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IMPROVED RESOLVENT ESTIMATES FOR CONSTANT-COEFFICIENT

ELLIPTIC OPERATORS IN THREE DIMENSIONS

ROBERT SCHIPPA

Abstract. We prove new Lp-Lq-estimates for solutions to elliptic differential operators with constant
coefficients in R3. We use the estimates for the decay of the Fourier transform of particular surfaces

in R3 with vanishing Gaussian curvature due to Erdős–Salmhofer to derive new Fourier restriction–

extension estimates. These allow for constructing distributional solutions in Lq(R3) for Lp-data via
limiting absorption by well-known means.

1. Introduction

The purpose of this note is to show new Lp-Lq-estimates for solutions to elliptic differential equations
in R3. Let

p(ξ) =
∑
α∈N3

0,
|α|≤N

aαξ
α

be a multi-variate polynomial in R3 with real coefficients and suppose that aα 6= 0 for some α ∈ N3
0 with

|α| = N . We consider partial differential operators

(1) P (D) = p(−i∇x) =
∑
|α|≤N

aα(−i)|α|∂α

such that for u ∈ S ′(R3) we have

F(P (D)u)(ξ) = p(ξ)û(ξ).

By ellipticity we mean that

pN (ξ) =
∑
|α|=N

aαξ
α 6= 0

for ξ 6= 0. We assume pN (ξ) > 0 for the sake of definiteness. In the following we prove existence of
solutions u ∈ Lq(R3) such that

P (D)u = f

for f ∈ Lp(R3) in a certain range of p and q, which satisfy the estimate

‖u‖Lq(R3) . ‖f‖Lp(R3).

The properties of the vanishing set of p(ξ) play a key role for constructing solutions: Gutiérrez [8]
constructed solutions for p(ξ) = |ξ|2 − 1. In most previous works on elliptic operators was assumed that
Σ0 = {p(ξ) = 0} is a smooth manifold with non-vanishing Gaussian curvature K 6= 0. In this case the
analysis of Gutiérrez applies. Recently, Castéras–Földes [3] analyzed fourth-order Schrödinger operators
(in dimensions d ≥ 2) with smooth characteristic surface, and estimates depending on the number of
non-vanishing principal curvatures were proved. A wider range was covered in [14], where also surfaces
with conic singularities were treated. Presently, we consider the effect of vanishing Gaussian curvature
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in a generic case, which was described by Erdős–Salmhofer [6]. The idea of constructing solutions is to
consider approximates

ûδ(ξ) =
1

(2π)3

∫
R3

eix.ξ f̂(ξ)

p(ξ) + iδ
dξ

for δ 6= 0 and show uniform bounds

(2) ‖uδ‖Lq(R3) . ‖f‖Lp(R3)

for fixed P (D).
Then we shall find distributional limits u ∈ Lq(R3), which satisfy

P (D)u = f in S ′(R3)

and
‖u‖Lq(R3) . ‖f‖Lp(R3).

This is referred to as limiting absorption principle. We shall still assume that ∇p(ξ) 6= 0 for ξ ∈ Σ0.
This is a generic assumption for polynomials. In this case Sokhotsky’s formula yields for solutions as
described above

u(x) =
1

(2π)3

∫
R3

eix.ξ f̂(ξ)

p(ξ)± i0
dξ

= ∓ iπ

(2π)3

∫
R3

eix.ξ f̂(ξ)δΣ0
(ξ)dξ +

1

(2π)3
v.p.

∫
R3

eix.ξ f̂(ξ)

p(ξ)
dξ.

