Improved resolvent estimates for constantcoefficient elliptic operators in three dimensions

Robert Schippa

CRC Preprint 2021/18, May 2021

KARLSRUHE INSTITUTE OF TECHNOLOGY

CRC 1173

Participating universities

Universität Stuttgart

Funded by

IMPROVED RESOLVENT ESTIMATES FOR CONSTANT-COEFFICIENT ELLIPTIC OPERATORS IN THREE DIMENSIONS

ROBERT SCHIPPA

Abstract

We prove new L^{p} - L^{q}-estimates for solutions to elliptic differential operators with constant coefficients in \mathbb{R}^{3}. We use the estimates for the decay of the Fourier transform of particular surfaces in \mathbb{R}^{3} with vanishing Gaussian curvature due to Erdős-Salmhofer to derive new Fourier restrictionextension estimates. These allow for constructing distributional solutions in $L^{q}\left(\mathbb{R}^{3}\right)$ for L^{p}-data via limiting absorption by well-known means.

1. Introduction

The purpose of this note is to show new $L^{p}-L^{q}$-estimates for solutions to elliptic differential equations in \mathbb{R}^{3}. Let

$$
p(\xi)=\sum_{\substack{\alpha \in \mathbb{N}_{0}^{3},|\alpha| \leq N}} a_{\alpha} \xi^{\alpha}
$$

be a multi-variate polynomial in \mathbb{R}^{3} with real coefficients and suppose that $a_{\alpha} \neq 0$ for some $\alpha \in \mathbb{N}_{0}^{3}$ with $|\alpha|=N$. We consider partial differential operators

$$
\begin{equation*}
P(D)=p\left(-i \nabla_{x}\right)=\sum_{|\alpha| \leq N} a_{\alpha}(-i)^{|\alpha|} \partial^{\alpha} \tag{1}
\end{equation*}
$$

such that for $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{3}\right)$ we have

$$
\mathcal{F}(P(D) u)(\xi)=p(\xi) \hat{u}(\xi)
$$

By ellipticity we mean that

$$
p_{N}(\xi)=\sum_{|\alpha|=N} a_{\alpha} \xi^{\alpha} \neq 0
$$

for $\xi \neq 0$. We assume $p_{N}(\xi)>0$ for the sake of definiteness. In the following we prove existence of solutions $u \in L^{q}\left(\mathbb{R}^{3}\right)$ such that

$$
P(D) u=f
$$

for $f \in L^{p}\left(\mathbb{R}^{3}\right)$ in a certain range of p and q, which satisfy the estimate

$$
\|u\|_{L^{q}\left(\mathbb{R}^{3}\right)} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{3}\right)}
$$

The properties of the vanishing set of $p(\xi)$ play a key role for constructing solutions: Gutiérrez [8] constructed solutions for $p(\xi)=|\xi|^{2}-1$. In most previous works on elliptic operators was assumed that $\Sigma_{0}=\{p(\xi)=0\}$ is a smooth manifold with non-vanishing Gaussian curvature $K \neq 0$. In this case the analysis of Gutiérrez applies. Recently, Castéras-Földes [3] analyzed fourth-order Schrödinger operators (in dimensions $d \geq 2$) with smooth characteristic surface, and estimates depending on the number of non-vanishing principal curvatures were proved. A wider range was covered in [14], where also surfaces with conic singularities were treated. Presently, we consider the effect of vanishing Gaussian curvature

[^0]in a generic case, which was described by Erdős-Salmhofer [6]. The idea of constructing solutions is to consider approximates
$$
\hat{u}_{\delta}(\xi)=\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} \frac{e^{i x . \xi} \hat{f}(\xi)}{p(\xi)+i \delta} d \xi
$$
for $\delta \neq 0$ and show uniform bounds
\[

$$
\begin{equation*}
\left\|u_{\delta}\right\|_{L^{q}\left(\mathbb{R}^{3}\right)} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{3}\right)} \tag{2}
\end{equation*}
$$

