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Abstract

The uniaxial orientational order in a macromolecular system is usually speci-

fied using the Hermans factor which is equivalent to the second moment of

the system's orientation distribution function (ODF) expanded in terms of

Legendre polynomials. In this work, we show that for aligned materials that

are two-dimensional (2D) or have a measurable 2D intensity distribution, such

as carbon nanotube (CNT) textiles, the Hermans factor is not appropriate. The

ODF must be expanded in terms of Chebyshev polynomials and therefore, its

second moment is a better measure of orientation in 2D. We also demonstrate

that both orientation parameters (Hermans in three dimensional (3D) and

Chebyshev in 2D) depend not only on the respective full-width-at-half-

maximum of the peaks in the ODF but also on the shape of the fitted func-

tions. Most importantly, we demonstrate a method to rapidly estimate the

Chebyshev orientation parameter from a sample's 2D Fourier power spectrum,

using an analysis program written in Python which is available for open

access. As validation examples, we use digital photographs of dry spaghetti as

well as scanning electron microscopy images of direct-spun carbon nanotube

fibers, proving the technique's applicability to a wide variety of fibers and

images.
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1 | INTRODUCTION

The physical properties of anisotropic materials such as
carbon nanotube (CNT) yarns,1 carbon fibers or drawn
polymer fibers and films are highly correlated with the
degree of internal orientation, which can be increased by
post-treatments such as mechanical drawing. For exam-
ple, stretched (and reinforced) electro-spun cellulose
fibers show great improvements in tensile strength and
thermal stability, and reduced bursting.2 The use of

oriented dye molecules in luminescent solar concentra-
tors increases emission into preferred waveguide modes,
thereby increasing their optical quantum efficiency.3

CNT buckypapers, films and fibers aligned in-situ or by
post-processing exhibit considerable enhancements in
their electrical and thermal conductivities, carrier mobil-
ity, current carrying capacities, tensile strengths and elas-
tic moduli.4–12 The degree of internal alignment is
therefore considered an important metric to understand
structure–property relations in macroscopic materials.

Received: 13 January 2021 Accepted: 14 April 2021

DOI: 10.1002/app.50939

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2021 The Authors. Journal of Applied Polymer Science published by Wiley Periodicals LLC.

J Appl Polym Sci. 2021;e50939. wileyonlinelibrary.com/journal/app 1 of 14

https://doi.org/10.1002/app.50939

https://orcid.org/0000-0001-5851-1362
https://orcid.org/0000-0002-5750-5275
https://orcid.org/0000-0002-4887-6250
mailto:ak2011@cam.ac.uk
mailto:jae1001@cam.ac.uk
mailto:jae1001@cam.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/app
https://doi.org/10.1002/app.50939
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fapp.50939&domain=pdf&date_stamp=2021-05-05


Popular methods to estimate alignment rely on measur-
ing some form of anisotropy in material properties along
and perpendicular to the alignment axis such as: birefrin-
gence and linear dichroism13,14; fluorescence polariza-
tion15,16; and (specifically for CNTs) polarized Raman
spectroscopy,4,14,17 or anisotropy in electrical and thermal
conductivities.4,12 However, anisotropy in material prop-
erties is a consequence of structural anisotropy, that is, it
is not a direct measurement of macromolecular orienta-
tion. A true measure of orientational order in a bulk sam-
ple is obtained when the orientation of all sub-elements
is averaged with respect to a principal axis of reference
(or 'director' following the nomenclature of liquid crystal
literature18). The number of sub-elements, which may be
molecules, crystals, polymer blocks or macromolecules, is
usually large. Hence, their orientation is described by a
continuous function known as an orientational distribu-
tion function (ODF) which, when averaged, gives quanti-
fiable parameters from the moments of the ODF – these
are called orientational order parameters (OPs). Hermans
and co-workers pioneered the work on orientation
parameters19–21 in the late 1930s – a brief history of these
advances up to the present day is provided in Appendix
I. The Hermans factor, which is equivalent to the average
of the second Legendre polynomial, hP2i, is now widely
accepted as an orientational order parameter suitable for
systems with uniaxial symmetry. It is usually calculated
from crystallite ODFs determined using wide/small angle
X-ray diffraction (WAXS/SAXS).22–24 Due to their high
penetration depths in organic materials, X-rays can give
information about 3D orientation distributions; however,
to fully analyze such distributions, the traditional pole
figure method is preferred.23,25 By contrast, most WAXS/
SAXS plots are not truly 3D since they are obtained by
projecting the 3D intensities onto a 2D surface of film/
detector. Nonetheless, the two are mathematically
related.26

Our interest lies in the determination of the degree of
uniaxial orientation in aligned CNT films, mats, or tex-
tiles, as again, the alignment is key to several physical
properties. The X-ray diffraction method has also been
widely applied in CNTs, but this technique is relatively
slow to apply, particularly, when large number of sam-
ples need to be analyzed. An approach involving the
analysis of spatial frequencies in scanning electron
micrographs (SEM) by Fourier transforms, in develop-
ment since at least 1998, offers an alternate, easy and fast
technique for determining orientation.14,27–30 This tech-
nique involves taking circumferential scan of pixel inten-
sities from the Fourier transform of an SEM image to
obtain an ODF which has been used to calculate
Hermans orientation parameter in CNT films.30,31 How-
ever, bulk CNT mats or textiles are in most cases formed

by the assembly of CNT layers via a wind-up process such
that CNTs are restricted to individual layers. Spin-coated
CNT films and those produced by similar methods are
also limited to a single plane on the surface of substrates
except for vacuum-filtered films where CNTs might pro-
ject out-of-the-plane. The application of a 3D orientation
parameter like hP2i to CNT mats may therefore give a
misleading measure of orientation, especially when the
ODF is obtained from the Fourier analysis of an SEM
image. As an alternative, our group introduced the idea
of using a 2D orientation factor based on the Chebyshev
polynomial, T2, initially for deposited CNT films,27 and
recently for layered CNT films.32