This points out a close connection to Fourier restriction. The most basic Lp-Lq-results rely on the decay
of the Fourier transform of the surface measure. This in term is caused by the curvature of the surface.
If K 6= 0, the estimate

|µ̂S(ξ)| =
∣∣ ∫
S

eix.ξdx
∣∣ . 〈ξ〉−1

is classical (cf. [13, 15]). Corresponding Lp-Lq-estimates for solutions were proved in [14].
In this note we consider vanishing total curvature in a generic sense. For constructing solutions as laid
out above, we also have to consider level sets Σa = {p(ξ) = a} for |a| ≤ δ0. We recall the assumptions
in Erdős–Salmhofer:
Let I be a compact interval and let D = e−1(I). Suppose that Σa is a two-dimensional submanifold for
each a ∈ I. Let f ∈ C∞c (D) and define

(3) µ̂a(x) =

∫
Σa

eix.ξf(ξ)dσa(ξ)

the Fourier transform of the surface carried measure fdσa.
Let C0 = diam(D), C1 = ‖p‖C5(D). The following assumptions have to be met:
Assumption 1:

(4) C2 = min
ξ∈D
|∇p(ξ)| > 0,

which means that (Σa)a∈I is a regular foliation of D.
Let K : D → R be the Gaussian curvature of the foliation, i.e., for ξ ∈ Σa ⊆ D, K(ξ) denotes the

curvature of Σa at ξ.
The crucial assumption is that the vanishing set of the Gaussian curvature is a submanifold, which
intersects (Σa)a∈I transversally:
Assumtion 2: Let C = {ξ ∈ D : K(ξ) = 0}. Then

C3 = min
ξ∈D

({|∇p(ξ)×∇K(ξ)| : ξ ∈ C}) > 0.

With ∇K non-vanishing on C, it is a two-dimensional submanifold by the regular value theorem. Since
p and K are smooth, we find that

Γa = C ∩ Σa
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is a finite union of disjoint regular curves on Σa for each a ∈ I.
Let

ξ 7→ w(ξ) =
∇p(ξ)×∇K(ξ)

|∇p(ξ)×∇K(ξ)|
be the unit vectorfield tangent to Γa. Denote the normal map ν : D → S2 by

ν(ξ) =
∇p(ξ)
|∇p(ξ)|

.

Recall that the Gaussian curvature is given by the Jacobian of the normal map restricted to each surface,
ν : Σa → S2: K(ξ) = det ν′(ξ).

We further require the following regularity assumption on the Gauss map.
Assumption 3: The number of preimages of ν : Σa → S2 is finite, i.e.,

C4 = sup
a∈I

sup
ω∈S2

card{p ∈ Σa : ν(p) = ω} <∞.

On the curves Γa, exactly one of the principal curvatures vanish. We define a (local) unit vectorfield
Z ∈ TΣa along Γa in the tangent plane of Σa. Z can be extended to a neighbourhood of Γa as the
direction of the principal curvature that is small and vanishes on Γa. We assume that Z is transversal
to Γa up to finitely many points (called tangential points) and the angle between Z and Γa increases
linearly:
Assumption 4: There exist positive constants C5, C6 such that for any a ∈ I the set of tangential
points

Ta = {ξ ∈ Γa : Z(ξ)× w(ξ) = 0},
is finite with cardinality Na = |Ta| ≤ C5. For all ξ ∈ Γa

|Z(ξ)× w(ξ)| ≥ C6 · da(ξ),

where da(ξ) is defined as follows:

If Na = 0, then da(ξ) = 1. If Na 6= 0, and Ta = {ξ(1)
a , . . . , ξ

(Na)
a }, then

da(ξ) = min({|ξ − ξ(j)
a | : j = 1, . . . , Na}), a ∈ I, p ∈ Σa.

Define

Da(ω) = min{|ν(ξ(j)
a × ω| : 1 ≤ j ≤ Na}, ω ∈ S2.

if Na 6= 0 and Da(ω) = 1 if Na = 0.
Under the above assumptions, Erdős–Salmhofer [6, Theorem 2.1] proved the following dispersive

estimate for the Fourier transform of the surface measure µa:

(5) |µ̂a(ξ)| ≤ C〈ξ〉− 3
4

with C = C(C0, . . . , C6, ‖f‖C2(D)). This morally corresponds to a decay from 3
2 principal curvatures

bounded from below in modulus and thus improves the previous result for one non-vanishing principal
curvature (cf. [14, Theorem 1.3]). In this article we record its consequence for solutions to elliptic
differential operators. As argued in [6, Remark 1, p. 268], the above assumptions are generic for surfaces
in R3. Thus, we say that the results apply to generic elliptic operators in R3.

