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Figure 1.1.: Beta decay spectrum of tritium: Shown is the total energy spectrum of the

electrons emitted in tritium beta decay normalised to the maximum. In the

inset a close-up on the energy range 1.5 eV below the endpoint �0 ≈ 18.6 keV

is shown. Arbitrary e�ective electron antineutrino masses are included, which

lead to a decrease of rate in comparison to the spectrum with zero mass. This

rate decrease corresponds to the negative broadening expressed in equation 1.

by considering the phase space of the kinetic energy � and momentum ?e of the electrons

and the corresponding quantities of the neutrino a , leading to [OW08]

d ¤#
d�

= �(�) ?e � (�0 − �)︸   ︷︷   ︸
�a

∑
8
|*e8 |2

√
(�0 − �)2 −<2

8︸                             ︷︷                             ︸
?a

\ (�0 − � −<8) . (1.3)

�(�) is the amplitude, which depends on the matrix element of the transition and the

coupling constant. The*e8 are elements of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

matrix, which speci�es the mixing of the mass states<8 of the three neutrino �avours.

The \ function ensures energy conservation. The energy of the endpoint �0 is given by

the released energy of the decay, corrected by the nuclear recoil of the daughter molecule.

The resulting electron spectrum is visible in �gure 1.1. In the inset, one sees that the

neutrino mass modi�es the spectrum near the endpoint, most clearly visible in the lowering

of the maximum electron energy. For each of the mass eigenstates<8 one expects a separate

kink at its mass; however, KATRIN (and any other planned experiment) cannot resolve

this substructure. The measured e�ective observable is the squared e�ective electron

antineutrino mass [OW08]

<2

a =

3∑
8

|*e8 |2<2

8 . (1.4)
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1.1. Measurement Principle and Setup

(a)
(b)

(c)
(d)

(e)
(f )

(g)

Figure 1.2.: The experimental setup of KATRIN, comprising:

(a) Rear Section, monitoring and calibration,

(b) Windowless Gaseous Tritium Source,

(c) Di�erential and Cryogenic Pumping Section, removal of the tritium,

(d) Pre Spectrometer, �ltering of low energy electrons,

(e) Main Spectrometer, high resolution spectroscopy,

(f) Detector Section, position resolved electron counting,

(g) Monitor Spectrometer, precision high voltage monitoring.

To improve the sensitivity on<a by a factor of 10 compared to the predecessor experiments

at Mainz and Troitsk [Kra+05; Ase+12], the sensitivity on<2

a needs to be improved by a

factor of 100. At KATRIN this is achieved by increasing the dimensions of the experiment

and the source activity, while decreasing the systematic uncertainty budget.

The over 70 m long setup is shown in �gure 1.2. The individual components are:

• Rear Section, �gure 1.2(a): The rear section is used for calibration and monitoring.

• Windowless Gaseous Tritium Source (WGTS), �gure 1.2(b): Here the decay of the

molecular tritium takes place.

• Transport Section, �gure 1.2(c): It prevents the gas inside the WGTS from reaching

the spectrometers, while transporting the produced electrons adiabatically, using

strong magnetic �elds.

• Spectrometer Section, �gure 1.2(d)+(e): Pre- and main spectrometer of the Magnetic
Adiabatic Collimation combined with Electrostatic (MAC-E) �lter type are used to

block electrons with less energy than an applied retarding energy.

• Detector, �gure 1.2(f): The detector counts the electrons which pass the retardation

�lter, thus producing an integral measurement of the tritium β spectrum.

• Monitor Spectrometer, �gure 1.2(g): The monitor spectrometer is used for high voltage

monitoring.
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Glove box
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BIXS
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(𝐵 = 4.7 T)
Rear wall

Figure 1.3.: The rear section: The rear section consists of three components; �rstly the

electron gun and its electromagnetic transport system, secondly a supercon-

ducting magnet focusing the �ux to the rear wall disk, and thirdly the rear wall

chamber, which includes the rear wall and the BIXS system for rate monitoring.

The electron gun and rear wall chamber are surrounded by glove boxes which

serve as second containment for tritium (after [Sei19]).

The isotropically generated electrons are guided from the source to the detector by a

magnetic �eld in the range of a few tesla, which is created along the entire beam line by

superconducting solenoids.

In the following the components and their signi�cance for KATRIN and this work are

explained in more detail.

1.1.1. The Rear Section

A detailed view of the rear section is shown in �gure 1.3. It is placed at the upstream end

of the WGTS and provides several calibration and monitoring devices:

Rear wall [Sch16]: The rear wall is used to de�ne the electric potential of the source

with a gold-coated stainless steel disk perpendicularly to the magnetic �eld lines. The

gold-coating is used to guarantee that the inhomogeneity of the rear wall work function

is smaller than 20 meV. Since the full magnetic �ux hits the wall, the rear wall has

signi�cant in�uence on the low-density plasma forming in the WGTS. To in�uence the

plasma conditions, a bias voltage can be applied, which is one of the key parameters of

the studies presented in this work. Also, low energetic electrons can be created using the

photoelectric e�ect by UV illumination of the rear wall [Ful20]. These electrons can be

used to compensate or create space charges.
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To Rear Section To DPS2-F

WGTS beam tube
(10 m)

DPS1-R
(3 m)

DPS1-F
(3 m)

3.6 T 3.6 T 5.6 T 5.6 T

85 K 30 K 30 K / 3.6 T 30 K 85 K
Beam tubeSolenoid

Injection chamber

Figure 1.4.: Windowless gaseous tritium source: The central WGTS consists of the 10 m

long, temperature-stabilised cryostat into which high-purity tritium is injected

in the central chamber. The di�erential pumping sections (DPS1-R and DPS1-F)

attached to each end of the central WGTS remove the gas from the beam line.

The setup is connected to the rear and transport section on the left and right

(after [Har15]).

Electron gun [Bab14; Sch16; Hei15]: The applications of the angular-resolved electron gun
include the determination of the electron energy loss function discussed in section 1.2,

continuous column density monitoring and alignment studies. 10
4

photo electrons are

created per second using a UV illuminated cathode. Electrodes allow the acceleration

of the electrons to keV energies, however the current hardware was designed to reach

energies only up to 21 keV, whereas in this thesis the requirement to upgrade to 32 keV is

shown. The energy width is approximately 0.2 eV. Before entering the WGTS through a

hole in the center of the rear wall, the electrons pass through an aperture with a slight

o�set from the central axis. This prevents gas from the source from directly entering

the rear wall chamber. The position of the electron beam can be controlled using dipole

magnets in the WGTS, allowing to scan the whole �ux tube.

BIXS [Röl15]: β Induced X-ray Spectroscopy (BIXS) is a method of rate monitoring of

the source activity. It monitors the X-rays which are emitted from the rear wall due to

electron impact. In KATRIN almost all of the 10
11

electrons produced per second in the

WGTS hit the rear wall, either directly or after being re�ected at the spectrometer high

voltage or magnetic �elds. Thus, BIXS allows for rate monitoring on the 0.1 % level in 70 s

measurement time.

5



1. The KATRIN Experiment

1.1.2. The Windowless Gaseous Tritium Source

The Windowless Gaseous Tritium Source (WGTS), shown in �gure 1.4, circulates the tritium

for the β-spectrum measurement. It combines high luminosity with small systematic

uncertainties. The tritium gas is provided by the Tritium Laboratory Karlsruhe (TLK) in a

closed gas loop [Bor11]. Continuous �ltering of the gas removes the daughter molecule

HeT
+

as well as other impurities. Thereby an isotopic tritium purity inside the source of

more than 95 % is ensured, which is monitored using a LAser RAman (LARA) system [Fis14].

Temperature: The central tube with a length of about 10 m and a diameter of 90 mm

is embedded in a cryostat with a length of 16 m, a width of 1.5 m, a height of 4 m and a

weight of 26 t [Gro+08]. Depending on the desired temperature it uses di�erent coolants:

For the nominal tritium measurement in the 30 K temperature range a two-phase neon

cooling system is used, which reaches a temperature stability of ± 30 mK. The temperature

stability directly a�ects the stability of the column density and thus the rate stability. For

measurements involving krypton-83m the temperature needs to be raised to avoid freezing

out of the krypton-83m at the walls. Accordingly, the neon is exchanged with coolants

with more suitable vapour pressure. Temperature regimes of 80 K (nitrogen) and 100 K

(argon) were used up to now.

The determination of the optimal temperature set point includes many factors: it is chosen

to reduce the thermal Doppler e�ect leading to a broadening of the electron spectra and

to ensure a high tritium density at low �ow rate. On the other hand a low tritium pressure

and small clustering of tritium molecules is required [KAT04b]. The KNM1 and KNM2

measurements were performed in the nominal 30 K mode. In KNM3a a focus was put on

the study of systematics caused by the source plasma potential; to allow for equal source

conditions in tritium and krypton-83m commissioning measurements, the temperature of

80 K was used also for the tritium measurement.

Column density [KAT04b]: The tritium or krypton gas is injected in the center of the

central beam tube and pumped o� by two Di�erential Pumping Sections at the rear and

front sides (DPS-1-R/F-1 and DPS-1-R/F-2) with six Turbo-Molecular Pumps (TMP) each.

They reduce the pressure from ?inj ≈ 3 · 10
−3

mbar at the injection by around two orders of

magnitude. The nominal value of the density is d3 ≈ 5 · 10
21

m
−2

, which is a compromise

between a high signal rate and low probability of electrons to scatter o� source gas.

However, for co-circulation of tritium and krypton in
83m

Kr mode the tritium column

density was limited to 30 − 40 % of the nominal value in the passed measurements,

depending on the temperature. For a given column density, the increased temperature

leads to a higher throughput of the gas, which has to be smaller than the pumping speed

of the TMPs. Thus, while the column density could be increased from 22 % of nominal in

the �rst neutrino mass measurement KNM1 to 84 % of nominal in KNM2, in KNM3a only

40 % of the nominal value was used to match the value of the KNM3 krypton measurement

at 80 K.
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TMP

TMP

TMP

TMP

(a) DPS2-F

CKrS port

LHe reservoir
(4.5 K and 3.0 K)

LN2 shield

(b) CPS

Figure 1.5.: Di�erential and cryogenic pumping section: In the DPS2-F the tritium gas

throughput is reduced by �ve orders of magnitude using turbo molecular

pumps. In the CPS an additional reduction by at least seven orders of magnitude

is accomplished by using cryosorption. Both components use a chicanery of

the beam tubes elements to block neutral particles (after [Höt12; Sei19]).

In forward direction (to the detector) the tritium gas cannot be contained within the

source using a solid barrier, since the passing of the electrons through this barrier would

lead to systematics. Consequently, the whole system from source to detector is a closely

connected vacuum system, hence the term windowless. Regardless, it needs to be prevented

that tritium gas reaches and contaminates the spectrometer section. This is achieved in a

pumping section, which reduces the gas density, while ensuring adiabatic transport of the

electrons.

1.1.3. The Transport and Pumping Section

The transport and pumping section is divided into the Di�erential and the Cryogenic Pump-
ing Sections (DPS2-F and CPS), which reduce the partial pressure of tritium compounds to

below 10
−20

mbar and the overall gas pressure to below 10
−11

mbar [KAT04b]. The �rst

limit is necessary to prevent additional background created in the spectrometer by tritium

decay, the second to prevent scattering of electrons on residual gas.

DPS2-F: As shown in �gure 1.5a, the DPS2-F consists of �ve connected tubes. A tilt of

20
◦

between the tubes ensures that neutral particles like tritium molecules cannot pass in

direct line of sight to the spectrometer section. The four pump ports between the beam

tube elements house TMPs, which reduce the tritium gas �ow by �ve orders of magnitude.

The electrons are transported adiabatically through the 7 m long unit by a magnetic �eld

of up to 5.5 T, which is created using superconducting solenoids. In addition, the DPS2-F

7



1. The KATRIN Experiment

is used for the analysis and blocking of ions such as T
+
= or

3
(HeT)

+
, which are created in

chemical and ionisation processes. Blocking and analysis are performed using ring- and

dipole electrodes [Kle19].

CPS: Another reduction of the tritium �ow is achieved by the CPS, which is visible in

�gure 1.5b. In a process called cryosorption gas particles get adsorbed on a 3 K cold argon

frost layer. As the DPS2-F, the CPS uses a chicanery for neutral particles. Its overall

reduction factor was demonstrated to be better than 10
−10

[Eic+08; Jan15; Röt19].

CKrS: A measuring device for calibration and monitoring can be inserted in one of the

pump ports of the CPS: The Condensed Krypton-83m Source (CKrS), which consists of a

sub mono-layer of
83m

Kr on a highly oriented pyrolytic graphite (HOPG) substrate. It

can be moved inside the �ux tube to irradiate di�erent pixels [Are+18]. In addition to

measurements of the spectrometer transmission properties it also allows to determine

parameters describing the
83m

Kr conversion electron lines. Compared to the measurements

of the extended gaseous source described in section 1.3 it has the advantage that, due to

its small dimensions, it does not su�er from the systematic of residual beam tube work

function inhomogeneities. This is further discussed in chapter 6.

1.1.4. The Spectrometer Section

KATRIN uses a total of three MAC-E �lters for the determination of the electron energy

(pre- and main spectrometer) and for monitoring of the stability of the high voltage

(monitor spectrometer).

The monitor spectrometer can be connected to the same voltage supply as the main

spectrometer. It repeatedly measures the position of a
83m

Kr conversion electron line from

an implanted
83

Rb/
83m

Kr source, which functions as nuclear standard [Sle16].

The pre spectrometer is usually operated at a retarding voltage that allows only high-

energy electrons a few 100 eV into the spectrum to pass on to the main energy �lter. This

reduces background creation by scattering processes in the large volume of the main

spectrometer, which performs the precision spectroscopy of the remaining electrons.

Principle of theMAC-E filter: In the following the principle of the MAC-E �lter is explained,

which applies to all three spectrometers. This section is largely based on [Mac16].

An illustration of the MAC-E �lter (based on the main spectrometer) is found in �gure 1.6.

The electric and magnetic �elds are shown, as they are essential for the working principle

of the MAC-E �lter. Its magnetic �eld con�guration is used to collimate the initial isotropic

electron impulses. The energy spectroscopy is then carried out with an electrostatic

retarding voltage* , which works as a high-pass �lter. The details are as follows:

The electrons move in cyclotron motion around the magnetic �eld lines. In relation to

the magnetic �eld their kinetic energy �kin can be decomposed into a transverse �⊥ and a

8
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𝑞𝐸

𝐵

Analysing plane: 𝐵min, 𝑈max Aircoil system
Spectrometer hull

Pinch

(𝐵max = 6.0 T)

PS2

(𝐵 = 4.5 T)

Detector side

(𝐵 = 3.6 T)

Source side

(𝐵S = 3.6 T)

𝑝e (without 𝐸 field)

Figure 1.6.: Working principle of the MAC-E �lter: Superconducting solenoids create the

guiding magnetic �eld (green). The �eld strength is minimal in the middle of

the spectrometer. Since the magnetic moment is conserved, the momentum

of the electrons is collimated to be parallel to the magnetic �eld when the

electrons reach the central analysis plane. As a consequence electrons with

a total energy smaller than the retarding energy @* are re�ected and only

electrons of higher energies reach the detector (after [Sei19]).

parallel component �‖
�kin = �⊥ + �‖ . (1.5)

The angle between the parallel component and the total momentum is called the polar

angle \ .

For vanishing electric �elds and low magnetic �eld � gradients, the movement of the

electrons is adiabatic (X�kin = 0)

Δ�

�
� 1 . (1.6)

Since in this case the angular momentum ®! is conserved, the magnetic moment

®̀ = 4

2<4

®! (1.7)

is also a constant [Zub11]. Here 4 is the electric charge and<4 the mass of the electron.

In non-relativistic approximation the transverse energy of the electron can be expressed

as [Zub11]

�⊥ = −®̀®� , (1.8)

i.e. it is proportional to the magnetic �eld strength. This allows to express the transverse

energy as function of the magnetic �eld strength

�⊥(�) = �⊥(�S) ·
�

�S

, (1.9)
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1. The KATRIN Experiment

where �S is the �eld at the point of the creation of the electrons. Due to the conservation

of the total energy lowering the magnetic �eld transfers transverse energy to parallel

energy.

In the spectrometer the electrons are slowed down by the retarding voltage* applied to

the spectrometer vessel. They are re�ected if their parallel energy in the analysing plane

reaches zero, leading to the following condition:

⇒ �‖ = �kin − @* − ®̀®�
!

= 0 . (1.10)

If the magnetic �eld�min in the analysing plane is small electrons with energies smaller than

@* are re�ected. Since all electrons of higher energies than @* can pass the spectrometer

and are counted at the detector, MAC-E �lters perform an integrated energy measurement.

Maximum acceptance angle: The larger the starting angle of the electrons, the larger is

their pathway from the source to the detector. A larger pathway increases the probability

of scattering o� gas in the source and the loss of energy due to the emission of synchrotron

radiation. It is therefore of advantage to exclude electrons with pitch angles larger than the

maximum acceptance angle \max from the analysis. This is accomplished by inverse use of

equation 1.9: For collimation the ratio �min/�S should be as small as possible, since this

minimises the transverse component of the electron motion. Reversely, electrons can be

re�ected if they move into an increasing magnetic �eld �max > �S, since this can increase

the transverse energy to a point, were the parallel energy vanishes. This is known as the

magnetic mirror e�ect.

The maximum magnetic �eld is applied between spectrometer and detector. The resulting

maximum acceptance angle is given by [KAT04b]

\max = arcsin

√
�S

�max

. (1.11)

Filteringwidth: The size of the vacuum vessel limits the minimum ratio of �min and �max:

Due to the conservation of the magnetic �ux a reduction of the magnetic �eld strength

leads to an expansion of the �eld lines, which eventually intersect the walls of the vacuum

vessel. The minimum ratio of �min and �max limits the possible energy resolution, which

is explained considering the angular distribution of the electrons:

An electron starting in parallel to the magnetic �eld with an energy of � = @* can just

pass the retarding potential. Since the transverse component in the analysing plane is not

vanishing due to the non-vanishing magnetic �eld, an electron starting with the maximal

acceptance angle \ = \max needs the additional (surplus) energy

Δ� = � · �min

�max

(1.12)

to be detected. Thus, Δ� is the width of the energy �lter. It does not only depend on

the ratio of the maximum and the minimum magnetic �eld, but also scales linearly with

the energy of the electrons. The derivation only holds for isotropic electron sources; for

focused sources like the electron gun, the reader is referred to [Zac15; Beh17].
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1.1. Measurement Principle and Setup

Transmission function: The previous derivation of the �lter width used the two extremal

polar angles \max and zero, resulting in zero or one transmission probability. The transmis-

sion probability for polar angles in between those values and for general energies of the

electrons is described by the transmission function T (�, @* ). For isotropically generated

electrons it holds in �rst order [KAT04b]

T (�, @* ) =



0 � − @* < 0

1 −
√

1 − �−@*
�
· �S

�min

1 −
√

1 − �S

�max

0 ≤ � − @* ≤ Δ�

1 � − @* > Δ�

. (1.13)

In higher orders the transmission function is modi�ed by corrections for relativistic e�ects

and synchrotron radiation, and by the modi�cation of the angular distribution of the

electrons due to inelastic scattering [Gro15]. While the former two are taken into account

in all analyses of this work, the latter was neglected due to the unfeasible computation

time.

Due to inelastic scattering of the electrons on the gas molecules inside the WGTS the trans-

mission function needs to be convolved with the energy dependent probability of (multiple)

energy losses, resulting in the response function. All three functions (transmission, energy

loss and response function) are shown in section 1.2.2.

Field setting at KATRIN: KATRIN’s design magnetic �eld values are �S = 3.6 T, �min =

3 · 10
−4

T and �max = 6 T [KAT04b]. Consequently, the spectrometer vacuum vessel has a

length of about 23 m and a maximum diameter of about 10 m. At the tritium endpoint of

�0 ≈ 18.6 keV the resulting values of the maximum acceptance angle and �ltering width

are

\max ≈ 50.8◦ and Δ� ≈ 0.93 eV . (1.14)

However, to guarantee safe and stable long-term operation of the superconducting magnets

it was decided to reduce the magnetic �elds to 70 % of nominal for all measurements

[Hac17]. This does not a�ect the resolution or acceptance angle, since all �elds are scaled

uniformly.

The �ltering width is much larger than the envisaged neutrino mass sensitivity of 200 meV.

The latter is only achieved by the precise knowledge and modelling of the transmission

function and its consideration in the modelling of the recorded spectrum. Thus, the

lowering of the maximum electron energy by a non-vanishing neutrino mass (seen in

�gure 1.1) cannot be resolved by KATRIN, but it measures the rate decrease corresponding

to the (negative) spectral broadening (see equation 1).

1.1.5. The Detector Section

Electrons that have passed the main spectrometer are directed to the Focal Plane Detector
(FPD) system, visible in �gure 1.7. Its main component is a 90 mm silicon PIN diode (i.e. a
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Detector wafer

Gate valve

Magnetic flux

Calibration sources

Post acceleration electrode

Shield and muon veto

Detector

magnet

Pinch magnet

Figure 1.7.: Focal plane detector system: The setup of the detector section comprises two

superconducting solenoids, calibration sources, the detector and the vacuum

system and shielding. A post-acceleration can be applied to shift the electron

energy to a region with a preferable signal-to-background ratio (after [Sei19]).

stack of a p-type, an undoped intrinsic and a n-type semiconductor) divided into 148 pixels,

which allows radial analysis of the spectra. The energy resolution of the FPD of about

1-2 keV is used for background discrimination [Ams+15].

1.2. Neutrino Mass Analysis with KATRIN

This section gives a brief insight into simple analysis methods (section 1.2.1) and the

analysis software used for this purpose (section 1.2.2). The �nal section 1.2.3 describes

the prediction of the sensitivity of KATRIN in neutrino mass determination and gives an

overview of the most important systematics.

1.2.1. KATRIN Likelihood Function

This section evaluates on the principle of maximum likelihood determination (or j2

minimisation), which allows the model parameters to be adapted to the measured data.

It is largely based on [Kle14] and [Mac16]. Further literature on other, complementary

methods can be found for example in [Kle14].

KATRIN measures the total number of integral counts #obs,8 for 8 settings of the retarding

energy @*8 and the respective measurement times C8 . For the extraction of the sought-after
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1.2. Neutrino Mass Analysis with KATRIN

neutrino mass<a the theoretically expected counts #theo,8 (<2

a ) 2
for each set value of the

retarding energy must be predicted precisely.

Nuisance parameters: Since the theoretical modelling is not complete in practice due to

uncertainties and incomplete modelling, it is helpful to make #theo,8 dependent on further

free parameters G ∈ - , the so-called nuisance parameters. For the KATRIN neutrino mass

measurements, the parameters used in the standard �t model are the tritium β-spectrum

endpoint �0, a constant background rate �6 and a spectrum intensity � .

Statistical fluctuations and likelihood: Since the observed counts are generated by a ra-

dioactive decay, they are Poisson distributed, which is also referred to as statistical �uctua-
tions. Therefore, if the experiment is repeated several times, it gives a di�erent result of

the �t parameters - each time. Since the underlying Poisson distribution of the counts is

known, the frequency distribution of - after an in�nite number of measurements can be

predicted. However, only one measurement can be performed. The probability distribu-

tion for the outcome of this measurement, given the statistical �uctuations, is called the

likelihood L.

For a number of signal events & 25 the Poisson distribution of the measured counts can be

approximated as a Gaussian distribution. Therefore, the likelihood is given as the product

of the Gaussian distributions at each retarding energy or measurement point 8

L(#obs, #theo) =
∏
8

exp−1

2

(
#obs,8 − #theo,8 (- )

f8

)
2

. (1.15)

The quantityf8 is the standard deviation of the counts. For the case of a Poisson distribution

it is given by

f8 =
√
#theo,8 . (1.16)

Minimum 6 2: The goal of the analysis is to �nd the parameters - which lead to the

maximum likelihood. However, for easier computation the likelihood is usually replaced

by the double negative log likelihood, the j2
function

j2 ≡ −2 logL =
∑
8

(
#obs,8 − #theo,8 (- )

f8

)
2

, (1.17)

and the best �t parameters of the - are obtained at the minimum of the j2
. Due to the

form of equation 1.17 the j2
minimisation is sometimes referred to as weighted least

squares [Jam04].

The result of a measurement is then the set of parameters - which gives the minimum j2
.

Due to the erroneous nature of the measurement, caused both by the statistical �uctuations

2
Since the theoretical modelling of the β spectrum depends only on the square of the neutrino mass, this is

the actual observable.
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and other, systematic uncertainties, this result is only as good as the determination of its

uncertainty. Usually the latter is provided in the form of a con�dence interval around -

which, when the measurement could be repeated in�nitely often, would cover the fraction

of measurements speci�ed by the con�dence level. Thus, a small con�dence interval at a

large con�dence level is a precise measurement. This con�dence interval is related to the

statistical fstat(- ) and systematic fsyst(- ) uncertainties, which can both be inferred from

the j2
function.

Determination of the statistical uncertainty: The size of the fstat(- ) is linked to the width

of the j2
function near the minimum. If the j2

is interpreted as a function of one of the

G ∈ - , it is a parabola around the minimum, if G enters the model #theo,8 linearly for its

minimum value [Jam04]. The measured total counts are directly proportional to the total

measurement time Ctot. Thus, it follows from equation 1.17 that the statistical uncertainty

and the root of Ctot behave anti-proportional for Gaussian distributed variables and the

Poisson distributed counts

fstat(- ) ∝
1

√
Ctot

. (1.18)

The constant of proportionality is related to the second derivative of the j2
function.

Determination of systematic uncertainties: Di�erent methods can be used to determine

the size of the systematic uncertainties fsyst(- ) caused by uncertainties of parameters % :

• Pull method: For parameters of mean %meas with Gaussian uncertainty f (%) equa-

tion 1.17 can be amended with further terms of the form

(
%

�t
−%meas

f (%)

)
2

and by �tting

%�t. If the - are correlated to the % this changes the width of the j2
parabola in

the direction of the - compared to the purely statistical width, which is interpreted

as fsyst(- ). Depending on the size of f (%) the change can be positive or negative.

Thus, if f (%) is actually known from a more sensitive experiment, pull terms can

also be used to decrease the uncertainty.

• Shift method: In the shift method, non-�tted parameters are de�ected in the model

by Δ% . If the - are correlated to the % this shifts the j2
parabola in the direction of

the - , leading to a change of - by Δ- .

The pull method is used in this thesis to incorporate literature values of some of the

krypton lines, as discussed in chapter 6. The shift method is used whenever systematic

uncertainties are investigated in simulation studies, for example for all of chapter 5.

Asimov data: The determination of the uncertainties does not require an actual mea-

surement. Toy data #obs,8 (-toy) can be generated by the model which is also used to

predict #theo,8 (-�t). Also, this can be done without statistical �uctuations, such that

#obs,8 (-toy) = #theo,8 (-�t), if -toy = -�t. This replaces the counts by their most representa-

tive values, i.e. without systematics the �t needs to recover the exact input values -toy.

This is referred to as using Asimov data [Cow+11].
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Combined uncertainty: From the central limit theorem it follows that, given the combina-

tion of many systematic uncertainties, the total uncertainty can be considered as Gaussian

uncertainty. Since uncorrelated Gaussian variances are added in quadrature and systematic

and statistical uncertainties are by de�nition uncorrelated they can be combined like

ftot =

√
f2

stat
+ f2

syst,tot
. (1.19)

Confidence interval: In the case of Gaussian distributions, the con�dence level is obtained

by multiplying ftot by constant factors. A 1.645 ftot interval covers 90 % of the total area

of a Gaussian, whereas a 1.0 ftot interval only covers 68.3 %.

In the following the spectrum simulation used to obtain the theoretical prediction #theo,8

is brie�y discussed.

1.2.2. Fit and Spectrum Simulation

For all analyses carried out in this work the software framework of KaFit and Source
Spectrum Calculation (SSC) is used. Booth are based on C++ and the ROOT library [Ant+09],

but have various extensions to other languages like python or libraries like BOOST. Their

connection and relation to the variety of KATRIN analysis tools is shown in �gure 1.8.

KaFit: KaFit is a software package which can perform the likelihood calculation and j2

minimisation using di�erent approaches. Only classical minimisers (based on ROOT::Minuit

and ROOT::Minos uncertainty estimation [Jam04]) were used in this work in a frequentist

method [Ken49].

The calculation of the expected counts #theo,8 is performed by SSC, which is explained

brie�y in the following. A comprehensive overview is found in [Kle+19].

Source spectrumcalculation: Using SSC, the expected count rate ¤# (@* ) can be calculated

for given retarding energy @* . The calculation can be done for each pixel individually,

which is mapped to a radial starting position of the electrons in the source by the magnetic

�eld. Furthermore, the source can be segmented longitudinally to take into account spatial

dependencies of the source parameters. This calculation of many spectra for individual

regions of the source, called voxelisation [Höt12], is shown in �gure 1.9.

The total rate is thus given by the following summation over WGTS slices:

¤# (@* ) =
slices∑
8

ndet

Ω8
4c

∫ ∞

−∞
#8

(
d ¤#
d�

)
'(� + @+8, @* ) d� . (1.20)

Thereby ndet is the detector e�ciency,
Ω
4c

the accepted solid angle, #8 the number of

tritium atoms,
d ¤#
d�

the di�erential tritium spectrum, '(�, @* ) the response function of the

experiment and +8 the potential in each source slice. The response function is described
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observation expectation

likelihood / 𝜒2

classical minimisers Markov Chain MC

profile likelihood confidence belts
KaFit, statistical tools

Frequentist analysis Bayesian analysis

Kassiopeia
particle tracking

KEMField
field solving

background model

measurement plan

SSC
spectrum calculation

KaLi
data access

External input
plasma simulation

ELoss measurement

…

Figure 1.8.: Structure of the KATRIN analysis tools: KaFit can perform a j2
minimisation

or maximum likelihood estimation using di�erent methods. The spectrum

calculation is performed by SSC, which comprises many tools or external

inputs (for example plasma pro�les like �gure 1.19 or the energy loss function

�gure 1.10). SSC is also used to generate Asimov spectra (after [Kle14]).

Tritium source Transport section Detector

Figure 1.9.: Mapping of source regions to the detector and voxelisation: The electron

origin in the source is mapped to detector pixels by the magnetic �eld lines.

As a consequence the spectrum produced in each longitudinal intersection of

the source with the magnetic �eld lines is mapped to distinct detector pixels

(indicated in grey). Additionally, the longitudinal regions along this �eld line

can be further divided into voxels, allowing to include longitudinal dependences

of source quantities in the modelling (after [Kle14; Höt12; Mac16]).
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below. Each quantity is obtained from models describing the physical process: The

di�erential tritium spectrum is the decay spectrum as produced by the decay of the

molecular tritium in the source. Its modelling includes the theoretical description of the β
spectrum as well as nuclear recoil, excitations of the daughter molecule or a (relativistic)

Doppler broadening. Quantities depending on the longitudinal coordinate I are taken

from corresponding pro�les, for example from gas dynamics simulations in the case of #8 .

Response function: The response function is used to convolve any other external in�u-

ence on the electron spectrum from the point of creation of the electrons in the source

to the detection at the focal plane detector. In addition to for example the transmission

function of the spectrometer this also includes the inelastic scattering of the electrons

on the gas in the source. Figure 1.10 shows the corresponding energy loss probability

as function of the surplus energy of the incident electrons with regard to a gas particle.

Multiple scatterings are considered by repeated convolutions of the energy loss function

with itself, as shown in chapter 5. In total, this leads to the structure of the response

function shown in �gure 1.11.

1.2.3. Sensitivity of KATRIN on the Neutrino Mass

Following the considerations in section 1.2.1 the sensitivity of KATRIN on<a as de�ned

in [KAT04b] is given by

(<a
(90%) =

√
1.645 · ftot(<2

a ) =
√

1.645 ·
√
f2

stat
(<2

a ) + f2

syst
(<2

a ) . (1.21)

A measured value of the neutrino mass of (<a
(90%) allows to reject the null hypothesis of

vanishing neutrino mass with 90 % con�dence.

Statistical uncertainty: Many analyses have determined fstat(<2

a ) and fsyst(<2

a ) in the

recent years. It strongly depends on a variety of factors like the background rate, the

used distribution of the measurement time to the energy bins of the spectrum (called

Measurement Time Distribution, MTD) or the magnetic �eld setting determining the energy

resolution. This list is by no means comprehensive and some e�ects which were not

considered before were observed with the start of the �rst tritium measurement campaigns.

Thus, these sensitivity analyses are subjected to constant changes and here only the one of

[Kle14], which was performed prior to the �rst measurement, is discussed. It uses values

from the design report [KAT04b] for the MTD, the total measurement time (three years

net data taking) and background (10 mcps), yielding

fstat(<2

a ) = 0.0165 eV
2 . (1.22)

Systematic uncertainty: The list of relevant systematics identi�ed in the design report are

found in table 1.1. The total summation of the individual uncertainties is fsys,tot = 0.01 eV
2
.

To leave room for unknown systematics the total systematic budget of KATRIN was chosen
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Figure 1.10.: Energy loss function: The energy loss function describes the inelastic energy

loss of electrons due to scattering on tritium molecules. A key feature for

the topic of this thesis is its gap of ≈ 13 eV. Thus, electrons need to loose at

least ≈ 13 eV of energy upon single scattering. The function was measured

by KATRIN during KNM2 [KATep]. Importantly, this measurement is only

valid for electron energies close to the tritium β-spectrum endpoint, which

leads to uncertainties in the analysis of the krypton-83m measurements. This

is discussed in chapter 6.
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Figure 1.11.: Response function: The gap of the energy loss function is also visible in the

response function, where multiple steps with a spacing of ≈ 13 eV are visible

for the increasing scattering multiplicities. The �rst step starting from zero

energy is given by the transmission function. A close-up can be seen in the

inset. Due to the width of the energy loss function, increasing steps of higher

scattering multiplicities get broadened.
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1.2. Neutrino Mass Analysis with KATRIN

Table 1.1.: KATRIN systematic uncertainties.
Sources of systematic uncertainties of the KATRIN experiment, as stated in the

design report (from [KAT04b; Mac16]). For a recent, conclusive re-evaluation

the reader is referred to [Sei19].

source of achievable / systematic shift
systematic shift projected accuracy fsyst(<2

a ) (10
−3

eV
2)

description of �nal states 5 < 1.01 < 6

T
−

ion concentration < 2 · 10
−8 < 0.1

unfolding of energy loss func. 5 (n) < 6

monitoring of column density d3

Δ) /) < 2 · 10
−3

ΔΓ/Γ < 2 · 10
−3

Δn) /n) < 2 · 10
−3

<

√
5·6.5
10

Δ?inj/?inj < 2 · 10
−3

Δ?ex/?ex < 0.06

background slope < 0.5 mHz/keV (Troitsk) < 1.2

HV variations ΔHV/HV < 3 ppm < 5

WGTS potential variations Δ* < 10 meV < 0.2

WGTS mag. �eld variations Δ�S/�S < 2 · 10
−3 < 2

elastic e
−

- T2 scattering < 5

identi�ed syst. uncertainties fsys,tot =

√∑
f2

sys
≈ 0.01 eV

2

slightly larger and equal to the statistical uncertainty after three years net data taking.

This leads to

fsys,tot . 0.017 eV
2 . (1.23)

Sensitivity: Plugging both values into equation 1.21 the following sensitivity of KATRIN

is obtained

(<a
(90%) = 197 meV , (1.24)

which is approximately the usually quoted value.

As discussed, it depends on many factors which were not known by the time of the analysis

leading to this sensitivity. For example, the central topic of the thesis at hand is the

investigation of source potential systematics, which is one of the systematic uncertainties

which in the current analysis of the KNM2 neutrino mass campaign is much larger than

predicted by the design report. The essential tool for the study of the source potential

systematics is the
83m

Kr mode of the gaseous source which is discussed in the following

section.
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1. The KATRIN Experiment

1.3. 83mKr Mode of the Gaseous Source for Investigation of
Systematics

83m
Kr is commonly used as calibration standard in neutrino experiments [Rob+91; Wil+87;

Pic+92; SD95; FP12] as well as in the search for dark matter [LUX+14]. At KATRIN in

principle it allows for an in situ monitoring of the di�erence of the spectrometer and

source electric potential. As discussed below, it is the only means to access the longitudinal

inhomogeneity of the source potential. The basic idea is to inject a gaseous electron source

with a well known electron spectrum into the WGTS and to monitor the distortion of

the spectrum shape, caused by the presence of systematic e�ects [Wil03; Bon03]. Prior

to the campaigns carried out in this work it has already been applied in several other

measurement campaigns [Sei19; Sle+19] which are described in more detail in chapter 6.

Requirements on calibration source for source potential systematics: The energy spec-

troscopy at KATRIN relies on the precise knowledge of the di�erence of the starting

and analysing plane electric potential. The calibration and monitoring of this potential

di�erence has to meet three main requirements:

• Small energy width: The potential di�erence of WGTS and spectrometer must

be calibrated with a precision in the 10 mV range [KAT04b], which is more easily

achieved by using a quasi mono-energetic calibration source.

• Gaseous source: Since the WGTS is an extended source, the calibration electron

source must be dispersed together with the tritium gas within the WGTS to be

sensitive to the spatially extended electric source potential.

• No contamination: KATRIN is a low background experiment. Accordingly, the

calibration source needs to have a small half-life such that it does not contaminate

the experiment, leading to interference with the tritium measurement.

Gaseous
83m

Kr ful�ls all three requirements. Quasi mono-energetic electrons in the 5-

35 keV energy range are created in the process of inner conversion. The conversion lines

have widths in the few eV range. The energy scale of the krypton electrons is comparable

to the tritium endpoint of �0 ≈ 18.6 keV and therefore �ts to the KATRIN hardware. The

half-life )1/2 = 1.83 h [McC15] of
83m

Kr is short enough that it does not interfere with the

tritium measurements or leads to contamination. Most importantly, it is gaseous under

operating temperatures and pressures feasible for KATRIN operation. Therefore it can

be mixed with the tritium gas within the WGTS which allows for the determination of

source potential systematics.

Generation and activity of the krypton-83m: Since the width of the krypton-83m conver-

sion electron lines in question is on the order of 1 eV a several mV sensitivity on the source

potential can only be achieved in a high-statistics measurement, which allows for the

precise determination of the spectrum shape. Consequently, the activity of the krypton-

producing source nuclide rubidium-83 is several 100 MBq [Vén+14], and in the future even

10 GBq. The half-life of )1/2 = 86.2 d [McC15] of rubidium-83 is su�ciently long that a
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1.3. 83mKr Mode of the Gaseous Source for Investigation of Systematics

once prepared krypton generator can continuously supply mesomeric krypton-83m during

a measurement campaign of a few weeks.

Although krypton-83m is the most suitable gaseous calibration source for the needs of

KATRIN, it has one disadvantage, namely that the source has to be operated at an elevated

temperature compared to the nominal tritium mode in order to avoid freezing of the

krypton. This and other details of the
83m

Kr mode operation are discussed in section 1.3.1.

The modelling of the krypton-83m conversion electron spectrum is described in sec-

tion 1.3.2.

The application of the
83m

Kr mode to study the systematics related to the plasma potential

is discussed along with the plasma creating processes in section 1.4.

1.3.1. 83mKr Mode Operation at KATRIN

In the following the key parameters of the
83m

Kr mode operation at KATRIN are reviewed

brie�y. This includes a discussion of the di�erent source temperatures in
83m

Kr and nominal

tritium mode and the consequences for the achievable column densities. Furthermore, it is

outlined how the di�erences in the modes a�ect the pressure stabilisation and puri�cation

of the gas. All di�erences in
83m

Kr and tritium mode operation can lead to systematics in

the translation of the calibration results from the krypton to the tritium measurement.

Temperature in 83mKr and tritium mode: The Troitsk neutrino mass experiment used a

temperature of 30 K for regular operation and 110 K for
83m

Kr mode [Bel+08]. The elevated

temperature in the krypton measurements had to be chosen to avoid freeze out of the

krypton-83m in the vacuum system. The krypton reduction in the gas system downstream

of the krypton generator depends on several factors like the conductivity of the pipes (scal-

ing linearly with pressure and temperature [Pfe09]) or freeze out on the walls (depending

on temperature and vapour pressure [Mar20]). These factors are of course di�erent for

the di�erent experiments. Prior to the �rst gaseous krypton measurements at KATRIN

the exact quanti�cation of these e�ects was still pending, and for the �rst campaigns the

experience of the Troitsk experiment was drawn upon. Thus, the temperature of 100 K

was used in the krypton measurements of July17, STS3a, KNM1 and KNM2. In KNM3 it

was shown that the temperature can be reduced to 80 K without losing the krypton-83m

rate.

Gas dynamics and column density: In the central WGTS the gas dynamics is dominated

by the laminar �ow regime, where the pressure scales linearly with temperature. Thus,

at elevated temperatures a higher pressure has to be maintained to reach the nominal

tritium column density of d3T2
= 5 ·10

21 1

m
2
. However, the pressure is limited by the suction

capacity of the turbomolecular pumps [Mar20]. Up to KNM2 krypton, for 100 K operation

only 30 % of the nominal tritium column density could be obtained, which was increased

to around 40 % for the 80 K operation of KNM3 krypton.
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Figure 1.12.: Tritium and krypton gas pro�les for KNM2 krypton conditions, normalised

to injection density: Due to the di�erence in mass, the relative concentration

of krypton is increased towards the WGTS ends. The krypton column density

leads to the range of observed rates in the old krypton mode, the tritium

column density holds for KNM2. The gas dynamics calculations leading to

this plot are described in [Mac16].

Di�erences of the
83m

Kr and tritium mode temperature a�ect the energy spectrum of

the thermalised particles in the WGTS and thus directly impact the plasma formation,

as discussed in section 1.4.1. The latter also holds for di�erences in the tritium column

densities between the modes. Since the study of the source plasma is the main goal of the

83m
Kr mode, di�erences in the plasma potential between the modes need to be avoided.

As a consequence, e�orts to create a mode with identical properties were intensi�ed:

From KNM4 on, both the krypton-83m measurements and the tritium measurements are

carried out at 75 % nominal column density and 80 K. However, this is accompanied by a

signi�cant reduction in the available krypton-83m conversion electron rate, so that the

old 40 % nominal column density operation must still be used in part. With regard to the

tritium measurement, it could be shown that the reduction of the nominal column density

by 25 % does not seriously a�ect the achievable sensitivity of the KATRIN experiment.

Demixing of the gas species: Identical source properties for both modes circumvent sys-

tematics from changes in the plasma potential. However, as shown in �gure 1.12, even

for identical experimental properties of the source the shapes of the density pro�les of

krypton and tritium di�er slightly. The visible demixing of the two gas species is related

to the di�erent masses, which causes the aggregation of the krypton at the ends of the

WGTS [KS10]. This leads to an unavoidable systematic, since the krypton signal electrons

probe a di�erent portion of the WGTS than the tritium electrons. Methods to calculate this
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1.3. 83mKr Mode of the Gaseous Source for Investigation of Systematics

systematic are derived in chapter 3 and the associated uncertainties for typical KATRIN

measurements are calculated in chapter 5.

Krypton low density limit: The column densities printed in �gure 1.12 from the KNM2

krypton measurement are comparable for all krypton measurement campaigns prior to

KNM4 (in the new krypton mode, the krypton column density will be even smaller). Due

to the di�erence of 9 orders of magnitude between krypton and tritium, the e�ect of

interactions of krypton atoms (with the walls, tritium or other krypton atoms) is negligible

with regard to the tritium gas dynamics. Thus, the tritium gas pro�le is not a�ected

when krypton is present. Also, the krypton gas pro�le is completely dominated by tritium

krypton interactions [KS10]. As a result, the krypton column density is a mere scaling

factor with the practical consequence, that its precise value is insigni�cant in the modelling.

It is fully correlated with the overall intensity of the krypton conversion electron spectrum.

Impurities and pressure stabilisation: In tritium operation permeators are used for a con-

tinuous puri�cation of the gas mixture. Since this would �lter out the krypton, up to

KNM3 krypton a gas circulation loop was chosen for the krypton measurements which

bypasses the permeators. This inevitably also bypasses the bu�er vessel used to stabilise

the pressure, such that the tritium column density showed measurable drifts. Also, without

gas puri�cation, dirt that outgasses from the pumps accumulates over time. As discussed

in chapter 6, systematics from the drift can be controlled. How the increasing impurities

a�ect the measurement is currently under investigation [Rodep], but it is believed, that

it is a small e�ect. Both e�ects are eliminated with the 75 % nominal column density

krypton mode, which does not bypass the permeators. The latter is also the reason for the

reduction of the krypton column density.

1.3.2. 83mKr Conversion Electron Spectrum

In the following the modelling of the integrated krypton-83m conversion electrons rate

is described. The model used in this work was largely implemented into the analysis

software SSC in [Mac16] and here only a short summary of [Mac16] is given.

The calculation of the integrated β spectrum by SSC was described in section 1.2.2. For

the modelling of the krypton mode, equation 1.20 is extended with the krypton-83m

conversion electron spectrum and the krypton gas pro�le, leading to

¤# (@* ) =
slices∑
8

ndet

Ω8
4c

∫ ∞

−∞

{
#Kr

8

(
d ¤#
d�

)
Kr

+ # T2

8

(
d ¤#
d�

)
T2

}
'(�, @* ++8) d� . (1.25)

The number #Kr

8 of krypton-83m atoms in each slice 8 of the source is taken from density

pro�les like �gure 1.12. The modelling of the di�erential krypton-83m conversion spectrum(
d ¤#
d�

)
Kr

is discussed in the following.

The krypton-83m electrons are produced by the process of inner conversion. Several lines

exist, corresponding to the binding states of the emitted electrons. Further lines are created

23



1. The KATRIN Experiment
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Figure 1.13.: Creation of the
83m

Kr isomer and its deexcitation:
83m

Kr is created by the

electron capture decay of its mother isotope
83

Rb. The
83m

Kr deexcitates

to the ground state by W emission or inner conversion via the intermediate

state of angular momentum � = 7/2+. U is the conversion coe�cient, which

speci�es the relative activity of the transition (after [Ost08]).

by secondary shake up/o� e�ects, which account for the change of the atomic potential

upon electron emission.

Process of inner conversion: A simpli�ed decay scheme is shown in �gure 1.13 (an exten-

sive scheme if found for example in [McC15]). Rubidium-83 decays by electron capture

to the mesomeric krypton-83m, which deexcitates to the ground state via an intermedi-

ate state. Thus, the total excitation energy of �exc ≈ 41 keV is split into a transition of

�32

exc
≈ 32.2 keV and �9.4

exc
≈ 9.4 keV. The transitions C either occur by direct W emission

or by inner conversion, where the excitation energy is transferred to one or more shell

electrons through Coulomb interaction. When the excitation energy of the transition �C
exc

is larger than the binding energy �B
B

of the electron in shell B ∈ {K, L;1,M;2,N;3, . . . } with

sub shells ;8 , it is emitted with a net kinetic energy of

�
C,B

kin
= �C

exc
− �B

B
. (1.26)

As a consequence, line groups corresponding to the transition energies with subgroups

corresponding to the shells are observed in the conversion electron spectrum. This is

denoted as: Shellsubshell-Transition (i.e. K-32, L1-9.4, . . . ).

For the speci�cation of the intensity, the conversion coe�cient UC,B is used. It is the ratio

of the emitted electron rate to the emitted photon rate

UC,B = ¤# C,B
e
− / ¤# C

W . (1.27)
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Using the law of radioactive decay, the decay rate ¤# C
Kr

of the excited krypton-83m can be

expressed in terms of the half-life ) C
1/2 and the number of krypton atoms # C

Kr
as

¤# C
Kr

=
ln 2

) C
1/2
· # C

Kr
=

∑
B
¤# C,B

e
− + ¤# C

W =

(∑
B
UC,B + 1

)
¤# C
W . (1.28)

Due to the production of the krypton-83m in rubidium-83 decay, the observed rate of

the krypton-83m conversion electrons is given by the decay law of two chained decays.

However, since the half-life of the mother isotope rubidium-83 of 86.2 d [McC15] is much

larger than the half-life of krypton-83m of 1.83 h [McC15], the measurement is quasi

stationary and the overall time dependence is only given by the decay of rubidium-83. This

time dependence is not included in the model, but accounted for by a phenomenological

intensity � , which is constant in each �t.

Combining equation 1.27 and equation 1.28 allows the electron activity per krypton-83m

atom to be expressed by the conversion coe�cient and the half-life

�C,B ≡
¤# C,B

e
−

# C
Kr

=
ln 2

) C
1/2

UC,B∑
B U

C,B + 1

. (1.29)

As indicated by Heisenberg’s uncertainty principle the lines obey a �nite width ΓC,B . Their

energy distribution function � (�, �C,B
mean

, ΓC,B) with mean energy �
C,B
mean

is speci�ed below in

equation 1.33.

Di�erential krypton spectrum: Combining the previous considerations the total electron

conversion rate per krypton-83m atom and energy is obtained as

(
d ¤#
d�

)
Kr

(�) = �

transitions

shells∑
C,B

�C,B � (�, �C,B
mean

, ΓC,B) . (1.30)

Accordingly, krypton-83m conversion electron lines are characterised by their mean energy,

their line width and the intensity.

Experimental data: Many experiments have determined the parameters of the krypton-

83m spectrum using di�erent experimental techniques [Sev79; BB67; Des+03]. From

KATRIN results can be found in [Sei19; Sle+19]. For all analyses carried out in this work

the parameters of the relevant lines are self-measured. Only for the following plots of the

total spectrum the recent literature values from [Vén+18] are taken. They can be found in

table 1.2. The line intensities are corrected with a probability ? for shake up/o� (discussed

below) e�ects to occur.

Usage of the 9.4 keV transition: For the determination of KATRIN systematics the 9.4 keV

transition cannot be used: Its energy is smaller than the tritium endpoint energy, such that

it is either completely covered in the tritium β spectrum or su�ers from a large background
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in combined tritium and krypton measurements. Since the �rst tritium exposure, this kind

of background would also exist in krypton only measurements, due to residual tritium

on the surfaces. Since the krypton measurement is very sensitive to energy dependent

backgrounds, as discussed in section 6.1, this leads to systematics in 9.4 keV measurements.

Furthermore, the 9.4 keV conversion lines are further split into several lines, as reported in

[DS90]: If the primary 32 keV transition occurs via electron emission, the krypton ends up

in an ionised state of charge +1. Successive Auger emissions can lead to a state of multiple

ionisations. Due to the low density in the WGTS the neutralisation time is longer than the

live time of the intermediate state, such that the secondary 9.4 keV transition is sensitive

to the electronic state of the krypton. The resulting line splitting was studied at KATRIN

in [Sei19], which was performed prior to the �rst tritium exposure of the source.

Thus, only lines of the 32 keV transition are used in this work. In the following, indices

specifying the transition and the "32" are left out for the sake of readability.

Shake up/o� e�ect: The deexcitation of the krypton-83m atom under electron emission

leads to a change of the potential of the atom. In sudden approximation successive emissions

and potential change are described separately [War+91]. Since the potential change a�ects

the energy levels of the electrons, additional lines can appear in the spectrum:

• Shake up: If an outer shell electron ends up in a higher state, the energy di�erence

is taken from the primary particle. This does not a�ect the line shape and leads to a

satellite line at lower energies.

• Shake o�: If the electron from the outer shell ends up in the continuum its energy

is not quantised. This produces a low-energy tail of the satellite and thus a di�erent

line shape than that of the main line.

Due to lacking better knowledge, in this thesis all satellites are modelled with the same

shape as the main lines. Also, in this work and in [Sei19] some shake lines were measured,

where this approximation in most, but not all cases, �tted to the data. The mean shake

energies and shake probabilities ? are shown in table 1.3.