In the present work, our effort is two-fold. First, we
discuss the 2D orientation parameter in full mathematical
detail, deriving an ODF that aptly describes orientation of
macromolecules in uniaxial planar systems and showing
that its second moment is the average of Chebyshev poly-
nomial, hT2i. We discuss the necessity for using a function
to fit experimental data and how the orientation parame-
ters relate to shape and full-width-at-half-maximum
(FWHM) of the fitted functions. Secondly, we demonstrate
a program that rapidly estimates Chebyshev orientation
parameter from SEM images using the Fourier transform
approach. While this article focuses on the specific case of
CNT films, we anticipate that this program will be useful
to researchers working on various anisotropic films; it is
available freely for download from our Github page33 or
directly from authors on request.

2 | RESULTS AND DISCUSSION

2.1 | Orientational geometry in 3D
and 2D

The orientation of a macromolecule in three dimensions
is usually defined using three Euler angles (ϕ, θ,ψ)
formed between two Cartesian coordinate systems XYZ
and x0y0z0 – the former is taken as the laboratory/sample
frame while the latter is fixed in the macromolecule (see
Figure 1(a)). Here, ϕ is the azimuthal angle formed
between X and the projection of z0 axis on the XY plane
varying from 0 to 2π, θ is the polar angle formed between
the Z and z0 axes varying from 0 to π, and ψ is the 2π rota-
tion of the macromolecule about its z0 axis. The orienta-
tion of all such macromolecules in the sample is then
defined by the orientation distribution function (ODF), f
(ϕ, θ,ψ). This function gives the probability of finding a
macromolecule with an orientation in the range (ϕ, θ,ψ)
to (ϕ+ dϕ, θ+ dθ,ψ+ dψ).34,35 Since the ODF is a 3D
probability density, it must be a positive function, that is,
f(ϕ, θ,ψ)≥ 0 and normalized to unity, as shown in
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Equation (1). The term sinθdϕdθdψ in this equation is
the volume element for a sphere of unit radius in the
spherical polar coordinate system.36

ð2π
0

ðπ
0

ð2π
0

f ϕ,θ,ψð Þsinθdϕdθdψ¼ 1: ð1Þ

Relevant to this work are cases of high symmetry,
such as films or drawn fibers, where the macromolecules
are not only symmetric about their own z0 axis but also
oriented relative to some preferred direction, usually den-
oted as the sample Z axis. This is known as uniaxial sym-
metry. Depending on the geometry, the following sub-
categories are possible:

(a) 3D fiber symmetry – where the macromolecules
are symmetrically distributed in an azimuthal direction,
as illustrated in Figure 1(b). The ODF f(ϕ, θ,ψ)then
reduces to f(θ)3D.

(b) 3D planar symmetry – represented in Figure 1(c);
here, the macromolecules mainly lie in the XZ plane, but
azimuthal rotation (out-of-plane) of the macromolecules
is possible in principle, so f(ϕ, θ,ψ) = f(ϕ, θ)3D. As a spe-
cial case, when the layers are all approximately parallel,
ϕ � 0 and so the ODF reduces to f(θ)3D. However, since
the ODF is still described in 3D, it retains the sinθ term
in Equation (1). An example of this situation is that of X-
ray diffraction where although a 3D intensity distribution
is projected onto a 2D plane, diffraction occurs in 3D.26

(c) 2D planar symmetry – also known as uniaxial pla-
nar distribution37; here, as shown in Figure 1(d), the
macromolecules are confined such that the measurement
of the ODF strictly comes from a 2D plane. For example,
a 2D Fourier transform of an SEM image is equivalent to
diffraction from a plane. Specification of orientation in
this case does not require the three Euler angles, just the
angle ϕ between the Z and z0 axes is sufficient; the ODF
can be written as f(ϕ)2D and the reference direction Z is

now the molecular plane. Importantly, the 2D area ele-
ment does not include the sinθ term in Equation (1)
which alters how the ODF is defined in 2D. Rewriting
the normalization condition for the 3D and 2D cases,
we have:

For 3D,

ðπ
0

f θð Þ3Dsinθdθ¼ 1, ð2Þ

For 2D,

ðπ
0

f ϕð Þ2Ddϕ¼ 1: ð3Þ

2.2 | ODFs in 3D and 2D

We now proceed to discuss the form of the ODFs in 3D
and 2D. Van Gurp showed that a suitable ODF can be
constructed either by a trial-and-error method or by
expressing the 3D ODF as a series of even Legendre poly-
nomials Pn(cosθ).34 The coefficients or moments of this
expansion, an, can be shown to be averages of the Legen-
dre polynomials themselves, that is, an ¼ 2nþ1

2 Pn cosθð Þh i .
The expression for the 3D ODF can then be written as
shown in Equation (4) (see sections S1, S4, S5 in SI for
definitions and detailed derivation).

f θð Þ3D ¼
X∞
n¼0

2nþ1
2

Pn cosθð Þh iPn cosθð Þ, ð4Þ

To understand the above expression, we consider an
expansion of up to the first two even moments as shown

FIGURE 1 (a) Schematic

describing the orientation of a

macromolecule in 3D. There are

two sets of coordinate axes XYZ

and x0y0z0, fixed in the

laboratory/sample frame and

the macromolecule,

respectively. (b), (c) and (d) are

schematics describing the 3D

uniaxial fiber, 3D and 2D planar

geometries for CNT textiles

[Color figure can be viewed at

wileyonlinelibrary.com]

KANIYOOR ET AL. 3 of 14

http://wileyonlinelibrary.com


in Equation (5) and simplify it further by substituting P¼
5
2 P2 cosθð Þh i. Compared to the function cos2θ, the ODF in
(5) satisfies the conditions for being a 3D ODF, that is, it
can be normalized to 1 (see section S6 in SI) and is posi-
tive for P in the range, �0.5≤P≤ 1.