In the first step, we derive a Fourier restriction–extension theorem for surfaces Σa by following along
the lines of the preceding work [14]. We prove strong bounds

(6) ‖
∫
R3

eix.ξδΣa(ξ)β(ξ)f̂(ξ)dξ‖Lq(R3) . ‖f‖Lp(R3)

within a pentagonal region. Here β ∈ C∞c localizes to a suitable neighbourhood of {K = 0} in(
Σa
)
a∈[−δ0,δ0]

. Away from {K = 0}, [14, Theorem 1.3] provides better estimates for d = 3, k = 2.
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On part of the boundary of the pentagonal region, we show weak bounds

‖
∫
R3

eix.ξδΣa(ξ)β(ξ)f̂(ξ)dξ‖Lq,∞(R3) . ‖f‖Lp(R3)(7)

‖
∫
R3

eix.ξδΣa(ξ)β(ξ)f̂(ξ)dξ‖Lq(R3) . ‖f‖Lp,1(R3),(8)

and lastly, restricted weak bounds

(9) ‖
∫
R3

eix.ξδΣa(ξ)β(ξ)f̂(ξ)dξ‖Lq,∞(R3) . ‖f‖Lp,1(R3)

at its inner endpoints. We refer to Figure 2 for a diagram. For X,Y ∈ [0, 1]2 we write [X,Y ] = {Z :
∃λ ∈ [0, 1] : Z = λX + (1− λ)Y } and correspondingly (X,Y ), (X,Y ], etc.

Proposition 1.1. Let p : R3 → R be an elliptic polynomial with δ0 > 0 such that for Σa = {p(ξ) = a},
−δ0 ≤ a ≤ δ0 Assumptions 1-4 are satisfied in a neighbourhood of K = 0 in Σa. Then, we find (6) to
hold for ( 1

p ,
1
q ) ∈ [0, 1]2 provided that

1

p
>

7

10
,

1

q
<

3

10
,

1

p
− 1

q
≥ 4

7
.

Let

B =
( 7

10
,

9

70

)
, C =

( 7

10
, 0
)
, B′ =

(61

70
,

3

10

)
, C ′ =

(
1,

3

10

)
:

Furthermore, we find (7) to hold for (1/p, 1/q) ∈ (B′, C ′], (8) for (1/p, 1/q) ∈ (B,C], and (9) for
(1/p, 1/q) ∈ {B,B′}.

In the second step we foliate a neighbourhood U of Σ0 with level sets of p to show bounds ‖Aδf‖Lq .
‖f‖Lp(R3) for

(10) Aδf(x) =

∫
R3

eix.ξβ1(ξ)

p(ξ) + iδ
f̂(ξ)dξ

independent of δ. Here, p, q are as in Proposition 1.1 and |p(ξ)| ≤ δ0 for ξ ∈ supp (β1) with Σ0 ⊆
supp (β1). Away from the singular set, estimates for

(11) Bδf(x) =

∫
R3

eix.ξβ2(ξ)

p(ξ) + iδ
f̂(ξ)dξ

with β1 + β2 ≡ 1 follow from Young’s inequality and properties of the Bessel potential. The estimate of
‖Bδ‖Lp→Lq depends on the order of the elliptic operator.
The method of proof is well-known and detailed in [14]; see also [11, 9] and references therein. We
shall be brief. It turns out that one can follow along the lines of [14] very closely, substituting k = 3

2
non-vanishing principal curvatures. We prove the following:

Theorem 1.2. Let p : R3 → R be an elliptic polynomial of degree N ≥ 2. Let 1 < p1, p2, q < ∞
and f ∈ Lp1(R3) ∩ Lp2(R3). Suppose that there is δ0 > 0 such that Assumptions 1-4 are satisfied for
(Σa)a∈[−δ0,δ0]. Then, there is u ∈ Lq(R3) satisfying

P (D)u = f

in the distributional sense and the estimate

‖u‖Lq(R3) . ‖f‖Lp1∩Lp2 (R3)

provided that
1

p1
>

7

10
,

1

q
<

3

10
,

1

p1
− 1

q
≥ 4

7
and for N ≤ 3

0 ≤ 1

p2
− 1

q
≤ N

3
,
(1

q
,

1

p2

)
/∈

{
{(0, 2

3 ), ( 1
3 , 1)} for N = 2,

{(0, 1)} for N = 3.
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2. The Fourier restriction-extension estimate

The purpose of this section is to prove Proposition 1.1. We shall follow the argument of [14, Section 4].
In the first step, we localize to a small neighbourhood of the vanishing set {K = 0}, which by assumptions
is a two-dimensional manifold in D. In the complementary set, by compactness, we can apply [14,
Theorem 1.3], which gives uniform Lp-Lq-estimates in a broader range. Thus, it is enough to suppose
that Assumptions 1-4 are valid in a neighbourhood of {K = 0}. The proof follows [14, Section 4]
closely. In the first step, by finite decomposition and rotations, we change to parametric representation
of Σa = {(ξ′, ψ(ξ′)) : ξ′ ∈ B(0, c)}. We show bounds T : Lp(R3)→ Lq(R3) for

Tf(x) =

∫
R3

δ(ξ3 − ψ(ξ′))eix.ξχ(ξ′)f̂(ξ)dξ.

The following decay estimate, which is (5), is central.∣∣∣∣∫ ei(x
′.ξ′+x3ψ(ξ′))β(ξ′)dξ′

∣∣∣∣ . (1 + |x3|)−
3
4 .

Applying the TT ∗ argument (cf. [16, 7, 10]), we find the following Strichartz estimate:

(12)

∥∥∥∥∫ ei(x
′.ξ′+x3ψ(ξ′))β(ξ′)f̂(ξ′)dξ′

∥∥∥∥
L

14
3
x (R3)

. ‖f‖L2
ξ′ (B(0,c)).

We recall the following lemma to decompose the delta distribution:

Lemma 2.1 ([4, Lemma 2.1]). There is a smooth function φ satisfying supp(φ̂) ⊆ {t : |t| ∼ 1} such that
for all f ∈ S(Rd),

〈δ(ξ3 − ψ(ξ′)), f〉 =
∑
j∈Z

2j
∫
R3

φ(2j(ξ3 − ψ(ξ′)))χ(ξ′)f(ξ)dξ.

By this, we can write

Tf(x) =
∑
j∈Z

2j
∫
R3

φ(2j(ξ3 − ψ(ξ′)))eix.ξχ(ξ′)f̂(ξ)dξ :=
∑
j∈Z

2jT2−jf.

As pointed out in [4], the contribution of j ≤ 0 is easier to estimate.
The contribution of j ≥ 0, i.e., close to the singularity, is estimated by Strichartz and kernel estimates:

Lemma 2.2 (cf. [14, Lemma 4.3]). Let q ≥ 14
3 . Then, we find the following estimate to hold:

‖T2jf‖Lq (R3) . 2
−j
2 ‖f‖L2(R3).

This estimate does not admit summation. For this purpose, we interpolate with the kernel estimate:

Lemma 2.3 (cf. [14, Lemma 4.4]). Let

Kδ(x) =

∫
R3

eix.ξβ(ξ′)φ
(ξ3 − ψ(ξ′)

δ

)
dξ.