Modelling of the line shape: Electrons created in the process of inner conversion have a

Lorentzian energy distribution !(�, �mean, Γ) [BW36; WW30]

!(�, �mean, Γ) =
1

c

Γ/2
(Γ/2)2 + (� − �mean)2

. (1.31)

�mean is the line mean and Γ the intrinsic line width. The leading order e�ect of inhomo-

geneities of the energy scale is considered by convolving the Lorentzian with a Gaussian

kernel � (�, fg) of width fg

3

� (�, fg) =
1

√
2cfg

e

− �2

2fg
2

. (1.32)

3
Since fg enters the Gaussian convolution kernel quadratically f2

g
is a normal-distributed �t parameter. A

continuation to the regime of negative squares is performed using the method of [Bel+08].
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Table 1.2.:
83mKr conversion spectrum - main lines.
Shown is the ≈ 32 keV transition. The di�erent energies of the lines are related

to the shells from which the respective electrons originate, which are given by

the character in the symbol. The probability ? is that for shake up/o� e�ects

(values from [Vén+18; CN73]).

Symbol �mean/eV Γ/eV U ? in percent

K 17824.2(5) 2.71(2) 478.0(50) 79.5

L1 30226.8(9) 3.75(93) 31.7(3) 100.0

L2 30419.5(5) 1.25(25) 492.0(50) 82.2

L3 30472.2(5) 1.19(24) 766.0(77) 82.3

M1 31858.7(6) 3.5(4) 5.19(5) 100.0

M2 31929.3(5) 1.6(2) 83.7(8) 92.0

M3 31936.9(5) 1.1(1) 130.0(13) 93.4

M4 32056.4(5) 0.07(2) 1.31(1) 91

M5 32057.6(5) 0.07(2) 1.84(2) 91

N1 32123.9(5) 0.40(4) 0.643(6) 100.0

N2 32136.7(5) 0.03 7.54(8) 93

N3 32137.4(5) 0.03 11.5(1) 93

Table 1.3.:
83mKr conversion spectrum - satellite lines.
In case of the M and N lines the values were calculated by subtracting the

relative positions of the satellites from [CN73; Eri+87] from the main lines. The

denotation with S1, S2, S3 is phenomenological (values from [CN73; Eri+87;

War+91]). Only the strongest satellites are shown here. Rich photoelectron

spectra are found in [Kik+96; Cal+06].

Symbol �mean/eV | ? in percent

S1 S2 S3

K 17664.18 | 3.56 17781.00 | 1.80 17805.12 | 13.45

L2 30262.58 | 3.56 30379.40 | 1.53 30403.52 | 11.99

L3 30314.88 | 3.53 30431.70 | 1.52 30455.82 | 11.94

M2 31904.3 | 2 31909.3 | 6

M3 31911.9 | 0.6 31916.9 | 6

M4,5 32024 | 1 32037 | 8

N2,3 32116 | 5 32118 | 2
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The inhomogeneity of the energy scale is composed both of source and spectrometer

potential inhomogeneities. Inhomogeneities can be spatial or temporal and in all cases the

widths of the contributions add quadratically.

The resulting line shape is given by the so-called Voigt pro�le

+ (�, �mean, Γ, fg) =
∫ ∞

−∞
� (g, fg)!(� − g, �mean, Γ) dg . (1.33)

Di�erential spectrummodel: Summing up the previous paragraphs, the di�erential krypton-

83m conversion electron spectrum is modelled as [Mac16](
d ¤#
d�

)
Kr

(�) = � · �32

satellites

shells∑
;

U;∑
B U

32,B + 1

?;

100

+ (�, �;
mean

, Γ; , fg) . (1.34)

The total rate of the 32 keV-transition is �32 = ln 2

1.83 h
= 1.05 · 10

−4 1

s
per krypton atom.

� is a �t parameter for the total intensity. For the �ts performed in this thesis only the

L3 and the L
S3

3
line were included in the modelling. As discussed in section 6.2 their

intrinsic parameters were determined in krypton only measurements and replace the

above literature values in the analysis carried out in this thesis.

Figure 1.14 shows the conversion lines of the 32 keV transition in the region of 30− 32 keV.

The corresponding integrated spectrum is shown in �gure 1.15. As visible in the close-up

of the integrated spectrum at the L2 and the L3 line region, �gure 1.16, due to energy loss

by inelastic scattering of the electrons o� the gas inside the WGTS additional steps can

be observed. This observation is essential, since it leads to longitudinal sensitivity to the

source potential, which is described in section 1.4.2.

Distortion of the krypton-83m spectrum: The mean unaccounted potential di�erence of

spectrometer and source potential is parametrised by a line shift Δ�main. Together with

the Gaussian broadening squared f2

g
this makes for the �rst and second moment of the

distribution of possible energy scale systematics. Those moments can be obtained from

the distortion of the krypton-83m spectrum. Notably, the usage of a Gaussian broadening

to model this distortion is a deliberate choice, which has two main motivations: Firstly,

the shift of the squared neutrino mass (equation 1)

Δ<2

a = −2f2

is governed by the standard deviation f of the distribution of the energy scale systematic.

As shown in [Sle16] this does not mean that this distribution needs to be a Gaussian.

The fact that a Gaussian is used in krypton-83m is only the conscious choice to be able

to calculate the systematics of the neutrino mass measurement according to equation 1.

Secondly, using the �rst few moments of the distribution simply is the natural expansion

in the magnitude of the systematic.

In the following the focus is put on systematics related to the source plasma. The rigorous

de�nition of these moments and their relation to the plasma potential is the topic of

chapter 3. The plasma-creating processes are described in the next section.
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Figure 1.14.: Di�erential krypton-83m conversion electron spectrum: The di�erential rate

per atom of the L, M and N conversion lines and the corresponding shake

o�/up lines is shown. At its mean it is inversely proportional to the line width.

This is why the N transition seems large, although its total intensity is one

magnitude smaller than that of the L and M transition.
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Figure 1.15.: Integrated krypton-83m conversion electron spectrum: The krypton column

density on the order of 10
12 1

m
2

leads to the range of observed count rates. The

M1, M4, M5 and N1 krypton-83m conversion lines are not visible on this scale

and the tiny additional steps stem from shake up/o� electrons.
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Figure 1.16.: Close-up on a region of interest around the integrated krypton-83m L2 and

L3 conversion electron lines: Due to the gap of the energy loss function of

about 13 eV (see �gure 1.10) steps of di�erent scattering multiplicities appear

with a spacing of about 13 eV below each line of the integrated krypton-83m

spectrum.
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1.4. Source Potential Systematic

In this section the e�ect of source potential systematics on the tritium β and krypton-83m

conversion spectrum is described. The shape distortion of the spectra is fully characterised

by the spatially and time dependent source potential + . In this work only spatial depen-

dencies are considered. The potential is determined by the low density plasma of the

source, the formation of which is described in section 1.4.1.

The radial and angular segmentation of the KATRIN focal plane detector in 148 pixels

allows to search for radial inhomogeneities of the source potential. In principle radial

inhomogeneities lead to di�erent endpoint and line position shifts for each pixel, but do

not a�ect the neutrino mass estimate of a single pixel. However, the shape distortion of

the tritium β spectrum caused by longitudinal inhomogeneities of the potential+ (I) along

the source cannot be distinguished from the physical imprint of a non-vanishing neutrino

mass. While the full potential+ (I) for each pixel in principle fully characterises the shape

distortion of the spectra and thus the resulting systematics, in a perturbative approach

the distortion can be characterised by a few scalar estimates of + (I). Previous to [Mac16],

it was believed that the only necessary quantity is the variance of the potential f2 [+ ],
leading to (equation 1)

4

Δ<2

a [+ ] = −2f2 [+ ] .

However, as shown in this work, one additional parameter needs to be introduced to

characterise source potential systematics. The process leading to this result is longitudinal

sensitivity to the potential by inelastic scattering, which was discovered in [Mac16]. It is

described in section 1.4.2.

1.4.1. Plasma Potential of the Source

The three-dimensional potential of the WGTS volume is determined by the work functions

of the surfaces (beam tube and rear wall) and the source plasma. The interplay of these

components and the plasma formation are described in the following.

PlasmagenerationatKATRIN: The essential ingredient for a plasma to occur is net charges

on a microscopic scale. In KATRIN the main charge generation process is the tritium β
decay, which creates 10

11
electrons and

3
(HeT)

+
ions per second [KAT04b]. Due to inelastic

scattering of the electrons on the gas on the order of 50 secondary electrons and ions

are created per β electron
5
. Here it has to be considered that almost all electrons are

re�ected at the spectrometer potential and that the probability for backscattering on the

rear wall is on the order of several ten percent [Bab14]. As a consequence, electrons on

average traverse the WGTS multiple times, undergoing multiple scatterings, before they

are eventually absorbed at the rear wall.

4
Square brackets are used whenever functionals are treated. Most of the times the argument of the function

is omitted in the expression and used implicitly. Here, for example, the shift of the squared neutrino

mass is a functional of the I-dependent potential + .

5
According to calculations by Ferenc Glück and Marco Röllig, personal communication.
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Figure 1.17.: Electron number density and temperature for common plasmas and the

KATRIN source: The KATRIN source plasma is set apart from other plasmas

by its very low electron temperature. As a consequence, its plasma parameter

is rather small, such that it is on the edge of being an ideal plasma (�gure recre-

ated, found in [Gal12; Lab17], idea from [Kuc16], original source unknown).

Typical plasma parameters: Plasmas are characterised by collective behaviour [Din+05].

Accordingly, they are described by collective parameters like their electron temperature

)e or the electron number density =e. Figure 1.17 shows those quantities for the KATRIN

WGTS plasma compared to other plasmas. With its low electron density on the order of

=e ≈ 5 · 10
11 1

m
3

[KAT04a] it is comparable to atmospheric plasmas, like in the solar corona

or the ionosphere. However, its electron temperature )e = 29 K ≈ 2.5 meV [KAT04b] is

much lower than that of most other commonly studied plasmas.

The scale above which the microscopic charges are exponentially shielded is the Debye
length

_D ∝
√
=e

)e

, (1.35)

which is between 0.3 mm and 1 mm for typical KATRIN source conditions [Kuc16]. At

scales larger than the Debye length the plasma is quasi-neutral. The number of particles

in the Debye sphere is called the plasma parameter

#D =
4

3

c=e_
3

D
. (1.36)
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If the plasma parameter is much larger than one, the plasma is called an ideal plasma.

In this case, the collective behaviour of charges dominates over binary collisions and

individual charges can be described as interacting with a smooth background �eld. As

visible in �gure 1.17, for the typical values of electron density and temperature at KATRIN

this condition is overall just about ful�lled. However, the theoretical description and

simulation of the KATRIN source plasma is complicated by further factors: The length-

to-radius ratio of the WGTS is large (A ≈ 4.5 mm, !WGTS ≈ 10 m), such that boundary

conditions are important, the gas densities along the axis of the WGTS are not constant,

such that di�erent gas dynamics regimes have to be considered, and the motion of charged

particles is bound to a strong magnetic �eld, such that the quasi-neutrality due to the

shielding of charges is hindered by a reduced mobility in radial direction.

Influence of the work function of rear wall and beam tube: Due to the con�nement of the

charges to the magnetic �eld lines, the rear wall dominates the overall plasma potential.

However, work function di�erences between the stainless steel surface of the beam tube

and the gold surface of the rear wall can contribute to inhomogeneities of the spatial

plasma potential. To balance those di�erences, a bias voltage can be applied to the

rear wall, which is the major input parameter for the measurements carried out in this

work. It was expected, that for a certain choice of the rear wall voltage setting the work

function di�erences of the beam tube walls and rear wall are compensated, resulting in

minimum radial and longitudinal inhomogeneity [Kuc16]. This expectation is now partly

con�rmed by krypton-83m measurements, as shown in section 6.3 and in [Ost20]: The

radial di�erences in the plasma potential are indeed found to be minimal at some optimum

rear wall voltage. However, perfect compensation is not possible over all source radii at the

same time. The longitudinal inhomogeneity is minimal, when the radial inhomogeneity is

minimal, however the minimum has a width of several 100 mV with regard to the rear wall

voltage setting. This might be related to systematics of the krypton-83m measurement,

to temporal plasma instabilities, also leading to a shape distortion of the krypton-83m

spectrum, or to a large capability of the plasma to compensate for local charges.

Plasma simulations: KATRIN uses two approaches to determine plasma systematics: The

experimental determination of plasma parameters in krypton-83m and other calibration

measurements, and the direct calculation of the spatial potential in simulation. Both

approaches are complementary: While it is established in this work, that in principle the

plasma estimates from the krypton-83m measurements are su�cient to fully characterise

the plasma systematics, those estimates are a�ected by unavoidable uncertainties. Those

stem both from the measurement itself and from the translation between the krypton-

83m and the tritium β spectrum. Thus, in the best possible approach the krypton-83m

measurements are used to verify plasma simulations, such that in combination plasma

estimates for the tritium spectrum with small uncertainties can be obtained. Detailed

simulations of the KATRIN source potential based on the drift-di�usion �uid-dynamical

approach were carried out in [Kuc16]. Figure 1.18 shows a resulting 30 K source potential

with an axially symmetric WGTS model. The potentials of the beam tube wall (A = 4.5 cm)

and rear wall (I = −5 m) were set to the same value (here zero), which leads to the smallest
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Figure 1.18.: Simulated plasma potential inside the WGTS for 30 K: Rear and tube walls are

set to zero potential, which is visible as a steep drop of the plasma potential at

the boundaries. The dip at I = 0 m is caused by the gas injection point of the

WGTS. An axially symmetric model is assumed and the rear wall is placed

directly at the WGTS rear termination at I = −5 m (data from [Kuc16]).

overall inhomogeneities. The central dip is caused by the gas injection, from where the gas

�ows into the two opposite directions towards detector or rear wall. The higher mobility

of the electrons compared to the positive charges leads to the formation of the positively

charged regions in front of the walls. The front side (I = 5 m) is not grounded, since the

source is windowless, and accordingly here the potential di�ers from zero.

Currently new plasma simulations are performed in [Kelep] using microscopic particle-in-

cell simulations. Among other factors, the behaviour of ions in the front side transport

system is ongoing research and is already known to in�uence the krypton-83m plasma

estimates. Thus, since the plasma simulations depicted here do not include such e�ects,

in their current state they should only be taken as an example of the overall plasma

behaviour. This is the approach of the work at hand, which uses the high temperature

plasma simulation shown in �gure 1.19 for all studies and examples.

Systematics from the plasma potential: The e�ect of radial dependencies of the plasma

can be in principle observed directly in pixel wise analyses of the KATRIN measurements.

Accordingly, radial inhomogeneities of the potential can be considered in a radial analysis.

However, the measurement of an individual pixel is a summation over all electron spectra

gathered over the magnetic �ux through the pixel, in particular over the≈ 10 m long WGTS

I-pro�le. If not taken into account in the model of the theoretical tritium β spectrum, the
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Figure 1.19.: Simulated I-pro�le of the central plasma potential inside the WGTS for 30 K

(black) and 110 K (red): The peak-to-peak values are ≈ 5 mV and ≈ 20 mV.

This is in agreement with the expectation from the KATRIN design report,

which states a linear scaling of the inhomogeneity with temperature. The

high temperature potential is used throughout this work as an example for

the
83m

Kr mode potential (data from [Kuc16]).

longitudinal inhomogeneity of the potential along this line causes a neutrino mass shift. It

is considered with |fsyst(<2

a ) | < 0.2 · 10
−3

eV
2

in the original KATRIN systematics budget

from the design report (table 1.1).

For the 30 K simulation of the potential shown in �gure 1.19 the resulting shift of the

squared neutrino mass is fsyst(<2

a ) = −0.3 · 10
−3

eV
2

for nominal KATRIN measurement

conditions, which does not stay in the projected limit. This is the case, even though the

standard deviation of the potential is only a few mV, which would lead to only a small

neutrino mass shift according to equation 1. The reason is the considerable rear-to-front

asymmetry of the potential. It increases the systematics due to the longitudinal sensitivity

on the potential in the presence of inelastic scattering, which is discussed in section 1.4.2.

Plasmameasurements using 83mKr mode: Both the standard deviation and rear-to-front

asymmetry of the potential can be obtained in the
83m

Kr mode of the gaseous source. While

krypton-83m was used in the Troitsk neutrino mass experiment which also uses a gaseous

source [Bel+08], previously only the standard deviation of the potential was considered.

The connection of potential rear-to-front asymmetry and krypton-83m observables is

rigorously established and applied in measurements in the context of this thesis.

The basic idea of the measurements is to compare krypton-83m conversion electron spectra

of a krypton only source (called reference measurement) with a measurement of a mixture

of krypton and tritium (called plasma measurement). Since the β decay is the driving force
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1. The KATRIN Experiment

for charge creation, in the krypton only measurement no plasma is present, such that these

measurements serve as a reference
6
. Thus, compared to the reference, the krypton-83m

lines are shifted and broadened according to mean and standard deviation of the potential.

The exact relations of krypton-83m estimates and potential are established in chapter 3.

In the following the mechanism of longitudinal sensitivity by inelastic scattering is dis-

cussed, which leads to the sensitivity of the gaseous krypton-83m and tritium β measure-

ments to the rear-to-front asymmetry of the potential.

1.4.2. Sensitivity to the Source Potential in the Presence of Inelastic
Scattering

The e�ect of the source potential is not su�ciently described by using only its mean 〈+ 〉
and standard deviation f [+ ], but one additional parameter has to be considered. The

reason is longitudinal sensitivity to the potential by inelastic scattering.

Due to the presence of scattering the measured electron spectrum has a dependence on

the longitudinal starting position I of the electrons. Understanding this e�ect requires

two steps, which are most easily explained for the krypton-83m spectrum:

1. Energy separation of spectra of di�erent scattering multiplicities: Electrons

of di�erent scattering multiplicities are grouped into separate lines in the spectrum,

since they are separated by the minimum energy loss of ≈ 13 eV. This is sketched

in �gure 1.20 for the L3 line. Here the energy loss function from �gure 1.10 is

overlaid with the integrated spectrum. The main L3 line is caused by the electron

conversion electrons and contains only unscattered electrons. Electrons can scatter

inelastically on the residual gas in the source, where they lose a minimum of ≈ 13 eV

in the process. As a consequence, the spectra of di�erent scattering multiplicities

are shifted with respect to the unscattered one by multiples of ≈ 13 eV
7
. Notably,

this also holds for the tritium β spectrum, although there the intervals of di�erent

scattering multiplicities are hidden by the continuous shape of the spectrum.

2. Separation of the average longitudinal starting positions of electrons of dif-
ferent scattering multiplicities: Electrons of di�erent scattering multiplicities

not only occur at di�erent energies in the spectrum, but also on average stem from

di�erent regions of the source. This is shown in �gure 1.21. Since the scattering

probabilities are the higher, the further from the rear the electrons start, the average

electron starting positions 〈I〉8 are di�erent for electrons of di�erent scattering

multiplicities 8 .

6
As shown in the context of this thesis and in [Ost20], the WGTS potential of the reference measurements

shows larger inhomogeneities than that of the plasma measurement, which is most likely caused by

residual inhomogeneities of the beam tube work function. As a consequence, the determination of

the reference estimates requires additional krypton measurements of the N2,3 doublet. This is further

discussed in chapter 6 and [Ost20].

7
For completeness it should be mentioned that, due to the tail and width of the energy loss function, the

scattered spectra are also broadened compared to the unscattered spectrum. However, this is not relevant

to understand the mechanism leading to longitudinal sensitivity on the potential.
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Figure 1.20.: Energy separation of spectra of di�erent scattering multiplicities: The shown

krypton-83m spectrum at the L3 line is composed of distinct lines of di�erent

scattering multiplicities. The main L3 line on the right only contains unscat-

tered electrons. Approximately 13 eV below the main line an additional line

of one-time scattered electrons is visible. The gap is caused by the fact that

electrons need to lose at least ≈ 13 eV in inelastic scattering.

As a consequence, the electrons of di�erent scattering multiplicities, visible as distinct

lines in the krypton-83m spectrum, probe di�erent potential means 〈+ 〉8 . While in the

tritium β spectrum the di�erent potential means are not directly measurable, still di�erent

regions of the spectrum are a�ected by di�erent compositions of the 〈+ 〉8 .
For the analysis range of the krypton spectrum depicted in �gures 1.20 and 1.21 only

one-time scattered (mean potential 〈+ 〉
1
) and unscattered (mean potential 〈+ 〉

0
) electrons

are relevant. The di�erence of their observed mean potentials

Δ10 [+ ] ≡ 〈+ 〉1 − 〈+ 〉0 (1.37)

is the change of the line distance with respect to the expectation of ≈ 13 eV. In a simpli�ed

view, the scattering probabilities shown in �gure 1.21 allow to interpret 〈+ 〉
1

and 〈+ 〉
0

as

the mean rear and front potential, such that the line distance Δ10 [+ ] is indeed a measure

of the longitudinal antisymmetry of the potential with regard to the injection point. This

dependence on the potential shape is depicted in �gure 1.22:

• If the mean rear potential is larger than the mean front potential (Δ10 [+ ] > 0), the

distance of the one-time scattered and the unscattered line increases.

• If the mean rear potential is equal to the mean front potential (Δ10 [+ ] = 0), the

distance of the lines does not change.

• If the mean rear potential is smaller than the mean front potential (Δ10 [+ ] < 0), the

distance of the lines decreases.
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Figure 1.21.: Longitudinal sensitivity on the source potential in the presence of inelastic

scattering: Since the probability that detected electrons have been scattered

increases for starting positions towards the rear part of the source, on aver-

age scattered electrons start further towards the rear part than unscattered

electrons. Consequently, electrons of di�erent scattering multiplicities 8 see

a di�erent mean potential 〈+ 〉8 . The di�erent mean potentials are directly

measurable in the quasi mono-energetic krypton spectrum, where the lines of

di�erent scattering multiplicities are separated in energy. Due to the negative

charge of the electrons, positive potentials lead to negative shifts of the line

position and vice versa.
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Figure 1.22.: Dependence of the krypton line distance on the potential antisymmetry: In a

simpli�ed picture the scattered electrons stem from the rear side of the source,

while the unscattered electrons stem from the front. The distance Δ10 [+ ] of

the krypton lines of one-time scattered and unscattered electrons thus is a

measure of the potential antisymmetry with regard to the injection point (the

sign is chosen opposite to the slope of the potential to �t the sign of Δ10 [+ ]).
The overall shift and the broadening of the spectrum due to some (weighted)

mean and variance of the potential are neglected in this plot.
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1. The KATRIN Experiment

Thus, clearly the modelling of the electron spectra needs to consider Δ10 [+ ], which is why

equation 1 is incomplete for this particular systematic. Deriving the correct equation for

the neutrino mass shift is the topic of the following chapters.

Scatteringweights and starting potential distributions: The rigorous de�nition of the 〈+ 〉8
as functionals of the potential+ (I) not only requires the consideration of the I-dependent

scattering probabilities, but also of all other I-dependent functions, most importantly

the gas density. Clearly, the mean potentials measured by the krypton-83m or tritium β
spectrum are dominated by the region of highest gas density, and the potential in regions

without gas is irrelevant. The relationship of 〈+ 〉8 and + (I) was identi�ed in [Mac16]

(a more rigorous derivation is found in appendix A.1) and it boils down to a weighted

average over I

〈+ 〉8 = 〈%8+ 〉 =
∫
I

dI

!WGTS

%8 (I)+ (I) , (1.38)

with normalised weight functions %8 (I). Throughout this work they are called scattering
weights. Their calculation is de�ned in chapter 3 and they are plotted in chapter 5 for typical

KATRIN measurement conditions modelled after the KNM1-3a measurement campaigns.

The scattering weights exactly de�ne the longitudinal symmetry of the potential, which

the measurements are sensitive on by the mechanism described here. For typcial KATRIN

measurement conditions it is indeed given by a rear-to-front asymmetry, such that in a

simple picture 〈+ 〉
1

is approximately the mean potential of the rear and 〈+ 〉
0

the mean

potential of the front side of the source. However, this should only serve to simplify

the understanding of the concept. The essential step is the realisation that the mean

potentials 〈+ 〉8 are in general di�erent for di�erent scattering multiplicities. The related

symmetry of the potential is only a second step and the rear-to-front symmetry is a mere

coincidence, given by the shape of the scattering weights for the respective measurement

conditions. Also, the means 〈+ 〉8 are only the �rst order expansion of the Starting Potential
Distributions (SPD8 ) for di�erent scattering multiplicities. Equation 1.38 de�nes, how these

distributions are weighted. Thus, numerically they can be calculated by sampling the

value of the potential+ (I) over equally spaced I, weighting it with %8 (I) and �lling it into

a histogram. Examples are shown in chapter 3. The rigorous derivation of both the SPD8

and the %8 (I) is found in appendix A.1. There it is also shown that the spectral distortion

from the starting potential is equivalent to a convolution of the SPD8 with the energy loss

function for 8-fold scattering, which is indeed how this systematic should be modelled.

The following chapter 2 is a summary over the detailed discussions carried out in chap-

ters 3, 4 and 5. The overall goal of those chapters is to rigorously establish the connection

between the source potential and the estimates of the krypton-83m and the tritium β
measurements, given the discussed longitudinal sensitivity on the source potential due to

inelastic scattering.
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2. Summary of Source Systematics Theory
and Nomenclature

In the following the nomenclature and the most important relations relevant for source

potential systematics are compiled without derivations. This is intended to provide an

abbreviated, but comprehensive picture of the following work, with the aim to facilitate the

understanding of the mathematically detailed description to follow in chapter 3. Reading

section 1.4.2 can further facilitate the introduction to the complex topic. The nomenclature

is found in table 2.1 in the form of a glossary.

Convolution of energy scale systematics: The theory discussed in this thesis uses a con-

volution approach. In this approach, Starting Potential Distributions (SPD) are used to

describe systematics of the energy scale �, rather than a full I-dependent inclusion of the

actual source potential + (I). This ansatz is not new, but forms an essential part of the

modelling of the measurable integrated count rate ¤# (@* ) at retarding energy @*

¤# (@* ) ∝
∫ ∞

−∞

d ¤#
d�
(�)'(�, @* ) d� , (cf . section 1.2.2) .

Therein, the complexity of the experiment (I-dependencies, �elds, temperatures, ...) is

condensed into the response function '(�, @* ), which is convolved with the di�erential

rate
d ¤#
d�

of the theoretical spectrum. A di�erent example is the shift of the squared neutrino

mass (equation 1) [RK88]

Δ<2

a = −2f2 ,

which is derived by convolving the energy spectrum with the Probability Density Function

(PDF) of an energy scale perturbation. It turns out that, in leading order, the standard

deviation f of the PDF predicts the neutrino mass shift, even if the PDF is not a Gaussian

[Sle16]. Leading order here is in orders of the energy scale perturbation, i.e. in the moments

of the considered distribution. Thus, equation 1 is the expansion of the shift of the squared

neutrino mass up to the second moment f2
. It was shown in [Sle16] that it does not depend

on the third moment and it can be expected, that even higher moments are only small

corrections. However, as shown in this work, in the case of source potential systematics

there exists a �rst order term, which previously was not considered and which, depending

on the shape of the potential, dominates the neutrino mass shift.

The essential deviation of this work to the derivation of equation 1 is the �nding, that

electrons of di�erent scattering multiplicity 8 observe di�erent spatial regions of the plasma

potential and thus have di�erent starting potential distributions SPD8 (see section 1.4.2).
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2. Summary of Source Systematics Theory and Nomenclature

Table 2.1.: Nomenclature for quantities used in this work.
Due to the weighting, all potential moments depend on the tritium or krypton

spectrum, even if not stated explicitly. Usually the longitudinal coordinate I is

omitted. Instead I often appears as index, which is not related to the coordinate.

quantity description

%8 or %8 (I) Longitudinal electron distribution for 8 scattering probability, nor-

malised to 1. Used for weighting the longitudinal averages and derived

quantities. In tritium this weighting is generalised to summations over

the %8 , since contributions are mixed in the β spectrum.

Indices G,~, I Generalised electron distribution, usually constructed from summations

like %G =
1∑
08

∑
08%8 . Normalised to 1.

Negated indices Ḡ, ~̄, Ī Generalised electron distribution, usually constructed from summations

like %Ḡ =
1∑
08

∑
08 (%8 − %0). Normalised to 0.

Index d Used to specify the special weight summation appropriate for the re-

spective tritium measurement condition. For the standard 40 eV analysis

interval, %d ≈ %1 − %0. For increasing analysis interval, %d contains a

summation over higher orders of %8 − %0.

〈...〉G I-integrated average, weighted with %G (i.e. 〈+ 〉G =
∫
I

dI
!WGTS

%G (I)+ (I)).
+ or + (I) Plasma potential in the WGTS.

SPD8 Starting potential distribution of scattering multiplicity 8 (i.e. frequency

distribution of the plasma potential weighted with %8 ).

f8 [+ ] Standard deviation of the potential, weighted with %8 (i.e. f2

8 [+ ] =

〈+ 2〉8 − 〈+ 〉28 ). Only f0 is relevant at nominal KATRIN.

Δ8 9 [+ ] Mean di�erence of (%�8 and (%� 9 (i.e. Δ8 9 [+ ] = 〈+ 〉8 − 〈+ 〉 9 ).
Δ10 [+ ] and Δd [+ ] Relevant mean di�erences for krypton and tritium.

^Ḡ,I and ^Ḡ~̄,I Weight standard deviation and covariance, ^Ḡ,I = fI

[
%Ḡ
%I

]
, ^Ḡ~̄,I =

CovI

[
%Ḡ
%I
,
%~̄

%I

]
. Fully quantify relations between di�erent observables.

dḠ~̄,I Weight correlation, |dḠ~̄,I | ≤ 1. Given by the ratio dḠ~̄,I =
^Ḡ ~̄,I

^Ḡ,I^~̄,I
.

d̂Ḡ,I [+ ] Correlation operator, |d̂Ḡ,I [+ ] | ≤ 1. Given by the ratio d̂Ḡ,I [+ ] =
1

^Ḡ,I

ΔḠ
fI
[+ ]. Speci�es the correlation of the measured potential to the

longitudinal shape de�ned by
%Ḡ
%I

.

d̂ [+ ] Antisymmetry operator, which is the correlation operator of the relevant

krypton and tritium observables (
Δ10

f0

[+ ] for krypton,

Δd
f0

[+ ] for tritium).

The corresponding longitudinal shape is antisymmetrical (≈linear) for

typical KATRIN.

n8 and 08 Susceptibility of neutrino mass and endpoint to mean di�erences (i.e.

n8 = − d<2

a

dΔ80
and 08 = − d�0

dΔ80
).

n and 0 Absolute total susceptibilities (i.e. n = |∑8 n8 | and 0 = |∑8 08 |). Give

tritium shifts by simultaneous shift of all scatterings, i.e. by Δ80 = Δ 90.

nd Shape energy, nd = −1

2

d<2

a

df0dd̂
= 1

2
^d,0n > 0. Quanti�es the neutrino

mass shift for the potential shape that produces the maximum shift,

respecting the correlation ofΔd andf0. 0d equivalently for the endpoint.
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As a consequence, plasma potential systematics cannot be considered with only one

convolution, but instead the β spectrum obtained for each scattering multiplicity needs to

be convolved with its own SPD8 . As in equation 1, in a perturbative theory the resulting

neutrino mass shift is determined by a few scalar moments of these distributions, namely

f0 [+ ], the standard deviation of the unscattered distribution, and Δ10 [+ ], the di�erence

of the mean of the one-time scattered to the unscattered distribution. In general those

moments are derived from longitudinal averages over the WGTS length !WGTS of the form

〈+ 〉8 =
∫
I

dI

!WGTS

%8 (I)+ (I) ,

where the weighting with the longitudinal distributions %8 (I) of the signal electrons for the

scattering multiplicity 8 needs to be considered. Throughout this thesis square brackets (for

the means 〈+ 〉8 rectangular brackets) are used for functional dependencies in contrast to

round brackets, which are used for scalar dependencies. Thus, all quantities in rectangular

brackets are I-dependent functions.

The resulting shift of the squared neutrino mass reads

Δ<2

a [+ ] = −n1Δ10 [+ ] − 2f2

0
[+ ] .

n1 depends on the fraction of scattered electrons in the measurement time distribution for

the respective column density. It is determined from simulation in chapter 5 and is around

1 eV for the typical KATRIN measurement conditions. Notably, this additional term is in

fact dominant for usual plasma potential inhomogeneities f0 [+ ] on the order of 100 mV.

Determination of20[\ ] and�10[\ ]: Fortunately, it turns out that both f0 [+ ] and Δ10 [+ ]
are in principle observables of the krypton-83m measurement. They are obtained by

measuring a broadening of the unscattered line (f0 [+ ]), and the di�erence of the position

of the one-time scattered line to the unscattered line (Δ10 [+ ]). The latter requires the

precise knowledge of the expected mean energy loss on a level of 10 meV, i.e. the precise

knowledge of the energy loss function. Leaving such uncertainties aside, in principle

(f0 [+ ],Δ10 [+ ]) could be obtained from the krypton-83m measurement, and they could

be put into the tritium spectrum modelling to compensate for the source plasma induced

neutrino mass shift. While this is the result of a phenomenological ansatz, there is no

fundamental di�erence to already included physical e�ects like for example the Doppler

e�ect, which is also included in the spectrum model via a broadening of the energy scale.

Real-life complications: While the previous discussion covers the essential picture, many

details have been skipped. One of the problems is that the estimates (f0 [+ ],Δ10 [+ ])
depend on the gas species and measurement conditions, since the electron distributions

%8 (I) of tritium and krypton are not the same and up to the 2020 measurement phase

KNM4 also the operating conditions of the source modes of krypton-83m and tritium

were not the same. Di�erences in the respective potential estimates are related to the

di�erent weighting with the signal electrons from either krypton-83m or tritium and even

appear if the plasma potential is exactly the same in both measurements. Notably, all
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2. Summary of Source Systematics Theory and Nomenclature

di�erences in measurement modes and gas species can be condensed into di�erences of

the %8 (I) and the cause is irrelevant. Moreover, it is not even relevant whether the di�erent

%8 (I) are the result of di�erent scattering multiplicities, or have some other origin. An

example is the question how a measurement of f0 [+ ] in krypton can constrain f1 [+ ] in

krypton or f0 [+ ] in tritium. The only di�erence is in the shape of the %8 (I), regardless of

whether it is a di�erence in the scattering multiplicity in one case or a di�erence in gas

species in the other. In order to cover all cases in an e�cient formalism, the scattering

index 8 is generalised to indices G,~, I for normalisation of the weight to 1, and to negated

indices Ḡ, ~̄, Ī for normalisation to 0. The use of general indices also takes into account the

fact that the weights can be composed of several scattering weights, as discussed below.

These indices translate to the indices of all derived quantities like the fI and ΔḠ . How

the measurement (f0 [+ ],Δ10 [+ ]) from krypton-83m constrains quantities with di�erent

weights, for example the same observables seen from the tritium spectrum, boils down to

a correlation analysis of the involved weights. Deriving the respective equations is a large

part of the discussion in chapter 3.

Relationof20[\ ]and�10[\ ]: This discussion also has some welcome by-products. Namely,

it allows to establish relations between quantities like fI [+ ],ΔḠ [+ ] or also the peak-to-

peak value of the potential. One is especially helpful, since Δ10 [+ ] can currently not be

obtained with su�cient precision from the krypton-83m measurement. The key insight

here is that it is given by the covariance

Δ10 [+ ] = Cov0

[
%1 − %0

%0

,+

]
,

which follows straightforward from its de�nition. Dividing by the standard deviations of

the arguments leads to the correlation

d̂ [+ ] =
Cov0

[
%1−%0

%0

,+

]
f0

[
%1−%0

%0

]
f0 [+ ]

=
1

^
10,0

Δ10

f0

[+ ] .

^
10,0 is the standard deviation of the involved weights, which is of the order of 0.77 for

typical KATRIN conditions. Since d̂ [+ ] by de�nition is a correlation, |d̂ [+ ] | ≤ 1 holds.

Thus, if only f0 [+ ] can be measured, Δ10 [+ ] can still be constrained in a meaningful way.

Relation of�10[\ ] and 1̂[\ ] to the potential shape: A second important conclusion is that

Δ10 [+ ] measures the covariance of the potential to the longitudinal shape
%1−%0

%0

(I). For

typical KATRIN conditions this shape is approximately antisymmetrical (in very good

approximation even linear) to the injection point, i.e. such potentials produce the largest

Δ10 [+ ] for a given f0 [+ ]. This coincides with the simple understanding that scattered

electrons are more likely to stem from the rear of the WGTS and unscattered electrons

from the front, such that the largest di�erence of their starting potential distributions is

observed if the potential inhomogeneity is mainly given by a rear-to-front asymmetry (see

section 1.4.2).
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Following the above reasoning, d̂ [+ ] is called the antisymmetry operator. Using it instead

of Δ10 [+ ] has the advantage that f0 and d̂ are independent quantities (such that their

dependence on+ can be omitted), whereas f0 [+ ] is an upper limit to Δ10 [+ ], as described

above. Also, since d̂ is a measure of a certain potential shape and f0 for inhomogeneity mag-

nitude, using those to parametrise the potential + (I) reveals the fundamental connection

of the krypton-83m observables to the symmetries of the potential in a model-independent

way. This is the topic of chapter 4.

Relationof neutrinomass shi�andpotential shape: Reformulating the neutrino mass shift

equation in terms of d̂ leads to an equation for which a simple analytical curve sketching

can be performed. However, one generalisation should be mentioned before, namely, that

in the above discussion terms proportional to Δ80 with scatterings larger than 8 = 1 have

been neglected. Of course, if the measurement time distribution of the β spectrum includes

signi�cant portions of electrons of higher scattering multiplicity, those terms are also

relevant. It turns out that this in general only a�ects the Δ80 [+ ] term, and that standard

deviations f8 [+ ] with 8 > 0 are negligible. For the KNM2 measurement campaign with

a tritium column density of 84 % of nominal, 0.6 % of two times scattered electrons are

included in the standard analysis interval of 40 eV. These details are considered by using

generalised weights %Ḡ (I), which are weighted summations over all relevant scattering

contributions. To specify the concrete weighting, which is relevant for the respective

tritium measurement condition, the index d is used. Thus, formally equivalent equations

as before are obtained, when replacing indices "10" with d . Notably, this generalisation

has no fundamental impact on the predictive power of the krypton measurement. Still

correlations between Δ10 [+ ] from krypton and Δd [+ ] in tritium can be studied, and it

turns out that the resulting uncertainties are acceptable. This correlation analysis is also

necessary in the case where higher scatterings are negligible: As discussed, Δ10 [+ ] from

krypton-83m and Δ10 [+ ] from tritium are in general two di�erent quantities, since the

gas pro�les of the gas species are di�erent.

Thus, the shift of the squared neutrino mass reads

Δ<2

a [+ ] = −nΔd [+ ] − 2f2

0
[+ ] ,

⇒ Δ<2

a (d̂, f0) = − n^d,0︸︷︷︸
≡2nd

f0d̂ − 2f2

0
,

= −2f0( nd d̂︸︷︷︸
shape

+ f0︸︷︷︸
variance

) .

The newly introduced quantity nd is the shape energy. It represents the penalty neutrino

mass shift with regard to the worst possible potential shape. Since d̂ speci�es the correlation

to this shape, the term is extremal for antisymmetrical potentials with d̂ = ±1 and vanishes

for symmetrical potentials with d̂ = 0. For typical KATRIN conditions nd is of the order of

500 meV, such that it is relevant even for small |d̂ | on the order of 0.1.

In the following this theory is studied in all necessary detail.
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3. Observables of the WGTS Plasma
Potential in the Presence of Inelastic
Scattering

In this chapter the general properties of observables of the I-dependent source plasma

potential are studied. As �rst observed in [Mac16], due to the presence of inelastic

scattering the usual simple linear connection between the shift of the squared neutrino

mass and the energy scale variance does not hold for the source potential. While deriving

the correct equation is the overall goal of this chapter, many steps on the way are necessary

to understand the implications on the tritium β plasma potential systematics and the

krypton-83m commissioning measurements. Reading section 1.4.2, which provides a more

qualitative introduction, is recommended before studying this chapter.

The chapter starts with the de�nition of the fundamental moments of the potential for

each scattering multiplicity and their related starting potential distributions in section 3.1.

These moments are the observables in krypton-83m conversion electron measurements.

Section 3.2 studies the connection of injectivity and surjectivity of the measurement to the

potential shape. The dependence of both the krypton-83m and the tritium β observables

on a certain symmetry of the potential shape is the essential addition to the description

without inelastic scattering.

The moments depend on the distribution of signal electrons in the source. In section 3.3 it

is analysed how moments obtained with di�ering electron distributions constrain each

others and which potential shapes produce the maximum di�erences.

Section 3.4 studies the compositions of moments of di�erent scattering multiplicities,

which are observables in the tritium β neutrino mass measurement.

In section 3.5 it is shown how these general observables are constrained by measure-

ments of the fundamental moments, i.e. how the observables obtained in krypton-83m

measurements constrain the neutrino mass shift.

Finally, section 3.6 discusses how the potential shape in�uences the neutrino mass shift and

concludes the chapter with a curve sketching of the derived neutrino mass shift equation.
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3. Observables of the WGTS Plasma Potential in the Presence of Inelastic Scattering

3.1. Starting Potential Distributions at fixed Scattering
Multiplicity and their Moments

All quantities in the WGTS which are observed by the focal plane detector undergo a I-

dependent, longitudinal averaging and only estimates which are functions of the following

�rst moments (or means) can be measured [Mac16] (rigorous derivation in appendix A.1):

〈+ 〉8 =
∫
I

dI Ω(I)#Kr,T2 (I)?8 (I)+ (I)∫
I

dI Ω(I)#Kr,T2 (I)?8 (I)
≡

∫
I

dI

!WGTS

%8 (I)+ (I) = 〈%8+ 〉 . (3.1)

+ is the plasma potential, the weights are the products of all I-dependent functions

(densities #Kr,T2
, scattering probabilities ?8 for scattering multiplicity 8 , maximum pitch

angle Ω). The normalised weights %8 (I) have been introduced, such that the following

normalisations hold: 〈
%−1

8

〉
8
=

∫
I

dI

!WGTS

= 1 , (3.2)

〈1〉8 =
∫
I

dI

!WGTS

%8 (I) = 1 . (3.3)

These normalisations are enough to derive all the relations in this chapter. In particular,

no knowledge of the shape of the %8 (I) is necessary. This means that all relations are

true, even if the modelling of the %8 in reality is erroneous and it allows to generalise the

obtained relations to weights which are not a composition of functions characterising

the WGTS. Even so, weights for krypton-83m conversion electron or tritium β spectra

are naturally used for examples or sketches, as they represent the use case. Still sketches

are preferred over showing plots for speci�c measurements, since the latter depend on

many parameters innate to the respective measurement conditions. Plots for the KNM1-3a

measurement campaigns are found in chapter 5. A sketch of typical weights is shown in

�gure 3.1.

Typically the weights vanish for I → ±∞, leading to unproblematic boundary conditions

and simple numeric integration. In practice, the following discussion is restricted to the

non-zero region in the central WGTS.

Here and in the following lower indices 8, 9, : are always indicative of the corresponding

scattering multiplicities. To represent general weights, indices G,~, I are used, indicating

that weights can also di�er in operating conditions or gas pro�les or that they can be com-

posed of several scattering weights. Brackets around upper or lower indices of operators

mean "up to". Small letters 0, 1 (sometimes with indices) are always real numbers, capital

letters �,� are integrable test functions (in !1
or !2

) from R→ R. To indicate scalars with

units of energy n is used, sometimes with indices.

Equation 3.1 is a functional of the potential, which can be interpreted as an integral

operator
1
. This interpretation allows to study the properties of the �rst moments and

1
The dimensionless line element

dI
!WGTS

is used, but the coordinates are not transformed. That means, that

only the respective integrals are normalised and functional derivatives or integrals (i.e. the area in plots

over I) using dimensional dI are scaled by !WGTS. For this reason usually a normalised I-axis is shown.
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3.1. Starting Potential Distributions at �xed Scattering Multiplicity and their Moments

𝑧0

𝑃𝑖(𝑧)

𝑃𝑗(𝑧)

Figure 3.1.: Sketch of normalised weights in WGTS: The area of the weights is normalised

to 1, but their maximum can be larger. They are positive and vanish at the

longitudinal boundaries of the WGTS. Since they usually overlap, they have at

least one point of intersect. The sketch follows common shapes for 8 = 0 and

9 = 1.

derived operators using functional derivatives. Since the moments do not depend on

the derivative of the potential mI+ it follows from the Euler-Lagrange equation, that the

functional derivative is identical to the partial derivative of the integrand with respect to+ .

!WGTS = 1 is used in all derivatives, since it cancels anyway in all use cases. Also writing

out the argument I is, in most cases, omitted for brevity. Square and angular brackets are

used to indicate the functional nature of the operators in contrast to round brackets for

scalar dependencies.

3.1.1. Potential Moments

As sketched in �gure 3.2, in the quasi mono-energetic krypton-83m conversion electron

spectrum the scattering e�ects are separated in energy by the minimum inelastic energy

loss, such that the moments of the form 3.1 can be observed separately for each scattering

multiplicity. Thus, expansions of general operators $8 in the order ; of the potential read

$8 [+ ] =
∑
<+==;

0<= 〈+<〉8 〈+ 〉=8 . (3.4)

The potential is a perturbation of the spectrum, such that higher orders decrease in

magnitude and can be discussed separately. The zeroth order is a constant shift of the

measurement and is set to zero. The �rst order observables are the means 〈+ 〉8 . Expanding

up to second order,

$
(2)
8
[+ ] = n 〈+ 〉8 + 0 〈+ 2〉8 + 1 〈+ 〉28 (3.5)

is obtained. Usually it is demanded that the expectation value vanishes for constant

potentials + ≡ E0

$
(2)
8
[E0] = nE0 + (0 + 1)E2

0
= 0 ∀E0 ∈ R , (3.6)

⇒ n = 0 , 0 = −1 , (3.7)
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3. Observables of the WGTS Plasma Potential in the Presence of Inelastic Scattering

1x scattered

Rate

Retarding energy

0x scattered

Background

Figure 3.2.: Separation of scattering e�ects in mono-energetic spectra: In quasi mono-

energetic spectra like the krypton-83m spectrum, the non-constant rate contri-

butions are well separated in energy. Since only the non-constant contributions

are a�ected by the potential, observations of the potential can be separated in

scattering multiplicity.

⇒ $
(2)
8

= 0
(
〈+ 2〉8 − 〈+ 〉28

)
. (3.8)

The operator f2

8 [+ ] ≡
〈
+ 2

〉
8
− 〈+ 〉28 is the central variance or second central moment and

its square root is commonly known as the standard deviation

f8 [+ ] ≡
√

Var8 [+ ] =
√
〈+ 2〉8 − 〈+ 〉28 . (3.9)

Thus, di�erent means 〈+ 〉8 and standard deviations f8 [+ ] of the potential can be obtained

at the krypton lines of 8 scattering multiplicity. In practice this is implemented by con-

volving a di�erent Gaussian � (〈+ 〉8 , f8) 2
with each of the 8 times convoluted energy loss

functions (cf. appendix A.1). Higher orders in the potential are not obtainable in a feasible

measurement time and are not discussed further.

To characterise potential-induced di�erences in the means 〈+ 〉8 , the �rst moment di�erences
(or mean di�erences)

Δ8 9 [+ ] ≡ 〈+ 〉8 − 〈+ 〉 9 (3.10)

are de�ned.

3.1.2. Starting Potential Distributions

In �gure 3.3 the unweighted frequency distribution of the krypton condition plasma po-

tential obtained in plasma simulations (�gure 1.19) is shown. This unweighted distribution

2
The constant 0 in equation 3.8 depends on the observable that is used for the measure of inhomogeneity.

If the measure is a Gaussian variance, 0 = 1 by de�nition. This is not the case if for example a total

Lorentzian width Γ is �tted, where 0 ≈ 0.085 is expected, as shown in section 6.2.1.
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3.1. Starting Potential Distributions at �xed Scattering Multiplicity and their Moments
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Figure 3.3.: Unweighted starting potential distribution: The potential is shown in the

sketch above the plot, where the non-zero region is the central WGTS and the

zero region extends to the rear wall. Thus, the distribution includes sizeable

zero contribution, which is a boundary e�ect of the simulation.
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Figure 3.4.: Scattering weighted starting potential distribution: If the potential is weighted

with the scattering weights, several distributions are obtained. Here, it is

obvious that the boundary conditions of the simulation are indeed irrelevant,

since they are cut by the vanishing weights outside the central WGTS. Thus,

also the �rst moments displayed in the legend are considerably higher than

without weighting. In contrast, the standard deviations are smaller, since the

large variance at the boundaries is cut.
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3. Observables of the WGTS Plasma Potential in the Presence of Inelastic Scattering
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Figure 3.5.: Approximated starting potential distribution: If the full distributions are ap-

proximated with their means and variances, they can be represented by Gaus-

sians, which are directly obtained in krypton-83m measurements by �tting

Voigt pro�les to lines of di�erent scattering multiplicities. Thus, there is no

systematic related to this approximation and it is shown in [Sle16] that the

higher potential orders are also irrelevant for tritium β systematics.

is of little physical relevance, which is evident from the fact that a sizeable portion of the

distribution is at zero potential. Zero was the boundary condition of the simulation, which

assumed that the particle densities are dominated from the central WGTS. The sensitive

region of the distribution, however, was picked to include the region up to the rear wall, as

visible in the sketch. Thus, the term unweighted in this case refers to a piecewise constant

weight which is one for I in this sketch and zero elsewhere. Without the speci�cation of

the weight, neither the distributions nor the moments are well de�ned, and both only give

reasonable insight on the measurement, if they are weighted with electron densities that

�t to the experiment.

Thus, if the same potential is weighted according to equation 3.1, several distributions are

obtained for the di�erent scattering multiplicities, which is shown in �gure 3.4. These are

the distributions of relevance for the measurements and if they are known, they can be

convolved with the spectra of the according scattering multiplicity to fully account for the

plasma e�ects (cf. appendix A.1)
3
.

However, only the three moments 〈+ 〉
0
, 〈+ 〉

1
and f0 [+ ] are obtainable in krypton-83m

measurements in practice. Thus, conceptually the exact distributions are replaced with

3
Figure 3.4 also illustrates the connection of the average electron starting position to the average starting

potential, which is visible in the di�erent peak heights: More one-time scattered electrons start in high

potential than in low potential, which indicates a dominant starting position towards the rear, as visible

in the sketched potential. The unscattered electrons show the opposite behaviour.
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3.1. Starting Potential Distributions at �xed Scattering Multiplicity and their Moments

Table 3.1.: Overview of plasma potential-related quantities in krypton-83m mea-
surements.
The expectation values of the three operators are the true values. The krypton

observables are subject to systematics which are not related to the potential.

The negative signs are due to the negative charge of the electrons.

operator expectation value krypton observable name

〈...〉
0

〈+ 〉
0

−Δ�Main Line position shift

f0 [...] f0 [+ ] fg Gaussian broadening

Δ10 [...] Δ10 [+ ] −ΔnEloss Eloss shift

Gaussians with the same moments, depicted in �gure 3.5. Since f1 [+ ] cannot be obtained,

f0 [+ ] = f1 [+ ] is assumed. As shown in section 5.1, this does not lead to sizeable system-

atics due to the intrinsic width of the energy loss function. Also, disregarding the higher

potential order moments is not a systematic in krypton-83m measurements, since the

remaining moments are the direct observables.

Krypton spectrumobservables: Since the e�ect of the potential is now condensed to three

parameters, doing two full convolutions of the starting potential distributions with the

spectra of the respective scattering multiplicities becomes unnecessary:

• The mean value 〈+ 〉
0

is the measurable line position shift −Δ�Main in krypton mea-

surements.

• The standard deviation f0 [+ ] is the Gaussian broadening fg �tted in krypton mea-

surements. In practice, a Voigt pro�le is used, however f2

0
[+ ] can also be added to

already existing variances like the spectral broadening caused by the Doppler e�ect.