\]

for fixed $P(D)$.
Then we shall find distributional limits $u \in L^{q}\left(\mathbb{R}^{3}\right)$, which satisfy

$$
P(D) u=f \text { in } \mathcal{S}^{\prime}\left(\mathbb{R}^{3}\right)
$$

and

$$
\|u\|_{L^{q}\left(\mathbb{R}^{3}\right)} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{3}\right)}
$$

This is referred to as limiting absorption principle. We shall still assume that $\nabla p(\xi) \neq 0$ for $\xi \in \Sigma_{0}$. This is a generic assumption for polynomials. In this case Sokhotsky's formula yields for solutions as described above

$$
\begin{aligned}
u(x) & =\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} \frac{e^{i x \cdot \xi} \hat{f}(\xi)}{p(\xi) \pm i 0} d \xi \\
& =\mp \frac{i \pi}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} e^{i x \cdot \xi} \hat{f}(\xi) \delta_{\Sigma_{0}}(\xi) d \xi+\frac{1}{(2 \pi)^{3}} v \cdot p \cdot \int_{\mathbb{R}^{3}} \frac{e^{i x \cdot \xi} \hat{f}(\xi)}{p(\xi)} d \xi .
\end{aligned}
$$

This points out a close connection to Fourier restriction. The most basic $L^{p}-L^{q}$-results rely on the decay of the Fourier transform of the surface measure. This in term is caused by the curvature of the surface. If $K \neq 0$, the estimate

$$
\left|\hat{\mu}_{S}(\xi)\right|=\left|\int_{S} e^{i x \cdot \xi} d x\right| \lesssim\langle\xi\rangle^{-1}
$$

is classical (cf. [13, 15]). Corresponding $L^{p}-L^{q}$-estimates for solutions were proved in [14].
In this note we consider vanishing total curvature in a generic sense. For constructing solutions as laid out above, we also have to consider level sets $\Sigma_{a}=\{p(\xi)=a\}$ for $|a| \leq \delta_{0}$. We recall the assumptions in Erdős-Salmhofer:
Let I be a compact interval and let $\mathcal{D}=e^{-1}(I)$. Suppose that Σ_{a} is a two-dimensional submanifold for each $a \in I$. Let $f \in C_{c}^{\infty}(\mathcal{D})$ and define

$$
\begin{equation*}
\hat{\mu}_{a}(x)=\int_{\Sigma_{a}} e^{i x \cdot \xi} f(\xi) d \sigma_{a}(\xi) \tag{3}
\end{equation*}
$$

the Fourier transform of the surface carried measure $f d \sigma_{a}$.
Let $C_{0}=\operatorname{diam}(\mathcal{D}), C_{1}=\|p\|_{C^{5}(\mathcal{D})}$. The following assumptions have to be met:

Assumption 1:

$$
\begin{equation*}
C_{2}=\min _{\xi \in \mathcal{D}}|\nabla p(\xi)|>0 \tag{4}
\end{equation*}
$$

which means that $\left(\Sigma_{a}\right)_{a \in I}$ is a regular foliation of \mathcal{D}.
Let $K: \mathcal{D} \rightarrow \mathbb{R}$ be the Gaussian curvature of the foliation, i.e., for $\xi \in \Sigma_{a} \subseteq \mathcal{D}, K(\xi)$ denotes the curvature of Σ_{a} at ξ.
The crucial assumption is that the vanishing set of the Gaussian curvature is a submanifold, which intersects $\left(\Sigma_{a}\right)_{a \in I}$ transversally:
Assumtion 2: Let $\mathcal{C}=\{\xi \in \mathcal{D}: K(\xi)=0\}$. Then

$$
C_{3}=\min _{\xi \in \mathcal{D}}(\{|\nabla p(\xi) \times \nabla K(\xi)|: \xi \in \mathcal{C}\})>0
$$