f θð Þ3D ¼ 1
2
þ5
2
P2 cosθð Þh i 3cos2θ�1ð Þ

2

¼ 1
2

1�Pþ3Pcos2θ
� �

, ð5Þ

However, Equation (5) does not satisfy the normalization
condition for being a 2D ODF as given by Equation (3)
(see section S6 in SI for a proof) – so it is not a valid 2D
ODF. Below, we describe how a suitable 2D ODF can be
derived following van Gurp's series expansion method.34

First, using trial and error, we guess an ODF of the form
described in Equation (6) that is normalizable in 2D.

f ϕð Þ2D ¼ 1
π

1�Tþ2Tcos2ϕ
� �

, ð6Þ

Equation (6), unlike (5), does not contain the second
Legendre polynomial, (1/2)(3cos2ϕ� 1), rather, a term
(2cos2ϕ� 1) which resembles the second Chebyshev
polynomial, T2(cosϕ). Therefore, we express the 2D ODF
in a series expansion of even Chebyshev polynomials of
the first kind as shown in Equation (7). The coefficients
of this expansion can be obtained using the orthogonality
conditions of Chebyshev polynomials and using the defi-
nition of 2D average of a function (see sections S2–S4 in
SI for definitions and detailed derivations). Analogous to
the 3D case, the coefficients turn out to be the average of
Chebyshev polynomials as shown in Equation (8) which
leads to final form of the 2D ODF in Equation (9).

f ϕð Þ2D ¼ b0T0 cosϕð Þþb2T2 cosϕð Þþ…¼
X∞
n¼0

bnTn cosϕð Þ,

ð7Þ

b0 ¼ 1
π
T0 cosϕð Þh i¼ 1

π
,bn ¼ 2

π
Tn cosϕð Þh i, ð8Þ

f ϕð Þ2D ¼
1
π
T0 cosϕð Þh iT0 cosϕð Þ

þ
X∞
n¼2

2
π
Tn cosϕð Þh iTn cosϕð Þ,

ð9Þ

The simple ODF in (6) can be shown to be a special case
of (9) when the latter is expanded up to first two even
terms, with T0 = 1, T2 = 2cos2ϕ� 1 and T = 2hT2i. It is
to be noted, however, that the ODFs in Equation (5) and

(6) represent broad distributions; higher order coeffi-
cients, hTni or hPni, with n going up to 100 may be
required to describe and differentiate highly aligned
samples.34,38

2.3 | Orientational order parameters in
3D and 2D

Since all orientational information is contained within
the moments of the ODF, in practice, knowing the true
ODF is not essential – an indirect measurement in the
form of some intensity distribution, I(θ) or I(ϕ), is suffi-
cient. As discussed before, intensity distributions for
CNT films can be obtained via SAXS (3D distribution)
or via our preferred method, Fourier transform of an
SEM image (2D distribution). Once the intensity distri-
bution is known, orientation order parameters (OPs)
which are the moments of the ODF, hPn(cosθ)i or
hTn(cosϕ)i can be calculated. The most widely used
parameter is hP2(cosθ)i (or hP2i for short) which is
known as the Hermans orientation parameter (HOP).
For the 2D case, we recommend hT2(cosϕ)i (or hT2i)
which we call the planar or Chebyshev orientation
parameter (COP). These two OPs can be calculated
using Equations (10) to (13).

P2 cosθð Þh i¼ 1
2

3 cos2θ
� �

3D�1
� �

, ð10Þ

cos2θ
� �

3D ¼

Ðπ
0
I θð Þ3Dcos2θsinθdθ
Ðπ
0
I θð Þ3Dsinθdθ

, ð11Þ

T2 cosϕð Þh i¼ 2 cos2ϕ
� �

2D�1
� �

, ð12Þ

cos2ϕ
� �

2D ¼

Ðπ
0
I ϕð Þ2Dcos2ϕdϕ
Ðπ
0
I ϕð Þ2Ddϕ

, ð13Þ

The denominators in Equations (11) and (13) are normal-
ization factors introduced so that the measured intensity
distributions satisfy the normalization condition for
ODFs. We reiterate that the HOP and COP are moments
of the 3D and 2D ODFs, respectively. So, using a 3D ori-
entation distribution (e.g., from X-ray) to calculate the
COP or using a 2D orientation distribution (e.g., from
SEM) to calculate the HOP will lead to under- or over-
estimation of the orientational order – the two operations
are therefore strictly incorrect.
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The HOP has values in the range �0.5≤ hP2i≤ 1 for
macromolecules aligned perpendicular to and along the
reference direction, respectively. By comparison, the COP
has values in the range �1≤ hT2i≤ + 1 for macromole-
cules arranged perpendicular to and along the reference
direction, respectively. The Hermans and Chebyshev
parameters are zero when the macromolecules are ran-
domly orientated with respect to the reference axis
(corresponding to the horizontal axis in an SEM image),
and also if all the molecules are perfectly aligned at 54.7�

or 45�, respectively, to the reference axis. However, this
ambiguity can be resolved by defining hP2i or hT2i to be
the highest eigenvalue of the orientation tensor, that is,
the orientation is defined with respect to a new axis
which is taken along the direction with the highest inten-
sity in the Fourier space. With this change of reference
axis, the orientation parameter values now represent
alignment of the macromolecules. For example, when all
macromolecules are oriented in the 45� direction, and
the 45� direction is defined as the reference direction,
then hT2i is unity, which is what we expect when all mac-
romolecules are oriented along the same direction. We,
therefore, recognize “alignment” of macromolecules in a
sample as the degree of orientation and not the direction
of orientation. In the case of continuously drawn CNT
films, textiles or fibers, the predominant orientation origi-
nates from the direction of drawing which is the fiber/
textile axis. The need for a rotated reference axis would
only originate from misaligned mounting in the SEM.