• The mean di�erence Δ10 [+ ] is implemented as a shift of the energy loss function
4

−ΔnEloss, shown in chapter 5. This is referred to as eloss shift.

The negative signs on the linear quantities are due the electric charge of the electrons.

In relations between the moments of the potential and those of the energy spectrum an

elementary charge 4 = 1 is used. Measured estimate and expectation value of the operator

are only equal if all systematic e�ects are understood, this is why distinct names are kept.

This leads to the de�nitions in table 3.1.

With these de�nitions the e�ect of the plasma potential on the krypton-83m conversion

electron spectrum is su�ciently described in up to second order in the potential. However,

more can be learned about the relations of moments to the potential shape as well as

4
The shift should be applied to each 8 times convoluted energy loss function 58 (n) separately. This assumes

Δ80 = −ΔnEloss (∀8 > 0), which is physically likely due to the weight degeneracy discussed in section 3.2.2.

If the energy loss function 51 (n) (see �gure 1.10) is shifted, the shift of each spectrum is multiplied with

the scattering multiplicity Δ80 = −8ΔnEloss. For tritium both cases di�er in normalisation, which is further

discussed in chapter 5. For krypton only one scattering is relevant such that shifting each 58 (n) or 51 (n)
is equivalent.
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𝑉𝐴
𝑉𝐵
𝑉𝐶

{ 𝑉 0, 𝜎0 𝑉 , Δ10[𝑉]}𝐴
{ 𝑉 0, 𝜎0 𝑉 , Δ10[𝑉]}𝐵
{ 𝑉 0, 𝜎0 𝑉 , Δ10[𝑉]}𝐶
{ 𝑉 0, 𝜎0 𝑉 , Δ10[𝑉]}𝐷

non-injective

non-surjective

domain
image

observation
modelling

Figure 3.6.: Non-surjectivity and non-injectivity of plasma measurements: Since multiple

potentials+�, +� can lead to the same observables, measurements of the WGTS

plasma are in principle non-injective. It is shown in the sections below that

they are also non-surjective, i.e. that some combinations of observables can

never be obtained.

systematics in the krypton measurements by studying general properties of the involved

operators.

3.1.3. Generalised Potential Moments and their Algebraic Properties

In the following sections some of the algebraic properties of the de�ned operators are

studied. Some focus will be put on their surjectivity, injectivity and their kernels. The

bene�t is sketched in �gure 3.6:

• Surjectivity→Data integrity: It turns out that the obtainable set of expectation values

is not surjective, i.e. the image is bounded. This o�ers an assumption-free possibility

to perform data integrity checks and constraints, i.e. observations have to be in the

image of the operators, otherwise there are unaccounted systematics.

• Injectivity→Potential determination: Since the means are not injective, none of the

operators is injective. Thus, while in general the measurement (〈+ 〉
0
,Δ10 [+ ], f0 [+ ])

cannot determine the full potential + (I), it turns out that a certain potential leads

to a unique measurement. In essence this is related to the non-trivial kernel of the

Δ8 9 [...], which measure only a very speci�c form of inhomogeneity.

Lastly, the question of injectivity is relevant for plasma modelling, which is discussed

in chapter 4. Naturally, if the potential model is expanded as function of the weights

%8 , algebraic relations following from their normalisations (equations 3.2 and 3.3) can be

used to calculate the expectation values of the operators analytically. Some relations are

obtained in the following, which will prove useful later on.

Mean potentials: The means 〈...〉8 are linear operators

〈0� + 1�〉8 = 0 〈� 〉8 + 1 〈�〉8 . (3.11)
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The linearity is apparent from the functional derivative

X 〈+ 〉8
X+

= %8 , (3.12)

which is constant in + .

Orthogonal potentials in di�erent scattering means can be constructed using expansions

like 〈∑
: 0: (%: − 1)

% 9

〉
8

∝ (1 − X8 9 ) , (3.13)

where X8 9 is the Kronecker delta. More speci�cally, for 8 = 9 equation 3.13 describes a

subset of I-dependent functions in the kernel of 〈...〉8 . This is achieved by subtraction of

the respective expectation value (1 in this case), which works in general due the linearity

of the means.

The 〈...〉8 are surjective, which follows from their linearity.

Potential mean di�erences: The mean di�erences Δ8 9 [+ ] = 〈+ 〉8 − 〈+ 〉 9 are linear opera-

tors, which follows from the linearity of the means, equation 3.11.

Thus, their derivative

XΔ8 9 [+ ]
X+

= %8 − % 9 , (3.14)

is constant in + .

They are antisymmetric in their weights

Δ8 9 [...] = −Δ 98 [...] . (3.15)

The kernel is non-trivial. An example for expansions of functions in their kernel is

Δ8 9

[∑
: 0: (%: − 1)
%8 ′ − % 9 ′

]
∝ (1 − X88 ′X 9 9 ′) . (3.16)

The mean di�erences are a measure of longitudinal inhomogeneity

Δ8 9 [1] = 1
(
〈1〉8 − 〈1〉 9

)
= 0 . (3.17)

From this property it follows:

0 = Δ8 9 [1] ,
= Δ8 9 [Θ(%8 − % 9 ) + Θ(% 9 − %8)] ,
= Δ8 9 [Θ(%8 − % 9 )] + Δ8 9 [Θ(% 9 − %8)] ,

⇒ Δ8 9 [Θ(%8 − % 9 )] = −Δ8 9 [Θ(% 9 − %8)] , (3.18)

i.e. the positive and negative parts of their weights cover the same area, which is shown in

�gure 3.7.

Like the 〈...〉8 , the Δ8 9 [...] are surjective and non-injective.
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𝑧0

𝑃𝑖(𝑧)

𝑃𝑗(𝑧)

𝑃𝑗 𝑧 − 𝑃𝑖(𝑧)

Figure 3.7.: Sketch of di�erences of normalised weights in the WGTS: Due to the normal-

isation of the weights, their di�erences have at least one zero crossing. At

this position their corresponding operators are not sensitive to the potential.

Furthermore, they cover the same positive and negative area.

Generalised indices: Equation 3.18 is the de�ning property of generalised mean di�er-

ences:

XΔḠ [+ ]
X+

= %Ḡ , 〈1〉Ḡ ≡ 0 . (3.19)

Thus, negated indices Ḡ, ~̄, Ī are used as abbreviated notation for weights that are nor-

malised to 0. Here the weight %Ḡ usually is constructed from compositions of scattering

weights %8 like

%Ḡ ≡
1∑
8 08

∑
8

08 (%8 − %0) . (3.20)

The coe�cients 08 specify the scattering contribution. As shown in section 3.4.3, such com-

posed operators are relevant to describe the tritium β-spectrum systematics. Analogously,

indices G,~, I without negation are used for weights like

%I ≡
1∑
8 08

∑
8

08%8 , (3.21)

which are normalised to 1. All equations derived in this chapter only depend on the

normalisation conditions of the weights, such that they hold for the pure operators 〈...〉8 ,
Δ8 9 [...], f8 [...] as well as for the composed operators 〈...〉I , ΔḠ [...], fI [...]. Since the latter

is the more general case, in the following indices for composed operators are used.

Longitudinal standard deviations of the potential: The derivative of the standard devia-

tions fI [...] is

XfAI [+ ]
X+

= AfA−2

I [+ ]%I (+ − 〈+ 〉I) , A ∈ R , (3.22)
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which is linear in + for A = 2. Thus, the f2

I [...] are quadratic operators, leading to the

usual rules

f2

I [0� + 1�] = 〈(0� + 1�)2〉I − 〈0� + 1�〉2I
= 02 〈� 2〉I + 201 〈��〉I + 12 〈�2〉I − 02 〈� 〉2I − 201 〈� 〉I 〈�〉I − 12 〈�〉2I
= 02(〈� 2〉I − 〈� 〉2I) + 12(〈�2〉I − 〈�〉2I) + 201 (〈��〉I − 〈� 〉I 〈�〉I)
= 02f2

I [� ] + 12f2

I [�] + 201CovI [�,�] , (3.23)

with the covariance

CovI [�,�] ≡ 〈��〉I − 〈� 〉I 〈�〉I . (3.24)

Using the covariance, the variance can be expressed as

f2

I [0� ] = CovI [0�, 0� ] . (3.25)

Like the ΔḠ [...], the CovI [...] and fI [...] by construction only measure non-constant

expansions of the potential

CovI [0�, 1� + 2] = 〈0� (1� + 2)〉I − 〈0� 〉I 〈1� + 2〉I ,
= 01 〈��〉I + 02 〈� 〉I − 01 〈� 〉I 〈�〉I − 02 〈� 〉I ,
= 〈0�1�〉I − 〈0� 〉I 〈1�〉I ,
= CovI [0�, 1�] . (3.26)

The fI [...] are not surjective, which can be proven by calculating stationary solutions.

Requiring the variation equation 3.22 to vanish leads to the integral equation

+ (I) = 〈+ 〉I ,

which is the de�nition of a constant potential. Thus, constant potentials minimise fI [...],
and since it was shown in equation 3.26 that the expectation value of constant potentials

vanishes, it follows that

fI [+ ] ≥ 0 (3.27)

holds. Therefore, positiveness can be demanded of the broadening fg of the krypton

spectrum, which allows to constrain systematics.

3.1.4. Connection of Mean Di�erence and Covariance

An important conclusion of the previous discussion is that

ker(fI) = {+ (I) = 1,1 ∈ R} (3.28)

is the complete kernel of the fI [...] and that consequently it holds

ker(fI) ⊂ ker(ΔḠ ) . (3.29)
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potential shape 𝑉(𝑧)

0

constant ker(Δ  𝑥) constant

0

Δ  𝑥[𝑉]

𝜎𝑧[𝑉]

Injectivity
Δ 𝑥

𝜎𝑧

0
1-1

Figure 3.8.: Image of mean di�erences and standard deviations: All non-constant potentials

+ can be normalised such that they have the same standard deviationfI [+ ]. For

potentials with given fI [+ ] the image of ΔḠ [...] is bounded, such that |ΔḠ [+ ] |
is maximal for a certain potential shape. Potential shapes are represented by

the ratio
ΔḠ [+ ]
fI [+ ] and since the shape that produces the maximum is unique, this

ratio is a measure of the injectivity of the measurement (ΔḠ [+ ], fI [+ ]).

Thus, standard deviations measure all inhomogeneities, mean di�erences only a special

kind. The resulting images of ΔḠ and fI are sketched in �gure 3.8. The inhomogeneity

which ΔḠ is sensitive on is speci�ed by the following fundamental relation:

ΔḠ [+ ] = 〈%Ḡ+ 〉 =
〈
%Ḡ

%I
+

〉
I

= CovI

[
%Ḡ

%I
,+

]
, (3.30)

where 〈%Ḡ〉 = 0 was used. Accordingly, the ΔḠ [+ ] measure the %I-weighted covariance

of the potential + along the symmetry axis
%Ḡ
%I

. Here the choice of %I is arbitrary, since it

cancels. However, it is necessary to normalise equation 3.30 by measurable observables,

as shown in the next section.

3.2. Measures of Injectivity and Surjectivity

Naturally, measurements like the krypton-83m measurement, which obtain a few scalar

estimates of the potential and its inhomogeneity, su�er from non-injectivity, i.e. it is not

possible to reconstruct the full I-dependent potential. However, inversely this means that

the in�uence of the I-dependent potential on the krypton-83m spectrum can perturbatively

be described with only a few observables, and while those can depend on the potential

shape, no actual knowledge of the latter is required. The same is true for the modelling

of the tritium β spectrum: in a perturbative description the systematics of the tritium β
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measurement is determined by only a few scalar observables of the potential, independent

of its actual shape.

Standard deviations only allow the classi�cation in constant (fI [+ ] = 0) and non-constant

(fI [+ ] > 0) potentials. In contrast, the mean di�erences depend on the potential shape,

as shown by equation 3.30. Normalising it allows to quantify the injectivity of the mea-

surement (f0,Δ10), such that for each measurement there exists a shape operator which

constrains the potentials that could have led to these estimates. This is discussed in

section 3.2.1.

Inversely, it is possible to quantify the surjectivity of any operator of the potential by

studying the weight covariances of the moments, which is discussed in section 3.2.2. This

allows to constrain all moments of longitudinal inhomogeneity of the potential ΔḠ , f~
with only one measured estimate of the total inhomogeneity scale fĪ , and more tightened

constraints for parameters obtained additionally. This is the topic of the subsequent

section 3.3.

3.2.1. Potential Shape and Injectivity

Following from equation 3.30 the shape operators (or correlation operators) are de�ned as

d̂Ḡ,I [...] ≡
CovI

[
%Ḡ
%I
, ...

]
fI

[
%Ḡ
%I

]
fI [...]

=
1

^Ḡ,I

ΔḠ
fI
[...] . (3.31)

Ḡ, I represent generalised weights normalised to 0 and 1, respectively. The ^Ḡ,I ≡ fI
[
%Ḡ
%I

]
are positive normalisation constants. Since the d̂Ḡ,I are correlations their image is bounded

− 1 ≤ d̂Ḡ,I [+ ] ≤ 1 ∀+ ∈ !2 , (3.32)

which is proven in section 3.3. For a given test potential shape
1

^Ḡ,I

%Ḡ
%I

, d̂Ḡ,I [+ ] quanti�es

how similar the true potential + is to the shape observed in the weighted region speci�ed

by %I .

Potential shapes: The term similarity is de�ned by considering how test potential shapes

are constructed from arbitrary given test potentials +test and given %I . The natural repre-

sentation of +test, if only its shape is of interest, is to subtract its mean and to normalise it

to its standard deviation

1

^Ḡ,I

%Ḡ

%I
≡ 1

fI [+test]
(+test − 〈+test〉I) . (3.33)

For given %I and+test this equation de�nes %Ḡ . The ratio
%Ḡ
%I

is a formalised way to indicate

that the �rst moment vanishes

1

^Ḡ,I

〈
%Ḡ

%I

〉
I

=
1

fI [+test]
〈+test − 〈+test〉I〉I = 0 . (3.34)
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Thus, the statement of + being similar to
1

^Ḡ,I

%Ḡ
%I

(i.e. d̂Ḡ,I [+ ] = ±1) means that + (or the re-

�ected −+ ) ful�ls equation 3.33. In this case the measurement

(
fI [+ ], d̂Ḡ,I [+ ] = ±1, 〈+ 〉I

)
is injective and the exact potential is given by

+ − 〈+ 〉I = ±
fI [+ ]
^Ḡ,I

%Ḡ

%I
. (3.35)

Also, due to this exact relation in the case d̂Ḡ,I = ±1 it is convenient to say that d̂Ḡ,I is

the (re�ected) potential shape. The smaller the absolute d̂Ḡ,I is, the less injective is the

measurement and the less similar are the potential and test potential shape. While no exact

relation like 3.35 can be given for non-extremal correlations, a measurement of d̂Ḡ,I [+ ]
with given %Ḡ and %I can still be used to test the possibility, that the true potential shape is

d̂~̄,I (which can be derived from any test potential by equation 3.33), which is discussed in

section 3.3.1.

Antisymmetry operator: For the weights related to observables of the krypton-83m mea-

surement this operator reads

d̂ [...] ≡ 1

^
10,0

Δ10

f0

[...] . (3.36)

It is called the antisymmetry operator, since for usual weights %0, %1 it quanti�es the

prevalence of an antisymmetrical shape of the potential + (I).
This connection to the potential shape can also be understood as a consequence of scale

invariance, which is sketched in �gure 3.9: The Δ10 and f0 are di�erent measures of

longitudinal inhomogeneity, such that their scale invariant ratio is a measure only of

potential shape.

The normalisations ^Ḡ,I are a measure of surjectivity. They are given by the covariances of

the involved weights, which is discussed in the following section.

3.2.2. Weight Covariances and Surjectivity

Using the boundedness |d̂Ḡ,I | ≤ 1 it follows

^Ḡ,I ≥
|ΔḠ |
fI

. (3.37)

Thus, fI is an upper limit to ΔḠ and ΔḠ is a lower limit to fI , which is sketched in �gure 3.10.

The magnitude of this constraint is given by ^Ḡ,I , which is a measure of surjectivity, i.e.

the size of the image of
ΔḠ
fI
[!2]:

0

^Ḡ,I−−−−−−−−−−−−−−−−−−−−−−−−→
surjectivity

∞

Max

(
|ΔḠ |
fI

)
= 0 Max

(
|ΔḠ |
fI

)
= ∞ . (3.38)

fully constrained not constrained

60



3.2. Measures of Injectivity and Surjectivity

𝑧

𝑉

0

𝜟𝟏𝟎 = 𝒔𝒂

𝑧

𝑉

0

𝜟𝟏𝟎 = 𝒂

𝝈𝟎 = 𝒔𝒖

𝝈𝟎 = 𝐮

× 𝒔

𝑧

𝑉

0

 𝝆 = 𝒂

𝑧

𝑉

0

 𝝆 = 𝒂
𝝈𝟎 = 𝒔𝒖𝝈𝟎 = 𝐮 × 𝒔

Figure 3.9.: Antisymmetry and scaling: Measuring the potential using f0 and Δ10 resembles

the usage of two di�erent tape measures, both scaling proportional to the

overall magnitude of the potential, represented by the scale factor B . In contrast,

the antisymmetry d̂ is scale invariant, quantifying the prevalence of a certain

symmetry of the potential shape. Thus, f0 is used to quantify the potential

magnitude and other estimates like Δ10 and the derived d̂ are estimates of

prevalence of symmetries. This is true for all potentials, not only the sketched

antisymmetrical shape.

A 2D-representation of the image is sketched in �gure 3.11. For all potentials and for any

given measurement of ΔḠ and fI their ratio has to stay inside the circle of radius ^Ḡ,I .

The constant ^2

Ḡ,I is the variance of the ratio of the involved weights

^2

Ḡ,I ≡ f2

I

[
%Ḡ

%I

]
3.30

= ΔḠ

[
%Ḡ

%I

]
, (3.39)

and its relation to the sensitive (i.e. non-vanishing) regions of the weights is sketched in

�gure 3.12. Spatial regions where both weights are sensitive increase ^Ḡ,I . Regions where

only fI is sensitive do not change ^Ḡ,I , since increasing fI always stays inside the circle in

�gure 3.11. Finally, regions where only ΔḠ is sensitive lead to an unconstrained image,

since in this case ΔḠ can be increased independently from fI .

Accordingly, these variances quantify the variation of the operator ΔḠ observed on the

scale fI . ^Ḡ,I ' 1 indicates that ΔḠ varies on the same scale and spatial region as fI . In

this case every observation of potential inhomogeneity where fI [+ ] is relevant must also

include ΔḠ [+ ].
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𝑧0

𝑉(𝑧)

Figure 3.10.: Constraints of mean di�erences by the standard deviation: All three sketched

potentials have the same overall symmetry. Thus, depending on the weights,

the potentials can lead to the same expectation value of the ΔḠ , since the latter

are a linear measure of the potential inhomogeneity, i.e. positive and negative

components can cancel. In contrast, the f2

I are a measure of total longitudinal

inhomogeneity, such that by adding oscillatory patterns or antisymmetrical

poles, the f2

I can be increased, while keeping the ΔḠ constant.

ℝ

Δ  𝑥

𝜎𝑧
[𝐿2]

𝜅  𝑥,𝑧

∞−∞
0

Figure 3.11.: Surjectivity of the ratio of ΔḠ and fI : The image of all square-integrable

functions is bounded by ^Ḡ,I . To better visualise the corresponding interval

[−^Ḡ,I, ^Ḡ,I] in this 2D-representation ^Ḡ,I is the radius of the circular image,

which is centred at 0 on the line of the real numbers R.

62



3.2. Measures of Injectivity and Surjectivity

This has two subtleties:

• Possible prefactors have to be included in the weights. In the example where %Ḡ is

composed of scattering weight di�erences %8 − % 9 which are normalised, the ^8 9,:
quantify sheer spatial overlap. They do not quantify how likely it is to observe

electrons of di�erent scattering multiplicities in the �rst place.

• The ^Ḡ,I do not quantify how di�erent ΔḠ is from other Δ~̄ . The possible degeneracy
is sketched in �gure 3.13 for typical scattering weights. Observations of di�erences

between expectation values of Δ80 [+ ] and Δ 90 [+ ] (8 ≠ 9 ≠ 0) on the scale of f0 [+ ]
require �ne tuning of + . The di�erence of two operators can be quanti�ed by

calculating the covariance of their weights.

Generalisation to covariances: The I-weighted covariances of weights are de�ned as

^Ḡ~̄,I ≡ CovI

[
%Ḡ

%I
,
%~̄

%I

]
= ΔḠ

[
%~̄

%I

]
, (3.40)

where

^ḠḠ,I ≡ ^2

Ḡ,I . (3.41)

In contrast to the usual notation of covariances fḠ~̄ , ^Ḡ~̄ is used here to better distinguish

from the operator fI [...]. Also, the^Ḡ~̄ are dimensionless, whereas fI [+ ] has the dimension

of + , which usually is energy.

Since the ^Ḡ~̄,I are covariances, they are symmetrical in their �rst two indices

^Ḡ~̄,I = ^~̄Ḡ,I , (3.42)

such that the covariance matrices are given by

^Ḡ~̄,I '
(
^ḠḠ ^Ḡ~̄
^~̄Ḡ ^~̄~̄

)
I

≡
(
^2

Ḡ ^Ḡ~̄
^Ḡ~̄ ^2

~̄

)
I

. (3.43)

The correlation coe�cient has the usual form

dḠ~̄,I ≡
^Ḡ~̄,I

√
^ḠḠ,I^~̄~̄,I

=
^Ḡ~̄,I

^Ḡ,I^~̄,I
, (3.44)

and from the Cauchy-Schwarz inequality it follows that

|dḠ~̄,I | ≤ 1 . (3.45)

With these de�nitions all the tools are ready to study general covariances between potential

moments. In the case of KATRIN, estimates of Δ10 [+ ] and f0 [+ ] derived in krypton-83m

measurements constrain all other generalised moments up to second order in the potential.
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𝑧0

𝑃𝑧(𝑧)

𝑃  𝑥(𝑧)

noneboth Δ  𝑥𝜎𝑧Sensitive:

𝑃  𝑥

𝑃𝑧
(𝑧)

Δ𝜅  𝑥,𝑧 > 0 Δ𝜅  𝑥,𝑧 = 0 Δ𝜅  𝑥,𝑧 = ∞ Δ𝜅  𝑥,𝑧 = 0

Figure 3.12.: Variance of weights: The sensitivity provided by weights of general ΔḠ and fI
can be divided into four possible regions, where either both, one, or none are

sensitive. Thus, the variance of their ratio, which is related to the coloured

areas, is either positive, vanishing or in�nite.

𝑧0

𝑃0(𝑧)

𝑃1(𝑧)
𝑃2(𝑧)

𝑃3(𝑧)

Figure 3.13.: Degeneracy of weights: Sketched are typical weights for increasing scattering

multiplicities. The main asymmetry is between the weights %0 and %≥1. Thus,

observing di�erences in estimates from operators composed of weights %>1

requires increasing �ne tuning of the potential.
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3.3. Constraints for Potential Moments

In the krypton-83m measurements estimates of Δ10 [+ ] and f0 [+ ] can be obtained. Since

the weights %0, %1 depend on operating conditions, uncertainties arise if these estimates

are required in other operating conditions or if the weights are not known well enough in

the �rst place.

The question how obtained estimates Δ~̄ , f2

I constrain measurements of general operators

$ [+ ] can be studied by using variational calculus on constrained Lagrangians. In a �rst

step this is done by considering constraints of the �xed order potential moments ΔḠ [+ ]
and f2

G [+ ]. The more general approach of studying mixed operators of up to second order

in the potential is presented in section 3.5.

Constraints are derived by �nding stationary solutions of Lagrangians L constrained with

Lagrange multipliers _Δ, _f

LΔ = ΔḠ [+ ] + _ΔΔ~̄ [+ ] + _ff2

I [+ ] , (3.46)

Lf = f2

G [+ ] + _ΔΔ~̄ [+ ] + _ff2

I [+ ] . (3.47)

The operators ΔḠ and fG are representations of general purely linear$1

Ḡ [...] and quadratic

$2

G [...] operators with derivatives

X$1

Ḡ [+ ]
X+

= %Ḡ , (3.48)

X$2

G [+ ]
X+

= 2(+ − 〈+ 〉G )%G , (3.49)

and the only necessary conditions are the normalisations of the weights

〈1〉G = 1 , 〈1〉Ḡ = 0 . (3.50)

3.3.1. Constraints for Linear Measures of Inhomogeneity and Potential
Shape

Stationary solutions of equation 3.46 are obtained by requiring a vanishing derivative

dLΔ

d+
= %Ḡ + _Δ%~̄ + 2_f (+ − 〈+ 〉I)%I = 0 . (3.51)

In the following, the di�erent cases of vanishing _Δ or _f are considered separately.

Measured only �~̄ (,2 = 0, ,� ≠ 0): In this case the obtained Δ~̄ [+ ] constrains ΔḠ [+ ]
solely if the operators di�er only by a constant scaling ΔḠ = _Δ~̄ . The potential shape is

unknown.
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3. Observables of the WGTS Plasma Potential in the Presence of Inelastic Scattering

Measured only 2z (,2 ≠ 0, ,� = 0): In this case the solution reads

+ − 〈+ 〉I = −
1

2_f

%Ḡ

%I
. (3.52)

_f is determined by calculating the expectation value of the known fI [...]

f2

I [+ ] =
1

4_2

f

f2

I

[
%Ḡ

%I

]
, (3.53)

=
1

4_2

f

^2

Ḡ,I , (3.54)

such that the stationary solutions are

+ − 〈+ 〉I = ±
fI

^Ḡ,I

%Ḡ

%I
. (3.55)

The expectation value of ΔḠ [...] reads

ΔḠ [+ ] = ±
fI

^Ḡ,I
ΔḠ

[
%Ḡ

%I

]
, (3.56)

= ± fI
^Ḡ,I

^2

Ḡ,I , (3.57)

= ±fI^Ḡ,I . (3.58)

Since the kernel of ΔḠ is not empty, such that there exist expectation values in between

these two extrema (±), the image of ΔḠ [+ ] for all potentials with given fI [+ ] is bounded.

Another way of writing this equation is

− 1 ≤ d̂Ḡ,I [+ ] =
1

^Ḡ,I

ΔḠ
fI
[+ ] ≤ 1 ∀+ ∈ !2 , (3.59)

which is exactly the boundedness of the shape operators. The extremal solutions 3.55

de�ne the symmetry which these operators measure. At the extrema the symmetry is fully

prevalent and the measurement is injective.

Measured both2z and�~̄ (,2 ≠ 0, ,� ≠ 0): The following de�nitions of 0, 1 ∈ R are used

for brevity:

+ − 〈+ 〉I = −
1

2

_Δ

_f

%~̄

%I
− 1

2_f

%Ḡ

%I
, (3.60)

≡ 0
%~̄

%I
+ 1%Ḡ

%I
. (3.61)
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3.3. Constraints for Potential Moments

They are found by calculating the expectation values of the known Δ~̄ [...] and f2

I [...],
yielding

Δ~̄ [+ ] = 0Δ~̄
[
%~̄

%I

]
+ 1Δ~̄

[
%Ḡ

%I

]
, (3.62)

= 0^2

~̄,I + 1^Ḡ~̄,I , (3.63)

f2

I [+ ] = 02f2

I

[
%~̄

%I

]
+ 12f2

I

[
%Ḡ

%I

]
+ 201CovI

[
%~̄

%I
,
%Ḡ

%I

]
, (3.64)

= 02^2

~̄,I + 12^2

Ḡ,I + 201^Ḡ~̄,I . (3.65)

If the �rst equation is solved for 1 and plugged into the second, a quadratic equation for 0

is obtained. It has the solutions

0± =
fI

^~̄,I

d̂~̄,I ± dḠ~̄,I
√

1 − d̂2

~̄,I√
1 − d2

Ḡ~̄,I

 , (3.66)

where d̂~̄,I is the shape operator (equation 3.31) and dḠ~̄,I is the correlation coe�cient

(equation 3.44).

The solutions for 1 now read

1± = ∓
fI

^Ḡ,I

√
1 − d̂2

~̄,I√
1 − d2

Ḡ~̄,I

. (3.67)

Solutions and elliptic constraints: Summarising, stationary potentials are of the form

+ − 〈+ 〉I = fI


©­­«d̂~̄,I ± dḠ~̄,I

√
1 − d̂2

~̄,I√
1 − d2

Ḡ~̄,I

ª®®¬
%~̄

%I

1

^~̄,I
∓

√
1 − d̂2

~̄,I√
1 − d2

Ḡ~̄,I

%Ḡ

%I

1

^Ḡ,I

 . (3.68)

The expectation value of the operator ΔḠ [...] is found to be

ΔḠ (fI, d̂~̄,I) = fI^Ḡ,I
(
dḠ~̄,I d̂~̄,I ±

√
1 − d̂2

~̄,I

√
1 − d2

Ḡ~̄,I

)
, (3.69)

⇒ d̂Ḡ,I (d̂~̄,I) = dḠ~̄,I d̂~̄,I ±
√

1 − d̂2

~̄,I

√
1 − d2

Ḡ~̄,I , (3.70)

which is a parametrisation of an ellipse, as shown in �gure 3.14. The ± give the maximum

and minimum solutions.

The solution for the shape operator d̂Ḡ,I depends only on the weight correlation dḠ~̄,I . Thus,

for a given estimate of d̂~̄,I the central value ` and half sided maximum uncertainty Δ of

d̂Ḡ,I are given by

` (d̂Ḡ,I) = dḠ~̄,I d̂~̄,I , (3.71)

Δ(d̂Ḡ,I) =
√

1 − d2

Ḡ~̄,I

√
1 − d̂2

~̄,I . (3.72)

These should not be understood as moments of a Gaussian distribution, since a priori all

estimates in the allowed interval are of equal probability.
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Figure 3.14.: Constraints of potential shapes: The shape operator d̂Ḡ,I is constrained by the

measured shape d̂~̄,I . The allowed image is fully described by the correlation

dḠ~̄,I of the involved weights. Here the example of d̂~̄,I = 0.8 is depicted.

Inversely, if d̂Ḡ,I is the true potential shape, i.e. d̂Ḡ,I = 1, it is visible that the

only possible ellipse is given by dḠ~̄,I = d̂~̄,I .

Possibility and shape testing: Using the concept of possibility, an intuitive interpretation

can be obtained when using d̂Ḡ,I as a test potential shape: A required condition for d̂Ḡ,I
to be the true shape, i.e. d̂Ḡ,I = 1, is dḠ~̄,I = d̂~̄,I . This can be seen from the position of the

maxima in �gure 3.14. Using this condition, the necessity that it is the true potential shape

is obtained from equation 3.71, such that it holds
5

pos(d̂Ḡ,I = 1) = X (dḠ~̄,I − d̂~̄,I) , (3.73)

nec(d̂Ḡ,I = 1) = d̂2

~̄,I . (3.74)

In this case the shape constraints are given by

+ + − 〈+ 〉I = fI
%Ḡ

%I

1

^Ḡ,I
, (3.75)

+ − − 〈+ 〉I = fI
[
2d̂~̄,I

%~̄

%I

1

^~̄,I
− %Ḡ
%I

1

^Ḡ,I

]
. (3.76)

5
This de�nition of necessity uses the size of the image of d̂Ḡ,I , i.e. the length 2(1 − d̂2

~̄,I) of the allowed

vertical black line in �gure 3.14. This length intuitively quanti�es the cardinality of its inverse image,

i.e. of the set of potential shapes, that can lead to the given measurement of d̂~̄,I . In order to de�ne the

probability that a given potential shape is the true shape, the cardinality of the inverse image and not

that of the image would have to be used. In all cases except d̂~̄,I = ±1 this cardinality is in�nite, so

probabilities cannot be normalised. Further reading about possibility theory for example in [DP91].
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3.3. Constraints for Potential Moments

+ + is the test shape. Together with + − it limits an error band of transformations of the

shape, which also produce the given d̂~̄,I . This is illustrated in �gures 3.15 and 3.16 for the

case of the krypton measurement. If the test potential shape and measurement show large

antisymmetry, the necessity that the test potential shape is the true potential shape is

large. In contrast, if the test potential shape and measurement show small antisymmetry,

the test potential shape can be the true potential shape, but the necessity is small. Thus,

the krypton measurement can con�rm or dismiss antisymmetrical potentials, but it cannot

con�rm symmetrical potentials. The shown potential shape transformations go along a

vertical line of �xed d̂~̄,I in the ellipse with dḠ~̄,I = d̂~̄,I in �gure 3.14, for example the solid

black line, if d̂~̄,I = 0.8. In both �gures 3.15 and 3.16 the obtained error band depends on the

used test shape and only the total quadratic area of the band fI [+ + −+ −] = 2fI

√
1 − d̂2

~̄,I

is known.

3.3.2. Constraints of Quadratic Operators and Inhomogeneity Localisation

The variational derivation for the constraints of quadratic operators is cumbersome,

and therefore found in appendix A.2. The result is that the constraint depends on the

localisation of the potential, which is sketched in �gure 3.17. If the inhomogeneity is

caused by a fully localised �uctuation at I0, then the ratio of variances with di�erent

weights is given by the ratio of the weights at I0. Vice versa, if the inhomogeneity is fully

delocalised, all variances measure the same value. Thus, the constraint is

Min

[
%I ′

%I

]
≤
f2

I ′

f2

I

[+ ] ≤ Max

[
%I ′

%I

]
. (3.77)

In the following, this is made plausible using a simple potential model.

Localisation model: The following potential is a simple representation of strongly lo-

calised inhomogeneity at I0

+ (I) =
{
E −1

2
≤ I − I0 < 1

2
,

0 else .
(3.78)

For small 1 the weights are constant on the scale of 1, such that the potential moments are

easily obtained from their de�ning integrals

〈+ 〉I = %I (I0)
1

!WGTS

E , (3.79)

ΔḠ [+ ] = %Ḡ (I0)
1

!WGTS

E , (3.80)

f2

I [+ ] =
1

!WGTS

E2

(
1 − %I (I0)

1

!WGTS

)
. (3.81)

The equation for f2

I [+ ] can be used to �x the relation between E and 1 in the limit 1 → 0.

However, if ratios are considered, E cancels and the expectation value of the shape operator
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Figure 3.15.: Testing potential shapes, high correlation: The plasma potential simulation

(red, from �gure 1.19) has an antisymmetry d̂
10,0 = 0.88 (solid green). Thus,

if a di�erent value of antisymmetry is measured, the simulated shape is not

the true shape. The continuous transformations from red to dashed red also

would have produced the measured value, which can be interpreted as an

error band. The red curves are the true shapes with a necessity of 0.88
2
. Since

the absolute measured value is not one, d̂
10,0 is not the true shape and is not

part of the transformations.
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Figure 3.16.: Testing potential shapes, low correlation: For low correlation d̂
10,0 and the

assumed parabolic test shape (red) di�er in symmetry, such that the obtained

error band is distinct from d̂
10,0. In addition, the transformations allow for

large variance, such that the necessity d̂2

10,0
for the test shape to be the true

shape is small. In both plots the distribution of the uncertainty depends on

the used test shape.
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3.3. Constraints for Potential Moments
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Figure 3.17.: Potential variance depending on inhomogeneity localisation: The middle

graph shows sketched weights of two variances f2

0
[...] and f2

G [...]. The upper

graph shows the ratio of their expectation values (blue) of a potential (red

dashed) which is constant despite a localised �uctuation at position I0. In

this case, the ratio of their expectation values is given by the ratio of the

weights at I0. The inverse relation is also true, i.e. in the case of delocalised

inhomogeneity the expectation values are identical, which is depicted by the

sinusoidal potential in the lower graph.
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3. Observables of the WGTS Plasma Potential in the Presence of Inelastic Scattering

as well as the ratio of the di�erent variances can easily be calculated:

f2

I ′

f2

I

[+ ] = %I ′ (I0)
%I (I0)

1 − %I ′ (I0) 1
!WGTS

1 − %I (I0) 1
!WGTS

1�!WGTS→ %I ′ (I0)
%I (I0)

, (3.82)

d̂Ḡ,I [+ ] =
1

^Ḡ,I

%Ḡ (I0)√
%I (I0)

√√√ 1
!WGTS

1 − %I (I0) 1
!WGTS

1�!WGTS→ 0 . (3.83)

Thus, maximally localised potentials are uncorrelated to any given shape which is not

localised itself, and consequently also ΔḠ vanishes. In an approximate way, non-vanishing

correlation to a shape and maximum localisation are opposites and the allowed
fI′
fI

for

given shape d̂Ḡ,I is again approximately elliptic. This is shown in �gure A.2 in the appendix.

3.3.3. Constraints of Unweighted Standard Deviation and Peak-to-Peak
Value

For physics-driven potential models the relation of the weighted to the unweighted �rst
moment (or unweighted mean)

〈+ 〉 =
∫
I

dI + (I)∫
I

dI
=

∫
I

dI

!WGTS

+ (I) (3.84)

is of interest. Here, the integration is taken over the length of the WGTS, and the results

do depend on these limits. This is in contrast to the weighted case, where the weights are

vanishing outside the WGTS, due to the diluted particle densities.

Thus, the normalisation condition

〈1〉 =
∫
I

dI

!WGTS

= 1 (3.85)

is obtained.

Unweighted standard deviation: The operator for the unweighted standard deviation now

has the usual form

f [+ ] ≡
√

Var[+ ] =
√
〈+ 2〉 − 〈+ 〉2 . (3.86)

If these operators are interpreted as having weights that are constant in the region of

interest in the central WGTS and vanish outside, constraints can be calculated using the

equations from the previous sections.

However, these methods do not work if the operator cannot be de�ned in terms of weight

functions or simple derivatives. One case of interest is the peak-to-peak value.
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Figure 3.18.: Minimum peak-to-peak value for given ΔḠ : If the potential + is equal to its

maximum at positive weights and equal to its minimum at negative weights

(or vice versa), the maximum ΔḠ [+ ] for given PP[+ ] is observed. However,

such potentials have high derivatives at %Ḡ (I) = 0.

Peak-to-peak value for given�x̄ : For simple approximations the peak-to-peak value

PP[+ ] = Max[+ ] −Min[+ ] (3.87)

is of interest, with the de�nitions of the maximum and minimum

Max[+ ] = maximum {+ (I), I ∈ [−!WGTS, !WGTS]} ,
Min[+ ] = minimum {+ (I), I ∈ [−!WGTS, !WGTS]} .

Trivially, for given Max[+ ] and Min[+ ] a piecewise constant potential of the form

+ (I) = Max[+ ]Θ(%Ḡ ) +Min[+ ]Θ(−%Ḡ ) (3.88)

leads to extremal ΔḠ [...], which is sketched in �gure 3.18. It follows:

ΔḠ [+ ] = ΔḠ [Max[+ ]Θ(%Ḡ ) +Min[+ ]Θ(−%Ḡ )] , (3.89)

= Max[+ ]ΔḠ [Θ(%Ḡ )] +Min[+ ]ΔḠ [Θ(−%Ḡ )] , (3.90)

3.18

= Max[+ ]ΔḠ [Θ(%Ḡ )] −Min[+ ]ΔḠ [Θ(%Ḡ )] , (3.91)

= (Max[+ ] −Min[+ ]) ΔḠ [Θ(%Ḡ )] , (3.92)

= PP[+ ]ΔḠ [Θ(%Ḡ )] . (3.93)

Thus, the extremum does not depend on Max[+ ] or Min[+ ] individually, but only on the

peak-to-peak value of the potential. Consequently, the potential

+PP − 〈+PP〉 = PP[+PP] (Θ(%Ḡ ) − 〈Θ(%Ḡ )〉) (3.94)
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produces the extremal ΔḠ [+ ] for all potentials and given peak-to-peak value, the extremum

being

ΔḠ [+PP] = PP[+PP]ΔḠ [Θ(%Ḡ )] . (3.95)

The other way around, this means that a given ΔḠ [+ ] requires a PP[+ ] satisfying

PP[+ ]
|ΔḠ [+ ] |

≥ PP[+PP]
ΔḠ [+PP]

=
1

ΔḠ [Θ(%Ḡ )]
,

⇒ PP[+ ] ≥ 1

ΔḠ [Θ(%Ḡ )]
|ΔḠ [+ ] | . (3.96)

This gives a lower limit of the peak-to-peak value if a measurement of ΔḠ [...] was obtained.

Physical approximations: The solutions of the form 3.94 or continuously di�erentiable

approximations to it have physically unlikely high derivatives at I with %Ḡ (I) = 0. A more

physical shape of potential is found analogous to section 3.2.1, i.e. by demanding that the

potential leads to extremal values in

d̂Ḡ,I [+ ] ≡
1

^Ḡ,I

ΔḠ [+ ]
fI [+ ]

. (3.97)

Thus, the solutions are the most constant in terms of the chosen fI , while still producing

the given ΔḠ . By calculating the peak-to-peak value of the potential of equation 3.55, the

approximate constraint

PP[+ ] &
PP

[
%Ḡ
%I

]
ΔḠ

[
%Ḡ
%I

] |ΔḠ [+ ] | (3.98)

is obtained.

Peak-to-peak value for given 2z : From the mean value theorem it follows

PP[+ ] ≤ Max

[����d+ (I)
dI

����] !WGTS , (3.99)

i.e. a given peak-to-peak value requires a large enough derivative value at a certain point

in the WGTS. Trivially, the linear potential

+ (I) = PP[+ ] I

!WGTS

(3.100)

has the smallest maximum derivative and all other potential shapes require a larger value.

This is also visible in �gure 3.18, where the linear connection of the maximum at the rear

and the minimum at the front has the smallest possible derivative. The same potential also

gives the minimum unweighted standard deviation

f

[
PP[+ ] I

!WGTS

]
≤ f [+ ] , (3.101)

⇔ PP[+ ] ≤ !WGTS

f [I] f [+ ] , (3.102)
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3.4. Expansions of Operators of Mixed Scattering Multiplicity

for a given peak-to-peak value. The factor is calculated to be

!WGTS

f [I] = !WGTS (〈I2〉 − 〈I〉2︸︷︷︸
=0

)−1/2 =

(
I3

3

����1/2
−1/2

)−1/2

=
√

12 ≈ 3.46 . (3.103)

Using equation 3.77 to derive an upper constraint of the unweighted standard deviation

f [+ ] by a general standard deviation fI [+ ] yields

f [+ ] ≤ 1√
Min[%I]

fI [+ ] . (3.104)

As discussed in section 3.3.2 this constraint depends on the localisation of the inhomo-

geneity of the potential. Only if the inhomogeneity is fully localised at the position of

the minimum of the weight %I the left and right side of equation 3.104 are equal. If the

inhomogeneity is delocalised, the standard deviations are the same. Also, a non-vanishing

estimate of a shape d̂Ḡ,I can improve this constraint, as discussed in section 3.3.2.

Summarising, it is possible to constrain the peak-to-peak value from the measurement of

ΔḠ and fI from both sides

1

ΔḠ [Θ(%Ḡ )]
|ΔḠ [+ ] | ≤

PP

[
%Ḡ
%I

]
ΔḠ

[
%Ḡ
%I

] |ΔḠ [+ ] | . PP[+ ] ≤ 3.46√
Min[%I]

fI [+ ] . (3.105)

If the unweighted standard deviation is used (fI = f) the weight is constant in the central

WGTS, such that Min[%I] = 1. Also, for the unweighted standard deviation the upper

constraint is obtained by linear potentials. Thus, potentials that include more structure

(i.e. higher derivatives) produce a larger standard deviation for a given peak-to-peak value.

If both the peak-to-peak value and f (or as an approximation fI) are given this allows to

make a prediction on the necessary derivatives of the potential, which is applied on KNM2

krypton data in section 6.3.1.

Since the constraints are derived from fI and ΔḠ which are only measured in the central

WGTS, they only apply to the peak-to-peak value in this region. The lower constraints are

plotted for di�erent conditions in section 5.2.

3.4. Expansions of Operators of Mixed Scattering Multiplicity

In this section operators are studied which have mixed contributions from di�erent scat-

tering multiplicities. Those operators are relevant for continuous spectra which have

overlapping rate contributions from electrons of di�erent scattering multiplicities, like in

the tritium β measurements at KATRIN. A sketch of a typical measurement can be seen in

�gure 3.19.

The expansion of general operators in the �rst moments up to second order in the potential

reads

$ (2) [+ ] = −
∑
8

n′8 〈+ 〉8 +
∑
8

(
08 〈+ 2〉8 +

∑
9

08 9 〈+ 〉8 〈+ 〉 9

)
. (3.106)
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Figure 3.19.: Mixture of scattering e�ects in continuous spectra: In continuous spectra

like the tritium β spectrum the rate contributions of the di�erent scattering

multiplicities overlap in energy. Thus, the observables of the plasma potential

have contributions from plasma moments of di�erent scattering weights.

The zeroth order in the potential is a constant shift and is set to zero. n′8 , 08 and 08 9
are coe�cients ∈ R. The 08 9 are symmetrical in their indices. The negative sign of the

linear component is used to account for the fact that positive changes in the potential

lead to negative changes in electron spectra due to the fact that electrons carry negative

elementary charge. Square and angular brackets are used to indicate the functional nature

of the operators in contrast to round brackets for scalar dependencies. The description can

be limited to second order in the potential in all problems relevant to tritium β systematics,

which follows from the fact that the neutrino mass is mathematically equivalent to the

second order energy perturbation of the β spectrum [Sle16].

Perturbation approach in scattering and separability: In the usual KATRIN measurement

the contribution from scatterings decreases with increasing scattering multiplicity, thus

enabling a perturbative treatment.

Also, since the total spectrum is a summation over spectra of pure scattering multiplicity

as visible in �gure 3.19, observables of the total spectrum can only depend on sum of

observables of the individual spectra. Thus, equation 3.106 can be simpli�ed to

$ (2) [+ ] =
∑
8

(
−n′8 〈+ 〉8 + 08f2

8 [+ ]
)
. (3.107)

76



3.4. Expansions of Operators of Mixed Scattering Multiplicity

In the following, two classes of those operators are discussed:

• Measures of non-constant portions of the potential in section 3.4.1: Those quantify

potential-induced changes of the observables of the non-uniformity of the energy

scale, like the neutrino mass in the tritium β spectrum.

• Measures of a mean of the potential in section 3.4.2: Those quantify potential induced

changes of observables of the total energy scale, like shifts of the tritium β-spectrum

endpoint.

In the krypton-83m case this distinction was simply given by the �rst and second order

in potential. However, due the mixed contributions of moments of di�erent scattering

multiplicity, this distinction is no longer given in the tritium β spectrum.

For simplicity, at the beginning the description is restricted to a maximum scattering

multiplicity of one. In section 3.4.3 it is shown by using generalised potential moments that

the approximated equations for one scattering and the exact equations for all scatterings

are of the same form, if the scattering is a perturbation.

Since the derived operators are only composed of operators ΔḠ [+ ] and f2

I [+ ] the longitu-

dinal inhomogeneity can be constrained from the estimates obtainable in krypton-83m

measurements, as presented in section 3.3. These constraints are calculated for operators

of �xed potential order, i.e. they constrain ΔḠ [+ ] and f2

I [+ ] separately, which neglects

correlations. To avoid that, in section 3.5 it is shown how to constrain operators of mixed

orders in potential like equation 3.107 or the neutrino mass shift derived thereof.

3.4.1. Operators of Longitudinal Inhomogeneity

Operators of longitudinal inhomogeneity need to vanish for constant potentials+ (I) ≡ E0.

Since for constant potentials any mean is equivalent

〈E0〉8 = E0 ∀8 ∈ N0 , (3.108)

it holds

$ (2) [E0] = −E0

∑
8

n′8 = 0 ∀E0 ∈ R , (3.109)

⇒
∑
8

n′8 = 0 . (3.110)

Using Δ8 9 [+ ] = Δ80 [+ ] − Δ 90 [+ ] to reformulate the �rst term of equation 3.107 ful�ls this

condition:

$ (2) [+ ] =
∑
8

(
−n8Δ80 [+ ] + 08f2

8 [+ ]
)
. (3.111)

The n8 are free coe�cients. Notably, since also the neglected higher central potential

moments (skewness, kurtosis etc.) vanish for constant potentials the proportionality to

Δ80 [+ ] remains also in higher potential order and higher powers of Δ80 [+ ] do not appear.
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Zeroth order scattering: In zeroth order scattering

$
(2)
(0) [+ ] = 00f

2

0
[+ ] (3.112)

is obtained. Thus, in the no-scattering case second order measures of potential inhomo-

geneity are given by the variance which is weighted with zero-scattering weights. It

is well known that 00 = −2 in case of energy systematics on the tritium β spectrum as

observed by shifts of the squared neutrino mass $
(2)
(0) [+ ] = Δ<2

a [+ ] [RK88]. However, in

case of the starting potential already the zero-scattering description is di�erent from the

previously known relation, since the necessary weighting with the zero-scattering weight

was identi�ed.

Up to first order scattering: In up to �rst order scattering the operator reads

$
(2)
(1) [+ ] = −n1Δ10 [+ ] + 00f

2

0
[+ ] + 01f

2

1
[+ ] , (3.113)

i.e. a term proportional to the mean di�erence Δ10 [+ ] has to be considered, which is linear

in the potential. Thus, $
(2)
(1) [+ ] has mixed �rst and second order potential components

and is no longer strictly parabolic. In case of the shift of the squared neutrino mass 01 is

small, which is shown in chapter 5, such that it reads

Δ<2

a [+ ] = −n1Δ10 [+ ] − 2f2

0
[+ ] . (3.114)

The fraction of scattered electrons in the measurement determines n1 and the magnitude of

the potential thus determines which of the terms is dominant. The general curve sketching

is found in section 3.6.1.

Susceptibility tomean di�erences: n8 has units of energy. A more general way of de�ning

it is

n8 ≡ −
m$ (2)

mΔ80
, (3.115)

i.e. it is the susceptibility of the measured observable with regard to perturbations in form

of mean di�erences Δ80. In principle, the de�nition using the derivative accounts for the

fact that it is only the linear approximation of a more complete theory. However, due to the

separability of the spectra for di�erent scattering multiplicities, leading to equation 3.111,

no higher-order terms in Δ80 are possible, such that a truely linear connection is expected.

The product n8Δ80 [+ ] accounts for the broken longitudinal symmetry of the source energy

scale. Notably, the two ingredients are that the energy scale is actually inhomogeneous

(Δ80 [+ ] ≠ 0) and that scattering is present, which leads to longitudinal sensitivity on the

potential (n8 ≠ 0). In addition, since only one symmetry is a�ected, this leads to only one

new degree of freedom. This is shown below by absorbing the summation in equation 3.111

into a new operator.

In the perturbative approach coe�cients like n8 and thus the expansion of the operator can

be determined order by order in simulation. This is done by calculating the derivatives 3.115
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Δ𝑖0[𝑉]0

Δ𝑚𝜈
2[𝑉]

𝜖𝑖 ≡ −
𝜕𝑂(2)

𝜕Δ𝑖0

𝜌𝑑1

𝜌𝑑2

Figure 3.20.: Determination of coe�cients in simulation: Due to the perturbative approach

expansion coe�cients for any operator can be determined in simulation by

considering partial derivatives. Here the determination of the mean di�erence

susceptibility of the neutrino mass for di�erent tritium column densities is

sketched. When repeated for many column densities, �gure 3.21 can be

constructed.

(i.e. by using the pull method, cf. section 1.2.1) which is sketched in �gure 3.20 for$ (2) [+ ] =
Δ<2

a [+ ]. Due to the dependence on scattering contribution, the susceptibilities depend

on the operating conditions and the measurement time distribution. A sketch of n8 in

dependence of the tritium column density can be found in �gure 3.21. The detailed analysis

for typical KATRIN conditions is carried out in chapter 5.