Then Kδ is supported in {(x′, x3) : |x3| ∼ δ−1}, and we find the following estimates to hold:

|Kδ(x)| .N δN (1 + δ|x|)−N , if |x′| ≥ c|x3|,

|Kδ(x)| . δ 7
4 , if |x′| ≤ c|x3|.

The last ingredient to show (restricted) weak endpoint estimates is Bourgain’s summation argument
(cf. [1, 2] and [12, Lemma 2.3] for an elementary proof):
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3
14 B

B′

C

C ′

1
2

1

1
2

1

1
q

1
p

Figure 1. Pentagonal region, within which strong Lp-Lq-Fourier restriction extension
estimates hold.

Lemma 2.4. Let ε1, ε2 > 0, 1 ≤ p1, p2 ≤ ∞, 1 ≤ q1, q2 < ∞. For every j ∈ Z let Tj be a linear
operator, which satisfies

‖Tj(f)‖q1 ≤M12ε1j‖f‖p1
‖Tj(f)‖q2 ≤M22−ε2j‖f‖p2 .

Then, for θ, q and pi defined by θ = ε2
ε1ε2

, 1
q = θ

q1
+ 1−θ

q2
and 1

p = θ
p1

+ 1−θ
p2

, the following hold:

‖
∑
j

Tj(f)‖q,∞ ≤ CMθ
1M

1−θ
2 ‖f‖p,1,(13)

‖
∑
j

Tj(f)‖q ≤ CMθ
1M

1−θ
2 ‖f‖p,1 if q1 = q2 = q,(14)

‖
∑
j

Tj(f)‖q,∞ ≤ CMθ
1M

1−θ
2 ‖f‖p if p1 = p2.(15)

We interpolate the bounds

2j‖T2−jf‖Lq(R3) . 2
j
2 ‖f‖L2(R3),

14

3
≤ q ≤ ∞,

and

2j‖T2−jf‖L∞(R3) . 2−
3j
4 ‖f‖L1(R3)

as above together with duality to find restricted weak endpoint bounds

‖Tf‖Lq,∞(R3) . ‖f‖Lp,1(R3)

for (1/p, 1/q) ∈ {B,B′}, weak bounds

‖Tf‖Lq,∞ . ‖f‖Lp , ‖Tf‖Lq . ‖f‖Lp,1

for (1/p, 1/q) ∈ (B′, C ′], respectively, (1/p, 1/q) ∈ (B,C], and strong bounds in the interior of the
pentagon conv(A,B,C,C ′, B′) with A = (1, 0),

B =
( 7

10
,

9

70

)
, C =

( 7

10
, 0
)
, B′ =

(61

70
,

3

10

)
, C ′ =

(
1,

3

10

)
:
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Real interpolation of the weak bounds at B and B′ gives strong bounds on (B,B′). This finishes the
proof of Proposition 1.1. �

3. Lp-Lq-estimates for solutions to elliptic differential operators

In this section we prove Theorem 1.2 relying on Proposition 1.1. The argument parallels [14, Sec-
tion 5.2] very closely, to avoid repitition we shall be brief. Let Aδ and Bδ be as in (10) and (11). We start
with the more difficult estimate of Aδ. We show boundedness of Aδ : Lp(R3) → Lq(R3) independently
of δ with p, q as in Proposition 1.1. For this it is enough to show restricted weak type bounds

‖Aδ‖Lq0,∞ . ‖f‖Lp0,1

for (1/p0, 1/q0) = (61/70, 3/10) and the bounds

‖Aδf‖Lq . ‖f‖Lp,1

for (1/p, 1/q) ∈ ((61/70, 3/10), (1, 3/10)] as strong bounds for Aδ with p, q as in Proposition 1.1 are
recovered by interpolation and duality. As ∇p(ξ) 6= 0 for ξ ∈ supp(β1) by construction, we can change
to generalized polar coordinates. Let ξ = ξ(p, q), where p and q are complementary coordinates.
Write