2.4 | Dependence of OP on shape and
width of the distribution

The intensity distribution as measured over the range of
0 to 360� is a continuous periodic distribution with peaks
that are 180� apart. However, it is usual practice to ana-
lyze/fit only one of the peaks of the distribution which:
(1) is equivalent to treating the boundaries as discontinu-
ous, and (2) leads to a poor estimation of the baseline. As
we will see below, the background not only includes
noise but also contributions arising from the overlap of
neighboring peaks. In this work, therefore, we fit the
complete intensity distribution using a cumulative func-
tion that includes all individual peaks and a proper linear
background (see also section 2.7 for discussion on base-
line correction).

While there is a consensus that narrower peaks imply
a higher degree of alignment, the dependence of OP on
the exact shape of the intensity distribution function
(IDF) used to fit the measured intensity profiles is the
subject of ongoing discussion.23,26 Most reports use a
Gaussian distribution (GD) to fit intensity profiles, but

Lorentzian distributions (LD) and combinations of the
two (Pseudo-Voigt) have also been used.23,26,31,32

Recently, a generalized normal distribution (GND) has
been shown to best fit SAXS intensity distributions from
multi-walled CNT (MWCNT) forests.26,39 This function is
characterized by an additional fitting parameter called
the shape or sharpness factor, β, which takes values of
2 for Gaussian (broad) and 1 for Laplace distributions
(sharp), respectively. “Sticky” or cohesive granular mate-
rials like MWCNT arrays have β in the range 1.37 to 1.65
depending (linearly) on the film's volumetric density.39

The functional forms of the Gaussian (GD), Lorentzian
(LD), and generalized normal distributions (GND) are
presented in Equation (14) to (16).

I ϕð ÞGD ¼ 1

σ
ffiffiffiffiffi
2π

p exp � ϕ�μj j2
2σ2

	 

, ð14Þ

I ϕð ÞLD ¼ 1
πγ

γ2

ϕ�μð Þ2þγ2
, ð15Þ

I ϕð ÞGND ¼ β
2αΓ 1=βð Þexp � ϕ�μj jβ

αβ

 !
, ð16Þ

Here μ is the peak center, γ is the half-width, σ is SD
(σ¼ γ=

ffiffiffiffiffiffiffiffiffi
2ln2

p
) and α is a factor that is proportional to the

half-width (α¼ γ=
ffiffiffiffiffiffiffi
ln2β

p
); Γ is the gamma function.26

In contrast to Vainio et al.,26 but in agreement with
Gbordzoe et al.,23 we found that OP values depend on the
shape of the distribution. We generated model continu-
ous IDFs using GD, LD and GND distributions; two sets
of these distributions with full-width-at-half-maximum
(FWHM) values of 10� and 100� are shown in Figure 2
(a)–(d). The distributions in Figure 2(a),(c) represent ori-
entation along the reference axis while those in Figure 2
(b),(d) represent alignment perpendicular to the refer-
ence axis. The individual peaks within the distributions
can overlap, depending on their width and shape of their
tails, resulting in nonzero backgrounds (see the trough
regions in Figure 2(c),(d)). Therefore, fitting the entire
distribution is essential to get accurate estimation of ori-
entational order. Note that the OPs are still determined
by integrating the distribution from 0 to 180�, or equiva-
lently 180� to 360�, as shown in Equation (11) and (13);
For experimental data, averaging the two halves of the
ODF prior to integration improves the signal-to-noise
ratio.

OP values, calculated as described above, depend on
the FWHM of the peaks in the IDF. The calculated OP
values for model IDFs of varying widths are plotted in
Figure 2(e). The two branches with positive and negative
OP values are obtained when the orientation angle is
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fixed parallel, and perpendicular to, the reference axis,
respectively. Also, note that a FWHM greater than 180�

has no physical significance – OP values for such widths
are shown simply for completeness. We see that for GD,
LD and GND functions, the OP values decrease with
increasing peak width; though the actual values depend
on the functional shape, with Gaussian distributions giv-
ing the highest values and Lorentzian the lowest. The
GND function (with β = 1.5) produces values that are
intermediate to those of the Gaussian and Lorentzians,
closely matching Gaussian values at high orientations
and those of Lorentzian at low orientations. In addition,
for GNDs, OP values also depend on their shape factors
as shown in Figure 2(f) (see also Figure S2(a) in SI for a
similar trend in HOP). This dependence of OP on a func-
tion's shape suggests that comparison of OP values of dif-
ferent samples holds meaning only if the same fitting
function is used and, particularly for GNDs, if the same
shape factor is used.

Further, the nonlinearity of OPs with the func-
tion's FWHM suggests that the sensitivity of OPs to

changes in orientation is lost at high alignments (wid-
ths less than 25� to 30�), particularly when Gaussian
and GND line shapes are used to estimate OP. We,
therefore, recommend using Lorentzian distributions
for estimating hT2i. A Gaussian distribution is still the
best option for estimating hP2i, since extremely nar-
row line widths are required for Lorentzian distribu-
tions to produce a hP2i of 1, which is not realistic
situation in practice.