3.4.2. Operators of Mean Potential

For operators measuring means, it is expected that they are of �rst order in the potential:

$1 [+ ] = −
∑
8

08 〈+ 〉8 , (3.116)

= − 〈+ 〉
0

∑
8

08 −
∑
8

08Δ80 [+ ] . (3.117)

For constant potentials the scattering e�ects need to vanish, i.e.∑
8

08 ≡ 0 (3.118)

is a constant, regardless of the amount of scattering. Usually 0 = 1 holds, as it is the case

for the endpoint shift Δ�0 [+ ] of the tritium β spectrum.

Thus, the zeroth order reads

$1

(0) [+ ] = −0 〈+ 〉0 . (3.119)
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𝜖1in meV

𝜌𝑑
20 % 100 %

1400

500

0

1x scattered electron contribution

Figure 3.21.: Sketch of the mean di�erence susceptibility as function of scattering contri-

bution: The larger the contribution of scattered electrons to the measurement,

the larger n1 gets. Here, the measure of potential inhomogeneity is the shift of

the squared neutrino mass Δ<2

a [+ ] and the scattering contribution is given

by the tritium column density d3 in percentage of nominal.

Again, the zero-scattering weighting is necessary even for situations where higher scatter-

ing orders are negligible.

In scattering up to �rst order the operator is

$1

(1) [+ ] = −00 〈+ 〉0 − 01 〈+ 〉1 , (3.120)

= −0 〈+ 〉
0
− 01Δ10 [+ ] , (3.121)

which is

Δ�0 [+ ] = − 〈+ 〉0 − 01Δ10 [+ ] (3.122)

for the endpoint shift of the tritium β spectrum.

As before the coe�cients can generally be de�ned as

08 ≡ −
m$

m 〈+ 〉8
, (3.123)

8>0

= − m$
mΔ80

. (3.124)

Since observables of mean and inhomogeneity like tritium endpoint and neutrino mass

shift are usually �tted at the same time, the last step allows to �nd n8 and 08 at the same time

in dependence of Δ80. The plots of the 08 for di�erent conditions are found in chapter 5.
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𝑧0

𝑎0𝑃0(𝑧)

𝑎1𝑃1(𝑧)

𝑎>1𝑃>1(𝑧)

𝑃𝑦(𝑧)

Figure 3.22.: Generalised weights for measures of means: For the relevant scattering con-

tributions at KATRIN 01 is in the region of up to 15 %, such that general

measurements of mean potentials 〈+ 〉~ (dotted green) look like measure-

ments of mostly 〈+ 〉
0

(solid green) with a correction of 〈+ 〉
1

(purple), which

shifts the sensitive region slightly to the back. Higher scattering orders (blue)

are smaller.

3.4.3. Generalised Weights for Infinite Scattering Order

In this section it is investigated how the in�nite summations over the scatterings can be

condensed into new weight functions
6
. It is shown that even up to in�nite scattering

order the operators can be expanded in 〈...〉~ , f2

I [...] and ΔḠ [...] with generalised weights

%Ḡ , %~ and %I .

Operators of means: The trivial case is the measure of the mean

$1

∞ [+ ] = −
∑
8

08 〈+ 〉8 , (3.125)

≡ −0 〈+ 〉~ , (3.126)

with

0 ≡
∑
8

08 , %~ ≡
1

0

∑
8

08%8 . (3.127)

Due to the condition 3.118, 0 ≠ 0 holds. %~ satis�es the usual normalisation condition 3.3.

Thus, the exact expression for any operator measuring a mean potential in presence of

scattering has the usual form of a longitudinal average. However, the scattering weight is

replaced with a generalised weight function %~ , which depends on all scattering contribu-

tions. Figure 3.22 shows the typical KATRIN case. Notably, the di�erent analysis methods

in KATRIN (i.a. β-spectrum endpoint, krypton-83m, PRO-KATRIN, 300 V analysis
7
) e�ec-

tively see di�erent scattering contributions, such that they all measure di�erent means.

6
In practice the summation is always cut by the maximum multiplicity of scatterings which is actually

observed in the chosen analysis range of the tritium β spectrum.

7
A full description of the last two methods is found in [Fri20].
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0

𝜖0𝑃0(𝑧)

𝜖1𝑃1(𝑧)

𝑧𝜖>1𝑃>1(𝑧)

𝑃  𝑥(𝑧)

Figure 3.23.: Generalised weights for measures of mean di�erences: In the relevant regimes

of scattering contributions n1 (purple) is dominant over higher terms n>1, such

that general measurements of ΔḠ [+ ] (dotted blue) look like measurements of

mostly Δ10 [+ ] (solid blue) with some shift of sensitivity to the back.

Operators of longitudinal inhomogeneity: Similarly, in case of operators of longitudinal

inhomogeneity, it holds for the linear terms

$
(2),linear

∞ [+ ] = −
∑
8

n8Δ80 [+ ] , (3.128)

≡ −nΔḠ [+ ] , (3.129)

with
8

n ≡
�����∑
8

n8

����� , %Ḡ ≡
1

n

∑
8

n8 (%8 − %0) . (3.130)

Thus, the exact expression for any linear measure of inhomogeneity of potential in presence

of scattering has the form of a mean di�erence ΔḠ [+ ] with a generalised weight function

%Ḡ . Figure 3.23 shows the typical KATRIN case.

Using the de�nitions

%I ≡
1

0

∑
8

08%8 , 0 ≡
∑
8

08 , (3.131)

8
The case n = 0, ∃n8 ≠ 0 is possible, in this case a di�erent normalisation needs to be chosen. The

consequences are further discussed below and in chapter 5. The positive normalisation is chosen to

avoid phase jumps of the operator at

∑
8 n8 = 0.
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3.4. Expansions of Operators of Mixed Scattering Multiplicity

the quadratic components can be written as

$2

∞ [+ ] =
∑
8

08f
2

8 [+ ] , (3.132)

=
∑
8

08 〈+ 2〉8 −
∑
8

08 〈+ 〉28 , (3.133)

= 0 〈+ 2〉I −
∑
8

08 (〈+ 〉I − ΔI8 [+ ])2 , (3.134)

= 0 〈+ 2〉I − 0 〈+ 〉2I + 2 〈+ 〉I
∑
8

08ΔI8 [+ ] −
∑
8

08Δ
2

I8 [+ ] , (3.135)

= 0f2

I [+ ] −
∑
8

08Δ
2

I8 [+ ] . (3.136)

Using the shape operators 3.31 this becomes

$2

∞ [+ ] = 0f2

I [+ ]
(
1 −

∑
8

08

0
d̂2

I8,I
[+ ]^2

I8,I

)
, (3.137)

≡ 0f2

I [+ ]
(
1 − X0[+ ]

0

)
. (3.138)

Thus, the exact expression for any measure of potential variance in presence of scattering

has the form of a variance f2

I [+ ] with a generalised weight function %I . In addition, the

total amplitude of the variance term has a dependence on the potential shape. Figure 3.24

shows the typical KATRIN case.

Adding both terms, the exact form of separable operators of longitudinal inhomogeneity

in the presence of scattering is

$
(2)
∞ [+ ] = −nΔḠ [+ ] + (0 − X0[+ ]) f2

I [+ ] . (3.139)

It consists of a generalised mean di�erence ΔḠ [+ ] and a generalised variance f2

I [+ ] with

amplitudes −n and 0 − X0[+ ].

3.4.4. Discussion

At KATRIN usually the scattering contributions decrease with scattering multiplicity and

X0[+ ]
0
� 1 holds. This leads to the �nal result of

$
(2)
∞ [+ ] = −nΔḠ [+ ] + 0f2

I [+ ] . (3.140)

The fundamental di�erence to the non-scattering case is given by the energy scale n . It

is the susceptibility of $
(2)
∞ [+ ] to the potential shape de�ned by %Ḡ . Here it should be

recalled that ΔḠ [+ ] equals the covariance of the potential with %Ḡ .
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𝑧0
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Figure 3.24.: Generalised weights for measures of variances: The presence of higher scatter-

ing orders (purple and blue) moves the sensitive region of general measures of

variances f2

I [+ ] to the back (dotted green) compared to the case of only zero

scattering multiplicity f2

0
[+ ] (solid green). Also, the total amplitude of the

quadratic terms has a small potential shape dependence (coloured area). For

the sketched typical weights, this manifests in a dependence of the variance

contribution on the potential antisymmetry. However, as shown in chapter 5

the contributions of 8 > 1 can be neglected for typical KATRIN conditions

due to the intrinsic width of the energy loss function.

Normalisation and implementation: Since in continuous spectra ΔḠ [+ ] is not an observ-

able, it depends on normalisation e�ects. For n = 0, ∃n8 ≠ 0, ΔḠ is singular. In all

observables like the left hand side of equation 3.140, which only depend on the product

nΔḠ , those singularities caused by the above normalisation cancel. Still, the chosen rep-

resentation and normalisation by the total susceptibility has practical applications when

implementing the systematic uncertainty. In the simulation this can only be done by

shifting spectra of di�erent scattering multiplicity compared to the unscattered spectrum.

However, there are in�nitely many combinations of shifts which produce the same neu-

trino mass shift. Since n is the summation over all susceptibilities, in this normalisation

the correct neutrino mass shift is obtained when all spectra are shifted simultaneously by

the value of ΔḠ [+ ]. However, this is only a normalisation choice. The same shift can be

obtained if the summation in equation 3.128 is normalised by a di�erent value, for example

one of the n8 . In this case a di�erent mean di�erence ΔḠ ′ [...] is obtained, and when using

its estimate, the correct neutrino mass shift is obtained by only shifting the spectrum of 8

scattering multiplicity in simulation. While in both cases the value of ΔḠ [+ ] or ΔḠ ′ [+ ]
can be constrained by Δ10 [+ ] from the krypton measurement, it is not the value of the

mean di�erence of the actual potential. If this is favoured, the Δ80 [+ ] can be constrained

individually from the krypton measurement. However, since the Δ80 [+ ] are correlated, this

leads to a more complicated analysis. Since the weights for higher scattering multiplicities

are degenerated (cf. �gure 3.13) and the di�erences of the Δ80 [+ ] are expected to be small,
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3.5. Constraints for General Operators of Longitudinal Inhomogeneity

using the same shift of all mean di�erences and thus the above normalisation is preferred

at the moment.

Normalisation and shapeoperators: When ΔḠ [+ ] is normalised by the standard deviation

fI [+ ], the shape operator d̂Ḡ,I is obtained and the prefactor is the penalty for potentials

that share its shape. This is discussed in section 3.6.1. Thus, this normalisation reveals

the connection of neutrino mass shift to the potential shape. Also, since the standard

deviation only vanishes in the trivial case of constant potentials, this formulation avoids

singularities. However, there is no practical method to implement the shape operators in

simulation, such that here still ΔḠ [+ ] needs to be used.

Constraints and scattering order: The operator$
(2)
∞ [+ ] can be constrained by measuring

any (ΔḠ ′, fI ′), like (Δ10, f0) from krypton-83m. In principle obtaining more estimates from

di�erent weights, like for example higher scattering orders, can improve these constraints.

However, the gain is limited by the degeneracy of the weights for increasing scatterings

(see �gure 3.13) and the associated weight covariances of the krypton and tritium weights.

In terms of potential modelling, more estimates would allow to construct plasma models

with more parameters, but they also su�er from the same degeneracy. Consequently,

obtaining estimates of higher scattering multiplicities from more complicated krypton-

83m measurements is only of limited gain. Fortunately, the measurement of only Δ10 and

f0 in krypton already reasonably constrains the neutrino mass shift, as shown in chapter 5.

The constraints already derived in section 3.3 work on ΔḠ [+ ] and fI [+ ] separately. The

ultimate goal is a constraint of the neutrino mass shift, i.e. of a combination of moments

of the form equation 3.140, which is the topic of the next section.

3.5. Constraints for General Operators of Longitudinal
Inhomogeneity

Estimates of Δ10 [+ ] and f0 [+ ] obtained in krypton-83m mode can be used to constrain

their counterparts for tritium mode weights according to section 3.3. However, this

approach is too conservative, since a given extremal solution for one of the operators is

not an extremal solution of the other, such that both cannot be extremal simultaneously.

The best possible approach for unknown potentials is to constrain equation 3.140 directly.

However, since equation 3.140 is phenomenological and has no representation in the

theoretical model of the tritium β spectrum, in sensitivity studies constrained values of

ΔḠ [+ ] and fI [+ ] have to be used. Here only the methods for the constraint of $
(2)
∞ [+ ]

are described, and an example is found in appendix A.3.

The derivative with regard to the vector of operating parameters s reads

d$
(2)
∞ [+ ] (s)

ds
=
X$ (2) [+ ]
X+

d+ (s)
ds
− d(n (B)ΔḠ [+ ] (s))

ds
+

d(0(s)f2

I [+ ] (s))
ds

. (3.141)
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The �rst term is the change of the potential with the operating conditions, the others

are caused by the change of the weights. A priori the change of the potential with the

operating conditions is unknown. Originally it was argued from plasma physics and

simulation that the krypton mode potential at high temperature is an upper limit to

the tritium mode potential at low temperature [KAT04b]. However, due to the unusual

properties of the plasma at KATRIN, which are discussed in section 1.4.1, this is currently

controversial. Without better knowledge the assumption
d+
ds = 0 is made here. If the

krypton measurement gives an upper limit on the plasma inhomogeneity, this assumption

is conservative for the change of fI [+ ] between the modes. However, ΔḠ [+ ] depends also

on the potential shape, such that the upper limit of the inhomogeneity is not su�cient to

completely constrain its change with the potential. Future measurements will be performed

at the same operating conditions, i.e. at the same potential, such that those problems will

be avoided.

The terms from n (s) and 0(s) do not contribute an uncertainty, since their function of the

operating conditions is known from simulation. In all the following equations they are

meant to be evaluated at tritium conditions, such that the relevant terms are

d$
(2)
∞ [+ ] (s)

ds
≈ −n dΔḠ [+ ] (s)

ds
+ 0

df2

I [+ ] (s)
ds

. (3.142)

The two relevant applications of this equation are seen in �gure 3.25:

• Same conditions: Even if the estimates are obtained at the same operating conditions,

the weights are di�erent due to the di�erent gas pro�les of krypton and tritium.

Thus, a di�erence Δ$ (2)∞ [+ ] needs to be constrained.

• Extrapolation to di�erent conditions: If the operating conditions are di�erent and

the potential is unknown, the only possibility is extrapolation under the assumption

d+
ds = 0. Thus, in linear extrapolation the derivative

d$
(2)
∞ [+ ]
ds needs to be constrained.

Since by replacing
d

ds with Δ both cases are formally equivalent, the notation d(s) is used

in the following for both cases and the method of constrained Lagrangians is applied,

which is shown in section 3.5.1. A second approach exists by expanding the derivatives of

the operators in the original operators, which is shown in section 3.5.2.

3.5.1. Numerical Solution using Constrained Lagrangians

The operator $
(2)
∞ [+ ] is given by the integral

$
(2)
∞ [+ ] =

∫
dI

!WGTS

(+ − 〈+ 〉I) [−n%Ḡ + (0 − X0[+ ]) (+ − 〈+ 〉I)%I] . (3.143)

Neglecting X0[+ ] and the known terms from n and 0, the di�erential reads

d$
(2)
∞ [+ ] (s) =

∫
dI

!WGTS

(+ − 〈+ 〉I) [−nd%Ḡ (s) + 0(+ − 〈+ 〉I)d%I (s)] , (3.144)

i.e. the change of the operator is only given by the change of the weights. Thus, given the

measurement of Δ10 [+ ] and f2

0
[+ ] at krypton-83m conditions, the constrained Lagrangian
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𝒔
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Figure 3.25.: Extrapolating varying operating conditions: Already at equal operating con-

ditions s the prediction of $
(2)
∞ [+ ] from krypton measurements has an un-

certainty Δ$ (2)∞ [+ ] due to the di�erent gas pro�les of krypton and tritium.

For di�erent operating conditions Δs the krypton prediction has to be extrap-

olated. The linear extrapolation is inside the trapezoid. The boundaries are

calculated using constrained Lagrangians.

reads

L = d$
(2)
∞ + _ΔΔ10 + _ff2

0
. (3.145)

Stationary solutions are found by demanding the derivative with regard to + to vanish,

leading to

+ − 〈+ 〉I = −
1

2

_Δ(%1 − %0) − nd%Ḡ (s) − 2_fΔI0%0

0d%I (s) + _f%0

. (3.146)

(_f , _Δ) are determined by demanding f2

0
[+ ] and Δ10 [+ ] to be the measured values, giv-

ing two coupled integral equations. While there are no trivial solutions, in simulation

(f2

0
[+ ],Δ10 [+ ], d$ (2)∞ [+ ]) can be calculated in dependence of (_f , _Δ) and subsequently

the extrema of d$
(2)
∞ [+ ] can be found in dependence of (f2

0
[+ ],Δ10 [+ ]). Multiplying the

extremal change with Δs gives the maximum uncertainties on $
(2)
∞ [+ ] in linear extrapola-

tion.

3.5.2. Expansions of Weight Derivatives in Weights

The following discussion only applies to the case of extrapolation between operating

conditions, i.e. when the derivative of $
(2)
∞ [+ ] with respect to operating parameters is

needed. The idea is to replace the derivatives of ΔḠ [+ ] and fI [+ ] in equation 3.142 with an

expansion of known operators. As visible in equation 3.144, if the change of the potential

is neglected, these derivatives always translate to derivatives of the weights
d%Ḡ
ds (I),

d%I
ds (I).
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Due to the derivative with regard to the operating parameters, both of these functions are

normalised to 0, regardless of their original normalisation. Thus, an ansatz like
9

s
d%~

ds
=

∑
8

28 (s) (%8+1 − %8) , 28 (s) ≤ O(1) , (3.147)

can be made, with expansion coe�cients 28 (s) and the weights of the krypton measurement

%8 (I). Since the weights do not form a basis of !2
, this can only be an approximation.

Also, since only Δ10 [+ ] and f0 [+ ] are known from krypton, higher order terms in this

expansion again lead to non-measurable quantities.

In practice, it turns out that this ansatz works reasonably well for derivatives with regard

to column density, and not so well for derivatives with regard to temperature. However,

those are one order of magnitude smaller, such that the column density is the main concern.

Also, using only one term of the expansion already leads to good results, such that the

derivatives of the standard operators can be written with expressions like

s
dΔḠ [+ ]

ds
≈ 20(s)Δ10 [+ ] − 21(s)Δ21 [+ ] , (3.148)

s
df2

I [+ ]
ds

≈ 20(s)Δ10 [+ 2] , (3.149)

= 20(s) (f2

1
[+ ] − f2

0
[+ ]) . (3.150)

Plugging those expressions into equation 3.142, the derivative of $
(2)
∞ [+ ] reads

s
d$
(2)
∞ [+ ]
ds

≈ −n (20(s)Δ10 [+ ] − 21(s)Δ21 [+ ]) + 020(s) (f2

1
[+ ] − f2

0
[+ ]) . (3.151)

If this ansatz works, it has a bene�t over the extremal solutions: Namely, that the �rst term

is known from the krypton measurement. Thus, the mean of $
(2)
∞ [+ ] can be extrapolated

by the predicted value, and only the two other terms contribute an uncertainty. An example

application is found in appendix A.3.

3.6. Operators of Longitudinal Inhomogeneity and Potential
Shape

In section 3.4.1 the following expression for general operators of longitudinal inhomo-

geneity in the presence of scattering was derived:

$
(2)
∞ [+ ] = −nΔḠ [+ ] + (0 − X0[+ ]) f2

I [+ ] .

It depends on a generalised mean di�erence ΔḠ [+ ] and a generalised variance f2

I [+ ]. From

the discussion in section 3.2.1 it should be understood that both are not independent, but

correlated by their shape operator

d̂Ḡ,I [...] =
1

^Ḡ,I

ΔḠ
fI
[...] ,

9
Alternatively also an ansatz in %8 − %0 can be used.
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which is bounded

−1 ≤ d̂Ḡ,I [+ ] ≤ 1 ∀+ ∈ !2 .

The shape operator can be used for the alternative representation

$
(2)
∞ [+ ] = −fI [+ ]

(
2nd d̂Ḡ,I [+ ] − (0 − X0[+ ]) fI [+ ]

)
, (3.152)

where the shape energy

nd ≡ −
1

2

m2$

mfImd̂Ḡ,I
, (3.153)

=
1

2

n^Ḡ,I ≥ 0 (3.154)

has been de�ned. It represents the penalty term with regard to the worst possible potential

shape. The case nd = 0 only occurs for n8 = 0 ∀8 , i.e. if there is no scattering. A vanishing

total susceptibility n = 0 alone is not su�cient, since then ^Ḡ,I is singular and the product

�nite. Thus, if there is scattering, there are always potential shapes (given by d̂Ḡ,I and

those which are correlated to it), which lead to a penalty. The inverse is not true, i.e. not

every potential shape is penalised.

Since fI and d̂Ḡ,I are uncorrelated, they can be treated as independent variables and their

functional dependence on + can be omitted. Thus, in the case where X0[+ ] is negligible,

$
(2)
∞ is fully determined by the measurement of two bounded scalars, allowing for simple

curve sketching. As discussed in the following, this is the case for the neutrino mass shift.

3.6.1. Neutrino Mass Shi� and Antisymmetry

As it is shown in chapter 5, for the neutrino mass shift higher scattering order variances

are negligible:

%I ≈ %0 , 0 ≈ −2 , X0[+ ] ≈ 0 . (3.155)

For the shape operator of the tritium β spectrum an abbreviated notation like in the case

of krypton is used:

%d ≡
1

n

∑
8

n8 (%8 − %0) , (3.156)

d̂ [...] ≡ d̂d,0 [...] , (3.157)

=
1

^d,0

Δd

f0

[...] . (3.158)

In chapter 5 it is shown that d̂ is again a measure of potential antisymmetry for typical

KATRIN conditions and it is thus called the antisymmetry operator 10
.

10
In contrast to the operator de�ned for krypton in equation 3.36 at least 2x scattering is relevant at typical

KATRIN conditions in the tritium β measurements, such that the formal de�nitions are di�erent. Thus,

the detailed shapes of the krypton and tritium antisymmetry operators di�er slightly, but this is also

the case for the weights of the usual potential moments. All operators are only well de�ned, if their

conditions (krypton or tritium, operating parameters) are speci�ed.
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Figure 3.26.: Neutrino mass shift and potential antisymmetry: For shapes of potential

with vanishing antisymmetry d̂ = 0, the neutrino mass shift has the known

negative parabolic shape as function of the standard deviation f0 (green).

For d̂ > 0 (purple), the negative neutrino mass shift increases faster than

a parabolic form for small f0 and asymptotically parabolically for f0 larger

than d̂nd . For d̂ < 0 (blue), the shift has a positive region and a maximum.

Using d̂ , the equation for the shift of the squared neutrino mass reads

Δ<2

a (d̂, f0) = −2f0( nd d̂︸︷︷︸
shape

+ f0︸︷︷︸
variance

) . (3.159)

The curve sketching is shown in �gure 3.26 and discussed in the following.

Upper, lower and absolute limits: The upper and lower limits are found at the extremal

values of d̂

1

d̂
←−−−−−−−−−−−−−−−−−−−−−−−−−−−− −1

−2f0(f0 + nd) ≤ Δ<2

a (d̂, f0) ≤ −2f0(f0 − nd) . (3.160)

Using the triangle inequality it follows that the absolute value of the shift is limited by

|Δ<2

a (d̂, f0) | ≤ 2f0(f0 + nd) . (3.161)

These limits are those of extremal antisymmetry. For the high temperature potential

simulation of �gure 1.19, which has an antisymmetry of d̂ = 0.88, these limits might be

appropriate. However, currently the true value of antisymmetry is unknown: The plasma

simulations use simpli�ed models and the experimental veri�cation by the krypton-83m

measurement su�ers from systematics, as discussed in chapter 6.
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3.7. Conclusion

Shi� regimes: Along the line of increasing f0 the asymptotic cases of linear and parabolic

regime are

0

f0−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ∞

−2f0nd d̂
f0�nd |d̂ |←−−−−−−− Δ<2

a (d̂, f0)
nd |d̂ |�f0−−−−−−−→ −2f2

0
. (3.162)

The shift of the squared neutrino mass strictly depends on the product nd d̂ . Thus, for

large enough f0 the shape energy is negligible, while for small f0 shape changes are

dominant. For typical KATRIN conditions the shape energy nd is of the order of some

hundred millielectronvolts such that f0 of the order of some ten millielectronvolts leads to

shape dependent e�ects.

Zero crossing: The zero crossing is at

Δ<2

a (d̂, f0,zero) = 0 , (3.163)

⇔ f0,zero = 0 or f0,zero(d̂) = −nd d̂ , d̂ < 0 . (3.164)

While the �rst case is equivalent to the potential being constant, in the second case a

non-constant potential leads to a vanishing shift of the neutrino mass.

Maximum shi�: The f0,max of the shift maximum is found by demanding the derivative

to vanish

mΔ<2

a (d̂, f0)
mf0

����
f0,max

= −4f0,max − 2nd d̂ = 0 ,

⇒ f0,max(d̂) = −
nd d̂

2

, d̂ < 0 . (3.165)

Consequently, the shift of the squared neutrino mass at the maximum is

Δ<2

a (d̂, f0,max) = 2f2

0,max
(d̂) =

n2

d d̂
2

2

, d̂ < 0 . (3.166)

3.7. Conclusion

The preceding discussion of the neutrino mass shift concludes this chapter. In the presence

of inelastic scattering its dependence on the source potential was shown to be fundamen-

tally di�erent than previously believed. The resulting consequences and complications for

the krypton-83m and tritium measurement are manifold; one additional parameter has to

be measured in krypton-83m, and not only do the observables depend on the potential, but

also on the scattering probabilities and the measurement time distribution. These two new

dependencies led to the introduction of one new energy scale and correlation coe�cients

between krypton-83m and tritium potential estimates. They are calculated for typical
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KATRIN conditions in chapter 5. As has been shown by variational calculus the correlation

coe�cients are used for the translation of the potential estimates from the krypton to the

tritium measurement. However, since the change of the potential for di�erent conditions

is not known, this translation still has to rely on plasma simulations or di�erent operating

conditions have to be avoided entirely. Due to the possible size of the newly introduced

potential shape related neutrino mass shift this was chosen for future measurements:

Di�erent operating conditions for the krypton-83m and tritium measurement are avoided,

such that remaining uncertainties stem only from the krypton-83m measurement itself

and from the di�erent gas pro�les of the species.

This chapter established the connection of the krypton-83m potential observables to

symmetries of the potential. Based on that, in the following chapter 4 it is discussed how

krypton-83m potential observables can be used to construct potential models.
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4. Plasma Potential Models from
Krypton-83mObservables

In this chapter it is discussed how a given set of estimates from a krypton-83m measurement

can be used to construct plasma potential models + (I) for KATRIN. The elaborations laid

out in chapter 2 and chapter 3 are an essential foundation for the discussions carried out

here.

For a given rear wall voltage the estimates obtainable in the krypton-83m measurement

are the Gaussian line broadening, the energy loss shift and the line position shift:

(*RW, fg,ΔnEloss,Δ�Mean) .

In this chapter it is assumed that the measured estimates can be translated to the potential

moments established in section 3.1, which requires understanding of systematics and

plasma �uctuations. The obtained moments are the zero scattering weighted standard

deviation, the mean di�erence of one and zero scattering and the zero scattering weighted

mean of the potential:

(*RW, f0 [+ ],Δ10 [+ ], 〈+ 〉0) .

Equivalent formulations using the single-scattering weighted mean or the antisymmetry

de�ned in section 3.2.1 are given by

(*RW, f0 [+ ], 〈+ 〉1 , 〈+ 〉0)

and

(*RW, f0, d̂, 〈+ 〉0) .

The rigorous validation of a given potential model using these estimates has been described

in section 3.3.1. The inverse problem of constructing a model from a given set of observables

with certain model assumptions is the topic of this chapter.

The necessary symmetries that any model needs to incorporate to describe the krypton-83m

observations are discussed in section 4.1. This allows to assess the e�ciency of arbitrary

models and gives an understanding how their parameters relate to the observables.

The implementation of models using linear combinations of I-dependent functions is

discussed in section 4.2. The natural example of such models are polynomials with

coe�cients which are determined from the measurement.
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4. Plasma Potential Models from Krypton-83m Observables

4.1. Potential Symmetries and Antisymmetry Models

Parametrisations of potential models using the antisymmetry reveal the relation of the

observables to the symmetries of the potential. Let +test(I) be an ansatz for the potential.

The natural normalisation is to measure the potential relative to its zero weighted mean

in units of its zero weighted standard deviation, giving the potential shape

1

^Ḡ,0

%Ḡ

%0

≡ 1

f0 [+test]
(+test − 〈+test〉0) . (4.1)

^Ḡ,0 = f0

[
%Ḡ
%0

]
is the weight standard deviation de�ned in section 3.2.2. %0(I) is the zero

scattering weight and %Ḡ (I) is a weight normalised to zero, which is de�ned by this

equation. The left side is a formalised way of writing the above normalisation in terms

of weights: Its zero weighted mean vanishes and its zero weighted standard deviation

is one. In section 3.3.1 it was identi�ed that given such a potential shape, the following

parametrisation of potential leads to the measured observables:

+ − 〈+ 〉
0
= f0


©­­«d̂ − dḠ10,0

√
1 − d̂2√

1 − d2

Ḡ10,0

ª®®¬
%1 − %0

%0

1

^
10,0

+
√

1 − d̂2√
1 − d2

Ḡ10,0

%Ḡ

%0

1

^Ḡ,0︸ ︷︷ ︸
∝+test−〈+test〉0

 . (4.2)

dḠ10,0 is the weight correlation discussed in section 3.2.2. With the exception of the marked

+test term, this model is completely determined by the observables. Choosing +test such

that the correlation vanishes

dḠ10,0 ∝ Cov0

[
%Ḡ

%0

,
%1 − %0

%0

]
3.40

= Δ10

[
%Ḡ

%0

]
∝ Δ10 [+test]

!

= 0 (4.3)

reveals the underlying symmetries. It follows:

+ (I) = f0

[
d̂
%1 − %0

%0

(I) 1

^
10,0︸               ︷︷               ︸

Antisymmmetry

+
√

1 − d̂2
%Ḡ

%0

(I) 1

^Ḡ,0︸                 ︷︷                 ︸
Symmetry

]
︸                                                   ︷︷                                                   ︸

Inhomogeneity

+ 〈+ 〉
0︸︷︷︸

Mean

. (4.4)

Thus, for a potential model to be able to describe any given set of krypton-83m observables

it needs an antisymmetric, a symmetric and a constant component
1
, which is depicted in

�gures 4.1 and 4.2. The test potential +test, which is not predicted by the data, de�nes the

symmetrical component of the potential.

Due to the quadratic addition of the inhomogeneity components, the antisymmetric shape

is approached slowly, as sketched in �gure 4.3. Also, the term symmetry component

1
The mentioned symmetries hold for the usual operating conditions. In general they are de�ned by the

shape
%1−%0

%0

and by the condition Δ10

[
%Ḡ
%0

]
= 0.
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Figure 4.1.: Composition of the image of the KATRIN krypton-83m measurement: There are

the three observables (f0 [+ ],Δ10 [+ ], 〈+ 〉0). A measure of the mean potential

is given by 〈+ 〉
0
. Since f0 [+ ] is non-zero for non-constant potentials, it can be

used as an overall measure of inhomogeneity magnitude. Consequently, the

total measured inhomogeneity f0 [+ ] is composed of inhomogeneities, which

are manifest in both Δ10 [+ ] and f0 [+ ] and inhomogeneities, which are only

manifest in f0 [+Δ=0]. Thus, the potential shapes are divided into those with

vanishing and non-vanishing expectation value of Δ10 [...].

𝑧

𝑉

antisymmetric symmetric

Inhomogeneity

Mean

𝜎0 𝑉 𝑉 0 𝜌[𝑉]

𝑧

𝑉

𝑧

𝑉

1 −  𝜌[𝑉]2

Figure 4.2.: Composition of the domain of the KATRIN krypton-83m measurement: The

potential component which produces non-vanishing values of d̂ typically is ap-

proximately antisymmetrical to the injection point, which is an exactly de�ned

symmetry given by the weight functions %8 (I). In contrast, the symmetry of

the potential components which have vanishing expectation value of Δ10 [...] is

only de�ned as being not antisymmetric, and the depicted symmetrical shape

is only one simple possibility. Provided an ansatz for this component, the

total potential can be modelled as being composed of both components plus

its constant mean. The amplitudes of the inhomogeneity components add in

quadrature.
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Figure 4.3.: Antisymmetry amplitude: The ratio of the amplitudes of the antisymmetry and

the symmetry component are equal for an antisymmetry d̂ ≈ 0.7. Due to the

quadratic scaling, even for d̂ ≈ 0.9 the antisymmetric component is only twice

as large as the symmetric component. A factor 10 is reached for d̂ ≈ 0.995.

should be used with some caution, since rigorously it is only given by the absence of

antisymmetry (d̂ = 0). Since d̂ [+ ] ∝ Δ10 [+ ], the de�ning condition for the potentials of

the symmetry component is the vanishing mean di�erence. Thus, while for d̂ = ±1 the

potential shape has the approximate triangular shape sketched in �gure 4.2, it does not

need to have the simple symmetrical shape for d̂ = 0.

Shape of the symmetry component: The potential shape of the symmetry component

is de�ned by equation 4.1 and optionally equation 4.3. The de�ning characteristic of

equation 4.1 is that the zero weighted mean of the supplied potential vanishes, and that

it is normalised to its zero weighted standard deviation. If both is already put into the

implementation of equation 4.2, any potential can be used.

Equation 4.3 is the optional condition for potentials in the kernel of the mean di�erence

Δ10 [...]. Solving for these potentials is a homogeneous Fredholm problem of �rst kind

[Waz11] and the general solutions are non-trivial. Also, the subset of the kernel which

can be expanded in weights

Δ10

[∑
: 0: (%: − 1)
%1 − %0

]
= 0 (4.5)

leads to non-physical solutions, since those expansions have non-regularised poles for

%0(I) = %1(I).
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Figure 4.4.: Peak-to-peak value and maximum derivative: For a given (f0, d̂), di�erent

maximum derivatives of the potential result in di�erent peak-to-peak values.

The linear connection (orange) with the smallest maximum derivative leads

to a larger peak-to-peak value than if a structure is added (here in the center,

red). In one case the maximum in the central WGTS is larger than the rear

wall voltage, in the other smaller.

Simple solutions without the need for regularisation can be found from polynomial expan-

sions. The simplest ansatz, which uses only two terms, is

+Δ=0(I) = 0
(
Δ10 [I<]
Δ10 [I=]

I= − I<
)
, 0 ∈ R , <, = ∈ N . (4.6)

The coe�cients Δ10 [I<] are discussed together with polynomial expansions in section 4.2.

In practice implementations of the full equation 4.2 with arbitrary +test can be used, such

that the vanishing correlation (condition 4.3) is not required. However, in this work always

models like equation 4.4 were used, since they lead to simpler propagations of uncertainties

and directly show the symmetries of their components.

Symmetry component and peak-to-peak value: The symmetry component is independent

from the measured (f0, d̂). Nevertheless, in some cases it can be constrained from the

applied rear wall voltage and the measured potential mean (*RW, 〈+ 〉0). The reasoning is

as following: As discussed in section 3.3.3, the maximum derivative of the potential a�ects

the obtained peak-to-peak value PP[+ ] for a given standard deviation f0 [+ ]. Thus, the

more structure the symmetry component has, the smaller is the resulting peak-to-peak

value for a given set of observables. This is sketched in �gure 4.4. For some rear wall

regimes this allows to make a statement on the necessary structure, for example, if for large

rear wall voltages the externally applied electric �eld dominates over the internal plasma

processes. Due to energy conservation, in this case the maximum potential needs to be

smaller than the rear wall voltage. Increasing the structure decreases the peak-to-peak

value and consequently the maximum, while the other observables, especially the given f0,

remain unchanged.
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While the quantitative relation of the structure of the potential to the peak-to-peak value

depends on the symmetry component, an approximate relation is sketched in the following.

For upper constraints of the peak-to-peak value from the rear wall voltage it holds

PP[+ ] = Max[+ ] −Min[+ ] , (4.7)

= O(2) (Max[+ ] − 〈+ 〉
0
) , (4.8)

!

= O(2) (*RW − 〈+ 〉0) . (4.9)

The equation is expanded to lower constraints, if the absolute value is taken. The true

factor O(2) of the distance of the mean 〈+ 〉
0

to the boundaries depends on the actual

potential and the weight %0.

Using the mean value theorem 3.99 leads to

Max

[����d+
dI

����] !

≥ O(2) |*RW − 〈+ 〉0 |
!WGTS

. (4.10)

Thus, the di�erence of the rear wall voltage to the measured mean sets a lower bound to the

necessary derivative of the potential. Since the antisymmetry component is approximately

linear, it does not contribute large derivatives and increasing the derivative can only be

done by adding structure to the symmetry component. As a consequence, if the peak-

to-peak value of the potential model is larger than expected, for example from energy

conservation, the structure of the symmetry component needs to be increased.

Due to the unknown factor O(2) the above relation only serves to show the principle.

This factor also needs to consider the distance from rear wall to central WGTS, which was

neglected here.

Connection to the rear wall: Since the density of signal electrons in the ≈ 3 m long region

between rear wall and WGTS is negligibly small, observables of the spectrum do not

contain information of the potential shape in this region. As a consequence, including

the rear wall voltage into the potential modelling is model dependent and any structure

that is restricted to this region requires non-measurable parameters. This is sketched in

�gure 4.5.

Assuming no structure results in a linear connection potential

+Connect(I) =
Irear

WGTS
− I

Irear

WGTS
− IRW

(
+RW −+ (Irear

WGTS
)
)
++ (Irear

WGTS
) , (4.11)

where Irear

WGTS
is the position of the end of the rear part of the WGTS and IRW is the position

of the rear wall.

The linear connection is only for illustrative purposes, since it is known that a plasma

sheath decouples the rear wall from the WGTS for some voltage regimes. Thus, at least one

parameter _s is required which de�nes the sheath width. Models using such parameters _:
can �t the data, when the corresponding connection shape extends into the WGTS, such

that the parameters are correlated with the observables. Otherwise only upper limits

_: < Irear

WGTS
− IRW (4.12)
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Figure 4.5.: Rear wall connection potential: Due to the vanishing weights %0, %1 between

the rear wall and the WGTS, the spectrum does not contain any information

on the potential + in this ≈ 3 m long region. It is known that a plasma sheath

decouples the rear wall from the WGTS for some rear wall voltage regimes.

This can be modelled as an exponential decoupling with sheath width _s, which

is non-measurable if _s � Irear

WGTS
− IRW. Any more physical e�ects, resulting

in more complicated shapes, require more non-measurable parameters _: .

can be obtained from the data. However, in practice these conditions are problematic,

since they lead to constraints of _: only for very a small portion of the krypton data (i.e.

only when a strong external electric �eld is applied). Thus, in this work only the linear

connection is shown.

Summary: The previous discussion allows to rigorously predict the e�ect of the three

observables on the modelling:

• 20 : Serves as magnitude of the potential inhomogeneity.

• 1̂ : Gives the antisymmetry of the potential.

• 〈\ 〉0 : Is the mean potential.

The only input to the model is the symmetry component. When including a physical

principle like energy conservation, in some cases its structure can be constrained:

• [RW − 〈\ 〉0 : Is a lower limit for the necessary derivative of the symmetry compo-

nent for some rear wall voltage regimes.

The results of the application of this model on KNM2 krypton data is found in section 6.4.
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4. Plasma Potential Models from Krypton-83m Observables

4.2. Linear Models and Polynomial Expansions

In the following the implementation of linear models is discussed. They are de�ned by

+ (I) = ®2 ®5 (I) , (4.13)

with a vector of # unknown, scalar, erroneous coe�cients ®2 and # functions

5= : {I ∈ [IRW, IWGTS,front]} → R , = < # . (4.14)

They form the ansatz for the potential model. In the following for functions in
®5 the

notation 5 , 6, ℎ and for coe�cients in ®2 the notation 0, 1, 2 is used. Together with #

boundary conditions ®+ (for example 〈+ 〉
0

and 〈+ 〉
1
, or the direct potential measurement

+RW) this gives a system of # linear equations

®+ =

©­­­­«
〈+ 〉

0

〈+ 〉
1

+',
...

ª®®®®¬
=

©­­­­«
〈5 〉

0
〈6〉

0
〈ℎ〉

0
· · ·

〈5 〉
1

〈6〉
1

〈ℎ〉
1
· · ·

5 (I', ) 6(I', ) ℎ(I', ) · · ·
...

...
...

. . .

ª®®®®¬
©­­­­«
0

1

2
...

ª®®®®¬
≡ �®2 , (4.15)

which can be solved by matrix inversion. The matrix � and its inverse do not depend on

the boundary conditions (i.e. the set of observables) and are speci�c to each model. The

determination of the coe�cients ®2 from the provided observables then only requires the

matrix multiplication

®2 = �−1 ®+ . (4.16)

Since only the three listed boundary conditions are known, the modelling is restricted to

# = 3. The variance f2

0
[+ ] cannot be used in this linear ansatz.

The potential model can be used in two ways:

• Using equation 4.16 for a given set of observables. The use case is the krypton

measurement.

• Using equation 4.15, if the coe�cients ®2 (i.e. the potential + (I)) are known. One

use case is to study the translation from potential moments obtained in krypton

measurements to tritium measurements on test models.

Naturally, the measurable moments of the model should be calculated. For the calculation

of the variances f2

8 [+ ] two further matrices are needed. Using the outer product ⊗, the

squared mean matrix

〈
®5 ⊗ ®5

〉
8
=

©­­­­«
〈5 5 〉8 〈5 6〉8 〈5 ℎ〉8 · · ·
〈65 〉8 〈66〉8 〈6ℎ〉8 · · ·
〈ℎ5 〉8 〈ℎ6〉8 〈ℎℎ〉8 · · ·
...

...
...

. . .

ª®®®®¬
(4.17)

and the mean squared matrix

〈
®5
〉
8
⊗

〈
®5
〉
8
=

©­­­­«
〈5 〉8 〈5 〉8 〈5 〉8 〈6〉8 〈5 〉8 〈ℎ〉8 · · ·
〈6〉8 〈5 〉8 〈6〉8 〈6〉8 〈6〉8 〈ℎ〉8 · · ·
〈ℎ〉8 〈5 〉8 〈ℎ〉8 〈6〉8 〈ℎ〉8 〈ℎ〉8 · · ·

...
...

...
. . .

ª®®®®¬
(4.18)
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Table 4.1.: Plasma antisymmetry for power functions.
Odd orders of I: show large absolute antisymmetry. The negative signs indicate

that the antisymmetry shape decreases from rear to front. The linear shape is

almost similar to the re�ected antisymmetry shape, i.e. the amplitude of other

components is smaller by a factor of seven. The values are calculated for KNM2

krypton operating conditions of d3 = 30 %,) = 100 K, ^
10,0 = 0.69.

Exponent :

Estimate ↓ 0 1 2 3 4 5

−Δ10 [I:] 0 1.66 0.435 19.65 7.17 300.65

f0 [I:] 0 2.445 6.341 34.891 126.78 646.81

−d̂ [I:] - 0.98 0.10 0.82 0.08 0.67

are obtained. The calculation of the central variance f2

8 [+ ] = 〈+ 2〉8 − 〈+ 〉28 can thus be

performed simply from precalculated matrices:

f2

8 [+ ] = ®2
(〈
®5 ⊗ ®5

〉
8
−

〈
®5
〉
8
⊗

〈
®5
〉
8

)
®2 . (4.19)

The propagated uncertainties f (〈+ 〉8) and f (f2

8 [+ ]) from the uncertainties
®f (2) of the

®2 are obtained using the �rst derivative of equations 4.15 and 4.19, leading to the Jacobi

matrix (
f (〈+ 〉8)
f (f2

8 [+ ])

)
=

©­­«
〈
®5
〉)
8

2

((〈
®5 ⊗ ®5

〉
8
−

〈
®5
〉
8
⊗

〈
®5
〉
8

)
®2
)) ª®®¬ ®f (2) . (4.20)

Calculations for scattering multiplicities 8 > 1 and higher moments of the starting potential

distributions are possible, but both lead to quantities not measurable in krypton.

Polynomial models: A common use case of linear models is the ansatz of a Taylor series

+ (I) =
∑

E:

( I
m

):
(4.21)

with coe�cients E: . Coincidentally, the symmetry of power functions around zero approx-

imately �ts to the symmetry of the antisymmetry operator. Thus, even orders (which are

axially symmetric with regard to the coordinate origin) are suppressed in Δ10 [+ ], which

can be seen in table 4.1. As a consequence, polynomial expansions need to have at least

one even and one odd term, to reasonably cover the range of obtainable observables.

The solutions of general expansions with mixed coe�cients can be obtained by the follow-

ing matrices:

f2

0
[+ ] =

(
E0 E1 E2 E3 · · ·

) ©­­­­­­«

0 0 0 0 · · ·
0 5.978 1.721 76.03 · · ·
0 1.721 40.22 31.82 · · ·
0 76.03 31.82 1217 · · ·
...

...
...

...
. . .

ª®®®®®®¬
©­­­­­­«

E0

E1

E2

E3

...

ª®®®®®®¬
, (4.22)
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f2

1
[+ ] =

(
E0 E1 E2 E3 · · ·

) ©­­­­­­«

0 0 0 0 · · ·
0 3.868 −8.404 48.79 · · ·
0 −8.404 38.16 −156.2 · · ·
0 48.79 −156.2 854.1 · · ·
...

...
...

...
. . .

ª®®®®®®¬
©­­­­­­«

E0

E1

E2

E3

...

ª®®®®®®¬
, (4.23)

Δ10 [+ ] =
(
0 −1.66 −0.435 −19.65 · · ·

) ©­­­­­­«

E0

E1

E2

E3

...

ª®®®®®®¬
. (4.24)

They hold for KNM2 krypton operating conditions of d3 = 30 %, ) = 100 K.

By calculating the eigenvalues, it is easily shown that both f2

0
(:;) and f2

1
(:;) are positive

de�nite and that f0 [+ ] and f1 [+ ] increase upon including higher orders of the potential E: .

As discussed, this does not hold for Δ10 [+ ]. Speci�cally, there are in�nitely many potential

shapes for which Δ10 [+ ] ≡ 0 holds. The coe�cients are obtained from equation 4.24.

Evidently, since all the entries in 4.24 have the same sign, this requires non-monotonous

potentials. If for example only up to second order is used, one obtains

+sym(I) ∝ 3.815

( I
m

)
2

− I

m

(4.25)

for which Δ10

[
+sym

]
= 0 holds. It is used in section 6.3.1 as symmetrical component for

the potential modelling of KNM2 krypton data.

Since every ansatz of linearly formulated potentials is model dependent, no further ap-

plications are shown in this work and the antisymmetry parametrisation is preferred.

Nevertheless, during the work on this thesis many examples of polynomial models were

calculated from KNM1 and KNM2 krypton data. For a given set of observables these

models always showed the symmetries expected from the measured antisymmetry. Also,

these models were used to check the theory developed here: They were put into full

I-dependent toy spectra with a sliced source model (described in section 1.2.2) and their

e�ect on krypton and tritium observables was �tted. In all tested cases the results were

in agreement with the equations derived in this work. Thus, the �ts to the krypton line

spectra recover the moments (f0 [+ ], 〈+ 〉1 , 〈+ 〉0) of the input potential. An ansatz for

the resulting neutrino mass and endpoint shift was derived in section 3.4.3 in the form

of expansions in potential moments. Calculating the coe�cients of these expansions for

typical KATRIN conditions is the topic of the next chapter.
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5. Systematic Uncertainties of Tritium
Observables due to Plasma Potential
Moments

In this chapter the relations of the systematic shifts of the squared neutrino mass Δ<2

a [+ ]
and the endpoint Δ�0 [+ ] to the starting potential + are calculated for typical KATRIN

measurement conditions. Here only the relevant coe�cients and potential shapes of the

theory which was derived in chapter 3 are calculated. Thus, the detailed elaboration in

chapter 3 or the summary chapter 2 are an essential foundation for the discussions carried

out here.

The developed theory uses a convolution of the krypton or tritium spectra with Starting

Potential Distributions (SPD). Due to the longitudinal sensitivity on the source potential

by inelastic scattering (discussed in section 1.4.2) this has to be carried out separately for

each scattering multiplicity 8 . The relevant quantities for the characterisation of plasma

potential systematics are the moments (equation 3.1) of the SPD8 obtained. Up to second

order these are the means 〈+ 〉8 , the mean di�erences Δ80 [+ ] and the standard deviations

f8 [+ ]. All source potential related quantities are weighted with the normalised longitudinal

electron distributions (referenced as scattering weights in the following) %8 (I) of the source,

which are di�erent for krypton and tritium. As a consequence, also the moments are

di�erent. Indices marking this di�erence are omitted here for brevity, but the di�erence

should always be kept in mind.

As shown in chapter 3 the general equations for the systematic shifts of the squared

neutrino mass and endpoint of the tritium β spectrum are of the form

Δ<2

a [+ ] = −
∑
8>0

n8Δ80 [+ ] − 2f2

0
[+ ] +

∑
8>0

0f8 f
2

8 [+ ] , (5.1)

Δ�0 [+ ] = − 〈+ 〉0 −
∑
8>0

08Δ80 [+ ] . (5.2)

The goal of the �rst section 5.1 is the determination of the susceptibilities n8, 0
f
8

and 08 .

Their determination allows to reduce the above equations to the relevant terms at given

measurement conditions.

As visible in this ansatz, in the tritium spectrum the scattering contributions are mixed

and the susceptibilities specify the individual contributions. In section 3.4.3 it was shown
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that the mixing of the Δ80 can be condensed into a weight

%d ≡
1

n

∑
8

n8 (%8 − %0) , n =

�����∑
8

n8

����� . (5.3)

%d is the weight of the mean di�erence Δd [+ ] = 〈+%d〉, which absorbs all scattering

contributions and is the relevant quantity for the description of the neutrino mass shift. It

was also shown that in an even more fundamental description the antisymmetry operator

d̂ [...] ≡ 1

^d,0

Δd [...]
f0 [...]

(5.4)

replaces Δd [...]. It is a correlation operator, i.e. |d̂ [+ ] | ≤ 1. The extrema of d̂ [...] are

produced by the antisymmetry shape %d

%0

(I), which is the potential shape that leads to the

extremal neutrino mass shift. As shown in section 5.2, it is antisymmetrical for typical

KATRIN measurement conditions. ^d,0 is the standard deviation of the antisymmetry

shape. Analogous de�nitions hold for %d0 ,Δd0 and d̂0 derived from the susceptibilities of

the endpoint 08 .

Accordingly, section 5.2 is dedicated to the study of the antisymmetry shape and the

standard deviations and correlations of di�erent scattering weights for typical KATRIN

measurement conditions.

The standard deviations and correlations of the scattering weights are relevant to calculate

how the krypton-83m estimates (Δ10 [+ ], f0 [+ ]) constrain (Δd [+ ], f0 [+ ]) and thus the

neutrino mass shift under tritium conditions. The corresponding relations were derived in

chapter 3. In section 5.3 the resulting scaling factors and uncertainties are calculated for

typical KATRIN measurement conditions.

The studies are based on the key conditions of the KNM1-3a measurements, shown in

table 5.1. The di�erent source conditions of the KNM1 and KNM2 tritium and krypton

measurements are expected to result in a di�erent plasma potential. This leads to an

uncertainty in the prediction of the associated systematics, which can only be speci�ed

by assuming a potential model for extrapolation. This is not the topic of this work.

The uncertainty was erased in KNM3a by choosing the same source conditions for both

measurements. Still, the uncertainty due to the di�erent scattering weights for the di�erent

gas species remains, which is calculated in this chapter. While the column density in

krypton mode up to KNM3 was restricted to below 40 %, the column density in tritium

mode can be varied freely up to the nominal amount
1
. To �t also to future campaigns, in

the studies the column density in the tritium measurement is varied. All plots are produced

using the SSC&KaFit software framework (cf. section 1.2.2) and the gas model it contains.