Aδf(x) =

∫
eix.ξβ1(ξ)

p(ξ) + iδ
f̂(ξ)dξ =

∫
dp

∫
dq
eix.ξ(p,q)β(ξ(p, q))h(p, q)f̂(ξ(p, q))

p+ iδ
,

where h denotes the Jacobian. We can suppose that |∂αh| .α 1 choosing supp(β) small enough. The
expression is estimated as in [14, Subsection 5.2] by suitable decompositions in Fourier space and crucially
depending on the Fourier restriction estimates for Proposition 1.1; see [11] for p(ξ) = |ξ|α. We write

1

p(ξ) + iδ
=

p(ξ)

p2(ξ) + δ2
− i δ

p2(ξ) + δ2
= R(ξ)− iI(ξ).

As in [14], I(D) is estimated by Minkowski’s inequality and Fourier restriction–extension estimates,
in the present context from Proposition 1.1. The only difference in the estimate of R(D) is that [14,
Lemma 5.1] is applied for k = 3

2 according to the dispersive estimate (5). For details we refer to [14,
Section 4]. This finishes the proof of the estimate for Aδ.

For the estimate of Bδ, we carry out a further decomposition in Fourier space: By ellipticity, there is
R ≥ 1 such that

|p(ξ)| & |ξ|N

provided that |ξ| ≥ R. Let β2(ξ) = β21(ξ) + β22(ξ) with β21, β22 ∈ C∞ and β22(ξ) = 0 for |ξ| ≤ R,
β22(ξ) = 1 for |ξ| ≥ 2R.
We can estimate

‖Bδ(β21(D)f)‖Lq . ‖f‖Lp
for any 1 ≤ p ≤ q ≤ ∞ by Young’s inequality uniform in δ. This gives no additional assumptions on p
and q. We estimate the contribution of β22 by properties of the Bessel kernel (cf. [5, Theorem 30])

‖Bδ(β22(D)f)‖Lq(R3) . ‖β22(D)f‖Lp(R3)

for 1 ≤ p, q ≤ ∞ and 0 ≤ 1
p −

1
q ≤

N
3 with the endpoints excluded for N ≤ 3. For N ≥ 4 this estimate

holds true for 1 ≤ p ≤ q ≤ ∞. This corresponds to the second assumption on p and q in Theorem 1.2.
Lastly, we give the standard argument for constructing solutions: For δ > 0, consider the approximate
solutions uδ ∈ Lq(R3)

ûδ(ξ) =
f̂(ξ)

p(ξ) + iδ
.

By the above, we have uniform bounds

‖uδ‖Lq(R3) . ‖f‖Lp1 (R3)∩Lp2 (R3).
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By the Banach–Alaoglu–Bourbaki theorem, we find a weak limit uδ → u, which satisfies the same bound.
We observe that

P (D)uδ = f − i δ

P (D) + iδ
f.

Since

‖ δ

P (D) + iδ
f‖Lq . δ‖f‖Lp1∩Lp2 ,

we find that P (D)uδ → f in Lq(R3). Since P (D)uδ → P (D)u in S ′(R3), this shows that

P (D)u = f

in S ′(R3). The proof is complete. �
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[3] Jean-Baptiste Castéras and Juraj Földes. Existence of traveling waves for a fourth order Schrödinger equation with

mixed dispersion in the Helmholtz regime. arXiv e-prints, page arXiv:2103.11440, March 2021.
[4] Yonggeun Cho, Youngcheol Kim, Sanghyuk Lee, and Yongsun Shim. Sharp Lp-Lq estimates for Bochner-Riesz oper-

ators of negative index in Rn, n ≥ 3. J. Funct. Anal., 218(1):150–167, 2005.
[5] Lucrezia Cossetti and Rainer Mandel. A limiting absorption principle for Helmholtz systems and time-harmonic

isotropic Maxwell’s equations. arXiv e-prints, page arXiv:2009.05087, September 2020.
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