When studying isotropic samples, or those with
two prominent directions, additional peaks can appear
in the intensity profiles, as shown in Figure 3(a). COP
values then depend on the relative intensities of the
secondary (A2) and primary peaks (A1). As shown in
Figure 3(b), COP values decrease with increasing
intensities of the secondary peaks; when the intensities
are comparable, that is, A2/A1 = 1, even sharp distri-
butions can have an orientation value close to zero.
This effect of secondary orientation peaks is stronger
in case of hP2i, but does not alter higher order OPs
such as hT4i or hP4i (see Figure S2–S4 in SI), as by

FIGURE 2 Model orientation distribution functions (ODFs) generated using Lorentzian (LD), generalized normal (GND) and Gaussian

distributions (GD) with full width at half maximum (FWHM) of: (a, b) 10� and (c, d) 100�. The area of each peak is normalized to

1. (e) Hermans (<P2>) and Chebyshev (<T2>) orientation parameters for LD, GND and GD distributions of varying FWHM. (f) Chebyshev

orientation parameters for GND with varying sharpness (β) [Color figure can be viewed at wileyonlinelibrary.com]
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definition the fourth moments represent biaxial
orientation.

2.5 | Estimating OP using “FibreCOP”

We have developed a program for rapidly determining
orientation parameters in aligned CNT textiles and simi-
lar anisotropic systems. The code, written in Python 3.7,
is available from our Github repository.33 This program
determines orientation parameters from SEM images via
the following sequence of steps: (1) image analysis which
includes cropping, optional de-noising, binarization and
thresholding, generating a power spectrum via Fourier
transformation, applying a circular mask, and calculating
a radial intensity profile to get the ODF; (2) filtering noisy
data and peak-fitting ODFs using various functional
shapes; (3) calculation of FWHM, COP and HOP
(although the latter is not recommended for 2D ODFs),
as well as the fourth moments. An option to analyze only
intensity distribution data (in the absence of an image) is
also provided.

To test the program, first, the model IDFs generated
in Figure 2(a),(c) were fed to the program as data (not as
an image) and the orientation values obtained from the
fitted distributions were compared with those calculated
directly from the model. COP (FWHM) values for the
fitted Lorentzian IDFs were obtained as 0.848 (10�) and
0.196 (100�), respectively, which closely matched those
calculated from the model, with rounding errors seen
only in the fourth significant digit. Secondly, we gener-
ated model images from photographs of spaghetti ori-
ented in different directions (see Figure 4 (row (a)).
Results of subsequent analyses steps such as binarization,

Fourier transformation, masking and peak fitting are
depicted in Figure 4, rows (b)–(e); further details can be
found in the Methods section. The peaks in the radial dis-
tributions for aligned spaghetti (see the first three graphs
in Figure 4(e)) have sharp tips with a wide base which
require a narrow Lorentzian and a broad Gaussian,
respectively, to produce good visual fits as well as lower
AIC (Akaike Information Criterion) values. Note that
while comparing different nonlinear models, a fit with
lowest AIC value is the best fit (see Methods for detailed
explanation).39,40 The distributions, in total, require four
or five peaks for an accurate fit. The overall COP values
(see Table 1) for the three aligned samples are in the
range 0.74 to 0.8; although these values are high,
the broad Gaussian tails lower the values from �0.91
expected for narrow Lorentzians with widths less than
3�. The negative signs for the horizontal (vertical in Fou-
rier space) and diagonal samples are due to the choice of
reference axes which in digital Fourier image analysis is
along the horizontal direction (3 o'clock position). To
obtain only positive OP values, the images can be rotated
prior to analysis (see Methods section for further details).
In comparison to the aligned samples, the randomly ori-
ented fibers have very low COP value close to zero, as
expected for a truly isotropic sample. We now consider a
final example of the crisscross configuration, as shown in
last column of Figure 4, which too has a hT2i or COP
value close to zero. The ODF for crisscross configuration
is similar to those shown in Figure 3(a), that is, it has sec-
ondary orientation peaks and so, the overall OP reduces
to zero. To distinguish the crisscross and isotropic cases
we must consider the biaxial orientation term, hT4i
which, as listed in Table 1, is far higher for the crisscross
sample.

FIGURE 3 (a) Model biaxial orientation distribution functions (ODFs) generated using Lorentzian distribution (LD). The primary peaks

(A1) are centered at 0�, 180� and 360� while the secondary peaks (A2) are at 90� and 270�. The relative intensity ratios for the two
distributions are given in the legend. (b) Dependence of Chebyshev orientation parameters (Lorentzian ODFs) on the intensity ratios of

secondary to primary orientation peaks; it is highest when (A2/A1) = 0 and lowest when the ratio is 1 [Color figure can be viewed at

wileyonlinelibrary.com]
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As a final test, we analyzed an SEM image of a CNT
film produced by the direct-spinning method (see
Methods). The SEM and its Fourier power spectrum are
shown in Figure 5(a); the Fourier spectrum is diffuse,
suggesting that the sample is not highly aligned. Radial
intensity profiles with different fitted IDFs are shown in
Figure 5(b) and the calculated orientation values are tab-
ulated in Table 2. Three peaks of equal FWHM, centered
at 0�, 180� and 360� are sufficient to fit the intensity pro-
file; the orientation values, however, depend on the type

FIGURE 4 Row (a) test images of macroscopic spaghetti fibers oriented along different directions: (left to right) vertical, horizontal,

diagonal, random and crisscross. Rows (b–e) depict subsequent analysis stages: (b) binary thresholding, (c) Fourier transformation,

(d) circular masking, and (e) radial intensity distributions (blue solid lines) with appropriate fits (red line is cumulative fit) [Color figure can

be viewed at wileyonlinelibrary.com]

TABLE 1 2D orientation parameters for model images of

aligned spaghetti

Image IDF Peaks <T2> <T4>

Vertical LD, GD 2, 3 +0.74 0.42

Horizontal LD, GD 2, 2 0.80 0.48

Diagonal LD, GD 2, 2 0.79 0.51

Random LD 4 0.02 0.10

Crisscross LD 5 +0.05 0.61
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of the fitted function. A Gaussian distribution fits the
poorest (with an average AIC value of 9900) as it nei-
ther fits the peak nor tail regions well. Lorentzian and
pseudo-Voigt distributions produce nearly identical fits:
both fit the tail region better, have lower AIC value of
about 10,500 and produce similar orientation values.
The GND produces the best fit because of the additional
free parameter, β, as it captures the sharpness of the tip,
width of the peak and curvature of the tail, adequately.
Since the widths and β of the GND are constrained to be
the same, the total number of fit parameters is 10, just
one more than the other fits; the AIC for this fit is the
lowest at 10,700. However, as β can vary between sam-
ples (see Figure 2(f)), OPs do not hold comparative value.