1
Column density here always refers to the value of tritium. The krypton column density is irrelevant due

to the low density limit discussed in section 1.3.1.
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Table 5.1.: KNM1-3 measurement conditions.
While in KNM1 and KNM2 tritium column density d3 and temperature ) of

the krypton and tritium measurement were di�erent, in KNM3a equal source

conditions were chosen to avoid plasma di�erences. This is also referred to as

high temperature or equal source mode in the following.

Campaign d3 in % of nominal ) in K

T2 Kr T2 Kr

KNM1 22 30 29 100

KNM2 84 30 29 100

KNM3a 40 40 80 80

5.1. Susceptibilities of TritiumObservables to Scattering
Moments

In this section the susceptibilities of <2

a and �0 with regard to the starting potential

moments Δ80 [+ ] and f8 [+ ] for 8 scattering multiplicity are calculated. They are given by

the partial derivatives

n8 = −
mΔ<2

a

mΔ80
, 0f8 =

mΔ<2

a

mf2

8

, 08 = −
m�0

mΔ80
. (5.5)

As discussed in section 1.2.2, modi�cations of the di�erential spectra by source or transmis-

sion properties of KATRIN are considered in the response function '(�, @* ) (�gure 1.11).

� is the electron energy and @* the retarding energy of the spectrometer. Consequently,

plasma potential systematics are also considered by a modi�cation of the response function.

The e�ect of the potential moments on the beta spectrum is equivalent to convolutions

with a Gaussian � (Δ80, f8) for each scattering multiplicity (as derived in appendix A.1)

'(�, @* ) =
∫ �−@*

n=0

T (� − n, @* )
∞∑
8=0

〈?8〉 58 (n) ∗� (Δ80, f8)dn . (5.6)

Here T (� − n, @* ) is the transmission function. The 〈?8〉 are the average scattering

probabilities and 58 (n) is the 8 times convoluted energy loss function

58 (n) = X (n) ∗ 51(n) ∗ ... ∗ 51(n)︸               ︷︷               ︸
8−times

. (5.7)

51(n) is shown in �gure 5.1. The 〈?8〉 are plotted in �gure 5.2 in dependence of the tritium

column density.

Notably, an inhomogeneous plasma potential is only one possibility to arrive at non-

vanishing moments of these Gaussian convolutions and for example uncertainties in the

energy loss model or other spectrum contributions, which are shifted in energy compared

to expectation, lead to similar e�ects.

105



5. Systematic Uncertainties of Tritium Observables due to Plasma Potential Moments

0 10 20 30 40 50
Surplus energy in eV

0

0.05

0.1

0.15

0.2

0.25

0.3

E
ne

rg
y 

lo
ss

 p
ro

ba
bi

lit
y

Probability 0.284 
Mean in eV 12.825 
Sigma in eV 0.562 

Figure 5.1.: Energy loss function 51(n): The width of the excitation peak, here �tted with

a Gaussian (red), is already so large that additional variance due to plasma

e�ects can be neglected. The function was measured by KATRIN during KNM2

[KATep].

The studies shown in the following use the shift method (see section 1.2.1) on toy data of

the respective KNMx campaigns: the Δ80 and f2

8 are varied in Asimov data and the resulting

shifts of the tritium spectrum observables are �tted. The measurement time distribution

(i.e. the distribution of the measurement time over the set points of the retarding energies)

of KNM2 was used. For the study of the analysis interval dependence the respective

retarding energies were excluded accordingly.

Susceptibilities to variances 22
i : For changes of the f8>0 on the order of 100 mV shifts of

not more than a few millielectronvolt for<a and less than a millielectronvolt for �0 were

found. It can be concluded that those susceptibilities are negligible for typical KATRIN

conditions:

0f8 =
mΔ<2

a

mf2

8

≈ 0 for 8 > 0 . (5.8)

The vanishing relevance of additional variances of the scattered spectra is explained by

the intrinsic width of the energy loss function 51(n). The excitation peak has a width

of 562 meV so that an additional width of 100 meV added in quadrature is in practice

negligible. Including the ionisation tail or higher scattering order convolutions leads to

even broader 58 (n) and to less e�ect of additional variances.
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Figure 5.2.: Average scattering probabilities vs. column density: The scattering probabili-

ties increase with increasing column density. Above 80 % of nominal column

density the probability of single scattering decreases in favour of the probabili-

ties of higher scattering multiplicity. The temperature is 29 K.

Susceptibilities to Mean Di�erences�i0

When the higher variances are neglected, the neutrino mass and endpoint shift equa-

tions can be reformulated using the antisymmetry shape (equation 5.3 �.). As discussed

in section 3.4.3, hereby the summation over n8Δ80 is replaced by a product of the total

susceptibility n and Δd (analogously for the endpoint):

Δ<2

a [+ ] = −nΔd [+ ] − 2f2

0
[+ ] , (5.9)

Δ�0 [+ ] = − 〈+ 〉0 − 0Δd0 [+ ] . (5.10)

Notably, the antisymmetry shapes (and the corresponding mean di�erences Δd and Δd0 ) for

the neutrino mass and endpoint are in general di�erent, since in general their contributing

susceptibilities n8 and 08 are di�erent. Whether or not this is relevant can be investigated

by studying the ratios of the susceptibilities: If they di�er by more than a constant scaling,

then the antisymmetry shapes are di�erent.

The total susceptibilities n and 0 are obtained by simultaneously shifting all Δ80 in the

Gaussian convolution (equation 5.6) by the same value. They are shown together with

their components n8 and 08 in �gures 5.3, 5.4, 5.5, and 5.6 in dependence of column density,

background rate and lower analysis interval.

Ratio of the susceptibilities: While the susceptibilities for neutrino mass and endpoint

look very similar, their ratio is in general not constant. Also, for analysis intervals smaller
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than 90 eV the ratio is larger for higher scattering multiplicities. Thus, the neutrino mass

is more susceptible to shifts of higher scattering multiplicity than the endpoint. The non-

constant ratio also remains when normalising it to the summation of the susceptibilities.

As a consequence, generally Δd [+ ] and Δd0 [+ ] are di�erent, i.e. di�erent potential shapes

lead to extremal neutrino mass and endpoint shifts. However, for the 40 eV range the

contributions of 8 > 1 and the column density dependence of the ratio are small. In this

case also the di�erence of the antisymmetry shapes can be neglected and in the following

only the neutrino mass case Δd is considered. However, if a detailed analysis of the starting

potential induced endpoint shift is the goal, especially for larger analysis intervals, then

these di�erences are relevant.

Dependence on background rate and temperature: No sizeable di�erence between the

source temperatures of 29 K and 80 K has been found. Below a background rate of

≈ 50 mcps the susceptibilities are greatly reduced.

Dependence on scattering contribution: The expectation that higher scattering contribu-

tions lead to larger susceptibilities is partially ful�lled; the susceptibilities increase with

column density, as do the scattering probabilities (�gure 5.2). However, the detailed scaling

of the susceptibilities and scattering probabilities with the column density is di�erent.

Also, the dependence on the analysis interval is non-trivial: For intervals larger than

40 eV the total and 1x scattering susceptibilities start to decrease and in the region above

80 eV there is a zero crossing. Why this happens is not understood conclusively. However,

vanishing total susceptibility should not be mistaken with vanishing neutrino mass or

endpoint shift, as discussed in section 3.4.4 and in the following.

Normalisation and implementation: Neglecting the variance term, the expression of the

shift of the squared neutrino mass (equation 5.9) is given by a product of the mean di�erence

Δd [+ ] and the susceptibility n . The susceptibility de�nes, which mean di�erences need to

be shifted in the simulation. If the total susceptibility is used, all Δ80 have to be shifted by

the same amount Δd [+ ]. However, this depends on the normalisation of %d (equation 5.3).

If it was normalised to one of the n8 instead of n , resulting in a di�erent operator Δd ′ [...],
in equation 5.9 the susceptibility n8 would appear as prefactor. To obtain the same shift

of the neutrino mass, in this case only Δ80 needs to be shifted, but by the di�erent value

Δd ′ [+ ].
Consequently, by choosing which Δ80 are shifted, the analysts decide which values Δd [+ ]
or Δd ′ [+ ] are needed. In all cases those values are constrained by the krypton Δ10 [+ ] and

the shifts are in general not the expectation values Δ80 [+ ] of the actual potential.
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As visible in the �rst term of equation 5.1

Δ<2

a [+ ]
��
f8=0

= −
∑
8>0

n8Δ80 [+ ] ,

Δ80 [+ ]=Δ[+ ]
= −Δ[+ ]

∑
8>0

n8︸︷︷︸
∝n

,

if all mean di�erences actually have the same value Δ[+ ], they can be drawn in front

of the sum. Thus, only in this case this term vanishes for n = 0. However, if the mean

di�erences are di�erent, the multiplication of n with Δd then singular leads to a �nite shift.

Such singularities are avoided when Δd [...] is normalised to a susceptibility that does not

vanish for the respective conditions. Consequently, for analysis intervals larger than 80 eV

a shift of Δ20 should be chosen.

Conclusion: For the usual analysis interval of 40 eV the susceptibilities of neutrino mass

and endpoint to mean di�erences are by coincidence the largest. Depending on the column

density, the endpoint shift is not only determined by the mean potential 〈+ 〉
0
, but has large

contributions of Δd0 [+ ]: up to 17 % for nominal column density, ≈ 6 % in KNM1, ≈ 15 %

in KNM2 and ≈ 9 % in KNM3a. The contributions of Δd [+ ] to the shift of the squared

neutrino mass are large, too. Due to the correlation of Δd [+ ] and f0 [+ ] they are easier

to quantify when using the shape energy instead of the susceptibility. This discussion is

carried out in the next section.
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(a) Neutrino mass
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Figure 5.3.: Mean di�erence susceptibility vs. column density: As expected the susceptibil-

ities strongly depend on the column density. Since the summation of the 1x

and 2x susceptibilities are in practice identical to the total susceptibility, higher

scattering orders are negligible. The ratios show a column density dependence,

such that the antisymmetry shapes for endpoint and neutrino mass are not

the same.
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(a) Neutrino mass
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Figure 5.4.: Mean di�erence susceptibility vs. background: The susceptibilities to scattering

moments increase with the background rate. Thus, the values obtained for

Bg = 276 mcps are an upper limit for KNM2, which had a lower background in

its last period 3. Reducing the background below ≈ 50 mcps would be strongly

bene�cial with regard to plasma potential systematics.
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Figure 5.5.: Mean di�erence susceptibility vs. lower analysis interval: Increasing scattering

multiplicities are only relevant if the analysis interval is large enough. In the

standard 40 eV range the �rst two orders are su�cient. In the 90 eV range also

3x scattering has to be considered. Notably, the 40 eV range is accidentally the

most susceptible, while above the shifts decrease. As discussed in the text, the

zeros of the total susceptibilities do not imply vanishing endpoint or neutrino

mass shift.
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Figure 5.6.: Mean di�erence susceptibility vs. lower analysis interval, high temperature

mode: Comparing to �gure 5.5, the susceptibilities in �rst approximation scale

with the column density. However, the zero crossings are slightly shifted, such

that the scaling with column density is non-trivial in detail. As in �gure 5.5,

the ratios strongly vary, implying di�erences of the antisymmetry shapes of

endpoint and neutrino mass.
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5.2. Weights, Operator Constraints and Extremal Shapes

In this section the normalised longitudinal electron distributions %8 (I) (also called scat-
tering weights) for 8 scattering multiplicity and the derived antisymmetry shape

%d

%0

(I)
(equation 5.3 �.) are studied. From their shapes follow the constraints of the plasma

potential observables of the krypton-83m and tritium measurement and the extremal

potential shapes leading to those constraints.

The theory was derived in section 3.3: there it was shown how standard deviations ^Ḡ,I of

the normalised weights %Ḡ , %I can be used to constrain observables
2
, typically resulting in

inequalities. Related to these constraints are potential shapes, which produce the extremal

e�ects. In this section only the inequalities and the shapes are shown.

Index rules: The following rules simplify the understanding of the derived equations:

• For all constraints a standard deviation fI needs to be measured; its weight gives

the index after the comma.

• The weights before the comma are given by the involved ΔḠ ; weight correlations

dd10,0 appear if krypton constrains tritium. Standard deviations ^Ḡ,I appear, if a ΔḠ
is constrained by a fI .

The pure scattering weights %8 (I) of tritium are shown in �gure 5.7, a comparison between

krypton and tritium weights at equal source conditions is seen in �gure 5.8.

Constraints can be obtained for the peak-to-peak value of the potential in the central

WGTS PP[V] and for the mean di�erences ΔḠ [+ ], including the relevant mean di�erence

for the tritium measurement Δd [+ ]. However, as discussed in section 5.1, the latter is

normalisation dependent. If instead the antisymmetry operator d̂ de�ned in equation 5.4

is used for the parametrisation of the shift of the squared neutrino mass, then one obtains

Δ<2

a (d̂, f0) = −2f0( nd d̂︸︷︷︸
shape

+ f0︸︷︷︸
variance

) (5.11)

as discussed in detail in section 3.6.1. The resulting prefactor is the shape energy

nd =
1

2

n^d,0 ≥ 0 . (5.12)

Since |d̂ | ≤ 1, it quanti�es the extremal value of the above shape term, which is realised

by the antisymmetry shape.

Mean di�erences: The weight standard deviations ^Ḡ,I constrain the size of ΔḠ via the

shape operator d̂Ḡ,I , if fI is known:

|ΔḠ [+ ] | = |d̂Ḡ,I [+ ] |^Ḡ,IfI [+ ] ≤ ^Ḡ,IfI [+ ] . (5.13)

2
Negated indices were introduced to specify the normalisation 〈1〉Ḡ = 〈%Ḡ 〉 = 0, while for regular indices

〈1〉I = 〈%I〉 = 1 holds. Negated indices always appear in the context of mean di�erences ΔḠ , while

regular indices appear for variances fI . These operators and their weights are used to generalise from

pure scattering weights %8 to mixed scattering contributions, which is relevant in the tritium β spectrum.
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Figure 5.7.: Normalised electron distributions, tritium: For small column densities (a) the

scattering probabilities are small and %0 is essentially given by the gas pro�le.

%>1 show degeneracy, which decreases with increasing column density (b). The

ripples visible in all source pro�les at around ±20 % !WGTS are due to variations

in the pitch angle. They are caused by inhomogeneities of the magnetic �eld

in the pump ports. Shown is the central WGTS with a length of ≈ 10 m.
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Figure 5.8.: Normalised electron distributions in high temperature mode: Even at same

source conditions the weights of the krypton and tritium spectrum are di�erent.

This is related to the higher mass of krypton, which, compared to tritium, leads

to accumulation at the WGTS ends.

They are shown in �gure 5.9. The constraints of the Δ80 only depend on the scattering

weights, thus mainly on the column density and due to changes of the gas viscosity

in principle on the temperature. However, as shown in section 5.1, the temperature

dependence is negligible. In tritium, the constraint of Δd (de�ned by the summation over

the Δ80, weighted with the susceptibilities) additionally depends on the susceptibilities and

thus on the MTD, background and chosen normalisation of the summation. Due to the

normalisation dependence, the detailed numbers should be discussed in terms of shape

energy, as done below.

For krypton the relevant operators are Δ10, f0 and the unweighted f (in the range of the

central WGTS). Considering the tritium column density in the krypton measurements

of 30 − 40 % of nominal, it follows from �gure 5.9 that the %0 weighted and unweighted

standard deviations need to be at least ≈ 0.66
−1 ≈ 1.5 times larger than Δ10. If that does

not hold, the krypton measurement su�ers from systematics.

The shapes leading to the maximum of the respective antisymmetry operator (i.e d̂ = +1)

are shown in �gure 5.10. For the shown analysis range of 40 eV the tritium Δd is dominated

by Δ10, leading to the typical antisymmetrical shape also observed in krypton. Thus, for

given f0, this potential shape produces the largest neutrino mass and endpoint shift shape

term, and the largest energy loss shift in krypton.
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Figure 5.11.: Peak-to-peak value constraints: The measurement of Δ10 sets a lower limit to

the peak-to-peak value of the potential. The exact solution is not di�erentiable.

Approximate physical solutions are chosen to minimise f0 or f (i.e. to be as

constant as possible) for a given Δ10. The values are given for krypton.

Peak-to-peak value: The peak-to-peak values of the shapes shown in �gure 5.10 are also

approximate constraints for general potentials

PP[+ ] &
PP

[
%Ḡ
%I

]
^Ḡ,I

|ΔḠ [+ ] | . (5.14)

The constraints are shown in �gure 5.11 for krypton Δ10 [+ ]. As discussed in section 3.3.3

the exact solution is the potential + ∝ Θ(%1 − %0), which is non-physical. However, all

constraints are of the same order and it can be concluded that the peak-to-peak value of

the potential in the central WGTS is at least ≈ 4 times larger than Δ10.

Shape energy: The shape energy is visualised in �gure 5.12. It increases with column

density and is in the range of several 100 meV. Thus, the neutrino mass shift is not only

determined by the standard deviation f0, but the shape energy needs to be considered:

it is ≈ 550 meV for nominal column density, ≈ 150 meV in KNM1, ≈ 500 meV in KNM2

and ≈ 250 meV in KNM3a. Comparing to a standard deviation of f0 ≈ 50 mV, this gives

sizeable contributions even for a small antisymmetry of |d̂ | = 0.1. If a KNM2-like column

density and the above potential estimates are assumed, the following shift of the squared

neutrino mass is obtained:

Δ<2

a (f0 ≈ 50 mV, d̂ ≈ 0.1) ≈ −2 · 50 (0.1 · 500︸   ︷︷   ︸
shape

+ 50︸︷︷︸
variance

) meV
2 = −0.01 eV

2 . (5.15)
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Figure 5.12.: Shape energy vs. column density: The shape energy nd causes a shift of

the squared neutrino mass of −2f0nd d̂ . Thus, the shape energy dominates

compared to the usual variance term −2f2

0
, if d̂nd � f0. For the expected

range of O(f0) = 50 mV the contributions are of the same order already for

potentials with small antisymmetry O(d̂) = 0.1.

This shift is twice as large as the budget for energy scale systematics in the design report

[KAT04b]. Notably, the antisymmetry is not necessarily small: the krypton plasma simula-

tion shown in �gure 1.19 has an antisymmetry of d̂ = 0.88, leading to a �ve times larger

absolute value of the shift of the squared neutrino mass. Thus, the precise determination

of both f0 and d̂ ∼ Δd is necessary, since the obtained estimates can be used in the tritium

model to correct for the systematic.

The connection of the shape energy term of the neutrino mass shift to the formulation

using the total susceptibility is

nΔd = 2f0d̂nd . (5.16)

For given f0 and d̂ this allows to calculate Δd directly from the shape energy. As obvious

here, Δd depends on the susceptibility n used to normalise it: If n vanishes, Δd must be

singular, since both sides of the equation must be �nite. Notably, f0, d̂ and nd do not

depend on normalisations and are never singular, such that the right side is the more

physical formulation. Moreover, the shape energy vanishes only for vanishing scattering.

Since d̂ can in practice not be implemented in simulations, still Δd needs to be used for

actual systematic studies, as done in section 5.1.

Since the components of the shape energy are derived from covariances

nd,8 =
1

2

n8^80,0 , (5.17)
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their summation follows the usual square rules

n2

d =
∑
8

n2

d,8 + 2

∑
8< 9

nd,8nd,9d80 90,0 . (5.18)

d80 90,0 are the weight correlations de�ned in section 3.2.2. Thus, the shape energy is

smaller than the summation of the absolute values of its components:

nd ≤
∑
8

��nd,8 �� . (5.19)

The equality only holds for full correlation. Consequently, constraining d̂ or Δd with

estimates from the krypton measurement gives the best possible constraint on the neutrino

mass shift. These constraints are obtained from weight correlations between krypton and

tritium weights, which is discussed in the next section.

5.3. Scaling between Krypton and Tritium PlasmaMoments

In this section it is quanti�ed how the estimates (Δ10 [+ ], f0 [+ ])Kr
or (d̂, f0)Kr

from kryp-

ton mode constrain (Δd [+ ], f0 [+ ])T2
of the tritium spectrum and thus the neutrino mass

shift. The indices for the gas species are omitted in the following. Tritium observables are

always on the left side and krypton observables on the right side of the equations.

The total derivative of ΔḠ [+ ] and f2

~ [+ ] consists of a component which is related to the

change of the weights and a component which is related to the change of the potential:

dΔḠ [+ ] =
∫
I

dI

!WGTS

[
d%Ḡ (I)+ (I)︸        ︷︷        ︸

weight uncertainty

+ %Ḡ (I)d+ (I)︸        ︷︷        ︸
potential uncertainty

]
, (5.20)

df2

G [+ ] =
∫
I

dI

!WGTS

[
d%G (I) (+ (I) − 〈+ 〉G )2︸                       ︷︷                       ︸

weight uncertainty

+2 %G (I) (d+ (I) − d 〈+ 〉G ) (+ (I) − 〈+ 〉G )︸                                            ︷︷                                            ︸
potential uncertainty

]
.

(5.21)

This section is only concerned with scaling uncertainties, arising from di�erences in

weights. Uncertainties due to possible di�erences in the plasma potential have to be

determined separately and are not the topic of this thesis.

Constraint of tritium�x̄ : The general equation for constraints of ΔḠ has been derived in

section 3.3.1. For the speci�c case here it reads

ΔḠ (f0, d̂ ∼ Δ10)
T2↔Kr

= Δ10

^Ḡ,0

^
10,0

dḠ10,0︸      ︷︷      ︸
scaling factor

±f0^Ḡ,0

√
1 − d2

Ḡ10,0︸               ︷︷               ︸
scaling uncertainty

√
1 − d̂2 . (5.22)

Thus, the scaling factors are used to correct the measured Δ10 from krypton in the transla-

tion to tritium. The scaling uncertainties are used to calculate the additional uncertainty
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on the resulting value. Weight standard deviations ^Ḡ,0 and correlation dḠ10,0 are shown

in �gures A.19 and A.20 of appendix A.9 for di�erent operating conditions and tritium

operators. The weighting indicated with the index 0 always uses the krypton %0. The

resulting scaling factors and scaling uncertainties are shown in �gures 5.13 and 5.14 as

function of the column density of the tritium measurement.

The scaling factor of the relevant Δd is between 80 % and 100 %. Thus, estimates of tritium

Δd have the tendency to be smaller than Δ10 in krypton. This follows from the fact that the

standard deviation ^
10,0 in krypton is larger than ^d,0 in tritium. The standard deviations

quantify the variance of %1 − %0 in krypton or %d in tritium, and due to the accumulation

of the krypton at the ends of the WGTS, the krypton weights di�er more strongly.

The scaling uncertainty of the relevant Δd is generally between 10 % and 30 % of f0. The

main dependence is on the column density di�erence of the tritium and krypton modes.

Thus, even at the same column density the scaling uncertainty is never below 10 % of f0.

For the krypton plasma simulation shown in �gure 1.19 the antisymmetry is d̂ = 0.88,

giving

√
1 − d̂2 = 0.47. Thus, if the simulation is correct, the scaling uncertainty is only

half as large. Notably, for |d̂ | = 1 the uncertainty vanishes, since the potential is exactly

known.

Constraint of tritium22
x : Constraints of variances f2

G (f2

0
, d̂2) for given krypton f2

0
and d̂2

cannot be formulated analytically. The numerical solution is found in appendix A.2. Only

in the limits of d̂ = 0 and d̂2 = 1 analytical equations can be given. In the latter case the

potential is exactly known and the ratio of fG and f0 is calculated from equation A.71 in

the appendix. In the case of d̂ = 0, the following constraint was derived in section 3.3.2:

f2

G (f2

0
) T2↔Kr

= f2

0
+f2

0

(
Max

[
%G (I)
%0(I)

]
− 1

)
− f2

0

(
1 −Min

[
%G (I)
%0(I)

] )
︸                                                          ︷︷                                                          ︸

scaling uncertainty

. (5.23)

Thus, the scaling uncertainty is used to calculate the uncertainty on f2

0
in tritium, which

is caused by the weight di�erence to the f2

0
in krypton. As discussed in the derivation,

the maximum uncertainty assumes localised inhomogeneity at a speci�c I. If it can

be assumed that the inhomogeneity is distributed over the whole WGTS length, this

uncertainty vanishes. If it is known, that the inhomogeneity is concentrated in a speci�c

region, only the extrema of the weight ratio in this region need to be considered.

The weight ratio

%
T

2

0

%Kr

0

is shown in �gure 5.15 for di�erent operating conditions. The resulting

weight uncertainties are shown in �gure 5.16.

The lower bounds are only relevant if the mean value of f0 is used in the tritium analysis. In

the case where only upper limits are used, upper bounds are su�cient. They are generally

between 110 % and 120 % of krypton f0, mainly depending on the column density di�erence

of the tritium and krypton mode.
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Figure 5.13.: Scaling factors, mean di�erences: In KNM2 (a) the column density of the

tritium measurement was 84 % of nominal, resulting in a scaling factor of

≈ 100 % for Δd . In KNM3a (b) the column densities in both measurements

were 40 % of nominal, resulting in a scaling factor of ≈ 90 % for Δd . Due to

the demixing of the gas species, a measurement under the same conditions

does not mean that no scaling is necessary.

122



5.3. Scaling between Krypton and Tritium Plasma Moments

0 10 20 30 40 50 60 70 80 90 100
Column density in % of nominal

10

15

20

25

30

35

40

45

50

55

600σ
S

ca
lin

g 
un

ce
rt

ai
nt

y 
in

 %
 o

f 
kr

yp
to

n 

 Operator2T

 (MTD 40 eV KNM2)ρ∆

10∆

20∆

30∆
=29 K2T

T=100 K, KrT

 in krypton mode:dρ
30 % of nominal

(a) KNM2 d3 = 30 %→ 84 % like scaling

0 10 20 30 40 50 60 70 80 90 100
Column density in % of nominal

10

15

20

25

30

35

40

45

50

55

600σ
Sc

al
in

g 
un

ce
rt

ai
nt

y 
in

 %
 o

f 
kr

yp
to

n 

 Operator2T

 (MTD 40 eV KNM2)ρ∆

10∆

20∆

30∆
=80 K2T

T=80 K, KrT

 in krypton mode:dρ
40 % of nominal

(b) KNM3 equal source mode like scaling

Figure 5.14.: Scaling uncertainties, mean di�erences: Di�erences in the krypton and tritium

gas pro�les contribute an uncertainty on the tritium plasma observables.

For KNM2 (a) both column density and temperature of the krypton and

tritium measurement were di�erent, resulting in a scaling uncertainty of

Δmax

(
Δd

)
= 0.24f0, mainly due to the di�erent column densities. In KNM3 (b)

both measurements were taken at the same conditions. Still, the uncertainty

is Δmax

(
Δd

)
= 0.13f0, due to the demixing of the gas species.
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Figure 5.15.: Ratio of tritium to krypton zero weights: The extrema of the shown ratio

of %
T2

0
and %Kr

0
constrain the ratio of tritium and krypton f2

0
. Since krypton

accumulates at the WGTS ends, the ratios are larger than one in the center

and smaller than one at the ends for comparable tritium column density in the

krypton and tritium measurement. For large column density extrapolation

(blue) the maximum is shifted to the front.

Analysis methods: The best way of analysis depends on whether a usable estimate of Δ10

exists or not. There are two systematics which can prohibit the use of the measured value

from krypton for neutrino mass analysis:

• Krypton systematics: The estimate of Δ10 can su�er from too large systematics of the

krypton measurement. A main systematics driver at the moment is the uncertainty

of the energy loss function for the energies used in the krypton measurement.

• Potential uncertainty: Signi�cant changes of the shape of the potential between the

operating modes can make the scaling impossible.

Currently both problems are relevant for the KNM2 analysis, and while the potential scaling

was removed in KNM3a and KNM4 by choosing the same conditions of the measurements,

still the systematic on Δ10 is present. Thus, at the moment the systematics are too large to

use Δ10. However, in the future this systematic will be removed by measuring the correct

energy loss function. It follows:

• �10 not available: In this case the shape component of the neutrino mass shift is

constrained directly by the shape energy, which assumes the worst possible potential

shape. It can be either positive or negative, so only a symmetric constraint around

zero can be constructed. For systematic studies the maximum |Δd | is needed and

not the shape energy, which is obtained by equation 5.16 for |d̂ | = 1 or equivalently

equation 5.13.
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Figure 5.16.: Scaling uncertainties, variances: The lower (a) and upper (b) bound are

obtained by �nding the minima and maxima of curves like the ones shown

in �gure 5.15 for di�erent column densities in tritium mode. Since only the

%0 are relevant, this only depends on the column density di�erence of the

measurements and not on the MTD. Prior to KNM4, the temperature limited

the maximum column density in krypton mode to 30 % of nominal for 29 K

and 40 % of nominal for 80 K and was chosen accordingly.
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• Usable �10: In this case the mean neutrino mass shift can be predicted and the

uncertainty on the shift can be calculated as described. Depending on the size of the

shift, the calculated Δd can be used in the tritium model to correct for the systematic

shift.

In both cases the measurement of f0 in krypton and a reasonable potential scaling to tritium

conditions is unavoidable. In general the potential scaling is correlated with the weight

scaling. However, as long as f0 is not strongly dominated by localised inhomogeneities, it

could be argued that small shape changes do not a�ect the estimate. This allows to treat

it as a measure of potential magnitude only, and to decorrelate the two scalings. Which

kind of inhomogeneity currently dominates the measurement data is not conclusively

understood and can possibly only be determined in combination with plasma simulations.

The neglect of the correlation and the quadratic addition of the uncertainties associated

with the two scalings is conservative, so that the approach presented here is in any case

useful for understanding the weight scaling.

In all cases uncertainties related to weight scaling are maximum uncertainties, i.e. the

estimates stem from a uniform distribution bounded by the uncertainties. While it was

shown that these distributions can in some cases also be approximated with Gaussians,

uniform distributions were implemented by all groups performing the ongoing KNM2

analysis.

Scaling with the Lower Analysis Interval

The previous discussions were limited to the scaling of the plasma estimates with column

density, which is relevant for the analyses performed so far in KNM1 and KNM2. However,

in both cases the tritium spectrum was recorded over a larger energy interval than the

one currently used for the spectrum �t. As visible in the analysis interval dependence

of the susceptibilities in �gure 5.5, increasing the interval reduces the overall sensitivity

to scattering e�ects, such that using that data might be bene�cial with regard to source

potential systematics. Thus, in the following it is studied, how the analysis interval a�ects

the predicted neutrino mass shift.

The analysis interval dependence cannot be studied using Δd , since it is singular for

vanishing total susceptibility n = 0
3
. Instead, the shape energy and the shift of the squared

neutrino mass and its uncertainty are calculated directly. The latter two are obtained by

multiplying equation 5.22 with −n , resulting in the shape energy term

Δ<2

a (f0, d̂ ∼ Δ10)
��
f0=0

T2↔Kr

= −2Δ10

A^nd

^
10,0

dd10,0︸              ︷︷              ︸
prediction

± 2f0A^nd

√
1 − d2

d10,0︸                  ︷︷                  ︸
uncertainty

√
1 − d̂2 . (5.24)

Thus, the prediction is determined by the shape energy nd , the correlation dd10,0 of %d
in tritium to %1 − %0 in krypton and the krypton weight standard deviation ^

10,0. The

3
Thus, if future analyses use larger spectral �t intervals, the shift of ΔḠ cannot be modelled as simultaneous

shift of all scattering moments, which is the current standard implementation. Instead it could be

modelled by only shifting Δ20, since n2 does not vanish.
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Figure 5.17.: Shape energy vs. lower analysis interval: For the 40 eV analysis interval, the

penalty due to unknown potential shapes is maximal, while it is reduced by a

factor of ≈ 5, when going to a 90 eV interval. Notably, in contrast to the total

susceptibility the shape energy does never vanish, if scattering is present.

latter two are weighted with %0 from krypton. A^ ≈ 0.94 is the ratio of ^d,0 weighted with

krypton %0 divided by the value weighted with tritium %0, shown in �gure A.23 in the

appendix. While A^ also has a small contribution, the analysis interval dependence is

mostly given by the shape energy nd and the correlation dd10,0.

The shape energy, the predicted shift of the squared neutrino mass and the uncertainty

on this prediction are shown in �gures 5.17 and 5.18. There are no qualitative di�er-

ences between the individual KNMx phases and only KNM3a is shown here. Equivalent

investigations for KNM2 conditions are found in appendix A.9.

Discussion: As visible, the shape energy decreases strongly above the analysis interval of

40 eV to a minimum at 90 eV. Accordingly, also the predicted neutrino mass shift decreases

strongly and vanishes for 90 eV. However, this is not related to a vanishing shape energy,

but to a vanishing correlation of tritium and krypton operators, shown in �gure 5.19. Thus,

while the predicted mean for an analysis interval of 90 eV vanishes, the uncertainty of

the prediction increases, indicating that lowest uncertainty is a trade-o� between low

shape energy and high correlation. With regard to plasma systematics, the minimum is

the optimal interval for tritium measurements, if the krypton estimate of Δ10 is known. As

long as it is not known, the interval of minimum shape energy should be used. However,

such considerations also need to take into account other systematic e�ects which scale

with the analysis interval and were not investigated here.
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Figure 5.18.: Neutrino mass shift from mean di�erence vs. lower analysis interval: The

mean value of the prediction of the shift of the squared neutrino mass (a)

for given krypton Δ10 is closest to zero around 90 eV. This is not related to

a vanishing shape energy, but to the vanishing correlation of tritium and

krypton weights at this interval, which is visible in an increased uncertainty

of the prediction (b). The minimum of the uncertainty in the range of 80 eV

is a trade-o� between small shape energy and high correlation of krypton to

tritium operators. For smaller intervals the shape energy increases, for larger

intervals the correlation decreases.
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Figure 5.19.: Correlations of tritium and krypton weights vs. lower analysis interval: In

general the measurement of the krypton Δ10 shows high correlations to the

tritium ΔḠ . At around 80 eV the tritium antisymmetry shape changes, as

shown in �gure 5.20, which leads to decreasing correlation.

The individual scattering contributions show the constraints for the actual Δ80 [+ ] of the

potential: As discussed in section 5.1, constraining Δd [+ ] assumes that all mean di�erences

have the same value. Since this way only one quantity needs to be considered, the analysis

is considerably simpli�ed. As discussed in section 5.2, using Δd [+ ] or the total shape

energy already includes all correlations and gives the best possible constraints. In contrast,

if instead the Δ80 [+ ] are constrained directly, their values are those of the actual potential,

as predicted by the krypton-83m measurement. However, their correlations need to be

considered, since the sum of the absolute values of the contributions shown in �gures 5.17

and 5.18 overestimates the systematics. The only reason to still use the actual values of

the potential Δ80 [+ ] is correlations to non-plasma potential systematics, which can in

principle lead to di�erent results in both approaches. However, in the standard 40 eV

interval the di�erences in the approaches are small.

The drastic change of the correlation (�gure 5.19) also indicates a strong change of the

antisymmmetry shape, which is shown in �gure 5.20. In the range of 85 eV analysis

interval the antisymmmetry shape no longer lives up to its name, as it acquires a signi�cant

symmetrical component. This explains the vanishing correlation of krypton Δ10 [+ ] and

tritium Δd [+ ] for this interval. It should be recalled that the antisymmetry shape is the

potential shape which produces the extremal neutrino mass shift shape term. Thus, if the

potential shape is known, tuning the analysis interval accordingly allows to minimise the

shape systematic. From this a hypothetical test experiment for the theory developed in this

thesis can be constructed: As shown in section 6.3, the krypton-83m measurements prove
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Figure 5.20.: Antisymmetry shapes vs. lower analysis interval: Increasing the analysis

interval has a signi�cant in�uence on the antisymmetry shape, since it adds

contributions from Δ80 of higher scattering multiplicity.

that applying a strong positive rear wall voltage*RW leads to an antisymmetrical potential.

This is the only known possibility to produce a potential which can be reasonably well

determined directly by the experiment. Thus, it is the only con�guration which allows

to construct test cases for the theoretical description of plasma potential systematics. If

tritium measurements are performed in this con�guration, the absolute neutrino mass

systematic is largest for an analysis interval of 40 eV and smaller for 90 eV. The use

of f0 ≈ 500 mV, which is motivated by the value measured at a rear-wall set point of

*RW = +5 V in krypton-83m, leads to a shift of the squared neutrino mass of

Δ<2

a (f0 = 500 mV, d̂ ≈ 1)40 eV ≈ −2 · 500 (1 · 500 + 500 ) meV
2 = −1.0 eV

2 , (5.25)

Δ<2

a (f0 = 500 mV, d̂ ≈ 0)90 eV ≈ −2 · 500 (0 · 100︸ ︷︷ ︸
shape

+ 500︸  ︷︷  ︸
variance

) meV
2 = −0.5 eV

2 . (5.26)

A measurement at 84 % nominal column density like KNM2 was assumed and the cor-

responding shape energies were taken from �gure A.22 in the appendix. Thus, while

this e�ect is detectable by KATRIN, it would require several weeks of measurement time

(comparable to the neutrino mass scans of KNM2) in this con�guration, which is not

realistic. If instead the endpoint was used for the same kind of analysis, the measurement

time could likely be reduced to a few days only. Such considerations are relevant, since

currently the plasma potential systematics dominates the KNM2 systematics budget and

the precise understanding of experimental observables and theory is important. In addition,

the dependence of the plasma potential systematics on the analysis interval is relevant for

the measurements of more massive keV sterile neutrinos at KATRIN, which necessarily

use larger intervals.
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5.4. Conclusion

In this chapter the systematic e�ect of the plasma potential on the tritium neutrino mass

measurement has been studied. This included the calculation of the susceptibilities to

scattering e�ects and the relevant scattering weights and their correlations to their krypton

counterparts.

Shapeenergies: As a result, the quantitative equation for the shift of the squared neutrino

mass in dependence of the plasma observables was given:

Δ<2

a (d̂, f0) = −2f0( d̂nd︸︷︷︸
shape

+ f0︸︷︷︸
variance

). (5.27)

The neutrino mass shift is fully determined by the zero weighted standard deviation f0 [+ ]
and the antisymmetry d̂ [+ ] of the potential+ . All experimental conditions are condensed

into the shape energy nd , which is approximately 500 meV for the example of the KNM2

measurement. It mainly depends on the column density and the analysis interval of the

spectral �t. Both dependences were studied in detail: while nd increases monotonously

(approximately linearly) with the column density, the analysis interval dependence shows

a minimum at around 90 eV. Thus, neglecting other systematic in�uences, adjusting the

interval of analysis accordingly reduces the shape energy by a factor of �ve.

Related to the antisymmetry d̂ is the mean di�erence Δd [+ ], where

d̂ [+ ] = 1.3
Δd [+ ]
f0 [+ ]

(5.28)

holds for KNM2 tritium conditions. Although d̂ [+ ] fully speci�es the shape term, Δd [+ ] is

needed to implement the systematics in the tritium model by shifting all scattered spectra

compared to the unscattered spectrum by its value.

Weight scaling from the krypton to the tritiummeasurement: All estimates of the plasma

potential depend on the measurement conditions, since they are weighted with the longitu-

dinal distribution of the signal electrons. The resulting necessary translation of the plasma

potential estimates (d̂ [+ ] ∼ Δ10 [+ ], f0 [+ ])Kr
determined in krypton-83m measurements

to tritium estimates (d̂ [+ ] ∼ Δd [+ ], f0 [+ ])T2
was investigated in detail. Changes of the

potential for di�erent experimental conditions are expected, but were not quanti�ed, and

their impact on the scaling of the potential moments was neglected. In a conservative

approach, which neglects the correlation of these two scalings, the resulting uncertainties

of the potential moments can be added in quadrature.

It was shown that the translation Δ10 [+ ] → Δd [+ ] has an uncertainty of at least 10 %

of f0 [+ ], even if both measurements are performed at the exact same conditions. This

is related to di�erences in the gas pro�les of krypton and tritium. For di�erences in

the column density of the measurements, the uncertainty increases accordingly. Apart

from the uncertainty, the mean value of Δ10 [+ ] also needs to be scaled in the translation,
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where the factors range from 0.8 (same conditions) to 1 (KNM2 like scaling). Here, the

di�erences in the gas pro�les mean that the krypton values are smaller, even under exactly

the same conditions, which is compensated when the column density is higher in the

tritium measurement.

The scaling of f0 [+ ] depends on the inhomogeneity localisation. If nothing about its

localisation is known and the tritium column density in the tritium and krypton measure-

ment is the same, the upper bound of the tritium f0 [+ ] is given by ≈ 1.15 times the value

measured in krypton-83m.

Weight standard deviations and correlations: All factors printed in this conclusion are

related to standard deviations ^Ḡ,I or correlations dḠ~̄,I of the involved weights. Here, they

are rounded and given for KNM2-like conditions. Apart from these conditions they also

depend on the parameters they constrain. The following rules for the indices simplify the

understanding:

• For all constraints a standard deviation fI needs to be measured; its weight gives

the index after the comma.

• The weights before the comma are given by the involved ΔḠ ; weight correlations

dd10,0 appear if krypton constrains tritium. Standard deviations ^Ḡ,I appear, if a ΔḠ
is constrained by a fI .

For example, the factor in equation 5.28 is given by an inverse standard deviation ^−1

Ḡ,I . In

the printed case, both Δd and f0 are the tritium quantities and the factor is ^−1

d,0 ≈ 1.3. For

the relation of krypton Δ10 and f0 in KNM2 conditions the factor is ^−1

10,0
≈ 1.5, but here

weighted with krypton %0. If the tritium Δd should be constrained from the krypton f0,

the factor is ^−1

d,0 ≈ 1.35, also weighted with krypton %0.

If the parameters are used in the tritium model to compensate for the plasma potential

systematics, such details are relevant. Thus, while the developed theory needs many

indices to specify the respective weightings, all are necessary for the variety of di�erent

use cases.

In a �nal step, the plasma observables are obtained in a krypton measurement and the

resulting neutrino mass systematic is calculated. This is the topic of the next chapter.

Outlook: The weight pro�les, antisymmetry shapes and scaling results depend on the

validity of the gas model. Parameters like boundary conditions, viscosity or temperature

pro�le can have few-percent e�ects. While these changes are unproblematic for the KNM1-

3 measurements, for full KATRIN the gas model needs to be validated by measurement,

which is currently in preparation. Also, in�uences of small quantities of gas residing in

other parts than the central WGTS (for example in the di�erential pumping section) might

be considered.
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In this chapter the systematics related to inhomogeneities of the plasma potential + in

the KNM1 and KNM2 tritium measurement are discussed. All methodology necessary

to describe the systematic shifts due to potential inhomogeneities has been derived in

the previous chapters. It has been shown that they can be constrained by the potential

moments (Δ10 [+ ], f0 [+ ]), which are obtained in krypton-83m measurements. The data

analysis leading to those estimates in the KNM1 and KNM2 measurement campaigns is

described in the following.

In section 6.1 methodology and data analysis of the KNM1 and KNM2 krypton measure-

ments are described. For the determination of the broadening f0 [+ ] a precise estimate of

the intrinsic Lorentzian line width is needed. Section 6.2 discusses available values for the

L3 line along with the value obtained from the KNM1 krypton only measurement.

In section 6.3, the results of the krypton plus tritium measurements are shown. It is also

shown how the operator constraints derived in the previous chapters can be applied to

krypton measurements to �nd physically allowed regions of (Δ10 [+ ], f0 [+ ]). Finally, in

section 6.4 the obtained plasma estimates are scaled to tritium conditions and the expected

systematics are calculated.

6.1. Methodology and Data Analysis

The KNM1 and KNM2 krypton campaigns were conduced after corresponding tritium

campaigns to access the systematics resulting from plasma inhomogeneities in the WGTS.

Both campaigns used approximately 30 % of the nominal column density of molecular

tritium with an admixture of mesomeric krypton. The tritium column density was the

maximum possible in
83m

Kr mode of the source. In both campaigns the rear wall voltage

was varied in an interval between −5 and +5 volts to access di�erent plasma regimes. In

KNM1 also a krypton-83m only measurement was conducted to determine the intrinsic

line parameters of the L3-32 transition. While the KNM1 krypton campaign was the �rst

campaign to use a krypton tritium mixture, it was not the �rst krypton campaign at

KATRIN:

• July 17: The �rst ever gaseous source measurement at KATRIN was the krypton-83m

measurement from July 2017. Besides the focus on the properties of the krypton-83m

conversion electron spectrum, including also the measurement of the line parameters
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of the L3-32 transition [Sle+19], the energy scale linearity and the in�uence of

di�erent analysing plane magnetic �elds were studied [Sei19].

• STS3a: The July 2017 krypton measurements were followed by the STS3a krypton

measurements in October 2018, which for the �rst time used a mixture of krypton

and a hydrogen isotopologue, here non-active molecular deuterium. This allowed

to show that scattered electrons form a distinct step in the recorded L3-32 spectra.

Furthermore it could be proven that this step can indeed be shifted by a source

potential. By applying ultra-violet radiation to the rear wall, electrons were created,

which allowed to create a plasma without the usual charge creation by β electrons.

The plasma could be in�uenced by di�erent rear wall voltages, thereby producing the

eloss shift, as predicted in this work. Furthermore, in STS3a yet another measurement

of the intrinsic line parameters of the L3-32 transition was performed. It was also

observed that the functioning of deuterium as a carrier gas leads to a rate of the

32 keV transition of around 0.5 Mcps, which is a factor of ∝ 10 increase compared

to the krypton only measurement. These rates are also typical for the KNM1-3

measurements.

Already the STS3a measurement campaign employed basically the same model to �t

electron energy spectra from krypton plus hydrogen mixtures or pure krypton spectra, as

the later KNM1&2 measurements. Also, it showed many of the challenges which gaseous

krypton measurements at KATRIN need to overcome. The model, the systematics and

analysis strategies to mitigate them are described in the following sections.

6.1.1. Krypton Model and Observables

As described in section 1.3.2 the modelling of the integrated krypton rates consists of a

gas model and a model of the di�erential spectrum. For the two use cases of reference

measurements with pure krypton and mixtures of carrier gas and krypton, the model

needs slight adjustments.

Krypton reference measurements: Here a constant spatial krypton distribution in the

WGTS is assumed, which is expected for the low pressure regime without carrier gas.

The spectral modelling usually consists of two Lorentzian lines for L3 and L
S3

3
, which

are characterised by their individual width Γ, position Δ� and intensity � . In addition a

constant background �6 is �tted, leading to seven free parameters. The relative position

and relative intensity of the shake line were constrained with literature values from [Sei19].

Otherwise the �ts showed di�culties, presumably due to a too small analysis interval. The

uncertainties of the constraints on relative position and intensity were doubled compared

to the literature, to avoid too strong bias.

Kryptonplasmameasurements: The �t of the plasma measurement uses the relative shake

line intensity and position and both Lorentzians of L3 and L
S3

3
as �xed input. Additionally

a Gaussian with variance f2

g
is convolved with the spectrum, leading to the Voigt pro�le

described in section 1.3.2. Also, the gas model now needs to include the distribution of the
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Figure 6.1.: Krypton �t: Shown are the parameters characterising the integrated krypton

spectrum in the usually �t region. The shake parameters were �xed in the

plasma measurements, while the scattered electrons and their parameters do

not appear in reference measurements. fMain = fEloss ≡ fg has been assumed

in all �ts, which is justi�ed as shown in chapter 5. The scheme does not include

a parameter for the background slope, which was not �tted in KNM2. Still, it

needs to be considered as discussed below.

carrier gas and krypton in the source, which are calculated as described in section 1.3.2.

Since the column density of the carrier gas is usually not well enough known, it is �tted

from the ratio of the scattered and unscattered L3 lines. Here the scattering cross section

finel = 2.435 · 10
−22

m
2

[Lev19] for 30.4 keV electrons is used. The �t result of the column

density also depends on the gas model and slicing, as discussed in appendix A.4. Lastly,

the energy loss shift ΔnEloss of the energy loss function �gure 1.10 is �tted. This �t su�ers

from two systematic e�ects: Firstly, the correct energy loss function for 30.4 keV electrons

and ) = 100 K is not known, and secondly the transmission function change by scattering

[Gro15] (in the following called detailed transmission) could not be used, since it increases

the calculation time by several orders of magnitude. The in�uence of these systematics

is discussed in section 6.3.1. In total the six parameters (�6, d3,ΔnEloss, f
2

g
,Δ�main, � ) are

�tted.

In both cases the magnetic and electric �elds in the analysing plane are taken from FPD pixel

dependent simulations, adjusted for the corresponding �eld settings. These simulations

use particle tracking and the measured position of the hardware components [Hac17] to

determine the mapping of the �ux tube in the source to the point of energy spectroscopy

in the analysing plane [Def17]. Thus, the �eld values are a�ected by uncertainties of

those measurements and simulations, which is apparent by the misalignment discussed

below. The modelling of the krypton-83m spectrum also includes energy losses due to

synchrotron radiation and an additional broadening due to the Doppler e�ect, which is

calculated for the respective temperatures.

Figure 6.1 shows an overview over all parameters.
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Figure 6.2.: Line position pixel map: As visible, the line positions are not uniformly dis-

tributed over the detector, but show about 200 meV di�erences in a dipole

like structure. The shown rear wall voltage shows the smallest radial vari-

ance. The values are relative to the mean line position of the KNM1 reference

measurement.

Calculation of uncertainties: The �ts were always performed using ROOT::Minuit and

Minos statistical uncertainty estimation [Ant+09]. In some cases the latter did not work

and only the Minuit uncertainty was available, which usually is underestimated. In these

cases the average Minos uncertainty from the working �ts was used. The uncertainty does

not strongly depend on the individual �t, since all �ts have roughly the same statistics. No

systematic uncertainties were included in the �ts, but the in�uence of certain parameters

or analyses were tested separately, as found in appendix A.4. Nevertheless, due to the

drifts and radial e�ects discussed below, the distributions of the observables can still show

overdispersion compared to the statistical uncertainty. This systematic uncertainty on the

average usually dominates the total uncertainty. It was calculated by quadratic subtraction

of the expected statistical width from the total width of the distributions. When necessary,

Gaussian uncertainty propagation was used, as described in appendix A.5.

6.1.2. Alignment and Pixel-Wise Analysis

Figure 6.2 shows that the measured line positions are not equally distributed over the whole

detector, but show an azimuthal dipole pattern, which is thought to have two possible

origins:

• Misalignment: Radial or azimuthal misalignment of the �ux tube through analysing

plane and detector causes an o�set of the parabolic minimum of the simulated

spectrometer potential with the actual measurement. This would lead to the observed

dipole structure and was already studied on krypton July 17 data, where usually a few
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Figure 6.3.: Background �t and simulation: The shown background �t is from a run at

*RW = 200 mV, however it does not strongly dependent on the voltage, as

shown in [Ost20]. The correction was applied as described in [Ost20] and in

the text. The simulation was carried out using particle tracking [Wei20]. As

seen, the overall agreement is quite good. Thus, the non-adiabatic transmission

of the krypton background can be predicted and the method can be used to

determine the magnetic �eld alignment in the respective �eld setting. The

simulation was scaled to �t the �rst ring of the measurement.

millimetres shift of the �ux with regard to the ≈ 10 cm diameter detector [Ams+15]

was found. However, the misalignment does not only depend on the positions

of the magnets and detector, but also on the magnetic �eld setting. This is why

any correction needs to be valid for the conditions of the respective measurement

campaign. Furthermore, for a radially inhomogeneous plasma potential the e�ect

could also be caused by a misalignment of rear wall and detector, leading to the

danger of correcting actual plasma e�ects.

• Azimuthal plasma potential: A purely physical cause are azimuthal dependencies

of the plasma potential. A priori those are not distinguishable from misalignment

e�ects, when only considering the line position.

To disentangle both e�ects, a method has been developed in cooperation with Raphael

Ostertag in [Ost20], which determines alignment not from the energy scale, but the

background rate. Thus, while the former assumes a radially and azimuthally homogeneous

energy scale of the source, which cannot be generally expected, this method assumes a

radially and azimuthally homogeneous source strength, which is expected from simulation.

The background rate in krypton reveals misalignment of the analysing plane magnetic
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6. Krypton-83m Measurements in KNM1 and KNM2

Table 6.1.: List of excluded pixels.
The listed pixels were excluded from the analysis of the respective campaigns

to avoid shadowing and detector e�ects. They di�er only in the pixels 99 and

113. The former was shadowed by the Forward Beam Monitor FBM [Ell19]

in KNM1, which was moved to a new monitoring position in KNM2. The

latter was excluded in KNM2, since it showed a small rate reduction due to

shadowing. This was possibly caused by the slightly modi�ed magnetic �eld

setting compared to KNM1.

KNM1 97, 98, 99, 100, 110, 111, 112, 121, 122, 123, 124, 125, 126, 127, 128, 129,

130, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147

KNM2 97, 98, 100, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129,

130, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147

�eld and the detector due to the following reasoning: For measurements at L3-32 the

background is caused by electrons of the higher lines, which have on the order of 1500 eV

surplus energy compared to the spectrometer potential. Energy loss, drift and storage

e�ects of these electrons due to non-adiabatic transport increases with the radius of

their trajectory in the spectrometer. This leads to a loss of background rate towards

larger radii, visible in �gure 6.3 along with a comparison to particle tracking simulations.

Misalignments of the magnetic �ux of analysing plane and detector lead to the observed

wave pattern, since di�erent pixels in a pixel ring observe a di�erent radius of the analysing

plane. From that the misalignment can be deduced, as shown in [Ost20]. In general the

values are di�erent to those found on the line position, indicating at least two di�erent

e�ects. Distinguishing those is the topic of ongoing studies on KNM3 data. Also, more

simulation and measurement e�orts using the electron gun are planned to overcome the

issue. However, so far no satisfactory correction is available and in order to minimise

systematic e�ects, all analyses are performed pixel by pixel. Thus, the pixel-wise �ts of

observable $ are averaged using the uncertainty f ($) weighted average

$̄ =

∑ $8
f2 ($8 )∑

1

f2 ($8 )
, f2($̄) = 1∑

1

f2 ($8 )
, (6.1)

where the sum goes over the included pixels. Averages of Γ and fg were calculated on the

squared values, since they are Gaussian distributed, as shown in appendix A.6.

Pixel exclusions: Due to collisions of the �ux tube in the transport section some of the

outer pixels show signi�cantly reduced luminosity. These pixels were excluded from the

analysis. A second criterion was the minimisation of detector e�ects like strongly deviating

energy resolution. The list of excluded pixels is found in table 6.1. In both campaigns 117

out of the 148 pixels were used.

Pixel combinations: Usually the pixels are grouped to rings, giving 12 rings (labelled 1-12)

with 12 pixels each and the bullseye with 4 pixels (labelled 0). To further reduce statistical
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6.1. Methodology and Data Analysis

uncertainties and to produce clearer plots, the rings are often grouped to four pseudo rings
or combined rings, consisting of three adjacent rings each, starting from the bullseye. By

this grouping ring 12 is left over, however it is completely excluded anyway.

6.1.3. Transmission Properties and Background Slope

As discussed, the background at the L3-32 line is created by electrons from higher energetic

lines. Figure 6.4 shows the respective normalised rate contributions and their derivatives.

The color coding indicates whether the lines are above or below L3-32 line. As visible,

the main background contributions stem from higher energetic M lines. However, as

visible in the derivatives, their contribution is constant in the relevant analysis range. The

background from the lower energetic L2-32 and L
S3

3
lines, however, creates a contribution

that is not constant in the analysis interval. This leads to a systematic if a constant

background model is assumed. The line for fg indicates when the additional broadening

due to an unaccounted background slope exceeds 20 meV. Positive slopes produce negative

broadenings and vice versa. Consequently, for contributions from L2-32 and L
S3

3
the

additional broadening is positive, since slopes from lower energetic lines are negative. All

other observables are also signi�cantly a�ected by a slope. From these plots it follows that

the L2-32 and L
S3

3
lines need to be included in the model.

Non-adiabaticity: However, the previous discussion assumes that the non-adiabaticity of

the M electrons with ≈ 1500 eV surplus energy does not a�ect the rate contribution in the

analysis interval. As it was shown in KNM3 krypton measurements this is not the case,

since an orders of magnitude higher background slope was found than predicted here

[Böt20; Gup20]. It was also shown in particle tracking simulations that this can indeed

stem from non-adiabatic e�ects of the M lines. Thus, while still at least the L
S3

3
line should

be included in the model to avoid an additional curvature of the background, a background

slope needs to be considered as well. In KNM3 it was measured by increasing the analysis

interval to ≈ 150 eV above the L3 line. It was shown that the slope correlates with the

magnetic �eld setting and that it is stable, if the setting is �xed. Thus, the slopes measured

in KNM3 were used in the present KNM1 and KNM2 analysis, which did not have the

increased analysis interval to �t it. The L2-32 line was included in none of the models,

such that its contribution is absorbed in the �tted slopes. Since the slope increases to outer

radii, including it removes radial structures in all observables. This was also observed in

KNM3 and is expected from simulation. Still, it is believed that the transmission properties

of high surplus energy electrons are not understood to a level where the e�ect becomes

negligible.

6.1.4. Time Dependencies of Rate and Energy

All observables su�er from time dependencies, which are caused either by drifting rates

or drifts of the energy scale.
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Figure 6.4.: Background contributions: Green colors indicate that the line is above L3,

red colors indicate that it is below. As visible in the normalised rate the

constant background component is dominated by the higher energetic M lines.

In contrast, the background slope is dominated by lower energetic L2 and

L
S3

3
lines. However, this assumes adiabatic transport of the higher energetic

electrons, which is not the case.
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Figure 6.5.: Column density in KNM2: As visible, in the 6 days of KNM2 measurement the

�tted tritium column density increased by about 1 %. Only if the background

slope is included, like in this plot, no radial structure is observed as expected.

Ratedri� in referencemeasurements: A strongly increasing rate of 0.7
kcps

h
, corresponding

to ≈ 1 % per scan, is observed in the KNM1 krypton only measurement, and a comparable

number is found also in the STS3a reference measurement. It has been shown in [Mar20]

that this is related to accumulating dirt (mainly air and hydrocarbons), which is outgassing

from the pumps and acts as a carrier gas. Since the gas composition prior to KNM4 could

not be cleaned in
83m

Kr mode this dirt accumulates over time, thus increasing the krypton

rate. In KNM3 part of the problem was solved by letting the dirt accumulate a few days

before injecting krypton. For the KNM2 reference measurements the data from the initial

measurement days was excluded when upwards and downwards scans showed signi�cant

di�erences in the observables.

Rate dri� in plasma measurements: A small rate decrease can also be observed in the

krypton plus tritium measurements. It has been shown in [Ost20] that its half-life time

(79.92 ± 0.40) d is largely explained by the decay of the krypton-83m producing rubidium

with a half-life time of 86.2 d. As apparent from the numbers, a small extra reduction has

to exist to explain the still signi�cant di�erence.

Columndensity dri�: As visible in �gure 6.5, in the plasma measurements also the tritium

column density shows a drift, since it can only roughly be stabilised in
83m

Kr mode. For

KNM2 this drift was on the order of 1 % of nominal over the six measurement days. This

drift contributes to the change of the krypton rate, due to the tritium acting as carrier
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6. Krypton-83m Measurements in KNM1 and KNM2

gas. However, the di�erent time dependencies of rubidium decay, column density drift

and other, unknown processes are hard to disentangle. The drifting column density also

contributes to a change of the plasma and surface properties, which are discussed below.

All rate drifts in the plasma measurements are small enough that no signi�cant di�erence

of up and down scans is produced in the observables for the usual run times of ∝ 40 min.

Thus, no rate correction was applied.

Absolute energy scale dri�s: Energy scale drifts can appear due to drifts of the spectrom-

eter or the source potential. Many di�erent measures are applied to access the stability of

both potentials:

• Spectrometer: The di�erent components of the spectrometer potential are cali-

brated via di�erent methods, including the krypton-83m nuclear standard of the

monitor spectrometer and Josephson normals [Res19]. In total it is concluded that a

possible drift is smaller than 1 ppm over half a year, which is negligible for KNM2

krypton.

• Rear wall current [Fri20]: The rear wall can be used comparable to a Langmuir

probe [Che03]. Thus, the �* -curve of rear wall or DPS dipole current � vs. rear wall

voltage* is measured, and characteristic points are studied. An established method

to access the stability of the energy scale is to study the zero crossing of the total

WGTS current over time. It is given by the sum of the rear wall and DPS current. In

the case where they do not compensate a third loss channel has to exist, which most

likely are radial currents to the beam tube walls. They are not measurable with the

current hardware. A homogeneous plasma potential both in radial and longitudinal

direction is expected to result in minimum radial currents and thus a vanishing total

WGTS current.

• PRO-KATRIN [Fri20]: In Plasma Rear Wall Optimisation the tritium rate is mea-

sured at a �xed retarding energy several hundred eV below the endpoint. Rate

changes can be converted to energy scale changes using the slope of the tritium

spectrum. This allows to perform fast scans of the energy scale for di�erent rear

wall voltages without the necessity to perform a full spectrum measurement. This

method is also usually used to �nd the optimum rear wall voltage set point for the

tritium measurement by demanding the minimum measured radial energy slope.

PRO-KATRIN has the bene�t that it can be performed in the same conditions as the

tritium measurement.

• Krypton: In krypton measurements energy scale drifts are directly visible in the

measured line position.

Figure 6.6 shows the line positions of KNM2 over the rear wall voltage. Both in PRO-

KATRIN and krypton measurements also characteristics of these spectra like the rear wall

voltage of minimal radial inhomogeneity or the start of good coupling can be studied. While

the average krypton line position in KNM2 shows a change of approximately −23
meV

d

[Ost20] if it is �tted linearly over the whole measurement campaign, the spectral measures

like the start of good coupling are much more stable. Also, as shown in [Ost20], there
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6.2. Krypton-83m Spectrum Observables from Reference Measurements

Table 6.2.: Line parameters of L3-32.
Results without citation are unpublished from own analyses (STS3a and KNM1)

or internal documents (KNM3). The listed systematics apply to the widths,

however all the positions from KATRIN also include shifts due to the unknown

mean Beam Tube Work Function (BTWF) or substrate work function in case of

the Condensed Krypton Source (CKrS).

Source Width Γ in eV Position in eV assumed unac-

counted systematics

Literature [Vén+18] 1.19(24) 30472.2(5) unknown

July 17 [Sei19] 1.163
+0.015

−0.016
30472.642(5) uniform analysis, �6

slope, BTWF

STS3a ≈ 1.15 ≈ 30472.68 unstable rate, �6

slope, BTWF

KNM1 1.062 ± 0.019 30472.200 ± 0.001 �6 slope, BTWF

KNM1 N2,3 [Ost20] 1.011 ± 0.028 – unknown

CKrS [Ful20] 1.0606(21) (150) 30473.7336(9) (880) unknown

KNM3 ≈ 1.06 ≈ 30472.04 BTWF

are several drift regimes of the line position and an overall increase of the energy loss

shift in the coupling region. The di�erent drift regimes are separated by other calibration

measurements, which presumably change surface properties of the WGTS or rear wall.

Thus, it cannot be distinguished whether the drifts are caused by the changing column

density, or the calibration measurements, or by shifting surface properties without any

external change. The drift of surface properties can be caused by the absorption of particles,

such that every time the system is changed, drifts may occur until they saturate. Notably,

also in the tritium measurement, where the column density is much more stable, sometimes

endpoint drifts can be seen. Thus, a �nal conclusion on cause and size of a possible energy

scale drift could not be drawn.

It should also be mentioned that the change of the energy loss shift only appears in the

coupling region. The rear wall voltage of +5 V measured at the beginning and the end

of the campaign gives the same value, both for f0 and Δ10. In contrast, the line position

shows a di�erence of 100 meV. Thus, the strong external electric �eld at this large rear

wall voltage leads to a reproducible potential shape in the WGTS.

6.2. Krypton-83m SpectrumObservables from Reference
Measurements

In the following the krypton reference measurements are studied. They are used to obtain

the intrinsic line parameters, most importantly the Lorentzian line width. A precise

estimate is needed since the plasma inhomogeneity, observed as broadening of the line, is

measured compared to the intrinsic width.
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Figure 6.6.: Line positions in KNM2: A linearly coupled region from approximately −0.5 V

to +1 V is surrounded by less coupled regions. More negative voltages only

lead to small changes of all observables, while for more positive voltages

increased inhomogeneity is observed in (f0,Δ10). The di�erent scans (a) show

an overall drift of the line position compared to each other. The rear wall

voltage of minimal inhomogeneity is visible in (b) as the line crossing, and a

detailed analysis in [Ost20] shows that it is relatively stable over the runs at

*RW ≈ 160 meV. The values are relative to the KNM1 reference measurement

position of 30472.2 eV. Statistical uncertainties are included, but not visible on

this scale.
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Measurements of the intrinsic line parameters from KATRIN have up to now been taken

in July17, STS3a, KNM1 and KNM3. Table 6.2 lists the measured values of the L3 line

width and position and the assumed systematics on the width. Changes of absolute line

positions or intensities are expected due to di�erent source conditions. While the L3 line

position from the KNM1 reference measurement is used as a reference value for the KNM2

plasma measurement, it should not be understood as the intrinsic line position. Also, shifts

compared to it are composed of work function and plasma changes. As discussed above,

the work function of the source depends on the history of gas exposure, such that it may

vary from campaign to campaign.

However, as visible, also the line width Γ shows signi�cant decrease over the measurement

campaigns, which must be caused by systematics unaccounted. The KNM1 L3 width,

determined with the N2,3 method, and the Condensed Krypton Source (CKrS, see section 1.1

and [Ful20]) value both apply a correction in the analysis. The N2,3 method uses the

vanishing intrinsic width of the N2,3 doublet: additional Gaussian systematics f2

g
are

extracted from the doublet �t and included into the �t of the L3 line. Some of the ongoing

KNM3 analyses use the same procedure, but without reproducing the small value of KNM1

N2,3. Despite this value, the latest KATRIN results of KNM1, CKrS and KNM3 are all in

agreement, but disagree with previous results. However, they are a�ected by di�erent

systematics, which is apparent from the following example of the KNM1 analysis.

The Lorentzian width measured in KNM1 is shown in �gure 6.7. The line width shows

a signi�cant radial dependence. It is known that the, here neglected, background slope

makes the inner values larger, which suggests that the true value from this measurement is

of the order of 10 meV smaller. However, in this case it is not in agreement with the values

recorded from CKrS or in KNM3, which do not su�er from these particular systematics.

On the other hand, the CKrS value is the only value which does not su�er from possible

inhomogeneities of the work function of the beam tube, since it is not measured using the

extended gaseous source, but a point source.

Thus, while the KNM3, CKrS and KNM1 measurements hint to a true Lorentzian with

a width of roughly 1.06 eV, the remaining di�erences are not understood. The problem

is obvious in some of the plasma measurements, since in some of the measurements a

signi�cant portion of the obtained Gaussian variances is negative, hinting to a too large

Lorentzian. If the Lorentzian used in the �ts of the plasma measurements is larger than

the actual line width this is compensated by a negative Gaussian variance. Nevertheless,

for the plasma �ts shown in section 6.3, the CKrS value was used since it has the least

known systematics, while being in reasonable agreement with the other values.

The connection between Gaussian and Lorentzian can be quanti�ed. In the following

it is shown that for the purpose of plasma systematics determination from the L3 line,

obtaining a meV precise result of the Lorentzian is necessary.
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Figure 6.7.: KNM1 reference measurement of the L3 line width: The histogram shows all

included KNM1 krypton reference runs. The uncertainty of the mean is quoted

as statistical uncertainty. However, the histogram shows some overdispersion

due to radial systematics, as visible in (b). Subtracting the statistical width

from the total width in quadrature gives fsyst(Γ2) = 0.04 eV
2
.
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6.2.1. Connection between Gaussian and Lorentzian Distribution

The full width of half maximum 5Voigt of the Voigt pro�le for given Lorentzian Γ and

Gaussian f is [OL02]

5Voigt = 0.5346Γ +
√

0.2166Γ2 + 8ln(2)f2 . (6.2)

From that it can be deduced how uncertainties of Γ translate to f or vice versa, if the total

width 5Voigt does not change:

5Voigt = 0Γ +
√
1Γ2 + 8ln(2)f2 ,

⇒ (5Voigt − 0Γ)2 = 5 2

Voigt
− 20Γ5Voigt + 02Γ2 = 1Γ2 + 8ln(2)f2 ,

d5Voigt=0

⇒ −20dΓ5Voigt + 02
dΓ2 = 1dΓ2 + 8ln(2)df2 ,

⇔ df2 =
1

8ln(2)
[
−20dΓ5Voigt + 2ΓdΓ(02 − 1)

]
,

= (−0.19285Voigt + 0.025Γ)dΓ .

In the KATRIN use case at L3 line f � Γ holds, leading to 5Voigt ≈ Γ, and thus

df2 = −0.168ΓdΓ , (6.3)

= −0.084dΓ2 . (6.4)

For f ≈ 0 and Γ = 1.0606 eV this gives

df

meV

≈ −13.35

√
dΓ

meV

. (6.5)

Thus, for an aimed sensitivity on f below 20 meV, a trueness on Γ of 3 meV is necessary.

This only holds for d5Voigt = 0. In the �t, parameters like the measurement time distribution

and line shape distortions by systematics or potentials a�ect the true relation. Thus, these

equations should only be understood as rough estimates giving the magnitude. Foremost

they show that there is no one-to-one connection, but that small changes in the Lorentzian

lead to large changes in the Gaussian. The best approach is to �t the data sets for di�erent

Lorentzians, which takes lots of computation time. For the requirements of this work the

approximation is su�cient.

If equation 6.2 is solved for f2
, it can be treated as a function of Γcorr = Γ + ΔΓref

with the

previously calculated, �xed 5Voigt and a shift ΔΓref

f2(Γcorr) =
(5Voigt − 0.5346Γcorr)2 − 0.2166Γ2

corr

8ln(2) . (6.6)

This allows to determine the necessary ΔΓref
for conditions on f , for example for f

!

≥ 0.

Also, it allows the propagation of the measured uncertainty of Γ to f .
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6. Krypton-83m Measurements in KNM1 and KNM2

6.3. Plasma Observables from PlasmaMeasurements

In the following the estimates (fg,Δ10)1 from KNM1 and KNM2 plasma measurements

are shown. Further plots of the �tted data are found in appendix A.6.

The measured broadenings are shown in �gure 6.8
2
. The uncertainties include the

statistical uncertainty of the measurement and the propagated uncertainty of Γ using

equation 6.6. Since the latter dominates, they are correlated over all rear wall voltages.

Both campaigns show a similar structure, but a signi�cant shift in absolute values for

the coupled region. While di�erences in plasma properties cannot be excluded, they are

not expected to this amount. A likely explanation is additional systematics in one of the

campaigns. Notably, the hardware and magnetic �eld setting was adjusted by adding new

aircoils in between KNM1 and KNM2. Thus, the applied background slope correction

might be wrong for KNM1: while the correction removes all radial dependent structures in

KNM2, for KNM1 the picture is not as clear. However, also the statistical uncertainties of

KNM1 were larger, since much less data was taken. Lastly, in between KNM1 and KNM2

the rear wall hardware was adjusted, leading to an overall shift of the applied voltage in

the few 10 mV range.

If no additional systematics existed, a correction of the Lorentzian ΔΓref ≈ −80 meV would

be necessary to make the measured broadenings in KNM1 positive. While this cannot be

excluded it is not backed up by the reference measurements listed in table 6.2 and by the

results of the KNM2 measurement. Thus, in the following no correction to the Lorentzian

is applied and a focus is put on the KNM2 measurement.

6.3.1. Correction of the Mean Di�erence from Potential Antisymmetry

Due to uncertainties of the energy loss function at 30 keV and the disregard of detailed

transmission, which is a modi�cation of the transmission function caused by secondary ef-

fects resulting from inelastic scattering, the measured values of Δ10 su�er from systematics.

Thus, a correction is applied using

Δ10(ΔRef

10
) [+ ] = Δ10(0) [+ ] − ΔRef

10
, (6.7)

which eliminates all linear systematics. This is driven by the assumption that the wrong

energy loss function used to �t the data linearly shifts the mean �t value. This is expected

if Δ10 is measured relative to the total mean energy loss. This assumption is discussed

below in some more detail.

1fg is used here instead of f0, since it may contain an additional broadening from �uctuations.

2
Here and in the following 500 mV bins for the rear wall voltages in the coupling region are used for clearer

plots of KNM2 data. Many di�erent voltages were measured without signi�cant dependencies on rear

wall voltage. Also, the rings are shifted in rear wall voltage compared to each others for better visibility.
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Figure 6.8.: Gaussian broadening in KNM1&2 krypton measurements: Both show compa-

rable structure with small broadening in the coupling region and increasing

broadening for large positive rear wall voltages. Both use the same Lorentzian

of Γ = 1.0606(21) (150) eV. However, while most of the values in the coupling

region in KNM1 are negative, all are positive for KNM2. The uncertainties are

dominated by the propagated uncertainty of Γ. The values for di�erent rings

are shifted in rear wall voltage for better visibility.
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6. Krypton-83m Measurements in KNM1 and KNM2

To account for the uncertainties of the measured parameters (f2

0
,Δ10) the following j2

function is constructed for the correction:

j2(ΔRef

10
,ΔΓRef

L3

) =
∑
*

RW
,

Combined

rings


(
d̂2(ΔRef

10
) − 1

f (d̂2)

)
2

Θ(d̂2 − 1) +
(
f2

0
(ΔΓRef

L3

)
f (f2

0
)

)
2

Θ(−f2

0
)
 . (6.8)

Thus, only when the squared measured antisymmetry d̂2 3
is unphysical or the Gaussian

broadening is negative, the uncertainty weighted di�erence is added. Here fg = f0 is

assumed, which is the most conservative case. Since additional components of fg like

�uctuations do not a�ect Δ10, they would make the absolute value of the antisymmetry

smaller, thus leading to tighter constraints.

6 2 profiles: The two-dimensional pro�les of the j2
for KNM1 and KNM2 are shown in

�gure 6.9. As visible, the Lorentzian correction is not bounded to negative values, since

larger values of f0 lead to smaller antisymmetry. A priori, both results are in an unphysical

region. For KNM1 this can only be solved for seemingly unreasonably high corrections of

the Lorentzian.

For the given Lorentzian, the KNM2 data can be shifted to a physical region with
4

ΔRef

10
= (98 ± 52) mV . (6.9)

This symmetrical shift with regard to the uncertainties is chosen for the following results,

but in principle all corrections in this interval have the same possibility. As visible, the

0 f contour
5

has a parabolic minimum, which would lead to tighter constraints for a

larger Lorentzian, i.e for smaller measured broadenings. Thus, the uncertainty of the

correction is proportional to the measured values of f0. In principle it is possible to fully

constrain ΔRef

10
by f0 for plasmas with vanishing inhomogeneity. However, including the

statistical uncertainties leads to broad, basically �at minima, such that this would also

require signi�cantly more statistics.

Also, the Δ10 results of KNM1 show an overall 60 mV shift compared to KNM2, which is

not understood. Due to the neglect of the detailed transmission function the correction

could depend on the column density, but the latter was rather comparable in the KNM1 and

KNM2 krypton measurements. A second in�uence are the di�erent energy loss functions

of impurities in the source, which is studied in [Rodep]. Since the existence of impurities

was not considered in the analysis, this also leads to a mismodelling of the energy loss

function. If KNM1 and KNM2 krypton had a di�erent concentration of impurities, this

might contribute to the observed di�erence. Notably, increasing impurities could lead

to the observed drift of the energy loss shift in KNM2. If that was the case, the di�erent

3
For the calculation of the antisymmetry all pixel estimates were averaged �rst. Details are found in

appendix A.7.

4
Not binning the rear wall voltages leads to O(1) mV di�erences.

5
Since the j2

function is constructed from inequalities, the 0 f contour restricts the unconstrained region.

This is in contrast to usual j2
functions, where it is the point of the minimum.
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Figure 6.9.: Reference value exclusion plot: The G-axis is a linear correction of all mea-

sured energy loss shifts, the ~-axis translates to a correction of the measured

broadenings. The blue lines are the 0,1,2 and 3 f contours. Thus, the region

within the innermost blue line is unconstrained. While in KNM2 no correction

needs to be applied to the Lorentzian, the necessary correction in KNM1 is

at least −40 meV (1 f contour). Also, it is visible that the mean di�erences

measured in both campaigns show a shift of around 60 mV. Thus, a correction

which brings both in agreement within the 1 f contour is around 60 mV, which

would lead to strong antisymmetry with opposite sign in both campaigns.
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6. Krypton-83m Measurements in KNM1 and KNM2

duration of the campaigns would be relevant: Since the KNM1 krypton campaign was

three times shorter than the KNM2 krypton campaign, the overall increase of Δ10 would

be smaller, leading to a smaller average in KNM1. However, the fact that the eloss shift

of the*RW = +5 V measurement in KNM2 does not change over time speaks against this

hypothesis: While the applied external �eld leads to a reproducible potential shape, it does

not a�ect the gas composition and thus the mismodelling of the energy loss function. Thus,

if caused by the latter, the increase of Δ10 should also be visible for large inhomogeneity,

i.e. it should be consistent over all rear wall voltages. This is also not observed in KNM1,

where the drift of Δ10 is either smaller than in KNM2, or even negative.

Mean di�erence: Figure 6.10 shows Δ10 over the rear wall voltage with and without

correction. The chosen symmetrical correction shifts the values of Δ10 in the coupling

region to ≈ 0, at the expense of increased uncertainties. The thereby obtained systematic

error band is independent from the choice of correction, since an asymmetrical correction

only shifts the mean values inside the band.

Antisymmetry and physical interpretation: Figure 6.11 shows the antisymmetry over the

rear wall voltage with and without correction. Without correction most of the values are

unphysical. With the symmetrical correction the potential has small antisymmetry in the

coupling region. The large antisymmetry for large positive rear wall voltages only depends

weakly on the correction, since here the data is dominated by the inhomogeneity. This

region is an excellent test case for the theory developed in this work. The antisymmetry is

expected, since a large positive rear wall voltage blocks positive ions from escaping the

WGTS at the rear wall. Since they also cannot move against the gas �ux away from the

injection point, the ions in the rear part of the WGTS are trapped in longitudinal direction.

They only escape if a large enough positive space charge forms, which drifts them out

radially. This is in contrast to the ions in the front part, which can in all cases be extracted

in the DPS dipole electrodes. Thus, at positive rear wall voltages a positive space charge

is expected in the rear side of the WGTS, which overall produces an antisymmetrical

potential as measured.

Peak-to-peak value: Figure 6.12 shows the allowed range of the peak-to-peak value of

the potential in the central WGTS over the rear wall voltage. The uncertainty band was

calculated as discussed in section 3.3.3 from f0 and the corrected Δ10. The lower constraint

uses a factor of 4 between peak-to-peak value and Δ10, as derived in section 5.2. For

the upper limit it is assumed that the potential inhomogeneity is not strongly localised,

leading to f0 ≈ f and a factor of 3.46 between the peak-to-peak value and f0. As discussed

in section 3.3.3, the upper limit is obtained by a linear potential. The more structure

the potential has, the smaller the peak-to-peak value for a given f0. Consequently, the

structure of the potential increases, when going from top to bottom in the uncertainty

band. The width of the band is only given by the di�erent possible potential shapes and

the uncertainties of f0 and Δ10 were neglected.
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Figure 6.10.: Mean di�erence in KNM2 krypton measurement: The values increase for large

positive rear wall voltages. The radial structure indicates a dependence on

the coupling strength. The measured values (a) have an unknown o�set. The

symmetrical correction (b) shifts the values to the center of the unconstrained

j2
function (�gure 6.9), leading to vanishing mean di�erence for small rear

wall voltages. The increased uncertainties are caused by the width of this

unconstrained region.
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Figure 6.11.: Antisymmetry in KNM2 krypton measurement: Without correction (a) most

of the values are not in the allowed range. Convergent behaviour for large

positive rear wall voltages is observed, since here the data is dominated by

inhomogeneity, not by systematics. Thus, the constraining region is the

coupling region. After correction (b) all values are in the allowed range. The

large uncertainties are caused by the unconstrained region of the j2
function

(�gure 6.9). The large antisymmetry for large positive voltages remains.
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Figure 6.12.: Allowed peak-to-peak value over rear wall voltage in KNM2: The uncertain-

ties mark an uncertainty band of equal possibility. Vertical translation implies

a shape change, while for constant relative position on the band only the

magnitude of the potential changes.

Change for large voltages: Due to energy conservation the change of the rear wall voltage

should be an upper limit to the change of the observables. However, for the innermost rings,

the change of Δ10 and f0 is approximately a factor of 2.5 between 2 V and 4 V rear wall

voltage. Thus, the derivative is ≈ 1.25 > 1. Still, for the peak-to-peak value a derivative

less than 1 is possible in the uncertainty band, as it should be expected. As discussed

above, this is associated with a shape change, which is illustrated in the following with

two potential models.

Antisymmetrymodel forKNM2data: The application of the antisymmetry model discussed

in section 4.1 is shown in �gures 6.13 and 6.14. The two models are used to illustrate

the decrease of the peak-to-peak value with the increase of structure. For the symmetric

component of the �rst model two half ellipses were used, as described in [Mac16]. The

ratio of the semi-minor axis front to rear was �xed to 1.024, which produces a shape with

vanishing Δ10 for the column density of 30 %. The second model uses an approximately

parabolic symmetric component of

+sym(I) ∝ 3.815

( I
m

)
2

− I

m

, (6.10)

which also has vanishing Δ10, as shown in section 4.2. The uncertainties are propagated

from (〈+ 〉
0
, f0,Δ10). Only the statistical uncertainty is considered for the mean potential

〈+ 〉
0
= −(�plasma

L3

− �ref

L3

). Thus, there could be a constant shift of the mean potentials for
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Figure 6.13.: Potential over rear wall voltage in KNM2, simulation kernel: The symmetric

component of the potential is constructed from two half ellipses, which resem-

ble the plasma simulations. The potential is most homogeneous in the 250 mV

bin. A version without bins is found in appendix A.10. A linear connection

between rear wall and rear of the WGTS is used, which is not physically

motivated. The gap between the rear wall potential and the maximum in

the WGTS for positive voltages is not expected, but likely caused by this

modelling.
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Figure 6.14.: Potential over rear wall voltage in KNM2, quadratic kernel: Here the sym-

metric component is approximately parabolic. As visible, there are large

di�erences for large voltages to the previous ansatz. Here it is not possible to

bridge the gap from rear wall and the maximum monotonously for the inner

rings, while the outer rings do already connect. As explained in the text this

is related to the smaller structure of the symmetric component. The version

without bins is shown in appendix A.11.
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6. Krypton-83m Measurements in KNM1 and KNM2

all rear wall voltages, caused by di�erences of the mean potential in the reference and the

plasma measurement.

As visible, due to the kink at the injection point in the centre of the source, the �rst ansatz

resembles the plasma simulation. As discussed above, this excess of structure compared

to the parabolic ansatz leads to smaller peak-to-peak values for the given observables,

which is apparent at large voltages. Thus, in order to still make a monotonous connection

from rear wall to the rear end of the WGTS for increasing voltages, increasing structure

is needed. Presumably, the gap to the rear wall in the �rst ansatz could be made smaller,

if the central gap was increased. A monotonous connection to the rear wall at large

positive voltages is expected from plasma simulations [Kuc16]. Also, since the current

measured at the rear wall saturates for large voltages [Fri20], it is expected that the

electrons reach the rear wall and get drained. This would be prevented by a large potential

drop between end of WGTS and rear wall. It is concluded that the potential likely has the

central non-monotonous feature as predicted by the plasma potential simulation and that

the application of large positive voltages leads to an asymmetrical ampli�cation of this

structure due to the accumulation of positive ions in the rear part (discussed above).

MTD and rear wall voltage dependence of�Ref
10 : As discussed in chapter 5, the �t of Δ10 is

implemented as shift of the energy loss function 51(n). This makes two assumptions: First,

that the plasma e�ect only leads to a shift of the measured energy loss and no change of

the distribution. While this is an approximation, it is valid due to the intrinsic width of

the energy loss function, which is much larger than possible plasma broadenings. The

second assumption is that the correct function is known for the respective measurement

conditions. If both assumptions hold, then the shifted function describes the data with

good agreement. However, the second assumption does not hold, since the energy loss

function used in the analysis stems from a measurement at ≈ 18 keV electron energy and

a gas temperature of ≈ 29 K, while the krypton measurement uses ≈ 30 keV electrons and

a temperature of ≈ 100 K. Both can lead to a change of the energy loss function, such that

it does not �t the scattered krypton spectrum at L3 even without plasma.

Using this wrong model leads to systematics on the �tted Δ10. In minimisation its value is

chosen such that the shifted wrong 51(n) produces the minimum j2
on the data set, which

due to the wrong model depends on the total spectrum shape in the scattering region.

Thus, Δ10 is not only a�ected by the real plasma induced Δ10, but also by the measurement

time distribution and the column density.

While in detail the j2
minimum depends on each of the measured bins of the total spectrum,

as a perturbation it is most likely that it is mainly given by the mean of the function �tting

to the mean of the data. Still the mean energy loss measured in the data depends on the

analysis interval.

The mean energy loss as predicted from the ≈ 18 keV energy loss function is plotted in

�gure 6.15 over the surplus energy. The latter is cut by the lower analysis interval, which

is usually ≈ 22 eV below the line mean. As visible, the slope of the mean energy loss in

this region with a change of the analysis interval is around<n̄
Eloss

= 508
meV

eV
. While this is

a large value, it is always considered in the model. Only the di�erence to the true value of
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Figure 6.15.: Analysis interval dependence of the measurement of the mean di�erence:

It is assumed that the �tted energy loss Δ10 is measured compared to the

mean expected energy loss in the data. If the change of the latter with the

analysis interval is wrongly predicted, since a wrong energy loss function

is used, this leads to a systematic. This systematic has a dependence on the

rear wall voltage, since the MTD is �xed to the retarding energy and thus is

independent from the rear wall voltage. On the contrary, the zero point of

the energy loss function is given by the line position, which shifts by the rear

wall voltage with some coupling factor.
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Figure 6.16.: Rear wall voltage dependence of the mean di�erence: As visible, the inner

rings show a slope with the rear wall voltage, which vanishes for the outer

rings. Due to the dependence on the coupling this would be expected both

from systematics and from physical e�ects.

the true function leads to a systematic beyond the already considered constant shift Δref

10
.

This systematic adds a dependence on the lower analysis interval like

Δ(ΔRef

10
) (Δ@*lower) = Δ@*lowerΔ<n̄

Eloss
, (6.11)

where Δ@*lower is the di�erence to the lower analysis interval at which ΔRef

10
was deter-

mined.

While the uncertainty on the predicted slope is not known, the determination of Δ10

should always use the same MTD to minimise the e�ect. However, since the MTD is �xed

compared to the retarding energy, it does not depend on the rear wall voltage. The onset of

the energy loss function, on the other hand, depends on the line position, which depends

on the rear wall voltage. Thus, in principle the MTD would need to be adjusted for each

rear wall voltage to avoid the e�ect completely, however this would also require that it is

precisely known in advance what the actual coupling factor of the line position to the rear

wall is. Also, since the coupling is radially dependent, a perfect solution is not possible.

A small dependence of Δ10 on the rear wall voltage was actually observed in KNM2.

Figure 6.16 shows the corrected Δ10 measurement without rear wall bins. The uncertainties

are statistical only, for better visibility. The outer rings show no dependence, while the

inner rings have a slope. For the �tted innermost ring it is 20.7 mV

V
. The radial dependence

is expected due to the dependence on coupling, regardless of whether the slope is physical,

or whether it stems from the described systematic. If it is due to this systematic, the
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measurement allows to constrain the relative di�erence

Δ<n̄
Eloss

<n̄
Eloss

=
Δ(Δ10)
Δ*RW

1

<n̄
Eloss

≤ (4 ± 1) % . (6.12)

Regardless of the underlying e�ect, the slope is comparably small. If for example the

60 mV di�erence of Δ10 found between KNM1&2 krypton was to be attributed to this shift,

this would require di�erences of the lower analysis interval or rear wall settings in the

3 V range. However, the change of the rear wall voltage is usually on the 100 mV scale,

while the MTD was not changed at all.

Column density dependence of�Ref
10 : Since the detailed transmission function is not used

the transmission function might depend on the amount of scattering. It is currently under

investigation how large this dependence could be and if it could lead to sizeable e�ects.

However, the column density di�erence between the KNM1&2 krypton campaigns was

small, such that this cannot explain the observed di�erence of the Δ10 of the campaigns.

Usefulness of the �10 measurement: While the correction and obtained antisymmetry

allows to proof the underlying theory and to obtain physical values of Δ10, the resulting

uncertainties in the coupling region are large. As discussed, they are proportional to the

measured broadening in the coupling region and the overall statistical uncertainties. This

holds only due to the small (radial) structure of the data in the coupling region: the less

structure, the easier Δ10 can be shifted to 0. If no radial structure is present, the single

measurement value Δ10 is fully correlated with its correction Δref

10
and the total value can

have any value allowed by |Δ10 | ≤ ^10,0f0. Thus, in the case of vanishing (radial) structure

like here and given the systematic uncertainties of Δ10, the measurement of Δ10 does not

lead to useful values in the coupling region. Instead, the neutrino mass shift or the value

of Δ10 can be directly derived only from f0, which is done in the next section.

6.4. Systematics of the KNM1 and KNM2 Tritium
Measurements

Finally, the systematic shift of the neutrino mass caused by the plasma potential in KNM1

and KNM2 is derived. As discussed in the previous section, the obtained measurement of

Δ10 is not bene�cial in the coupling region. Thus, only fg and the maximum shape energy

is used. It is assumed that fg is caused only by f0.

For the inner rings in the coupling region it is given by

fKr

0
= (90 ± 30) meV (6.13)

for krypton conditions. The large uncertainty is caused by the uncertainty of the Lorentzian

reference, which is the dominating systematic. Due to the large uncertainties of the analysis

f0 is only used as upper limit with a mean of 0 in the tritium β-spectrum model. Adding

161



6. Krypton-83m Measurements in KNM1 and KNM2

the uncertainty of 30 meV to the mean using Gaussian propagation for the squared value

leads to

f (f0)Kr ≈ 116 meV . (6.14)

As discussed in section 5.3 additional uncertainties due to the possibility of di�erent

plasma potentials and di�erences in the scattering weights between tritium and krypton

conditions arise. The former is not known, and disregarded here. The translation between

the weights is shape dependent and di�erent shapes produce the extremal changes of

f0 and Δ10. This leads to a correlation of the parameters, even if f0 and d̂ are used. In

the following the correlation is neglected and the extremal values of both are calculated

independently, which overestimates the e�ect. However, the independent estimates are

needed for systematic studies.

As discussed in section 5.3, the maximum of the neutrino mass shift variance term is

obtained by multiplying the above result with a factor of 1.1 (KNM1) or 1.2 (KNM2). This

leads to

Maximum variance : f (f0)KNM1 ≈ 128 meV , f (f0)KNM2 ≈ 140 meV . (6.15)

The values are realised by a maximally localised inhomogeneity, which in turn has vanish-

ing antisymmetry, as shown in section 3.3.2.

The maximum Δd are calculated directly from krypton f0 using the krypton weighted

^d = 0.6 (KNM1) and ^d = 0.72 (KNM2), which are found in �gure A.19 in the appendix.

Multiplying equation 6.14 with those values gives���ΔKNM1

d

��� ≤ 70 meV ,

���ΔKNM2

d

��� ≤ 84 meV . (6.16)

Thus, while the standard deviations of equation 6.15 are the maximum allowed, the

maximum antisymmetry would be produced by smaller values, which are calculated using

the tritium weighted ^d = 0.63 (KNM1) and ^d = 0.78 (KNM2) from �gure 5.9 and the

given Δd

Maximum shape energy : f (f0)KNM1 ≈ 111 meV , f (f0)KNM2 ≈ 108 meV . (6.17)

For f0 larger than those values f0 and d̂ are correlated, i.e. for larger values the shape

energy needs to decrease, and for the values of equation 6.15 it needs to vanish.

Using the above maximum standard deviations and the shape energy from �gure 5.12 to

calculate the absolute shifts of the squared neutrino mass leads to
6

|Δ<2

a [+ ] |KNM1 < 2 ( 111 · 160 + 128 · 128 ) meV
2 = 0.07 eV

2 , (6.18)

|Δ<2

a [+ ] |KNM2 < 2 ( 108 · 490︸      ︷︷      ︸
shape

+ 140 · 140︸      ︷︷      ︸
variance

) meV
2 = 0.15 eV

2 . (6.19)

6
In addition to using this perturbative equation the shifts were also modelled on Asimov data by including

di�erent potentials with the moments measured in KNM1&2 krypton. The results are in agreement.
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Due to the correlation these shifts are overestimated. Using only the maximum shape

energy values, which are the largest simultaneously allowed for both terms, gives

|Δ<2

a [+ ] |KNM1 . 2 · 111 ( 160 + 111 ) meV
2 = 0.06 eV

2 , (6.20)

|Δ<2

a [+ ] |KNM2 . 2 · 108 ( 490︸︷︷︸
shape

+ 108︸  ︷︷  ︸
variance

) meV
2 = 0.13 eV

2 . (6.21)

Obviously the di�erences are minor. Thus, also the bene�t of constraining the neutrino

mass shift directly including the correlations, as discussed in section 3.5, is small. For

the currently performed analysis of the KNM2 results f0 is directly constrained from the

krypton measurement. The analysis is based on the larger KNM3 krypton dataset. It also

includes an uncertainty due to the di�erence of the potential in the measurements, which

is obtained by extrapolation between measurement conditions.

6.5. Conclusion

In this chapter the analysis of the KNM1 and KNM2 krypton measurements was described.

The KNM1 krypton data showed non-understood systematics, which presumably are at

least partly related to an insu�cient background model. Thus, the KNM1 krypton data was

not used further. However, the KNM2 krypton measurements showed consistent results.

Its estimates of potential inhomogeneity were used to predict the respective neutrino mass

shifts in the KNM1 and KNM2 tritium measurement. Furthermore, it was shown that the

theory developed in this thesis, which relates the krypton observables to symmetries of

the potential is fully applicable to the gaseous krypton measurements. If a strong positive

voltage is applied to the rear wall, a negative longitudinal gradient of the potential through

the source is expected. Since it dominates all other inhomogeneities and depends only on

the precisely applied voltage, it should be reproducible. It was shown that the krypton

measurements fully support these expectations. Moreover, it could be argued that in this

case the potential shape is not smoothly linear decreasing, but that it likely has the central

structure which is predicted by plasma simulations. While this was made plausible using

two model-dependent simulations, the basic argument can already be made completely

model independently only on the peak-to-peak value of the potential. In summary, it

was shown that the theory developed in this work fully relates the krypton observables

to the potential symmetries, that it gives a complete description of the gaseous krypton

measurements at KATRIN and that it consequently should serve as the basis of the future

measurements.

The analysis also revealed several challenges: Using only KNM1 and KNM2 krypton data,

the impact of plasma potential inhomogeneities on KATRIN neutrino mass measurement

systematics is huge. The systematic budget of full KATRIN of fsys,tot(<2

a ) . 0.017 eV
2

[KAT04b] is already exceeded by each of the plasma systematics of the �rst two campaigns.

In KNM1 it is a factor of 3.5 times larger, in KNM2 a factor of 7.6. These large systematics

are mainly caused by the unknown energy loss shift Δ10 [+ ], which was newly introduced

in this work. While due to systematics of the krypton measurement its measured value can
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currently not be used, it was shown that it can nevertheless be constrained from the mea-

sured potential variance f2

0
[+ ]. However, the latter also su�ers from large uncertainties,

stemming from di�culties in the determination of the intrinsic L3 line width Γ.

Despite these, currently still large, uncertainties, the plasma related shift of the squared

neutrino mass of KNM1 is insigni�cant compared to the KNM1 budget of fsys,KNM1(<2

a ) =
0.32 eV

2
[Ake+19], when added in quadrature. Thus, its disregard in the published analysis

is justi�ed.

However, for full KATRIN this will not be possible and already in KNM2 the plasma sys-

tematics is a dominating contributor of the systematic budget. To overcome the described

challenges and to reduce the in�uence of plasma systematics, the KNM3 measurement

campaign was dedicated to the study of the plasma potential and the krypton measure-

ments were hugely expanded. This included extended measurements using L3 and the

N2,3 doublet. Also, di�erent column densities and temperatures were used to understand

their in�uence on the plasma potential. Notably, the large systematic obtained in the

analysis of this thesis would be already signi�cantly reduced, if the measured mean of

the plasma potential variance f2

0
[+ ] was used in the modelling of the β spectrum. Only

its uncertainty needs to lead to a systematic of the measurement of the neutrino mass.

While the determination of the plasma systematics in KNM1 followed the approach shown

here (where only an upper limit was calculated), in KNM2 the measured mean will be

considered in the modelling.

The systematic strongly depends on the size and knowledge of the total broadening fg.

Ongoing analysis of the N2,3 doublet on KNM3 data suggests that it is considerably smaller

(fg ≈ 50 meV) [Gup20; Böt20] than the presented analysis shows. However, at the present

stage still considerable tension to L3 data exists, indicating, that both measurements su�er

from di�erent systematics. Nevertheless, using the N2,3 doublet, in part the di�culties in

the determination of the intrinsic L3 line width Γ have already been solved.

Outlook: In the future an estimate of Δ10 [+ ] needs to be obtained, since the shape

energy dominates the plasma potential systematics of the neutrino mass measurement.

The present analysis shows that this measurement is possible and that the theory of the

spectral e�ect of the plasma systematics is well understood. However, the determination

of the correct energy loss function is vital to minimise the uncertainties. This problem is

currently tackled from two sides: The change of the energy loss function with energy is

calculated in theory and a new electron gun is under construction, which will be capable

of producing quasi mono-energetic electrons at energies of ≈ 30 keV. This will allow to

measure the energy loss function at these energies.
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7. Runtime Schedules and Time
Dependent Perturbations

In this chapter the systematics resulting from time dependent perturbations of operating

parameters are discussed. The systematics depend on the interplay between the time scale

) or frequency 5 = 1

)
(angular frequency l = 2c 5 ) of the perturbations and the runtime

schedule, i.e. the time ordering of the retarding energy @* (C). The observables of interest

are the neutrino mass<a , the endpoint �0 (tritium spectrum), the Gaussian broadening

fg and the line position �Main

1
(krypton spectrum). In both spectra also the nuisance

parameters intensity and background and the j2
are a�ected.

In section 7.1 the relevant time scales of the runtime schedule and the corresponding

regimes of systematic shifts are discussed along with general de�nitions. Furthermore

correlation analysis of the schedules both in time and frequency domain is described,

which allows to classify their frequency response independently of the spectrum and thus

to generalise the �ndings to other than the studied schedules.

In section 7.2 the chosen semi-analytical implementation is described.

In section 7.3 the results are discussed based on the KNM2 tritium and krypton measure-

ments for the example of energy scale perturbations.

7.1. Runtime Schedules in Time and Frequency Domain

The distribution of the total measurement time to the di�erent retarding energies is de-

termined by the Measurement Time Distribution, short MTD. The MTDs used in KNM2

krypton and tritium measurements are found in �gures 7.1 and 7.2. The tritium MTD is

optimised to yield the best sensitivity on the neutrino mass for a given total measurement

time [Kle14]. Constant uncertainties of model parameters can be considered in the opti-

misation, but since no time dependent e�ects are considered, the timewise ordering of

retarding energies does not a�ect the projected sensitivity. In this work the systematics

resulting from non-constant parameters are discussed for di�erent classes of runtime

schedules.

1
Systematics on the eloss shift ΔnEloss have not been investigated. It is assumed that the magnitude of the

systematics can already be determined from the used observables.
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Figure 7.1.: KNM2 krypton measurement time distribution: As in most krypton measure-

ments at KATRIN a �at MTD was used for KNM2 krypton. The regions with

more dense points are at the expected line mean of L3 and the line of one-time

scattered electrons. For the studies performed in this chapter a stripped-down

MTD without the scattered electrons is used, which already allows to determine

the magnitude of systematics related to time dependent e�ects.
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Figure 7.2.: KNM2 tritium measurement time distribution: The typical MTD for tritium

measurements has a peak some eV below the endpoint with most<a sensitivity.

The region above the endpoint serves to �t the background, the region below

the endpoint determines the signal and the endpoint itself. One point several

hundred eV below the endpoint is used for studies of systematics like radial

energy dependencies. For the studies performed in this chapter the MTD is

restricted to the 40 eV interval below the endpoint, which is the interval usually

used for neutrino mass analysis.
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7.1.1. Relevant Time Scales and Perturbation Regimes

In the following di�erent time scales and their corresponding distributions are described,

which occur based on how the runtime schedules are constructed from the total projected

measurement time )tot. The time scales are the moments of these distributions and they

are used to identify the frequency regimes of the time dependent e�ects which produce

qualitatively di�erent systematic shifts of the observables for a given runtime schedule.

With regard to the runtime schedules the focus lies on order versus randomisation, which

is expected to be the cause of di�erences in systematics caused by time dependent e�ects.

Subrun time duration: Most data taking at KATRIN is performed at piecewise constant

retarding energy @* (C), in contrast to, for example, continuous ramping measurements
2
.

A measurement at a �xed retarding energy is called subrun and the runtime schedule is

fully described by the time ordered set of the #subrun subruns. From this set the frequency

distribution # (Csubrun) of each subrun duration Csubrun can be constructed, which has the

time scale

)subrun =
)tot

#subrun

(7.1)

as its �rst moment. The existence of this time scale is unavoidable, since it is a measure of

time duration spend in a measurement. Only the higher moments can lead to large or no

dispersion of the distribution, or the time scale itself can be raised or lowered.

Subrun duration versus returns: The total projected time CMTD(@* ) spent in each bin of

the MTD in general is a summation over =(@* ) subruns of duration Csubrun,8 (@* ), 8 ∈
{1, ..., =(@* )}, where =(@* ) is the number of returns to the subrun. Using the mean subrun

time

〈Csubrun〉 (@* ) ≡
1

=(@* )

=(@* )∑
8

Csubrun,8 (@* ) , (7.2)

this reads

CMTD(@* ) = 〈Csubrun〉 (@* )=(@* ) . (7.3)

The Csubrun,8 (@* ) can be taken from a probability distribution ?@* (Csubrun) 3
, whose higher

moments add to the dispersion of # (Csubrun). In this case equation 7.3 is approximate and

convergence to the projected MTD on the scale CMTD(@* ) is only achieved, if the number

of returns =(@* ) is large or likewise the average subrun duration 〈Csubrun〉 (@* ) is small.

Using the average 〈=〉@* of the returns over the #MTD bins of the MTD, the total number

of subruns can be expressed as

#subrun =

#MTD∑
@*

=(@* ) = 〈=〉@* #MTD . (7.4)

2
Even here the extracted data is taken from periods which are small compared to the ramping speed, such

that the retarding energy is assumed to be constant.