FIGURE 5 (a) SEM image of CNT fibers produced by direct spinning process. Inset: Fourier transform (power spectrum) of the image

post rotation by 90�. (b) Radial intensity distribution (blue solid lines) for the image in (a), superimposed with the with the fitted IDFs

(dashed lines are individual fits, red solid lines are cumulative fits). Here, LD = Lorentzian; GD = Gaussian; GND = generalized normal;

PV = pseudo-Voigt distributions. (c) Versions of the image in (a) at different brightness (b) and contrast (c) settings. The values indicated are

in percentages. (g) Chebyshev orientation parameters (based on LD) for different brightness and contrast settings. The errors bars represent

one standard deviation from the mean [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Orientation parameters for the example CNT image

in Figure 5(a) represented here as spot a. SEM images for spots b –
D, are presented in Figure S5 in SI

Image
IDF
type

FWHM
(�)

COP,
<T2>

HOP,
<P2>

a GD 51.0 ± 1.2 0.76 ± 0.01 0.67 ± 0.01

a GND 56.7 ± 2.7 0.60 ± 0.01 0.42 ± 0.01

a PV 49.2 ± 2.0 0.45 ± 0.02 0.26 ± 0.01

a LD 49.2 ± 2.0 0.44 ± 0.01 0.26 ± 0.01

b LD 41.8 ± 0.9 0.49 ± 0.01 0.28 ± 0.01

c LD 43.7 ± 0.9 0.47 ± 0.01 0.27 ± 0.01

d LD 58.1 ± 2.3 0.39 ± 0.02 0.22 ± 0.01
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We, therefore, recommend using Lorentzian distributions
as fits for CNTs, in general.

SEM images of CNTs are usually captured at bright-
ness (B) and contrast (C) settings visually pleasing to the
operator. To test if these settings have any bearing on OP
values, we captured images at different B and C percent-
ages, as shown in Figure 5(c), varying between very poor
contrast to extremely bright images. COP values (using
LD fits) for these images are presented in Figure 5(d). As
we can see, the variation in COP values within each
image and at different settings is low with an overall
value of 0.44 ± 0.01. In comparison, higher variation in
COP values is seen at different SEM spots on the same
sample (see Figure S5 in SI for images, data is tabulated
in Table 2). For example, at one random position, d, in
the sample, COP value was very low at 0.39. As a best
practice, it is therefore advisable to analyze different
regions on the same sample to arrive at an average orien-
tation value.

2.6 | Application in CNT films

A classic example of orientation analysis is to study align-
ment changes in polymers as a function of draw ratio
(a measure of stretching). Here, we take the example of
CNT fibers grown by direct-spinning method and col-
lected as films at two different spinning rates,
30 m min 1 and 60 m min 1; SEM images of these sam-
ples are shown in Figure 6(a),(b) and the respective
Lorentzian fits are shown in respective insets. COP for
the sample spun at 30 m min 1 is 0.44 which increases to

0.54 at 60 m min 1, with corresponding changes in
FWHM from 50.5� to 37.3�, indicating a significant
increase in CNT alignment at faster spinning rates. We
again note that while the GND gives a better fitting, the
free fitting parameter, β, varies between the images. In
this example, β takes values 1.4 and 1 for the slower and
faster spinning rate samples and the COP values with
GND fits turn out to be 0.68 for both images. Therefore,
the utility of GNDs in determining OP is limited but is
rather useful in understanding confinement or coupling
of CNTs, as suggested by Vainio et al.26

2.7 | Further discussion

The FWHM of an ODF as a measure of orientation: It is
well accepted that narrower distributions have higher OP
values, and this is also seen from Figure 2(e). Several
CNT reports already rely on simply using FWHM as it is
purportedly more stable and does not require compli-
cated peak fitting operations.23 However, (1) FWHM does
not capture information regarding the peak sharpness or
tail features of an ODF, (2) for noisy data, peak fitting is
necessary to estimate FWHM, (3) peaks in a continuous
ODF may have varying FWHM unless constrained to be
equal, and (4) when fitting multiple functions to a peak
(Figure 4(e)) or when secondary orientation peaks are
present (see Figure 3), the correlation between OP and
FWHM is lost. Therefore, FWHM is not always a good
measure of macromolecular orientation, although in cer-
tain limited cases, it can give an estimate of the anisot-
ropy in samples.

FIGURE 6 scanning electron microscopy (SEM) images of direct-spun CNT fibers collected at spinning rates of (a) 30 m min 1 and (b)

60 m min 1. Insets show the fitted ODFs [Color figure can be viewed at wileyonlinelibrary.com]
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Choice of OP range: Figure 2(e) shows that hP2i is not
symmetric about zero while hT2i is, that is, when the
alignment direction is along the perpendicular to the ref-
erence axis, the range for hP2i is compressed between 0 to
�0.5, rather than 0 to 1. To get a bigger range of values,
it is best to use the positive scale for hP2i and as a good
practice, for hT2i as well. The asymmetric range of hP2i
also poses a problem when using the Fourier transform
approach to obtain IDFs. For a system containing aniso-
tropic objects oriented about a single axis, the Fourier
transform will produce an intensity distribution with
maxima at 90� to this axis, as seen from Figure 4(c).
Therefore, either the image should be rotated prior to
analysis or the OP transformed after analysis. Mathemati-
cally, under a rotation by π/2, hP2i does not transform as
P2 cos θþπ=2ð Þð Þh i¼ P