3
In this case in this work the duration of a subrun was drawn from the distribution until the total time was

larger than CMTD (@* ), leading to varying = in each subrun.
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From that it follows for the subrun time scale (i.e. the �rst moment of the subrun duration

frequency distribution # (Csubrun)) 4

)subrun =
1

#subrun

#MTD∑
@*

=(@* )∑
8

Csubrun,8 (@* ) , (7.5)

=
1

〈=〉@* #MTD

#MTD∑
@*

〈Csubrun〉 (@* )=(@* ) , (7.6)

=
〈〈Csubrun〉 (@* )=(@* )〉@*

〈=〉@*
, (7.7)

=
)tot

#MTD 〈=〉@*
. (7.8)

The last step assumes exact convergence of the MTD of the generated runtime schedule

to the input MTD. Expectedly, )subrun scales anti-proportional to the average number of

returns 〈=〉@* .

Run time scale: The speci�cation of ?@* (Csubrun) can be used to construct an unordered

set of subruns. Regarding the time ordering, the division is between schedules using some

ordering criterion on the subruns, or randomisation. In both cases the average 〈=〉@*
returns to the subruns imply a time scale

)run ≡
)tot

〈=〉@*
, (7.9)

= #MTD)subrun . (7.10)

The name run comes from the special case of monotonous ordering of the subruns with

increasing/decreasing@* , with constant subrun duration Csubrun,8 =
CMTD (@* )

=
for each return,

and with = independent from the retarding energy
5
. In this case the schedule is comprised

of
=
2

exact copies of up and down runs, which are usually called scans.

While the time scale )run has the same de�nition for both the ordered and randomised

case, its interpretation is fundamentally di�erent:

• Highly ordered schedules: In this case the inverse of )run is the return frequency to

a self-similar measurement, i.e. run or corresponding structure.

• Fully randomised schedules: In this case the inverse of )run is the centre of a non-

self-similar noise regime of the frequency response of the schedule.

To study the frequency response of the schedule to perturbations and thus these two

regimes and their non-trivial transition independently from the measured spectrum, the

proper way of analysis is correlation and Fourier analysis, which is discussed in section 7.1.2.

4
Subtleties regarding these equations arise due to the dead time discussed in one of the following paragraphs.

5
If = depends on @* , the probability of a subrun appearing in one of these ramps can be taken to be

proportional to =(@* ).
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It is expected that these analyses and the actual simulations show di�erent regimes of the

systematic shifts of the observables according to the found time scales.

Perturbation regimes: Depending on the size of the perturbation period ) compared to

)subrun and )tot the following regimes are expected
6
:

• ) � )subrun, averaging: In this case time dependencies are averaged. Perturbations

can be considered by convolution of their distribution with the spectrum. In leading

order only mean ` and variance f2
of these distributions are considered.

In the case of energy scale perturbations the following leading order shifts are

expected
7
:

Δ<2

a = −2f2 , Δ�0 = ` , (7.11)

Δf2

g
= f2 , Δ�Main = ` . (7.12)

• ) � )tot, drifts and constant shifts: In this case the perturbation is either a drift,

or even constant on the time scale of the measurement. Energy drifts lead to

proportional shifts of �0 and �Main, and shifts of<a and fg due to correlations to

the former.

• )subrun ≤ ) ≤ )tot, non-trivial regime: This case results in systematics of the

observables, which depend on the magnitude of ordering in the runtime schedule.

Highly ordered schedules lead to resonant systematics, randomised schedules lead

to noise.

Dead time: The ramping of the retarding energy between two set points @*0 → @*1

needs the dead time Cdead(@*1, @*0) and the counts recorded in this time are not included

in the analysed data.

Accordingly, the total time is given by the measured time )meas and the total dead time

)dead through

)tot = )meas +)dead . (7.13)

To avoid inconsistencies and to predict the correct regimes also the run time )run and

subrun time )subrun have to contain the dead time, which is accomplished by adding the

dead time following a subrun to the subrun time. Thus, by dividing equation 7.13 by the

number of subruns #subrun

)subrun = 〈Csubrun〉 + 〈Cdead〉 (7.14)

is obtained, where 〈Cdead〉 is the average dead time per subrun.

6
This holds if the total data set is analysed in one stacked �t, i.e. if all recorded spectra are added before

�tting. Also, constant phase velocity of the perturbation is assumed. Implications of non-predictable

phase and di�erent stacking methods are discussed in sections 7.3.4 and 7.3.5.

7
The perturbations used in the following will usually be de�ned such that ` = 0.
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Schedule e�iciency: The schedule e�ciency ne� , i.e. the measured vs. the total time, is

given by

ne� ≡
)meas

)tot

= 1 − )dead

)tot

, (7.15)

or equivalently

ne� =
〈Csubrun〉
)subrun

= 1 − 〈Cdead〉
)subrun

. (7.16)

7.1.2. Correlation Analysis of the Runtime Schedule

In the following correlation and Fourier analysis of the schedules is described, which

allows to classify the schedules independently from their individual properties and to

understand the simulated shifts in terms of spectral analysis.

Regions of interest: To study correlations of the Runtime Schedules, Regions Of Interest
(ROIs) of the MTD are de�ned, which provide the sensitivity to the observables

8
.

Only considering intervals between retarding energies @*0 and @*1 results in the de�nition

ROI> = [@*0, @*1) (7.17)

for the observable > . This allows to de�ne a Boolean function B> (C) 9
, specifying whether

at a given time > is measured or not, i.e.

B> (C) = 1 , if @* (C) ∈ ROI> , else 0 . (7.18)

Autocorrelation function: The autocorrelation functions are de�ned as [Kri15]

Corr>> (g) ∝
∫ )

0

B> (C)B> (C + g)dC , (7.19)

specifying the similarity of the schedule @* (0) to the g-shifted schedule @* (g) with regard

to the measurement of > . It is bounded between 0 and 1, meaning no or full similarity of

the measurement. It allows for the visualisation of the schedule over all time scales:

• )subrun: The autocorrelation drops from the initial full similarity to the percentage

of measurement time spend in the respective ROI.

• )run: The autocorrelation shows order (peaks) versus randomisation (�at) of the

schedule.

• )tot: The autocorrelation linearly drops to 0 (logarithmically in the representation

over log(g)).
8
Due to correlations of the observables the detailed choice is to some extent arbitrary, however the resulting

analysis of the schedules’ correlation does not strongly depend on it. The usage of ROIs is necessary to

construct non-trivial autocorrelations, as de�ned in the following.

9
In a more general approach without strict ROIs B> (C) is a continuous function between 0 and 1 specifying

the sensitivity to a given observable at a given retarding potential, i.e. at a given moment in time.
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These regimes are simpli�ed, since for non-Gaussian subrun duration distributions the

higher moments of the distribution are relevant and the autocorrelation function might

show more structure especially on the subrun time scale (more than one drop or peaks).

Also, the time scale were derived from the total frequency distributions of the subruns

which disregards the ROIs, while actually the frequency distributions and thus the time

scales are di�erent for the observables. In the plots in the results section only the global

time scales without ROIs are given, but the above qualitative understanding easily allows

to relate the respective time scales in the autocorrelation functions to the given subrun

duration distributions of the observables.

Spectral density: In the frequency domain the analogous quantity to the autocorrelation

function is the spectral density. It is the squared absolute value of the Fourier transformation

of the autocorrelation function
10

[SH08]

(>> (l) =
����∫ ∞

0

Corr>> (g)48lgdg
����2 . (7.20)

The spectral density allows to predict the response of the schedule to frequencies 5 :

• peaks indicate resonant frequencies, leading to resonant shifts of the observables.

• linear portions of slope −= in double logarithmic representation indicate
1

5 =
noise

components, leading to chaotic shifts of the observables, but of predictable envelope:

– White noise (= = 0) has a constant envelope and is produced in randomised

schedules.

– Brown noise (= = 2) leads to an envelope decreasing with frequency and is

globally expected due to the limited total measurement time and the overall

linear decrease of the autocorrelation function.

Discrete calculations: For the case of boolean B> (C) they can be interpreted as a set of time

intervals and the integrand in the calculation of the autocorrelation function (equation 7.19)

is found by calculating intersections as shown in �gure 7.3. The integral can be replaced

by a summation over the resulting time intervals �8 ∈ B> (C) ∩ B> (C + g)

Corr>> (g) ∝
∑
�8

B> (C) ∩ B> (C + g) , (7.21)

allowing for fast calculations.

Using the convolution theorem the spectral density can be calculated as

(>> (0) ∝
1

4c2


∑

[C0,C1)∈B> (0)
(C1 − C0)


2

(7.22)

10
For �nite schedules with total measurement time )tot the autocorrelation function is always 0 for g > )tot,

which cuts the upper integration limit.
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𝑡

𝑠𝑜(𝑡)

𝑠𝑜(𝑡 + 𝜏)

𝑠𝑜 𝑡 𝑠𝑜 𝑡 + 𝜏

Figure 7.3.: Integrand of the autocorrelation function: For boolean B> (C) the integrand can

be calculated by �nding the overlap in time between B> (C) and B> (C + g).

and

(>> (l)
l≠0∝ 1

(lc)2


∑

[C0,C1)∈B> (0)
cos

(l
2

(C0 + C1)
)

sin

(l
2

(C1 − C0)
)

2

(7.23)

+ 1

(lc)2


∑

[C0,C1)∈B> (0)
sin

(l
2

(C0 + C1)
)

cos

(l
2

(C1 − C0)
)

2

. (7.24)

The following normalisations are used in this work:

Corr>> (0) = 1 , (7.25)

(<a<a
(0) = (fgfg

(0) = 1 , (7.26)

(�0�0
(0) = (�Main�Main

(0) = 10
−7 . (7.27)

The spectral densities of �0 and �Main have been shifted with regard to those of<a and fg

for better visibility in the plots.

Bandwidth and structure: Since the time is limited by the total measurement time )tot,

the minimum structure size of the spectral density is on the order of
1

)tot

.

7.2. Semi-Analytical Implementation

Time dependent perturbations Δx (C) of the set of operating parameters x (C) can be

separated from their mean values x̄ by

x (C) = x̄ + Δx (C) . (7.28)

The implemented shapes of the perturbations Δx (C) are discussed in section 7.2.2.
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For a given subrun with starting time C0 and end time C1 at operating parameters x , the

observed counts # are given by

# (x) =
∫ C1

C0

dC

Δ)
¤# (x (C)) Δ) , (7.29)

where Δ) = C1 − C0 is the measurement time of the subrun. Due to the Nyquist–Shannon

sampling theorem the minimum number of sampling points for a direct numerical cal-

culation scales with the frequency of the perturbation, such that direct calculations can

only be carried out for small frequencies
11

. Calculations in all frequency regimes can be

carried out using the method explained in the following.

7.2.1. Time Dependent Spectrum Calculations

In the following only the perturbation of one of the operating parameter G is considered
12

.

If ΔGmax is the maximum perturbation amplitude, the following expansion around the

mean holds:

# (x) =
∫ C1

C0

dC

Δ)
¤# (x (C)) Δ) ,

= Δ) ¤# (x̄)
∞∑
==0

1

=!

d
= ¤#

dG=

����
x̄

ΔG=
max

¤# (Ḡ)
�= , (7.30)

= Δ) ¤# (x̄)
(
1 + d ¤#

dG

����
x̄

ΔGmax

¤# (Ḡ)
�1 +

1

2

d
2 ¤#

dG2

����
x̄

ΔG2

max

¤# (Ḡ)
�2 + ...

)
,

with

�= (C0, C1) =
∫ C1

C0

dC

Δ)

(
ΔG (C)
ΔGmax

)=
. (7.31)

This expansion allows to separate the calculation of the time dependence �= from the

spectrum calculations
d
= ¤#

dG=
. This is extremely bene�cial if simple parametrisations for the

�= exist, for example if ΔG (C) is known analytically. In this case the calculation time for

the �= is independent of the perturbation time scale and can be carried out for all scales.

Derivatives: If other time and retarding potential derivatives are negligible the derivatives

d
= ¤#

dG=

���
x̄

do only need to be calculated once for each MTD bin.

The number of necessary terms = can be calculated by comparing the remainder terms to

the Poisson uncertainty with demanded accuracy n , leading to

1

=!

���� d
= ¤#

dG=

����
x̄

����ΔG=max
)tot < n

√
¤# (x̄))tot , (7.32)

11
The time scale where full numerical calculations become unfeasible is in the regime of seconds, which is

the relevant regime for non-trivial e�ects to occur.

12
The general case can be implemented using the same method as described here, but needs to consider

tensor formalism to store the necessary (mixed) derivatives and integrals.

173



7. Runtime Schedules and Time Dependent Perturbations

where )tot is the total measurement time. n = 0.01 has been used for all calculations, such

that the uncertainty from the Taylor approximation on the counts in each bin of the MTD

is 100 times smaller than the Poissonian uncertainty. The maximum allowed number of

derivatives was limited to 7 and in all checked cases using 1 or 2 derivatives less than

calculated by equation 7.32 did not a�ect the results.

The derivatives of the spectrum with regard to the energy � were calculated numerically

using the noise-robust di�erentiator [Hol15]

d ¤# (�)
d�

=
2( ¤# (� + ℎ) − ¤# (� − ℎ)) + ¤# (� + 2ℎ) − ¤# (� − 2ℎ)

8ℎ
. (7.33)

Higher derivatives were calculated by subsequent application of equation 7.33. Calculating

the step size ℎ following

ℎ = 5 meV + 0.04|�0 − @* | (Tritium) , (7.34)

ℎ = 80 meV + 0.08|�Main − @* | (Krypton) , (7.35)

yielded the best found results in terms of smoothness of the derivatives.

7.2.2. Perturbation Shapes

Di�erent shapes of periodic �uctuations have been implemented. To cover the general case

of single time scale perturbations a wide frequency spectrum between 10
−10

Hz < 5 < 1 Hz

(1 s < ) / 300 y) is considered, which is 100 times larger than the maximum total data

taking time of ∝ 3 years and ten times smaller than realistic minimum subrun times of

∝ 10 seconds. In this way all regimes are considered by using periodic functions and

non-periodic drifts do not need to be implemented separately, since they are obtained in

the regime ) & )tot.

Sinusoidal shape: This analytical shape is used to calculate the systematics caused by a

single frequency perturbation

ΔGsine(C) = ΔGmax sin(l (C −)0) + q0) . (7.36)

The time integrals read

�= (C0, C1) =
(
1

2

)=
1

lΔ)

=∑
8

(
=

8

) {
= = 28 , lΔ) ,

= ≠ 28 , 1

=−28
sin((= − 28) (l (C −)0) − c

2
+ q0))

��C1
C0
.

(7.37)

Periodic continuation: This shape is used to calculate the response to perturbations

composed of discrete frequencies. Using the phase

q (C) = l (C −)0) + q0

2c
, (7.38)
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the perturbation can be de�ned by periodic continuation

G (C) = ΔGmax' (q (C) − bq (C)c) , (7.39)

where '(q) is an arbitrary function de�ned in the interval [0, 1) and b·c is the �oor

function.

The integrals read

�= =
1

= + 1

2c

lΔ)

[
'= (q − bqc) |q1

q0

+ trunc (q) |q1

q0

'= (q) |10
]
, (7.40)

with '= being the =th antiderivative of ' and trunc(.) the truncation function.

Sawtooth wave: The de�nition

'= (q) =
1

2

(2q − 1)=+1 + 1

2

(7.41)

results in a sawtooth perturbation

ΔGsawtooth(C) = ΔGmax(q (C) − bq (C)c) , (7.42)

whose rich Fourier spectrum

ΔGsawtooth(C) ∝
∑
(−1): sin(2c: 5 C)

:
(7.43)

is used to probe the response of the schedule to composed frequencies.

RMS values: The root mean square values are

fRMS(ΔGsine) =
ΔGmax√

2

, (7.44)

fRMS(ΔGsawtooth) =
ΔGmax√

3

. (7.45)

Using equations 7.11 and 7.12, for energy scale perturbations of amplitude � in the averag-

ing regime

sine :

√
Δ<2

a = −� ,
√
Δf2

g
=
�
√

2

, (7.46)

sawtooth :

√
Δ<2

a = −
√

2

3

� ,

√
Δf2

g
=
�
√

3

, (7.47)

are expected
13

.

13
To allow negative square roots,

√
... = sgn(...)

√
|...| is used, where sgn(...) is the signum function.
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7.3. Results and Discussion

In the following the results of the studies are discussed. Section 7.3.1 discusses input

parameters that are used for the studies and the result �gures, which are used to present

the results. The systematic shifts caused by sinusoidal �uctuations of the energy scale

in ordered and randomised schedules is discussed in section 7.3.2. In section 7.3.3 the

response to sawtooth �uctuations is discussed. Due to the contained integer harmonics

this allows to investigate the linear combination of systematics. In section 7.3.4 it is shown

that the results on order vs. randomisation can be understood in terms of coherence or

decoherence of �uctuation phase and subrun starting time.

On run time scale, the separation into coherent and decoherent measurements allows to

analytically derive the scaling of the systematics with perturbation amplitude and schedule

return number, which is shown in section 7.3.5. Finally, section 7.3.6 gives the combined

statistical and systematic uncertainty for the KNM2 tritium measurement with regard to

possible run time scale �uctuations.

The results were cross checked
14

with an independent code using both the Taylor expan-

sion described in section 7.2 and full numeric evaluation on the time scales, where this is

possible. The results of all methods and codes are in agreement. Studies were performed

both on the tritium and the krypton spectrum leading to equivalent results.

7.3.1. Input Parameters and Result Figures

In the following the premises for the studies as well as the �gures used to visualise them

are described.

Simulated data and resolution: Asimov spectra (cf. section 1.2.1) were simulated for # =

10
4

sinusoidal �uctuations with frequencies between 5min = 10
−10

Hz and 5max = 1 Hz. The

frequencies were uniformly distributed on a logarithmic frequency scale according to

5= =
5max

A=
, A ≡

(
5max

5min

) 1

#−1

, = ∈ {0, ..., # − 1} , (7.48)

where A ≈ 1.0023 for the given values.

This leads to constant relative time and frequency resolutions

'5 ≡
5= − 5=+1

5=
=
A − 1

A
≈ 2.3 · 10

−3 , (7.49)

'C ≡
1

5=+1
− 1

5=

1

5=

= A − 1 ≈ 2.3 · 10
−3 . (7.50)

Thus, the detection of structures of a width smaller than '5 5= in frequency domain is

suppressed in the following studies. The smallest possible width is given by
1

)tot

, such

14
Many thanks to Ferenc Glück.
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that structures caused by this scale are suppressed on run time scale, if )run < 'C)tot and

likewise on subrun time scale. As a consequence, especially on subrun time scale not all

features might be visible in the following plots. To detect all structures on scale
1

)tot

over

the whole frequency range, the number of points needs to be increased by four orders of

magnitude which was unfeasible, since for the chosen # the calculation time was already

in the range of one hour.

Fit: The �t of each spectrum was performed using ROOT::Minuit and the standard four

parameter analysis, with �t parameters (<2

a , �0, background, signal) in case of tritium and

(f2

g
, �Main, background, signal) in case of krypton.

Campaigns considered: The following studies are modelled after the KNM2 krypton and

tritium measurements.

Count rate: The rate of the spectra was modelled to �t to the measurements by using

84 % of nominal column density for KNM2 tritium and 190 kcps rate on the L3 plateau for

KNM2 krypton. The rate is relevant for the normalised j2
since shifts of the observables

are detectable, if the j2
signi�cantly di�ers from 0.

Result figures: Figures of the kind of 7.6 and 7.7 are exemplary for the visualisations of the

tested schedules and the results in all studies. The left side 7.6 shows the schedule and the

subrun duration histogram in time domain, in the inset of the schedule the autocorrelation

function is shown. The right side 7.7 shows the �t results (the square root is taken for Δ<2

a

and Δf2

g
) over the �uctuation frequency together with the j2

and the spectral density of

the schedule in frequency domain. This allows to relate patterns in the �t results directly

to patterns in the spectral density.

Perturbations of operating parameters considered: Only perturbations of the energy scale

G (C) = � (C) = �̄ + n (C) (7.51)

were considered, which can be caused by �uctuations of the retarding energy or the starting

energy. It is conceivable that derivatives of the spectrum to other operating parameters

produce less severe e�ects than derivatives of the energy scale.

Region of interest and MTDs: The KNM2 measurement MTDs for krypton and tritium

were used. For tritium the lower bound of the MTD was restricted to 40 eV below the

endpoint, which is the usual analysis interval. In krypton only 10 eV below the line mean

was included, such that scattering e�ects were not considered.
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The sensitive regions of peak-like MTDs are described in [Kle14]. Accordingly, the ROIs

where picked to be

ROI<a
= [−20, 0) eV , (7.52)

ROI�0
= [−40,−20) eV , (7.53)

for the KNM2 tritium schedule.

Due to the �at MTD the de�nitions used for krypton are arbitrary and both ROIs are

equivalent.

ROIfg
= [−7, 1) eV , (7.54)

ROI�Main
= [−4,−1) eV , (7.55)

were used.

Total measurement time and number of returns: The total measurement time )tot of the

KNM2 tritium golden run list was 33 days, consisting of 361 runs.

For the krypton measurements 20 runs were used, each with a run time of roughly half an

hour, leading to a total measurement time of 8 hours. This approximates the measurements

taken at a rear wall voltage of *RW = 200 mV. Other rear wall voltages were measured

less often, but the total time was usually on the scale of some hours.

Dead time: The performance of the high voltage system in the KNM2 measurements was

considered. The dead times only depended on the di�erence Δ@* = @*1 − @*0 and can be

modelled as second order polynomial [Rod20]

Cdead(Δ@* )
s

= 0 + 1Δ@*
eV

+ 2
(
Δ@*

eV

)
2

, (7.56)

with

KNM2,T2 : 0 = 32.27 ± 0.936 , 1 = −0.045 ± 0.012 , 2 = 0.00042 ± 0.00011 , (7.57)

KNM2,Kr : 0 = 19.10 ± 0.711 , 1 = −0.805 ± 0.191 , 2 = 0.5135 ± 0.1176 . (7.58)

The means and uncertainties were used as mean and standard deviation of Gaussians, such

that the dead time calculation obeys randomness, which mimics the true performance.

Fluctuation amplitude: The amplitude of the sine is �xed to 50 meV for the following

results, which is the requirement from the KATRIN design report [KAT04b]. The scaling

of the shifts with the amplitude is discussed in section 7.3.5.
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7.3.2. Systematics for Sinusoidal Perturbations in Ordered and Randomised
Schedules

The following pages show four di�erent scenarios both for tritium and krypton, focusing

on the e�ects of ramping vs. randomisation. The presented results include increasing

randomness, as shown in �gure 7.4:

• Ramping back and forth, subrun duration distribution from MTD (as used in the

measurement),

• Random order, subrun duration distribution from MTD,

• Randomised subrun duration distribution, ramping back and forth,

• Randomised subrun duration distribution, random order.

Ramping: The ramp schedules show that resonant shifts of the observables occur at the

time scale of scans and its harmonics. A zoom on the resonance at scan time in �gure 7.7

is shown in �gure 7.5. It shows that the �rst moment description of )scan = 2)run perfectly

predicts the resonances, despite the random dead time and non-trivial subrun duration

distribution.

Randomisation: In the randomised schedules random noise appears over the whole non-

trivial frequency regime. While the detailed features are di�erent, the appearance of noise

instead of peaks does not depend on whether the subrun length distribution or the return

order is randomised. To access the noise amplitude, the standard deviations of 1000 shifts

(one order of magnitude in frequency) centred around the run time scale are calculated.

Shi� in the averaging regime: Overall the shifts observed in the averaging regime agree

with the expectation equation 7.46. However, in detail the shift near 5 = 1 Hz consistently

shows �uctuations towards some meV smaller values than the leading order prediction,

both for krypton and tritium.

Mean shi�on run time scale: On run time scale the observables also show a non-vanishing

mean shift. For the endpoint and line position it is on the sub millivolt level for the tested

amplitudes and presumably a result of higher order e�ects.

For the neutrino mass and Gaussian broadening in the ordered case it is approximately

given by the expectation of the averaging regime. In the randomised case it is on this

order, but there are larger discrepancies.

Total time scale shi�s: In both cases for �uctuations on the time scale of the total duration

of the measurement a wave pattern is observed. As visible in the shifts of �0 and �Main

this is directly linked to the average energy shift of the �uctuation in the schedule. Given

the �uctuation period ) , the average vanishes for integer multiples )tot = =) .
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(a) Ramping, subrun duration distribution from MTD
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(b) Random order, subrun duration distribution from MTD
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(c) Randomised subrun duration distribution, ramping
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(d) Randomised subrun duration distribution, random order

Figure 7.4.: Retarding energy over time for di�erent schedules: in (a) the subruns are

ordered and their duration is picked according to the MTD and the run number.

(b) is obtained by randomising the subrun order from (a). In (c) the subruns

are ordered and their duration is randomised. (d) is obtained by randomising

the subrun order from (c).
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Figure 7.5.: Zoom on scan time resonance in ordered schedule: The scan time of the

simulated ramp schedule was )scan = 15796 s, leading to the fundamental

resonance frequency
1

)scan

= 63.3 · 10
−6

Hz, which perfectly �ts the simulation.

The width of the shown periodic structure is exactly given by
1

)tot

.

Krypton versus tritium: The simulations show equivalent results for krypton and tritium.

In the case of krypton, however, it is likely that systematics of this size would be detected

in a raised normalised j2
, which is only rarely possible in the case of tritium. To test the

available krypton data for run time scale �uctuations a stacked �t of the available runs

has to be performed
15

. The signi�cantly raised j2
in the stacked uniform approach of this

simulation might not be detectable in pixel or ring �ts, which have a factor of =pixels ≈ 117

or =rings ≈ 12 fewer counts.

15
The usual analysis performed for krypton does not use stacking of the pixel or ring wise results to uniform

�ts. Also, all runs are analysed separately.
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Figure 7.6.: KNM2 tritium schedule, ramping: The plotted scenario approximates the

performed measurement in KNM2. 361 runs are in the golden runlist, and the

measurement was performed in up and down ramps. The mean measured set

time of the high voltage is included. The ramps are visible in the autocorrelation

function.
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Figure 7.7.: KNM2 tritium systematics, ramping: In the non-trivial regime peaks in the

several 100 meV range appear in the neutrino mass shift, which are mostly

not detectable in a raised normalised j2
. The peaks are related to peaks in

the spectral density, appearing above the frequency
1

2)run

corresponding to one

scan.
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Figure 7.8.: KNM2 tritium schedule, random order: In this scenario the ordering of the

retarding energies is randomly distributed, resulting in a slightly raised dead

time due to high voltage setting. The structure in the autocorrelation function

mostly disappears.
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Figure 7.9.: KNM2 tritium systematics, random order: The peaks visible in the ramp mea-

surements get smeared over a broad range of frequencies. The systematics are

in no case detectable in the normalised j2
. The standard deviations on run

time scale are

√
f (<2

a ) ≈ 164 meV and f (�0) ≈ 2.3 meV.
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Figure 7.10.: KNM2 tritium schedule, ramping, randomised subrun duration: In this sce-

nario the subrun duration is randomly picked from a Gaussian with compara-

ble moments as before, while the ordering still obeys an up and down ramping

pattern. However, since each of the small bins near -40 eV only makes up

≈ 5 h each, they get �lled already after
5 h

〈C
subrun

〉〈=〉 ≈ 20 % of the total runtime.
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Figure 7.11.: KNM2 tritium systematics, ramping, randomised subrun duration: On run

times scale increased noise can be observed, which is related to an excess

of the spectral density in this region, caused by the ramping. Outside this

region the noise is lower in amplitude. The standard deviations on run time

scale are

√
f (<2

a ) ≈ 287 meV and f (�0) ≈ 8.0 meV.
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Figure 7.12.: KNM2 tritium schedule, random order, randomised subrun duration: In this

scenario the duration of the subruns is randomly picked as before, and addi-

tionally the subrun order is randomised. The randomisation of the subrun

duration is clearly visible in the frequency distribution, but other than remov-

ing some structures, the autocorrelation functions are very comparable to the

ones without subrun duration randomisation.

188



7.3. Results and Discussion

400−
300−
200−
100−

0

100

200

300

400

 in
 m

eV
ν

m
 a

nd
 

0
E

Sh
if

t o
f 

totT runT subrunT

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 χ
N

or
m

al
is

ed
 

10−10 9−10 8−10 7−10 6−10 5−10 4−10 3−10 2−10 1−10 1
Fluctuation frequency in Hz

20−10

18−10

16−10

14−10

12−10

10−10

8−10

6−10

4−10

2−10

Sp
ec

tr
al

 d
en

si
ty

 in
 a

.u
.

Fluctuation: sine
Amplitude: 50 mV

Figure 7.13.: KNM2 tritium systematics, random order, randomised subrun duration: Com-

pared to only randomising the order of the subruns, also using a random

subrun duration distribution only has minor e�ects on the spectral density,

the systematic shifts and the j2
. The standard deviations on run time scale

are

√
f (<2

a ) ≈ 209 meV and f (�0) ≈ 4.0 meV.
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Figure 7.14.: KNM2 krypton schedule, ramping: The plotted scenario approximates the

performed measurement in KNM2 at*RW = 200 mV. On the order of 20 runs

were taken, and the measurement was performed in up and down ramps. The

mean measured set time of the high voltage is included.
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Figure 7.15.: KNM2 krypton systematics, ramping: In the non-trivial regime peaks in the

few 100 meV range appear in the line broadening. In contrast to tritium, they

will be detectable in a raised normalised j2
. The peaks are related to peaks in

the spectral density, appearing above the frequency
1

2)run

corresponding to

one scan.
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Figure 7.16.: KNM2 krypton schedule, random order: In this scenario the ordering of the

retarding energies is randomly distributed, resulting in more than double the

dead time due to high voltage setting.
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Figure 7.17.: KNM2 krypton systematics, random order: The peaks visible in the ramp mea-

surements get smeared over a broad range of frequencies. Again, in contrast

to the tritium β spectrum the systematics are most likely detectable in the nor-

malised j2
. The standard deviations on run time scale are

√
f (f2

g
) ≈ 99 meV

and f (�Main) ≈ 3.7 meV, which is too large compared to the requirement of

20 meV precision.
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Figure 7.18.: KNM2 krypton schedule, ramping, randomised subrun duration: In this

scenario the subrun duration is randomly picked from a Gaussian with com-

parable moments as before, while the ordering still obeys an up and down

ramping pattern.
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Figure 7.19.: KNM2 krypton systematics, ramping, randomised subrun duration: Between

run and subrun times scales increased noise can be observed, which is related

to �uctuations of the spectral density in this region, caused by the ramping.

Outside this region the noise is lower in amplitude. The standard deviations

on run time scale are

√
f (f2

g
) ≈ 103 meV and f (�Main) ≈ 6.3 meV.
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Figure 7.20.: KNM2 krypton schedule, random order, randomised subrun duration: In

this scenario the duration of the subruns is randomly picked as before, and

additionally the subrun order is randomised. The randomisation of the subrun

duration is visible in the subrun duration distribution, but other than removing

some structures, the autocorrelation functions are very comparable to the

ones without subrun duration randomisation. Convergence to the MTD was

not achieved due to the small total time.
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Figure 7.21.: KNM2 krypton systematics, random order, randomised subrun duration:

Compared to only randomising the order of the subruns, also using a random

subrun duration distribution only has minor e�ects on the spectral density,

the systematic shifts and the j2
. The standard deviations on run time scale

are

√
f (f2

g
) ≈ 94 meV and f (�Main) ≈ 4.3 meV.
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Figure 7.22.: Sawtooth perturbation, ramping: The envelope of the shift of the neutrino

mass shows the scaling expected for linear combination of frequencies.

7.3.3. Systematics from Composed Perturbations

In the previous section only a single sinusoidal perturbation of the energy scale was

considered. To assess the response to perturbations with a richer Fourier spectrum a

sawtooth perturbation is used, which contains all integer harmonics of frequency 5: = : 5

with power
1

:
∝ 1

5:
.

Linear combination: Figures 7.22 and 7.23 show the resulting shifts. In the ramp schedule

the envelope of the neutrino mass shifts decays from )scan to )tot with√
Δ<2

a (l) =
√
Δ<2

a (l0)
√
l

l0

. (7.59)
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Figure 7.23.: Sawtooth perturbation, random order: In all tested randomised schedules

the most prominent e�ect of using a sawtooth compared to a sinusoidal

is visible in the reduction of standard deviations on run time scale, here√
f (<2

a ) ≈ 141 meV and f (�0) ≈ 1.7 meV.

This is expected, since in this frequency range the harmonics with power
1

5:
scatter on the

resonance at the scan time, visible in the spectral density. Thus, the observed shift is a

summation of the components of the perturbation.

Systematic amplitude: Compared to the sinusoidal, both the amplitude of the resonances

and the standard deviations of the noise of<2

a and �0 are scaled by a factor of ≈
√

2

3
, which

is the ratio of the respective RMS values of the perturbations.
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7.3.4. E�ect of Run Time Scale (De-)Coherence on the Systematics

The simulations presented in the previous two sections show non-trivial shifts (either

resonances or noise) of the observables on run time scale and damping of those shifts on

subrun time scale. The included �uctuations leading to these shifts had a constant phase

velocity over the whole simulated time. This section aims to show that on run time scale

there is equivalence between

resonance⇔ coherence ,

noise⇔ decoherence .

From that it is possible to derive the scaling with the �uctuation amplitude and the number

of returns of both the noise observed in decoherent measurements and the resonances

observed in coherent measurements. Also, rather than only meaning constant phase

velocity of the �uctuation, the term (de-)coherence should be understood as quanti�cation

of the interplay between the �uctuation phase and the subrun starting times, leading to

the following distributions.

Phase distributions: Figure 7.24 shows the normalised
16

distributions of the starting

phases of the �uctuation for the subruns in the ROIs of the neutrino mass and endpoint

for di�erent schedules. The following can be observed:

• Order on a given time scale is related to a structure in these distributions and to

resonant shifts of the observables, i.e. coherence equals resonance.

• The absence of structure does not imply no shifts, i.e. coherence is not a prereq-

uisite for the noise appearing on run time scale. On this scale it rather holds that

decoherence equals noise.

For these distributions it is only relevant whether the �uctuation is in phase with the

subrun starting times, or not. Thus, on run time scale random phase �uctuations and

ramping is equivalent to �uctuations with constant phase velocity and random order, and

both is called decoherent on run time scale. For the studies performed in this chapter

only periodic �uctuations G (C) were considered, where decoherence is solely given by the

schedule. For signals G (C) with non-predictable phase the proper measure to access the

coherence of schedule and perturbation is the coherence function.

Coherence function: The coherence function is given by [SH08]

W2

>G (l) =
|(>G (l) |2

(>> (l)(GG (l)
, (7.60)

where (>> is the spectral density of the measurement B> (C) of observable > of the schedule,

(GG is the spectral density of the perturbation time signal G (C) and (>G is the cross-spectral

16
To reduce the overlap in the plots, the endpoint distribution was scaled down by a factor of 0.7 compared

to the neutrino mass distribution.
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(b) Ramping, random subrun duration
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(c) Random order

Figure 7.24.: Perturbation coherence for di�erent schedules: Shown are the normalised

starting phase distributions for the subruns in the ROI of the neutrino mass

(green) and endpoint (purple). The input �uctuation had a constant phase

velocity over the whole simulated time. Structures for the frequency given by

the inverse run time scale are visible for the ordered schedules (a) and (b), in

case of (a) also for the inverse subrun time scale. Non of the schedules shows

coherence for frequencies much larger than the inverse subrun time scale.

Randomised subrun order (c) doesn’t show any coherence.
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density, which is the Fourier transform of the cross-correlation between G (C) and B> (C).
The coherence function is normalised

0 ≤ W2

>G ≤ 1 , (7.61)

such that values close to one indicate coherence.

In the following the scaling of the amplitudes of resonances and noise is derived based on

completely coherent and completely decoherent measurements.

7.3.5. Scaling of the Systematics with Perturbation Amplitude and Schedule
Returns

The non-trivial shifts of the observables appear around run time scale. Fluctuations on

this scale imply predictable phase at least on the order of)run � )subrun, with the essential

conclusion that run time scale �uctuations are constant on the subrun time scale. In this

case extremal cases are given by coherent measurements, where a given subrun always

observes the same �uctuation phase, and decoherent measurements, where the observed

phase is random. As discussed, these cases lead to resonances or noise in the observables.

In the following the relative count rate deviation caused by �uctuations on run time scale

at retarding energy @*

A res

run
(@* ) ≡ Δ#

#
(@* ) , Anoise

run
(@* ) ≡ f (# )

#
(@* ) , (7.62)

is calculated for both cases. The calculation is restricted to energy scale perturbations n (C)
with amplitude � and RMS value fRMS(n).

Coherent measurements: In this case the energy shift |n (@* ) | ≤ � of the subrun 8 only

depends on the retarding energy. This leads to the deviation of the counts

Δ#8 (@* ) = [ ¤# (@* + n (@* )) − ¤# (@* )]Δ)8 , (7.63)

≈ d ¤#
d�
(@* )Δ)8n (@* ) , (7.64)

where leading order expansion was used in the last step and Δ)8 is the measurement time

of the subrun. Summing over all subruns at retarding energy @* leads to

Δ# (@* ) =
∑

Δ#8 (@* ) , (7.65)

=
d ¤#
d�
(@* )CMTD(@* )n (@* ) . (7.66)

Finally, normalising by the undisturbed counts gives

A res

run
(@* ) = 1

¤# (@* )
d ¤#
d�
(@* )n (@* ) , (7.67)

∝ � . (7.68)
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Decoherent measurements: In this case the energy shift |n8 | ≤ � of the subrun 8 is

randomly sampled from a probability distribution %run(n), independent from the retarding

energy. More general also a noise distribution %noise can be included, such that the total

distribution for the n8 is given by the convolution

% (n) = (%run ∗ %noise) (n) . (7.69)

It is assumed that the mean of % (n) vanishes. The standard deviation is given by f (n),
which is proportional to the amplitude � for small noise components.

The count deviation Δ#8 is obtained as

Δ#8 = [ ¤# (@* + n8) − ¤# (@* )]Δ)8 , (7.70)

≈ d ¤#
d�
(@* )Δ)8n8 , (7.71)

where leading order expansion was used in the last step and Δ)8 is the measurement time

of the subrun.

The variance f2

run
(# ) (@* ) after summation of Δ#8 over all =(@* ) returns to the subrun is

obtained using the central limit theorem

f2

run
(# ) (@* ) = =(@* )f2

(
d ¤#
d�
(@* )Δ)n

)
, (7.72)

≈
(
d ¤#
d�

)
2

(@* ) 〈Csubrun〉2 (@* )=(@* )f2(n) . (7.73)

Here the individual subrun times Δ)8 were approximated with their mean 〈Csubrun〉 (@* ).
Dividing by the undisturbed counts leads to the relative deviation

Anoise

run
(@* ) = frun(# )

#
(@* ) , (7.74)

≈ 1( ¤#= 〈Csubrun〉
)
(@* )

d ¤#
d�
(@* )

√
=(@* ) 〈Csubrun〉 (@* )f (n) , (7.75)

=
1

¤# (@* )
d ¤#
d�
(@* ) f (n)√

=(@* )
, (7.76)

∝ �√
=(@* )

. (7.77)

Comparison to the6 2: From the expression of the j2
(equation 1.17) the following scalings

X ∈ {f,Δ} (uncertainties f or shifts Δ) of the observables and the normalised j2
with the

relative deviations of the counts are evident

X (<2

a ) ∝ X (f2

g
) ∝ X (�0) ∝ X (�Main) ∝

√
〈A 2〉@* , (7.78)

j2 ∝
〈
A 2

〉
@*

. (7.79)
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If all phases of the perturbation are present in the MTD, the averages of the squared rate

deviations 7.67 and 7.76 over all retarding energies lead to proportionalities to the RMS

value of the perturbation. Here correlations between the spectral parts and the energy

perturbation (coherent) or the return number (decoherent) over the retarding energies @*

were neglected
17 〈(

1

¤#
d ¤#
d�

)
2

5 2

〉
@*

≈
〈(

1

¤#
d ¤#
d�

)
2

〉
@*

〈
5 2

〉
@*

. (7.80)

If the count deviations from the �uctuations on run time scale are dominant
18

, this leads

to the following prediction of the scalings

Resonances
Δ<2

a ∝ Δf2

g
∝ Δ�0 ∝ Δ�Main ∝ fRMS(n) ,
j2 ∝ f2

RMS
(n) ,

(7.81)

Noise
f (<2

a ) ∝ f (f2

g
) ∝ f (�0) ∝ f (�Main) ∝ fRMS (n)√

〈=〉@*
,

j2 ∝ f2

RMS
(n)

〈=〉@* ,

(7.82)

Averaging
Δ<2

a ∝ Δf2

g
∝ f2

RMS
(n) ,

Δ�0 ≈ Δ�Main ≈ j2 ≈ 0 .

The averaging regime was included for comparison. All scalings were tested in simulation,

showing good agreement. The discussion can be found in appendix A.8.

The linear scaling with the amplitude or RMS value is in contrast to the averaging regime,

from which the usual limits on energy scale �uctuations in the systematic budget are

derived. As a consequence, the systematic shifts in the noise and resonance regime

disappear more slowly with decreasing RMS value than in the averaging regime. Given

the size of the systematic shifts, especially in the resonance regime, this means that tighter

limits have to be set for the RMS value on run time scale than for the RMS value on time

scales larger than the subrun time scale.

Example of noise on run time scale: To show that noise is truly related to decoherence on

run time scale, the KNM2 tritium ramping schedule of �gure 7.6 used in the measurement

was taken, and constant energy shifts n8 for each subrun were randomly picked from a

sinusoidal like

q8 = random ∈ [0, 2c) , (7.83)

n8 = 50 meV sin(q8) , (7.84)

17
This should be treated with caution, however it agrees with with the simulations in the used ramp schedule

(see section 7.3.3) and is exact for constant return number, which is the most realistic case.

18
Since no Poisson uncertainty and other systematics were included, this is the case in the simulations

shown in this chapter.
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which is independent from ordering and frequency. The comparison to the frequency

dependent case of randomised subrun order is shown in �gure 7.25. Both show equal

standard deviations of the �tted neutrino masses and endpoints.

7.3.6. Combined Statistical and Systematic Uncertainty

Finally, the combined uncertainty from statistical uncertainty and uncertainty due to run

time scale perturbations is calculated.

RMS value of the KNM2 high voltage measurement: The RMS value of the KNM2 high

voltage measurement is [Rod20]

fRMS(HV) = 11 mV , (7.85)

which is roughly a factor of �ve better than the design report requirement on energy scale

�uctuations f (n) < 60 meV [KAT04b].

RMS value of the KNM2 source potential: The total width of the zero scattered starting

potential distribution measured in KNM2 krypton is analysed in chapter 6. It includes

both longitudinal inhomogeneities and temporal instabilities. Thus, the obtained value of

equation 6.15 is an upper limit on the RMS value for �uctuations on run time scale

fRMS [+ ] < 140 mV . (7.86)

This value is overly conservative, since it assumes that it is only caused by �uctuations,

and that the longitudinal inhomogeneity vanishes.

RMS value of energy scale perturbations: The overall RMS value is obtained by quadratic

addition of both components

fRMS(n) < 140 meV . (7.87)

Since the relevant RMS value for this systematic needs to be taken from a band-limited sig-

nal around the run time scale, which certainly has signi�cantly less spectral contribution,

the systematic on the neutrino mass calculated with the above values is an overly conser-

vative upper limit on the total systematics. Also, since the source potential completely

dominates, while its analysis su�ers from signi�cant uncertainties, in the following both

values are treated separately.

KNM2 systematic shi�s and uncertainties: The systematic shifts (assumed coherence) and

uncertainties (assumed decoherence) due to run time scale energy �uctuations were taken

from the ordered and random order schedules �gures 7.6 and 7.8. The coherent case leads
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(b) Time dependent �uctuation, random subrun order

Figure 7.25.: Random distribution vs. frequency dependence: For (a) a constant energy shift

of each subrun was picked from a sinusoidal of random phase and 50 meV

amplitude. The standard deviations are

√
f (<2

a ) ≈ 164 meV, f (�0) ≈ 2.3 meV.

(b) is a zoom in on the run time scale of �gure 7.9, i.e. the shifts are obtained by

including a sinusoidal �uctuation of 50 meV amplitude with constant phase

velocity and random subrun order. The standard deviations are identical√
f (<2

a ) ≈ 164 meV, f (�0) ≈ 2.3 meV.
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to

Max

[
Δ<2

a

]
≈ 20.8 fRMS(n) eV , (7.88)

HV� 0.229 eV
2 , (7.89)

+� 2.912 eV
2 . (7.90)

Especially the second value is devastatingly large. However, the coherent case assumes

that a perturbation of the energy scale of constant phase velocity with frequency
1

2)run

exists with an accuracy of the order
1

)tot

. While also harmonics of this frequency lead to

shifts of the above order, this case seems very unlikely.

Thus, in the following only the decoherent case is considered. This leads to

fsyst(<2

a ) ≈ 14.5
fRMS(n)√
〈=〉@*

eV , (7.91)

==361

= 0.76 fRMS(n) eV , (7.92)

HV� 8.4 · 10
−3

eV
2 , (7.93)

+� 0.106 eV
2 . (7.94)

Whether the values are signi�cant is investigated below by comparing them to the statistical

uncertainty of KNM2. Notably, if fRMS is taken to be the 60 meV requirement from the

design report, the systematic uncertainty is 4.6 · 10
−2

eV
2
, which is nine times larger than

the 5 · 10
−3

eV
2

planned for full KATRIN [KAT04b]. Thus, for run time scale �uctuations

more stringent limits need to be imposed.

Scaling of the total uncertainty with time scales: Due to the scaling of the noise in deco-

herent measurements with the return number, decreasing the subrun length while keeping

the measurement time constant reduces the noise. On the other hand it increases the dead

time and thus the statistical uncertainty. It is expected that the mean dead time per subrun

does not depend on the subrun time scale or on the subrun ordering
19

.

From the included dead time distribution de�ned in equation 7.57, the following mean

dead time per subrun is expected

〈Cdead〉 = )subrun − 〈Csubrun〉
KNM2

= 32 s . (7.95)

The e�ciency thus is

ne� =
〈Csubrun〉

〈Cdead〉 + 〈Csubrun〉
KNM2

= 0.89 . (7.96)

at 〈Csubrun〉 = 250 s.

19
A study was performed where the subrun length was varied between 10 and 250 seconds, and the

measurement time without dead time was kept constant. The study was performed for ordered and

random order schedules, plots can be found in appendix A.8. These expectations are met.
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The statistical uncertainty scales anti-proportionally to the square root of the measurement

time

fstat(<2

a )
KNM2

= 0.3 eV
2 ∝ 1

√
ne�)tot

. (7.97)

From equation 7.8 it follows for the scaling of the systematic uncertainty from run time

scale �uctuations:

fsyst(<2

a ) ∝
1

√
ne�)tot

√
〈Csubrun〉 #MTD . (7.98)

Combining both and using the obtained values from simulation leads to

ftot(<2

a ) =
√
f2

stat
(<2

a ) + f2

syst
(<2

a ) , (7.99)

=
1

√
ne�)tot

√
�2 + �2f2

RMS
(n) 〈Csubrun〉 #MTD , (7.100)

=

√
229014 s + 5879 f2

RMS
(n)/eV

2 〈Csubrun〉
ne�)tot

eV
2 , (7.101)

KNM2

=

√
0.09 + 0.58 f2

RMS
(n)/eV

2
eV

2 , (7.102)

HV�
√

0.09 + 7.0 · 10
−5

eV
2 , (7.103)

+�
√

0.09 + 0.01 eV
2 . (7.104)

It can be concluded that in KNM2 tritium decoherent run time scale �uctuations from

the high voltage are completely negligible compared to the statistical uncertainty. Given

that the RMS value is largely overestimated, this likely also holds for the source potential

�uctuations on run time scale. Moreover, the ratio of the uncertainties

fsyst

fstat

≈ 2.5 · 10
−3
fRMS(n)

meV

(7.105)

will stay approximately constant if more runs are added with comparable run time sched-

ules. Thus, only for an RMS value of 400 meV the uncertainties become equally large.

This most likely allows to neglect systematic contributions from run time scale energy

�uctuations also in the full KATRIN measurement.

7.4. Conclusion

In this chapter the sensitivity of di�erent run time schedules to time dependent pertur-

bations of the energy scale was investigated. The appropriate methods of analysis were

described and consequently a set of simulation tools were implemented in the KATRIN

simulation framework. They allow to easily assess the resulting systematic and statistical

uncertainties also for other than the used KNM2 schedules.

The scaling of the simulation results with perturbation amplitude and return number could

fully be understood in an analytical calculation. Di�erent forms of systematic shifts were
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identi�ed, which occur for coherence or decoherence between schedule and perturbation

phase. Together with the usual averaging case, three systematic regimes are possible

(ordered by typical magnitude):

• Coherency on run time scale: Large systematic shifts, produced by the frequency of

inverse scan time and its harmonics.

• Decoherency on run time scale: Medium Gaussian uncertainty, produced by a broad

frequency range around inverse run time scale.

• Negligible RMS value on run time scale: Small systematic shift from the usual

averaging regime.

Assessing the contributions of the regimes requires the knowledge of the power spectra of

both the source and the spectrometer potential. Only overly conservative upper limits

on the total RMS values of both power spectra could be inferred from the KNM2 krypton

and KNM2 high voltage measurement. Even so, it turned out that the systematics of the

decoherent case is negligible compared to the statistical uncertainty. Also, due to the

known scalings, it is likely that this is also the case for the full KATRIN measurement.

However, the shown reduction of the systematic shifts in the noise regime with the number

of runs is only valid, if the obtained spectra are added and analysed in a stacked �t.

Outlook: The limits are overly conservative. Experimental limits on run time RMS values

can be obtained from krypton-83m measurements in two ways:

• Overdispersion of the j2
distributions: In the usual analysis of individual runs, run

time scale �uctuations lead to overdispersion of the j2
distributions. Usually, some

small overdispersion was observed in KNM2, but also other systematic in�uences

are possible.

• Change of the Gaussian variance by stacking: When comparing stacked and non-

stacked analysis, a change of the measured Gaussian variance is a hint of the existence

of run time scale perturbations. Due to time dependencies of the rate and tritium

column density, this kind of analysis requires a multi-parameter �t model, which

exceeded the scope of this work.

Also, the coherent case could not be fully excluded. Due to the necessary �ne tuning of

the perturbation frequency and the necessary constant phase velocity of the perturbation,

its existence seems unlikely. In addition, more �ne tuning would be needed to explain the

magnitude of the Gaussian variance obtained in the KNM2 krypton measurement by coher-

ent run time scale perturbations, instead of the more likely longitudinal inhomogeneities

and plasma �uctuations of > Hz frequencies.

With regard to future data acquisition, randomised runtime schedules would reliably avoid

the large systematic shift of the neutrino mass resulting from �uctuations of the energy

scale in the resonant regime and, given a stacked analysis of the obtained spectra, would

lead to negligible systematics due to run time scale �uctuations.
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The existence of neutrino �avour oscillations proves indisputably that neutrinos have mass.

The non-vanishing mass of neutrinos has a fundamental in�uence on the understanding

of the physics of elementary particles, which requires the extension of the otherwise

overwhelmingly successful Standard Model of elementary particle physics. Thus, neutrino

physics is at the forefront of current physical questions and contributes to the understand-

ing of physics from the smallest to the largest scales. With respect to the formation of

the universe, this includes, for example, fundamental topics such as the search for dark

matter or the origin of the asymmetry of matter and antimatter, which is at present not

understood. Three complementary approaches are currently established to determine the

size of the neutrino mass, including observational cosmology and the search for neutri-

noless double beta decay. In both of these approaches, underlying assumptions need to

be made - in the �rst case, the observations are interpreted in the framework of the Λ
Cold Dark Matter standard cosmological model; in the second case, the neutrino has to

be assumed of Majorana rather than Dirac type. By contrast, the only direct laboratory

method that can determine the neutrino mass without additional theoretical assumptions

is the measurement of the kinematics of weak decays involving neutrinos, such as beta

decay or electron capture.

The latest beta decay experiment is the KArlsruhe TRItium Neutrino (KATRIN) experiment.