0
2

� �
≠ �0:5 P2h i which is valid only

at the extremes. The trigonometrically correct transfor-
mations for the various order parameters are:

P0
2

� �¼ 0:5� P2h i
P0
4

� �¼ P4h i�10
8

cos2θ
� �þ5

8
T 0
2

� �¼ T2 cos θþπ=2ð Þð Þh i¼� T2h i
T4

0h i¼þ T4h i

, ð17Þ

These relations are neither well-known nor intuitive, so
we have included a proof in section S8 of the SI. Note
that in the rotated transformation, the range of hPn0i also
changes: the unaligned state is represented by 0.5 and
not 0. Therefore, it is not advisable to mathematically
transform HOP values from the negative to the positive
scale, rather it is best to rotate the image itself before
analysis. This rotation can be achieved via post-
processing of the image or capturing the images with the
principal axis about the perpendicular direction; our pro-
gram includes a rotation option to handle this issue.

Baseline correction and peak smoothing: As men-
tioned before, we found that orientation values depend on
the proper choice of background. In Figure 2(c),(d), the
minima of LD and GND functions are nonzero which is
due to the overlap of adjacent peaks. The minima must
not be arbitrarily reduced to zero, rather, a linear fit with a
nonzero slope must be included in the fitting model and
ultimately subtracted from the cumulative fit before calcu-
lating OPs. Adding a linear background to the fit model
takes the number of fit parameters required for fitting con-
tinuous distributions to 11 (or 14 for GNDs): two for the
linear fit and three (or four) for LD and GD (or GND)
used. By constraining the widths (and the shape factor for
GNDs) to be equal, the number of free parameters can be
reduced to 9 (or 10 for GNDs). Peak smoothing operations
such as Savitzky–Golay41 are alternatives to fitting which

can be applied to the usual noisy distribution data to
obtain the form of the IDF. However, smoothing is akin to
using a function with an additional fitting parameter
which changes between samples. Therefore, values of OP
from smoothed ODFs do not hold comparative value and
are best treated as upper or lower bounds.

3 | CONCLUSIONS

We have demonstrated a method to facilitate the estima-
tion of alignment in anisotropic materials, such as carbon
nanotube yarns and similar aligned systems, using an
analysis program which we have made available online.
This method relies on analyzing photographs or scanning
electron micrographs of the samples to arrive at an ODF
which is used to calculate order parameters. We have
shown, using a series expansion method, that the appro-
priate orientation order parameter for anisotropic sam-
ples that are 2D or have a measurable 2D ODF is the
Chebyshev order parameter, hT2i. When defined with
respect to the highest intensity direction in the Fourier
space as the reference axis, hT2i can be used to obtain a
measure of structural alignment. We found that the order
parameter values depend on both the width and shape of
the function used to fit the continuous ODF, hence the
order parameters must always be quoted along with
the fitting function used. We have demonstrated the
working of our analysis program on both macroscopic
(spaghetti) and microscopic (CNT) fibers, therefore, we
anticipate that this method will find widespread applica-
tion in various anisotropic systems.

4 | METHODS

SEM images were obtained on a FEI Nova SEM at 5 keV.
The photographs of spaghetti were obtained using a
mobile phone camera with its default settings which
could include software-based picture corrections. Carbon
nanotube fibers were produced via the direct spinning
floating catalyst chemical vapor deposition method;
details of procedures can be found in our other
works.32,42

A program, “FibreCOP”, to calculate orientation
parameter from SEM images/photographs of aligned
fibers has been developed. The code is written in Python
3.7 and uses standard libraries including OpenCV,
numpy, matplotlib, scipy, pandas, lmfit and tkinter; it
has a simple graphical user interface making it intuitive
for users with little Python knowledge and is available
for download and contributions from our Github page.33

The main analyses steps of the program are as follows:
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With the original image size in pixels as reference, the
image is first cropped into a square whose side is equal to
256n pixel dimensions, n being the highest integer possi-
ble (for example, a digital image with a size of
1536 � 1026 is cropped to 1024 � 1024 pixels). The
remaining area is scanned by shifting the crop area in a
finite number of steps, if needed; each square area is then
analyzed and used to calculate an average orientation
parameter. For further analyses, the images are converted
to a binary format using OTSU or Gaussian thresholding
methods (Figure 4, row (b)).43 2D discrete Fourier trans-
formation of the binary image produces a power spec-
trum (Figure 4, row (c)) where the direction of
orientation is always perpendicular to alignment direc-
tion in the image space. A circular mask is then applied
(Figure 4, row (d)) before calculating the radial intensity
distribution which is a plot of summed pixel intensities
along a radius vs. the angle the radius makes with a refer-
ence direction (clockwise starting from a 3 o'clock posi-
tion). To calculate alignment the program shifts the
highest intensity peak to either the 3 or 12 o'clock posi-
tion. For directions less than 45�, the peak is shifted to
the 3 o'clock position (positive COP), but for higher
angles, the distribution is shifted to align with 12 o'clock
position giving negative values. As a good practice, we
recommend using the positive OP range, and therefore,
an option to rotate the image prior to analysis is provided
in the program. The step size for radial scan can be con-
trolled by the user; we recommend a value less than 1�/
step (preferably 0.25�/step) – this is a choice that will be
guided by need for low computation time against data
resolution required. The power spectrum from SEM
images is usually noisy with a spike at 45� arising from
pixel edges–a median filter is applied to remove this noise
prior to peak fitting. We use the lmfit package for peak
fitting, so fit statistics such as χ2, AIC and BIC (Bayesian
information criterion) are outputted by the program for
comparing models. AIC provides a method to compare
nonlinear models by penalizing the model's goodness of
fit for increased number of fit parameters. It is defined as
AIC¼�2lnL̂þ2K , where K is the number of free param-
eters and L̂ is the maximum likelihood estimator for the
model.40 For linear models, it is also formulated as
AIC = NlnSSE+ 2K where SSE is residual sum of squares.
The relative likelihood of different models can be com-
pared by Δ(AIC) = exp((AICmin�AICi)/2) where AICmin

smallest of the AIC obtained. The program outputs both
Hermans and Chebyshev orientation parameters, as well
as FWHM and fourth moments – however, we reiterate
the point discussed in main text that calculating HOP
from power spectra of SEM images is not a valid
approach.
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APPENDIX I
Historical development of orientation parameters: The
development of orientational order parameters began
with the work of Hermans and co-workers, in the late
1930s and early 40s.19–21 Studying birefringence in amor-
phous polymers and X-ray diffraction in crystalline poly-
mers, they showed that (1) a measure of orientation in
uniaxial fibers could be obtained from the ratio (fH)
between the differences in polarizability along and per-
pendicular to the reference fiber axis and the polymer
chain axes, respectively, and (2) this ratio is related to the
average angle, θ, formed between the fiber axis and a
crystallographic direction in the crystallites as
fH = 1� (3/2)hsin2θi; the angle itself is determined by
averaging the diffracted X-ray intensities.21,44 Several
researchers refined this idea of uniaxial fiber orientation
through 1940s and 60s – a detail of these developments is
presented by White and Spruiell,37,45 and van Gurp.34

Notably, Muller in 1941,34 suggested that the X-ray inten-
sity distribution can be expressed as a function of spheri-
cal harmonics, in particular, the Legendre polynomials
Pn(cosθ). He identified the Hermans factor as being the
second Legendre polynomial, P2(cosθ) = (1/2)(3hcos2θi
� 1) – this variant is now the widely used form of fH.34,45

Later researchers were concerned with determining
the hcos2θi part of fH: for example, Wilchinsky showed
how the term hcos2θi, which is the 3D average over a
coordinate sphere, could be determined from X-ray mea-
surements even in the absence of diffracting planes nor-
mal (but available in other directions) to the axis.46,47 In
a series of works in 1960s, Roe and Krigbaum further
explored Muller's idea, showing the equivalence between
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a crystallite ODF and the plane normal distribution
obtained from X-ray measurements on the crystallite.35,48

Roe concluded that if an accurate and complete descrip-
tion of the ODF is not required, then it is sufficient to
determine the first few moments of the ODF.49 The exact
number of moments needed to describe the ODF depend
on the type of measurement made, as shown by
McBrierty and Ward: P2 is sufficient for optical birefrin-
gence, infrared absorption and ultrasonic measurements;
while for magnetic resonance, fluorescence polarization
and elasticity measurements, moments up to P4 may be
required. X-ray diffraction ODFs give greater number of
moments, thus providing a complete description of the
orientation,50,51 particularly if the anisotropy is large. For
example, in a study on isotactic polypropylene, higher
moments up to P100 were required when the draw ratio
exceeded eight (corresponding to a phase transformation
from lamellar to fibrillar).38 Researchers in 1960–80s were
concerned with biaxial orientation in polymer films, a case
that might happen in blown films or those stretched biaxi-
ally. Stein defined an orientation factor of the form
fP = 2hcos2θi� 1 for each of the three axes in a coordinate
sphere.52 This was adapted by Samuel,53 and later, White
and Spruiell,37,45 to represent the orientation of macromole-
cules restricted to a single plane. The latter authors derived
the uniaxial planar/2D orientation factor, fP, using a polariz-
ability tensor-based approach (in the current work, we use
a series-expansion method) and further showed that it is a
special case of biaxial orientation factors.

The use of Hermans orientation factor and small-angle
X-ray scattering profiles for estimating orientation has
now become routine. Several groups have also used this
method to determine orientation in CNT films.22,23,26 In
comparison, the use of the planar orientation parameter
remained limited to the field of liquid crystals where it is
known as the 2D scalar nematic order parameter, S . The
analysis of scanning electron microscope images using dig-
ital computation of the Fast Fourier transform (FFT) trig-
gered the use of 2D orientation parameter in CNT
literature. The earliest mention of T2 as a measure of ori-
entation for CNTs seems to be in a work from our group
in 1998.27 An SEM image of CNTs dispersed on a substrate
was Fourier transformed to obtain a power spectrum,

which was used to calculate hT2i. A work on liquid crystal-
line solutions of CNTs in 2008 estimated a parameter
S (equivalent to hT2i) from the dichroic ratio. Unrelated to
these works, the method of Fourier transformation of an
SEM image found other applications. Ayres et al., in
2008,28 applied the FFT method to study orientation in
polymeric scaffolds made of electrospun fibers. They relied
on the normalized height (to a baseline of zero) of ODFs
to estimate anisotropy (taller and narrower peaks repre-
sent higher alignment). On similar lines and around the
same time, a Fourier transform misalignment analysis
method was developed by Kratman et al.29 to measure
misalignment in carbon fiber composites. In 2016, our
group used the FFT method in conjunction with Hermans
factor to estimate alignment in CNT epoxy composites.30

Our concern at that point with this approach was the
validity of a 3D orientation parameter in case of 2D mats.
Subsequently, in 2017, our group suggested the use of
Chebyshev polynomial hT2i for layered CNT films,
although without providing a detailed mathematical back-
ground.32 Brandley et al. improved this method further
and transformed it into a Fourier mapping technique to
analyze orientation in large areas of thin CNT veils. How-
ever, they limited their method to determining hP2i.31 The
present work, via a series expansion method derives the
expression for hT2i and explains why it is the appropriate
parameter to be used together with the FFT image analysis
method. We hope that our program simplifies the proce-
dure so that the technique is adapted widely, both within
the CNT community and further afield.

SUPPORTING INFORMATION
Additional supporting information may be found online
in the Supporting Information section at the end of this
article.
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