It holds the currently strongest laboratory-based kinematic limit on the neutrino mass of

<a < 1.1 eV (90 % C. L.) from its �rst published KNM1 campaign. In the tritium β decay

spectrum a non-vanishing neutrino mass leads to a tiny imprint just below the kinematic

endpoint of 18.6 keV. By precise spectroscopy of the β electrons in this region KATRIN

aims to push the sensitivity on <a down to 200 meV (90 % C. L.) over the course of an

overall 5-year data-taking campaign, which requires precise understanding and, wherever

possible, mitigation of the systematic uncertainties. One of the most important systematics

results from the calibration of the di�erence between the potentials of the spectrometer

and the tritium source. This quantity must be monitored with an accuracy of the order

of 10 mV. Such a precise calibration is at the limit of what is technically feasible and a

chain of several interlinking calibration methods is employed to precisely determine both

the high voltage of the spectrometer and the source potential. Since KATRIN uses an

extended-volume source of gaseous tritium a calibration standard with which the spatially

inhomogeneous source potential can be determined must also be gaseous under feasible

measurement conditions. Mesomeric krypton-83m meets this requirement and its quasi

mono-energetic conversion lines are used at KATRIN for calibration purposes.

In principle, shape distortions of the
83m

Kr conversion electron spectrum can be used to

determine systematics a�ecting the di�erence of the spectrometer and source potential. In

211



8. Conclusions and Outlook

the thesis at hand the in�uence of the spatially inhomogeneous source potential on the

krypton-83m spectrum is investigated thoroughly. The �ndings were applied in several

krypton-83m measurement phases in order to quantify the systematics of the neutrino

mass measurement campaigns KNM1 and KNM2 carried out at KATRIN in 2019. It was

shown that the previous modelling of the shape distortion of the tritium β spectrum

caused by a spatially inhomogeneous source potential was incomplete and the necessary

extensions were comprehensively described.

In addition to the investigation of systematics that result from the spatial inhomogeneities

of the source potential, krypton-83m can also be used to investigate temporal �uctuations

that can occur in both the source and the spectrometer potential. Both cases lead to a

broadening of the krypton lines, which in leading order can be modelled with a Gaussian

of width fg. In the commonly used, simplest description the resulting systematic shift of

the squared neutrino mass for any potential inhomogeneity with standard deviation or

RMS value f is

Δ<2

a = −2f2 . (8.1)

This description assumes that the e�ect of the systematic on the β spectrum is also that of

a broadening. However, as shown in the thesis at hand, for the situations described in the

following this rule is not applicable since equation 8.1 is incomplete.

Temporal fluctuations: Measurements at KATRIN usually consist of repeated recordings

of electron energy spectra, with one individual scan of the spectrum typically taking about

2-3 hours. Individual scan steps at a given retardation voltage setting have a duration

between tens of seconds to several minutes. Non-broadening like shape distortions of

the total spectrum can appear for perturbations of the energy of the individual bins. One

extremal case are resonant perturbations, where each bin always observes the same energy

o�set. The other extreme are random perturbations, where the energy o�set of each bin

is random, mimicking statistical �uctuations. Both occurs for �uctuation frequencies on

the time scale of the recording time of one spectrum. In this case, the resulting neutrino

mass shifts do not follow equation 8.1, which is usually used to impose limits on the

allowable RMS value of the �uctuation. For the resonant case, much tighter limits need

to be used, however it only appears at �ne tuned perturbation frequencies of tiny width.

The random case was constrained by upper limits of the �uctuation RMS value in KNM2,

which were taken from measurements of the spectrometer potential and from krypton-83m

measurements. Given these limits, it could be shown that this systematic is negligible

compared to the statistical uncertainty in KNM2. Since both random �uctuations and the

statistical uncertainty decrease equally with the total measurement time, this systematic

is likely also negligible for the full KATRIN measurement.

Source potential systematics: In case of systematics caused by inhomogeneities of the

longitudinally extended source potential + (I), the description was re�ned in two points:

Firstly, it was shown that moments of the source potential have to be weighted with the

longitudinal electron distributions %8 (I). The index 8 indicates the multiplicity of inelastic

scattering of the electrons on the gas molecules in the source. The dependence on the
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scattering multiplicity is essential due to the following reasoning: The larger the portion of

the gas column an electron needs to traverse to reach the detector, the more likely it is to

undergo inelastic scattering on the gas molecules on the way. As a consequence, electrons

of distinct scattering multiplicities on average stem from di�erent spatial domains of the

source, such that they observe di�erent source potentials. With regard to the standard

deviation of the potential, that of the unscattered electrons f0 [+ ] is relevant for the

neutrino mass shift. While its value is di�erent from the unweighted case, the e�ect on

the spectra still is that of a broadening and the neutrino mass shift is calculated following

equation 8.1.

In contrast, it was shown that in addition to f0 [+ ] a second measure of inhomogeneity

d̂ [+ ], |d̂ [+ ] | ≤ 1, needs to be considered. It quanti�es by how much the potential of the

rear part of the 10 m long gaseous source di�ers from that of the front part, i.e it quanti�es

the prevalence of an antisymmetric potential shape in relation to the gas injection point

in the centre of the source. Antisymmetric potentials (d̂ = ±1) produce shape distortions

in all electron spectra of the gaseous source, which cannot be described by a broadening

due to the following reasoning: Since upon inelastic scattering the electrons lose at least

≈ 13 eV of energy, electrons of di�erent scattering multiplicities appear at di�erent energies

in the electron spectrum. Thus, on average di�erent energies in the electron spectrum

are a�ected by di�erent spatial regions of the potential. For measurement conditions

like the ones used in the KNM1 and KNM2 measurements, mainly one-time scattered

and unscattered electrons are relevant, and the di�erence of their spatial distributions

is characterised by an antisymmetric shape with regard to the gas injection point. As a

consequence, potentials with that symmetry produce non-broadening shape distortions of

the electron spectra.

As shown in this thesis, the resulting equation for the shift of the squared neutrino mass

reads

Δ<2

a (d̂, f0) = −2f0(nd d̂ + f0) , (8.2)

now consisting of a shape term in addition to the known broadening term. The shape

energy nd depends on the contribution of the scattering multiplicities to the recorded β
spectrum, i.e. on the respective measurement conditions. It was shown, that equation 8.2

fully speci�es the neutrino mass shift caused by the extended source potential up to second

order in the potential. For antisymmetric potentials the shape term strongly dominates the

systematics at KNM2-like measurement conditions. For the source potential expected from

simulations, which has a considerable antisymmetry of d̂ = 0.88, the resulting neutrino

mass shift is 30 times larger than the one following from equation 8.1.

Krypton-83mmeasurements at KATRIN: Thus, the precise determination of both d̂ [+ ] and

f0 [+ ] from krypton-83m measurements is required to correct for the potential induced

systematic in the theoretical model of the β spectrum. In the quasi mono-energetic krypton-

83m conversion electron spectrum the one-time scattered electrons are visible as a line

≈ 13 eV below the unscattered electrons and the shape distortion due to antisymmetric

potentials changes the distance separating the two lines. The potential induced change of

the distance is given by the di�erence Δ10 [+ ] of the mean potential for one-time scattered
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〈+ 〉
1

and unscattered electrons 〈+ 〉
0
. The spectral broadening of the line of unscattered

electrons is given by f0 [+ ]. From �rst-principle calculations it was shown that

d̂ [+ ] = 1

^
10,0

Δ10 [+ ]
f0 [+ ]

(8.3)

with^
10,0 ≈ 0.7 for KNM2 krypton measurement conditions, which rigorously connects the

spectrum distortion Δ10 [+ ] with the potential antisymmetry d̂ [+ ] and spectral broadening

f0 [+ ]. The change in the distance of the krypton lines of one-time and unscattered

electrons divided by the spectral broadening of the krypton line of unscattered electrons

accurately predicts the antisymmetry of the potential. In particular, this ratio cannot

assume arbitrary values and the maximum change in the distance between the lines for a

given broadening is given by antisymmetric potentials.

While with the measurement of Δ10 [+ ] ∼ d̂ [+ ] and f0 [+ ] in krypton-83m the neutrino

mass systematic can be constrained, it was shown that the translation to the β spectrum

is subjected to some subtleties: Since the gas distributions of tritium and krypton in

the source are known to show small di�erences, the distribution of the krypton-83m and

tritium β signal electrons is di�erent. As a consequence, the potential estimates for both gas

species are di�erent even at equal measurement conditions, which leads to uncertainties

and scalings of the estimates in the translation from the krypton to the tritium spectrum.

Those were rigorously quanti�ed in the context of this work. The unavoidable uncertainty

on Δ10 [+ ] is at least 10 % of f0 [+ ], even if the measurements are taken at the exact same

source conditions. Given that Δ10 [+ ] needs to be determined with mV accuracy for full

KATRIN, such uncertainties are indeed relevant.

All the more important it is to precisely understand the relation of krypton-83m observ-

ables to the source potential. This connection was fully established in this thesis. As

discussed, the estimates of inhomogeneity f0 [+ ] and d̂ [+ ] are the overall inhomogeneity

magnitude and the antisymmetry of the potential. The additionally obtained line shift of

the unscattered line is the mean potential 〈+ 〉
0
. The remaining part of the potential, which

is not predicted by the three observables of the krypton-83m measurement, is its symmetri-

cal component with regard to the gas injection point. Inversely, source potentials obtained

from simulations can rigorously be tested against the krypton-83m estimates. This exceeds

a mere matching of the estimates of the simulation and the measurement, which alone

would not allow to determine the possibility, that the simulation is the measured potential.

However, since d̂ [+ ] is linked to an exact de�ned symmetry of the potential, the more

antisymmetric the potential is, the smaller is the space of potentials which can lead to the

measured observables and the better is the possibility of the krypton-83m measurement

to con�rm the potential. For d̂ [+ ] = ±1 the potential is exactly known.

These principles were applied on the data of the KNM2 krypton measurement. The

analysis and interpretation of the data are fully compatible with the predictions of the

model developed in this thesis. When a strong positive bias voltage is applied to the

rear wall of the extended source, the krypton-83m measurement indicates a strongly

antisymmetric potential, i.e. the voltage drops over the length of the source. Moreover,

from the di�erence of the applied voltage to the measured mean potential it could be

deduced that a non-monotoneous feature of the potential needs to exist to ensure energy
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conservation. Such a feature is predicted at the central gas injection point by the potential

simulations. These conclusions were drawn without relying on any model dependencies

and use only �rst-principle calculations and the krypton-83m observables. Importantly, the

rear wall bias regime of strongly positive voltages is ideal to test the theoretical description,

since the arti�cially induced inhomogeneity dominates over systematics of the krypton-

83m measurement. In summary, the theoretical description of the e�ect of the source

potential on the electron spectra provided by this work is exhaustive and was well tested

in measurement.

However, due to the induced inhomogeneity, strong rear wall biases are not used for the

neutrino mass measurements. For small bias voltages, it was shown that the gaseous

krypton-83m measurement su�ers from considerable systematics. Firstly, the intrinsic

Lorentzian line width Γ of the used L3-32 transition could not be determined with su�cient

accuracy, leading to a systematic on f0 [+ ]. The determination of Γ using the extended

KATRIN source su�ers from a systematic due to residual inhomogeneities of the work

function of the source tube. Secondly, the intrinsic position of the scattered electron line in

the krypton-83m spectrum is not known with su�cient accuracy, leading to a systematic

on Δ10 [+ ]. For tritium measurements, the energy loss function, which characterises the

energy loss of electrons upon single scattering was experimentally determined by KATRIN.

However, since the krypton measurement is performed at considerably higher energies

than the tritium measurement (30.5 keV compared to 18.6 keV), it cannot be assumed that

the measured function can be transferred to the higher energy range without further

validation.

Thus, Γ was taken from a measurement of the condensed krypton-83m calibration source

at KATRIN, which is point-like and does not su�er from source tube work function system-

atics. Its statistical uncertainty, however, is larger than that of the gaseous measurement

and the thereby reached sensitivity on f0 [+ ] is not su�cient for full KATRIN.

The measured value of Δ10 [+ ] was discarded and the shape term of the neutrino mass shift

was constrained by its extremal values d̂ [+ ] = ±1. While this leads to a large shift, the

systematic contribution from the source potential in the KNM1 measurement was shown

to be negligible with regard to the total systematic budget. The main reason is the small

tritium column density of this measurement and thus the small shape energy nd ≈ 160 meV.

The column density critically in�uences the shape energy, since it determines the amount

of scattering in the source. As a consequence, for KNM2 and future measurements, which

use a larger tritium column density, the corresponding shape term (nd ≈ 490 meV for

KNM2) and the resulting systematic is much larger. With the estimates from the KNM2

krypton measurement, a systematic neutrino mass shift was found, which dominates the

KNM2 systematic budget.

Outlook: The �ndings obtained and predictions made in this work have resulted in

considerable collaborative e�orts to improve the current and future measurements of

KATRIN. The three main consequences are explained in more detail in the following:

• The systematics of the krypton-83m measurement need to be reduced. By the time

of writing of this thesis the KNM3 krypton measurement campaign had already been
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concluded. Due to the �ndings and predictions made in this work, this particular

krypton measurement campaign was considerably extended compared to previous

ones and speci�cally dedicated to the study of source potential systematics. The prob-

lem of the insu�ciently known intrinsic width of the krypton-83m L3-32 transition

was tackled using a measurement of the N2,3-32 transition: Since its intrinsic width

is very small, it can be neglected compared to the source potential inhomogeneity. In

principle this eliminates the systematic uncertainty on f0 [+ ]. However, currently it

is still under investigation, whether the approximation as mono-energetic transition

is completely justi�ed. Also, due to the very small branching ratio of the N2,3-32

lines in relation to the L3-32 line, in the future more of those measurements are

planned, to reach the required sensitivity.

To reduce the systematic uncertainty on Δ10 [+ ] a new measurement of the energy

loss function at krypton-83m energies needs to be performed. This requires a more

advanced set-up and hardware improvements of the electron gun used for this

measurement, which needs to be rated up to voltages of 35 keV, thus surpassing the

current limitation at around 21 keV. As a consequence of the �ndings in this thesis

the construction of the improved electron source is pursued within the collaboration

with a high priority.

• The krypton-83m calibration measurement and the tritium neutrino mass measure-

ment must be performed under the same source conditions to avoid systematic

uncertainties due to scaling. Prior to the KNM4 measurement campaign, however,

the processing of the di�erent gases in the source required di�erent working tem-

peratures and tritium column densities in both modes. Considerable collaborative

e�orts have been made to implement and establish a new source mode in KNM4

that ensures that the tritium β and krypton-83m spectra can be recorded under

exactly the same source conditions. However, due to hardware limitations, this new

mode comes at the cost of a signi�cant reduction in the amount of krypton-83m gas

reaching the source tube, resulting in two orders of magnitude loss of activity.

• To partially compensate for the inevitable loss of krypton-83m gas in the new

source mode, a stronger krypton-83m generator is required to generate the amount

of krypton-83m needed for continued high-statistics measurements. This new

generator is currently under construction and will deliver a krypton-83m activity

up to �ve times larger than the one used so far. This increased source strength will

also bene�t the precision measurement of the weak N2,3-32 lines.

When these improvements of the krypton-83m and tritium βmeasurements are successfully

completed, further studies will be necessary to achieve the required accuracy on the

estimatesf0 [+ ] andΔ10 [+ ], including studies of the stability of these estimates for repeated

krypton-83m measurements. Also, currently new simulations are being developed to

calculate the source potential with re�ned models. Testing these simulations with krypton-

83m measurements is an essential step towards a consistent picture of the source potential

systematic. Applying all these measures will pave the way for KATRIN to achieve its

planned sensitivity in determining the neutrino mass and to contribute to answering some

of the most important contemporary physical questions.
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A.1. Convolution of Starting Potential Distributions

Here it is shown that the modelling of the source potential + (I) can be absorbed in

modi�cations of the 8-times convoluted energy loss functions for 8-fold scattering. To

shorten the notation the integral operator dF (acting to the right) is used in the following,

absorbing all constants and integrals which are not of interest. The starting point is

equation 1.20, giving the count rate ¤# at a given retarding energy @*

¤# (@* ) =
slices∑
:

ndet

Ω:
4c

∫ ∞

−∞
#:

(
d ¤#
d�

)
'(� + @+: , @* ) d� , (A.1)

= ndet

∫ ∞

−∞
d�

(
d ¤#
d�

)
︸                 ︷︷                 ︸

≡dF

∫
I

dI

!WGTS

Ω(I)
4c

# (I)'(� + @+ (I), @* ) . (A.2)

Here ndet is the detector e�ciency, Ω the acceptance angle, # the number of gas atoms,(
d ¤#
d�

)
the di�erential spectrum, � the electron energy and '(�, @* ) the response function.

In the second line the discrete calculation over slices was replaced with an integral along

the WGTS of length !WGTS. Plugging in the de�nition of the response function yields

¤# (@* ) = dF
∫
I

dI

!WGTS

Ω(I)
4c

# (I)
∫ �+@+ (I)−@*

n=0

dnT (� + @+ (I) − n, @* )
∞∑
8=0

?8 (I) 58 (n) .

(A.3)

T (�, @* ) is the transmission function, the ?8 (I) are the scattering probabilities and 58 (n) is

the 8-times convoluted energy loss function. Then the substitution n → n − @+ (I) moves

the dependence on the electric potential to the energy loss function

¤# (@* ) = dF
∫
I

dI

!WGTS

Ω(I)
4c

# (I)
∫ �−@*

n=0

dnT (� − n, @* )
∞∑
8=0

?8 (I) 58 (n − @+ (I)) , (A.4)

= dF
∫ �−@*

n=0

dnT (� − n, @* )︸                              ︷︷                              ︸
≡dF (@* )

∞∑
8=0

∫
I

dI

!WGTS

Ω(I)
4c

# (I)?8 (I)︸              ︷︷              ︸
≡%8 (I)·Norm8

58 (n − @+ (I)) . (A.5)

Thus, normalised weight functions

%8 (I) =
1

Norm8

Ω(I)
4c

# (I)?8 (I) (A.6)
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were de�ned, which are the distributions of the signal electrons for 8 scattering. The

normalisations, which are the amount of signal electrons for 8 scattering, read

Norm8 =

∫
dI

!WGTS

Ω(I)
4c

# (I)?8 (I) . (A.7)

Lastly, using the delta distribution X ([), the I-integration is absorbed in a convolution

(symbolised by the operator ∗) with the Starting Potential Distribution (SPD8 ) for each

scattering

¤# (@* ) = dF (@* )
∞∑
8=0

Norm8

∫
I

dI

!WGTS

58 (n − @+ (I))%8 (I) , (A.8)

= dF (@* )
∞∑
8=0

Norm8

∫
I

dI

!WGTS

∫ ∞

−∞
d[58 (n − [)%8 (I)X ([ − @+ (I)) , (A.9)

= dF (@* )
∞∑
8=0

Norm8 58 (n) ∗ SPD8 , (A.10)

with
1

SPD8 ([) =
∫

dI

!WGTS

X ([ − @+ (I))%8 (I) . (A.11)

One important implication is that there are di�erent SPD8 for each scattering. Thus, even

to �rst order in the potential magnitude di�erent means 〈+ 〉8 of the potential need to be

considered, if electrons of 8 scattering multiplicity are measured. In practice the full SPD8

cannot be obtained and need to be approximated. Using only up to their second moments

leads to Gaussians � (〈+ 〉8 , f8 [+ ]) or � (Δ80 [+ ], f8 [+ ]) (depending on the treatment of

〈+ 〉
0
), where f8 [+ ] is the standard deviation of the SPD8 and Δ80 [+ ] = 〈+ 〉8 − 〈+ 〉0.

A.2. Quadratic Operator Constraints using Variational
Calculus

Here the general constraint of a variance f2

G by a measured variance f2

I and mean di�erence

Δ~̄ is calculated. The statement of the problem is given in section 3.3.2.

Stationary solutions of the Lagrangian 3.47 are found by

dLf
d+

= 2(+ − 〈+ 〉G )%G + 2_f (+ − 〈+ 〉I)%I + _Δ%~̄ ,

= 2+ (%G + _f%I) − 2(ΔGI [+ ] + 〈+ 〉I)%G − 2_f 〈+ 〉I %I + _Δ%~̄ ,
= 2(+ − 〈+ 〉I) (%G + _f%I) − 2ΔGI [+ ]%G + _Δ%~̄ ,
= 0 ,

⇒ + − 〈+ 〉I = ΔGI [+ ]
%G

%G + _f%I
− _Δ

2

%~̄

%G + _f%I
. (A.12)

In the following the di�erent cases of vanishing _f or _Δ are considered separately.

1
The so de�ned distributions are energy distributions. The corresponding potential distributions are

trivially obtained by scaling the G-axis with 1/@.
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Nomeasurement (,2 = ,� = 0): The solution reads

+ = 〈+ 〉G , (A.13)

which is the de�nition of a constant potential. Thus, constant potentials minimise quadratic

operators.

Measured only�~̄ (,2 = 0, ,� ≠ 0): The solution reads

+ − 〈+ 〉G = −
_Δ

2

%~̄

%G
. (A.14)

_Δ is determined from the known Δ~̄ [+ ]

Δ~̄ [+ − 〈+ 〉G ] = −
_Δ

2

Δ~̄

[
%~̄

%G

]
, (A.15)

3.39

= −_Δ
2

^2

~̄,G , (A.16)

⇒ _Δ = −2

Δ~̄ [+ ]
^2

~̄,G

, (A.17)

⇒ + − 〈+ 〉G =
Δ~̄ [+ ]
^2

~̄,G

%~̄

%G
. (A.18)

Due to their di�erent normalisations it also follows that %G ≠ %~̄ , leading to a �nite value

of ^2

~̄,G . Calculating the expectation value of fG [...] leads to

fG [+ ] =
|Δ~̄ [+ ] |
^~̄,G

. (A.19)

As before, this gives the minimum fG [+ ] in case Δ~̄ [+ ] has been measured.

Measured only 2z (,2 ≠ 0, ,� = 0): The solution reads

+ − 〈+ 〉I = ΔGI [+ ]
%G

%G + _f%I
. (A.20)

_f is determined by demanding consistency with the expectation values of 〈...〉I and

ΔGI [...]:

0 = 〈+ 〉I − 〈+ 〉I = ΔGI [+ ]
〈

%G

%G + _f%I

〉
I

, (A.21)

⇒ ΔGI [+ ] = 0 or

〈
%G

%G + _f%I

〉
I

= 0 . (A.22)

Plugging the �rst case ΔGI [+ ] = 0 into equation A.20 leads to the trivial constant solution

+ = 〈+ 〉I , i.e. fG [+ ] = fI [+ ] = 0.
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The second case is an integral equation for the determination of _f . Using 〈%G〉I = 〈%G%I〉
it follows:

0 =

〈
%G

%G + _f%I

〉
I

, (A.23)

=
1

_f

〈
_f%I

%G + _f%I

〉
G

, (A.24)

=
1

_f

(
1 −

〈
%G

%G + _f%I

〉
G

)
, (A.25)

⇔
〈

%G

%G + _f%I

〉
G

= 1 . (A.26)

In the 3 line the enumerator was expanded to match the denominator, which will be a

useful trick also in the following. Subtracting the original condition equation A.23 from

this new condition gives

⇒ ΔGI

[
%G

%G + _f%I

]
= 1 . (A.27)

Thus, the consistency with the expectation value of ΔGI [...] of the extremal solution

equation A.20

ΔGI [+ − 〈+ 〉I] = ΔGI [+ ]ΔGI
[

%G

%G + _f%I

]
, (A.28)

⇒ ΔGI [+ ] = 0 or ΔGI

[
%G

%G + _f%I

]
= 1 , (A.29)

is automatically ful�lled and equation A.23 is the only necessary condition for non-trivial

solutions. Also, it can be shown that the inverse implication

ΔGI

[
%G

%G + _f%I

]
= 1⇒

〈
%G

%G + _f%I

〉
I

= 0 (A.30)

is in general only valid for _f ≠ −1. Indeed,

〈
%G

%G−%I

〉
I
≠ 0 was found for the tested weights,

although ΔGI
[

%G
%G−%I

]
= 1 trivially holds. Thus, equation A.23 is the necessary condition

and equation A.27 alone is not su�cient.

The expectation value of the measured fI [...] reads

fI [+ − 〈+ 〉I] = |ΔGI [+ ] |fI
[

%G

%G + _f%I

]
, (A.31)

⇒ + − 〈+ 〉I = sgn(ΔGI [+ ])fI [+ ]
%G

%G + _f%I
/fI

[
%G

%G + _f%I

]
, (A.32)

⇒ + − 〈+ 〉I = ±fI [+ ]
%G

%G + _f%I
/fI

[
%G

%G + _f%I

]
. (A.33)
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The expectation value of fG [...] is

fG [+ − 〈+ 〉I] = fI [+ ]
fG

[
%G

%G+_f%I

]
fI

[
%G

%G+_f%I

] . (A.34)

Using the necessary condition equation A.23 this can be further simpli�ed. First, the

relations obtained in the derivation of equation A.26 should be collected again. It holds:〈
%=

%G + _f%I

〉
<

= X=<

(
X=G + X=I

1

_f

)
, =,< ∈ {G, I} , (A.35)

or written out: 〈
%G%I

%G + _f%I

〉
=

〈
%G

%G + _f%I

〉
I

=

〈
%I

%G + _f%I

〉
G

= 0 , (A.36)〈
%2

G

%G + _f%I

〉
=

〈
%G

%G + _f%I

〉
G

= _f

〈
%I

%G + _f%I

〉
I

= _f

〈
%2

I

%G + _f%I

〉
= 1 . (A.37)

Using that it follows

f2

G

[
%G

%G + _f%I

]
�.37

=

〈
%2

G

(%G + _f%I)2

〉
G

− 1 , (A.38)

= −
〈

2_f%I%G + _2

f%
2

I

(%G + _f%I)2

〉
G

, (A.39)

= −
〈

2_f%I%G + _f%I (_f%I + %G − %G )
(%G + _f%I)2

〉
G

, (A.40)

= −
〈

_f%I%G

(%G + _f%I)2

〉
G

−
〈
_f%I (%G + _f%I)
(%G + _f%I)2

〉
G

, (A.41)

�.36

= −_ff2

I

[
%G

%G + _f%I

]
− _f

〈
%I

%G + _f%I

〉
G

, (A.42)

�.36

= −_ff2

I

[
%G

%G + _f%I

]
. (A.43)

Finally, this leads to the solutions

fG [+ ] = fI [+ ]
√
−_f ,

〈
%G

%G + _f%I

〉
I

= 0 , (A.44)

which are discussed in the following:

• The simplicity of the solutions is already apparent from the Lagrangian 3.47, from

which

df2

G [+ ]
d+

= −_f
df2

0
[+ ]

d+
(A.45)

follows for _Δ = 0. Thus, f2

G [+ ] and f2

0
[+ ] vary proportionally with potential

magnitude.
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Figure A.1.: Intersection of scaled weights: Scaling %I with _f leads to an intersection with

%G at I0 in the interval of I, where both weights are not vanishing.

• In the asymptotic cases of _f → ±∞ it follows that

〈
%G

%G+_f%I

〉
I
→ 1

_f
≠ 0. Also, since

the weights are positive, solutions are limited to an interval � of negative _f .

• Due the normalisation of %G and %I to 1 they need to intersect. Thus, %G (I0) = %I (I0)
holds for at least one I0, such that %G + _f%I has roots for _f < 0. They are at

%G

%I
(I0) = −_f . (A.46)

Thus, the potential has a pole at I0(_f ). � is trivially obtained by �nding the maximum

and minimum of
%G
%I
(I). As visible in �gure A.1, changing _f in this interval shifts

the pole exactly to all I0, where %G and %I are not vanishing.

•

〈
%G

%G+_f%I

〉
I
= 0 can only hold, if the argument is not strictly positive or negative.

This happens only for _f ∈ � .
Thus, for potentials with strongly localised inhomogeneity at I0 equation A.44 can be

reformulated to

f2

G [+ ]
f2

I [+ ]
=
%G

%I
(I0) , (A.47)

which is the result from the main text.

Measured both 2z and�~̄ (,2 ≠ 0, ,� ≠ 0): The solution reads

+ − 〈+ 〉I = ΔGI [+ ]
%G

%G + _f%I
− _Δ

2

%~̄

%G + _f%I
. (A.48)
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The function _Δ(_f ) can be determined by demanding consistency with the expectation

values of 〈...〉I and ΔGI [...]:

0 = 〈+ 〉I − 〈+ 〉I = ΔGI [+ ]
〈

%G

%G + _f%I

〉
I

− _Δ
2

〈
%~̄

%G + _f%I

〉
I

, (A.49)

⇒ ΔGI [+ ]
〈

%G

%G + _f%I

〉
I

=
_Δ

2

〈
%~̄

%G + _f%I

〉
I

. (A.50)

ΔGI [+ − 〈+ 〉I] = ΔGI [+ ]ΔGI
[

%G

%G + _f%I

]
− _Δ

2

ΔGI

[
%~̄

%G + _f%I

]
, (A.51)

⇒ ΔGI [+ ]
(
ΔGI

[
%G

%G + _f%I

]
− 1

)
=
_Δ

2

ΔGI

[
%~̄

%G + _f%I

]
. (A.52)

Again it can be shown, that from the condition on 〈...〉I the condition on ΔGI [...] follows

and that for _f ≠ −1 both conditions are equivalent. By solving for
_Δ
2

they can be used to

rewrite the solution equation A.48 as

+ − 〈+ 〉I = ΔGI [+ ]
(

%G

%G + _f%I
− A (_f )

%~̄

%G + _f%I

)
. (A.53)

Here

A (_f ) ≡

〈
%G

%G+_f%I

〉
I〈

%~̄

%G+_f%I

〉
I

=

ΔGI
[

%G
%G+_f%I

]
− 1

ΔGI
[

%~̄

%G+_f%I

] (A.54)

has been de�ned
2
.

For brevity of notation, the following expectation values of weights as function of _f are

de�ned:

`=< ≡
〈

%=

%G + _f%I

〉
<

=

〈
%=%<

%G + _f%I

〉
, =,< ∈ {G, ~̄, I} , (A.55)

`=< = `<= , (A.56)

`G= = 〈%=〉 − _f`I= , (A.57)

Σ=<
:
≡ Cov:

[
%=

%G + _f%I
,

%<

%G + _f%I

]
=

〈
%=%<%:

(%G + _f%I)2

〉
− `=:`<: , (A.58)

Σ=<
:

= Σ<=
:
, (A.59)

ΣGG
:

= _2

fΣ
II
:
, (A.60)

Σ=G
:

= −_fΣ=I: , (A.61)

Σ=<G = −_fΣ=<I + `=< − `=G`<G − _f`=I`<I , (A.62)

2
The 〈...〉I condition avoids problematic expressions of the form

0

0
at _f = −1. However, due the existence of

poles in practice the ΔGI [...] condition might lead to more stable results, if simple numerical integration

algorithms are used.
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i.e. one change G → I in an upper index requires a factor −_f . This can be proven by

expanding the enumerator and by using binomial formulas.

The expectation value ΔGI [+ ] is determined from the measured Δ~̄ [+ ]

Δ~̄ [+ − 〈+ 〉I] = ΔGI [+ ]Δ~̄
[

%G

%G + _f%I
− A ~̄

%G + _f%I

]
, (A.63)

= ΔGI [+ ] (`~̄G − A `~̄~̄) . (A.64)

⇒ ΔGI [+ ] = Δ~̄ [+ ]
1

`~̄G − A `~̄~̄
≡ Δ~̄ [+ ]A ′ . (A.65)

The expectation value f2

:
[+ ] is given by

f2

:
[+ − 〈+ 〉I] = Δ2

~̄ [+ ]A ′2
(
ΣGG
:
+ A 2Σ

~̄~̄

:
− 2AΣ

G~̄

:

)
. (A.66)

Thus, the ratio of the standard deviations is given by

fG [+ ]
fI [+ ]

=

√
ΣGGG + A 2Σ

~̄~̄
G − 2AΣ

G~̄
G

ΣGGI + A 2Σ
~̄~̄
I − 2AΣ

G~̄
I

, (A.67)

and the absolute value of the shape operator reads

|d̂~̄,I [+ ] | =
1

^~̄,I

|Δ~̄ [+ ] |
fI [+ ]

, (A.68)

=
1

^~̄,I |A ′|
1√

ΣGGI + A 2Σ
~̄~̄
I − 2AΣ

G~̄
I

. (A.69)

The last two equations can be calculated in dependence of _f , implicitly de�ning an

exclusion area
fG
fI
( |d̂~̄,I |).

Expectation value for 1̂~̄,z = ±1: As shown in section 3.3 in this case the full potential is

given by

+ − 〈+ 〉I = ±
fI

^~̄,I

%~̄

%I
, (A.70)

with the weight standard deviation ^~̄,I . The ratio of the standard deviations is thus given

by

fG [+ ]
fI [+ ]

=

fG

[
%~̄

%I

]
fI

[
%~̄

%I

] . (A.71)
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Figure A.2.: Constraint of tritiumf0 for given krypton observables: In the limit of vanishing

antisymmetry the extremal solutions are poles at I0, and the constraint is

given by the square root of the ratio of the %0 at I0. In this region instabilities

occur due to the numerical integration over the pole in the potential. For

maximum antisymmetry the exact potential is known, and the constraint

gives a ratio as predicted in the text. The simulation used 40 % tritium column

density for both krypton and tritium mode.

Example for 20 of tritium constrained from krypton: The resulting constraint is plotted in

�gure A.2. It is given by equations A.67 and A.69, which are calculated numerically. Each

marker corresponds to one _f . The allowed ratios are inside the ellipse. As discussed in

the main text and visualised in �gure 3.17 the constraint of fG strongly depends on the

localisation of the inhomogeneity. For small antisymmetry the inhomogeneity can be

localised in a pole at I0, such that the ratio of the variances is the ratio of the weights at I0.

For large antisymmetry the potential shape is exactly known. This produces the overall

approximately elliptic contour.
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A.3. Uncertainty on the Predicted Shi� of the Squared
Neutrino Mass from Column Density Uncertainty

As discussed in section 3.5, di�erences in operating parameters between the krypton and

tritium measurement translate into an uncertainty of the prediction of the shift of the

squared neutrino mass for given krypton estimates (d̂, f0). Two methods were shown,

one by calculating the extremal derivatives of the predicted shift of the squared neutrino

mass, the other by expanding the derivative of the squared neutrino mass in the known

operators.

Figure A.3 shows the derivative of the neutrino mass shift prediction with respect to the

tritium column density, calculated with both methods. Here, the tritium column density in

the krypton measurement was taken to be 45 % of the nominal value and the uncertainty

of the neutrino mass shift prediction is obtained when the values are multiplied with the

relative uncertainty of the column density determination or the relative column density

di�erence to the tritium measurement. Thus, for usual column density uncertainties of

1 %, uncertainties on the prediction of the shift of the squared neutrino mass of ∝ 10
−3

eV
2

are obtained, which increase accordingly for actual column density di�erences of the

measurements.

Since both methods agree well, one can use the approximate weight expansion to further

reduce the uncertainties. In this example, the following expansion was found

d3
d%0

dd3

����
d3=45 %

(I) ≈ −0.44(%1 − %0) (I) , d3
d%1

dd3

����
d3=45 %

(I) ≈ −0.56(%2 − %1) (I) .

(A.72)

This allows to write the derivative of the shift of the squared neutrino mass as

d3
dΔ<2

a [+ ]
dd3

����
d3=45 %

= 0.86(f2

1
[+ ] −f2

0
[+ ]) − 980 meVΔ10 [+ ] + 487 meVΔ21 [+ ] . (A.73)

Thus, the derivative has a component ∝ Δ10 [+ ], which is known from the measurement

and the uncertainty of the extrapolation stems only from the other two terms. The known

term can be used to extrapolate the mean Δ<2

a [+ ] (d3) and only the unknown terms are

left, to calculate its uncertainty Δd3 (Δ<2

a [+ ] (d3)). Compared to the extremal solution,

this reduces the uncertainty from column density extrapolation by approximately a factor

of 2 in this example.

The linear extrapolation using only the �rst derivative was tested with known potentials,

and in all tested cases it was su�cient, even for column density changes above 10 % of

nominal.
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Figure A.3.: Column density uncertainty of neutrino mass shift prediction: For a given

set of krypton estimates (d̂, f0), the plots show the change of the predicted

shift of the squared neutrino mass with tritium column density d3 . When

multiplied with the relative column density uncertainty, the uncertainty of

the predicted shift of the squared neutrino mass is obtained. The stationary

solution (a) and the approximate weight expansion (b) largely agree. Both

show non-trivial topology and oscillatory patterns. Since they di�er slightly

in the extrema, the color scales are not the same.
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A.4. Performed Studies on Krypton Data

Many analysis methods were tried on the �tted data, some of which are described in the

following.

Pile-up correction: Pile-up correction has been applied to all krypton plasma �ts. In

krypton reference runs, where the total rate is approximately 10 times smaller than in

plasma runs, the correction does not make a signi�cant di�erence.

Fit tolerance dependence: Fit tolerances in the range from 0.5 to 0.05 were tried, which

showed almost exactly the same estimates.

Fitting only energies above 30462 eV (unscattered electrons): When only �tting the un-

scattered L3-32 line, within uncertainties the same results are obtained as when �tting the

total spectrum. This has been tested for total Lorentzian �t, Gaussian broadening �t and

the line position.

Remove KNM1 runs where the tritium the column density dri�ed strongly: In KNM1 the

column density drifted strongly for run numbers smaller than 52680. Removing them only

a�ects the measurements at the rear wall voltages of -150 mV and 175 mV. The general

shape of the estimates over the rear wall voltage is conserved and the overall changes are

small.

Krypton in DPS1F2: The krypton generator is connected to a DPS1F2 pump port. Thus,

krypton cannot �ow in opposite direction of the gas stream coming from the central

WGTS, such that it reaches the injection chamber only after being circled once. This gave

reason to believe that there might be some signi�cant over density #DPS2F2
of krypton

inside the DPS1F2 compared to the modelling with 0 density in the SSC gas pro�le. This

would lead to an increased number of unscattered electrons and thus look like a smaller

tritium column density in a �t. This was tested on KNM1 krypton data by �xing the

tritium column density to 27 % of the its nominal value as expected from the BIXS rate

and �tting a constant density inside DPS1F2 (IDPS1F2
= 6.58931 m, !DPS1F2

/2 = 0.1273 m

compared to injection point). Run 5276 was used in a uniform �t with 100 slices, the result

being

#DPS2F
2

#Injection

= 0 ± 7 · 10
−3

. However, this result did not include a background slope yet

and should be repeated on newer data. If it is true, it can be concluded that there is no

signi�cant amount of unscattered krypton-83m electrons not predicted by the SSC gas

pro�le.

E�ect of source slicing on the fitted column density: To obtain correct values for the col-

umn density from the krypton �t, the WGTS model needs to be sliced. 100 slices were used.

For a non-sliced model the di�erence of the krypton and tritium gas pro�les cannot be

considered. Since, compared to the tritium the krypton accumulates at the WGTS ends, the
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Figure A.4.: Fitted tritium column density for 1 WGTS slice in comparison to true value:

If only 1 slice is used in the �t, the correct value of the column density is

obtained by d3true = 1.853d3�t.

fraction of unscattered to one-time scattered electrons is larger in krypton, which without

slicing is misinterpreted by a too small tritium column density. As shown in �gure A.4 on

Asimov data, for a non-sliced �t the true column density is approximately 1.853 times the

�tted one. This does not have a sizeable e�ect (. 1 mV) on the plasma estimators, which

was found in simulations using 100 compared to 1 slice. Thus, in principle, if the column

density is not of interest, no slicing needs to be used, which speeds up the calculations

signi�cantly. The same reasoning holds for other parameters specifying the intensity, i.e.

the �tted conversion coe�cient, which is only correct for more than ≈ 10 slices.
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A.5. Uncertainty Propagation

The following square root and square transformations were used regularly. Gaussian

propagation and direct transformation are equal for the calculated condition. Thus, for

larger means the Gaussian propagation and for smaller means the direct transformation

of the uncertainties is used.

Square root transformation:
G2 → G , (A.74)

i.e. G2
is the free variable, given are mean G2

and uncertainty f (G2). f (G) should be

calculated. The transformation function is 5 (...) = √...:

m
√
G2

mG2
=

1

2

√
G2

, (A.75)

=
1

2|G | , (A.76)

⇒ f ( |G |) = 1

2|G |f (G
2) . (A.77)

For small mean compared to uncertainty:

1

2|G |f (G
2)

!

>
√
f (G2) , (A.78)

⇔ 1

4G2
f2(G2) > f (G2) , (A.79)

⇔ f (G2) > 4G2 . (A.80)

Square transformation:
G → G2 , (A.81)

i.e. G is the free variable, given are mean G and uncertainty f (G). f (G2) should be calculated.

The transformation function is 5 (...) = (...)2:

mG2

mG
= 2G , (A.82)

⇒ f (G2) = 2Gf (G) . (A.83)

For small mean compared to uncertainty:

2Gf (G)
!

> f2(G) , (A.84)

⇔ f (G) > 2G . (A.85)
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Figure A.5.: Measured mean di�erence in KNM1 krypton: The curves resemble the mea-

surement of KNM2 but are shifted by roughly 60 mV. For 1 eV and 5 eV

rear wall voltage the shift reduces to ≈ 30 mV. Since at large voltages the

measurement is dominated by the external �eld and not by systematics, a

vanishing/reducing shift in this region is a hint for real physical e�ect. An

overall constant shift would be likely caused by an analysis error.

A.6. Plots of the KNM1 and KNM2 Krypton Results

In this section plots of the KNM1 and KNM2 krypton measurement are shown. Figure A.5

shows the measured mean di�erences in KNM1. The overall spectrum is comparable to

KNM2, however the absolute values are shifted by roughly 60 mV.

The following histograms are shown:

• Figure A.6: j2
distributions of the �ts.

• Figure A.7: Histograms of the measured tritium column density.

• Figure A.8: Histograms of the measured variances f2

g
.

• Figure A.9: Histograms of the measured mean di�erences Δ10.

All obey the expected overall Gaussian (or j2
) distributions. Since the histograms also

include strongly positive rear wall voltages, which leads to shifts of the estimates, they can

obey non-Gaussian structure. However, most of the data was taken in the coupling region,

such that the mean of the �tted Gauss peak to very good degree re�ects the measured mean

for small rear wall voltages. Signi�cant di�erences exist for the plasma inhomogeneity

estimates of the two campaigns, the reason of which is not understood entirely.

Figures A.10 and A.11 show the I-dependent potentials, deduced from the KNM2 measure-

ment, without bins of the rear wall voltages.
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Figure A.6.: j2
distributions of the �ts: As visible both distributions show good agreement

with the expectation, i.e. the model described most of the data without obvious

errors. The small amount of higher values is caused by the �ts at large positive

rear wall voltages. In KNM1 the number of subruns in up and down scans

di�ered by 1, such that the average number of degrees of freedom is not

integer.
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Figure A.7.: Histograms of the measured tritium column density: The column density

is �tted from the ratio of one-time scattered to unscattered electrons. Both

campaigns show a column density of roughly 30 % of nominal, which was

the maximum possible in the respective campaigns. The �tted column den-

sity values were compared to the BIXS and FBM values and agree within

uncertainties.
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Figure A.8.: Histograms of the measured variances: The KNM1 results are signi�cantly

more negative than the KNM2 results. The reason is not understood. The

used intrinsic Lorentzian Γ = 1.0606(21) (150) eV is taken from the CKrS

measurement.
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Figure A.9.: Histograms of the measured mean di�erences: The results are shifted com-

pared to each others by approximately 60 mV. The values are not corrected

for the wrong energy loss function and neglected detailed transmission.
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A.7. Calculation of the Antisymmetry Estimates for
Parameters with Uncertainty

Since the measured estimates have uncertainties, the uncertainty calculation of the anti-

symmetry estimates has to include the covariance term

f2

Cov

(
d̂ [+ ]^

10,0

)
= −Δ10

f4

g

Cov(Δ10, f
2

g
) . (A.86)

However, since the absolute correlation of Δ10 and fg is < 0.2 in average over the whole

data set for all rear wall voltages and thus negligible, this does not signi�cantly change

the results.

Nevertheless, the estimates of the antisymmetry depend on whether the pixel results

for the standard deviation and the eloss function shift are averaged �rst to combined

rings and after that the antisymmetry is calculated, or if it is done the other way around.

However, this is not the case for large positive rear wall voltages, i.e. when the estimates

themselves are not systematics dominated. To model this e�ect, it is assumed that the

estimate consists of the true value, a random systematic uncertainty, which scales with

the reciprocal sample size or cancels due to symmetry (like statistical uncertainty or the

alignment) and a constant systematic uncertainty (like the wrong reference values)

Estimate = True + Random + Const .

If the averages are taken �rst, the random component can be neglected and the resulting

antisymmetry reads

d̂ [+ ]^
10,0 =

Δ10 [+ ] + ΔConst + =−1

Samples

∑
samples

:
ΔRandom,:

f0 [+ ] + fConst + =−1

Samples

∑
samples

:
fRandom,:

,

≈ Δ10 [+ ] + ΔConst

f0 [+ ] + fConst

. (A.87)

The other way around the resulting equation is

d̂ [+ ]^
10,0 =

1

=Samples

samples∑
:

Δ10 [+ ] + ΔConst + ΔRandom,:

f0 [+ ] + fConst + fRandom,:

. (A.88)

Since the distribution of the ratio of random variables is not necessarily a Gaussian [Hin69],

the resulting mean is not necessarily the same as in equation A.87. Averaging �rst will

minimise the uncertainties and thus problems due to misunderstood distributions will

be avoided. Also, if the true values dominate the �uctuating components (i.e. for large

positive rear wall voltages), both approaches give the same result.

The equations are only approximated, since in practice the uncertainty weighted average

is used.
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A.8. Scaling of Run Time Scale Shi�s

The expectations for the scaling of the shifts of the observables caused by energy �uc-

tuations on run time scale are described in section 7.3.5. In this section the scaling with

�uctuation amplitude � and mean number of returns 〈=〉@* is simulated to test the expec-

tations. The shifts of the observables > were �tted using
3

Δ> = Scale ·
(
�

meV

)
Power

or Δ> = Scale ·
(
〈=〉

qU

)
Power

. (A.89)

Scaling of the Shi�s with the Perturbation Amplitude

Figures A.13 and A.14 show the scaling of ramping and random order schedules with the

perturbation amplitude.

All �ts of endpoint, neutrino mass and j2
match the expected scalings both in tritium and

krypton. An exemplary �t of the ramping case in tritium is shown in �gure A.12.
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Figure A.12.: Maximum shift of (a) neutrino mass and (b) endpoint with the amplitude of

a sinusoidal �uctuation of the energy scale for a ramping schedule.

In section 7.3.3 it has been con�rmed, that instead of the amplitude also the RMS value

can be used, which is more speci�c since it depends also on the perturbation shape.

3
When using transformations of the observables, such that the scalings are linear, a �rst order polynomial

yields �t results with better j2
. However, showing the results for endpoint and neutrino mass on the

same linear energy scale is preferred here.
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Figure A.13.: Ramping, amplitude scaling: The shown study uses the KNM2 ramping

schedule from �gure 7.6, but equivalent results have been found for krypton

and for all other schedules. The magnitude of the largest peak scales with

the square root of the �uctuation amplitude.
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Figure A.14.: Random order, amplitude scaling: The shown study uses the random schedule

from �gure 7.8, but equivalent results have been found for krypton and for

all other schedules. The magnitude of the envelope scales with the square

root of the �uctuation amplitude.
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Figure A.15.: Maximum shift of (a) neutrino mass and (b) endpoint with the number of

returns for a schedule with random order. Using the standard deviation on

run time scale instead of the maximum leads to the same scaling.

Scaling of the Shi�s with the Subrun Duration

Figures A.16 and A.17 show the scaling of ramping and random order schedules with

the mean subrun duration, which is anti-proportional to the return number. For the

randomised case the expected scalings are found, as shown in �gure A.15.

Due to the limited resolution of the simulation, the scaling for the ordered schedules is

harder to investigate. As discussed in section 7.3.1 the resolution is only good enough

to see all structures starting from
1

)tot

to three orders of magnitude above in frequency.

Since the width of the peaks is proportional to
1

)tot

which depends on the varied return

number, this causes a systematic in the simulation. In accordance with the expectation the

power of the return number tended towards zero with increasing frequency resolution. In

any case it is expected that no coherent �uctuations exist on run time scale, and that the

randomised case is more realistic.
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Figure A.16.: Ramping, scaling with subrun duration: Ramps where performed according

to the KNM2 MTD and plain total measurement time. The number of returns

was varied, leading to the shown 〈Csubrun〉. The range of the resulting run

time scale is given by the vertical lines. Due to the increased dead time for

small mean subrun duration, the total time varies between 33 and 124 days.

The frequency range was decreased to increase the resolution.
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Figure A.17.: Random order, scaling with subrun duration: Same subrun duration distribu-

tion as in the above plot, but the order of the subruns is randomised. As in

the ramping case, the dead time increases when decreasing 〈Csubrun〉, here by

approximately a factor of 3.8 in the plotted range.
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Figure A.18.: Tritium weight standard deviation, krypton weighted, equal column density:

Here the source conditions are equal in both modes, which is the plan for

the future measurements. The above factors can be used to constrain the ΔḠ
of tritium directly from the krypton f0.

A.9. Weight Standard Deviations and Correlations

The following pages show weight standard deviations and correlations supplementary to

the ones shown in chapter 5. The following is shown:

• Figure A.18: Tritium weight standard deviations, krypton weighted. The source

conditions are equal in both the krypton and tritium measurement, as planned for

future measurements.

• Figure A.19: Tritium weight standard deviations, krypton weighted. The essential

di�erence to �gure A.18 is the tritium column density in the krypton measurement,

which is either 30 % or 40 % of nominal (like in the measurements of KNM2 and

KNM3a).

• Figure A.20: Correlations of tritium and krypton mean di�erences.

• Figure A.21: Neutrino mass shift from mean di�erence vs. lower analysis interval,

KNM2.

• Figure A.22: Shape energy vs. lower analysis interval, KNM2.

• Figure A.23: Ratio of krypton and tritium weighted standard deviations of weights.
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(a) KNM2 d3 = 30 %→ 84 % constraints
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(b) KNM3 equal source mode constraints

Figure A.19.: Tritium weight standard deviation, krypton weighted: There is no practical

di�erence of the standard deviations for the di�erent conditions, since the

temperature dependence has been found to be negligible and the change of

krypton %0 from 30 % to 40 % column density is small. The above ^Ḡ,0 can be

used to constrain ΔḠ of tritium directly from the krypton f0.
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(a) KNM2 d3 = 30 %→ 84 % correlations
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(b) KNM3 equal source mode correlations

Figure A.20.: Correlations of tritium and krypton mean di�erences: The correlations of

the measurement of Δ10 in krypton and Δd in tritium are highest, when the

column density di�erence between the measurements is small. However,

when the higher Δ80 are relevant in the tritium measurement (i.e. for large

analysis intervals of the MTD), which a�ects Δd , this does not hold.
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(a) Prediction
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(b) Uncertainty

Figure A.21.: Neutrino mass shift from mean di�erence vs. lower analysis interval, KNM2:

The neutrino mass shift prediction (a) and uncertainty of the prediction (b)

is qualitatively similar to that of the high temperature mode, shown in the

main text.
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Figure A.22.: Shape energy vs. lower analysis interval, KNM2: Compared to �gure 5.17

for d3 = 40 % of nominal, here the shape energy is scaled with the higher

column density of KNM2. Other than that its dependence on the analysis

interval is very similar.
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Figure A.23.: Ratio of krypton and tritium weighted standard deviations of weights: The

shape energy is de�ned for tritium f0. If it is to be calculated from krypton

f0, it has to be scaled with the above ratio.
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