With ∇K non-vanishing on \mathcal{C}, it is a two-dimensional submanifold by the regular value theorem. Since p and K are smooth, we find that

$$
\Gamma_{a}=\mathcal{C} \cap \Sigma_{a}
$$

is a finite union of disjoint regular curves on Σ_{a} for each $a \in I$.
Let

$$
\xi \mapsto w(\xi)=\frac{\nabla p(\xi) \times \nabla K(\xi)}{|\nabla p(\xi) \times \nabla K(\xi)|}
$$

be the unit vectorfield tangent to Γ_{a}. Denote the normal map $\nu: \mathcal{D} \rightarrow \mathbb{S}^{2}$ by

$$
\nu(\xi)=\frac{\nabla p(\xi)}{|\nabla p(\xi)|}
$$

Recall that the Gaussian curvature is given by the Jacobian of the normal map restricted to each surface, $\nu: \Sigma_{a} \rightarrow \mathbb{S}^{2}: K(\xi)=\operatorname{det} \nu^{\prime}(\xi)$.

We further require the following regularity assumption on the Gauss map.
Assumption 3: The number of preimages of $\nu: \Sigma_{a} \rightarrow \mathbb{S}^{2}$ is finite, i.e.,

$$
C_{4}=\sup _{a \in I} \sup _{\omega \in \mathbb{S}^{2}} \operatorname{card}\left\{p \in \Sigma_{a}: \nu(p)=\omega\right\}<\infty .
$$

On the curves Γ_{a}, exactly one of the principal curvatures vanish. We define a (local) unit vectorfield $Z \in T \Sigma_{a}$ along Γ_{a} in the tangent plane of $\Sigma_{a} . Z$ can be extended to a neighbourhood of Γ_{a} as the direction of the principal curvature that is small and vanishes on Γ_{a}. We assume that Z is transversal to Γ_{a} up to finitely many points (called tangential points) and the angle between Z and Γ_{a} increases linearly:
Assumption 4: There exist positive constants C_{5}, C_{6} such that for any $a \in I$ the set of tangential points

$$
\mathcal{T}_{a}=\left\{\xi \in \Gamma_{a}: Z(\xi) \times w(\xi)=0\right\}
$$

is finite with cardinality $N_{a}=\left|\mathcal{T}_{a}\right| \leq C_{5}$. For all $\xi \in \Gamma_{a}$

$$
|Z(\xi) \times w(\xi)| \geq C_{6} \cdot d_{a}(\xi)
$$

where $d_{a}(\xi)$ is defined as follows:
If $N_{a}=0$, then $d_{a}(\xi)=1$. If $N_{a} \neq 0$, and $\mathcal{T}_{a}=\left\{\xi_{a}^{(1)}, \ldots, \xi_{a}^{\left(N_{a}\right)}\right\}$, then

$$
d_{a}(\xi)=\min \left(\left\{\left|\xi-\xi_{a}^{(j)}\right|: j=1, \ldots, N_{a}\right\}\right), \quad a \in I, p \in \Sigma_{a}
$$

Define

$$
D_{a}(\omega)=\min \left\{\mid \nu\left(\xi_{a}^{(j)} \times \omega \mid: 1 \leq j \leq N_{a}\right\}, \omega \in \mathbb{S}^{2}\right.
$$

if $N_{a} \neq 0$ and $D_{a}(\omega)=1$ if $N_{a}=0$.
Under the above assumptions, Erdős-Salmhofer [6, Theorem 2.1] proved the following dispersive estimate for the Fourier transform of the surface measure μ_{a} :

$$
\begin{equation*}
\left|\hat{\mu}_{a}(\xi)\right| \leq C\langle\xi\rangle^{-\frac{3}{4}} \tag{5}
\end{equation*}
$$

with $C=C\left(C_{0}, \ldots, C_{6},\|f\|_{C^{2}(\mathcal{D})}\right)$. This morally corresponds to a decay from $\frac{3}{2}$ principal curvatures bounded from below in modulus and thus improves the previous result for one non-vanishing principal curvature (cf. [14, Theorem 1.3]). In this article we record its consequence for solutions to elliptic differential operators. As argued in [6, Remark 1, p. 268], the above assumptions are generic for surfaces in \mathbb{R}^{3}. Thus, we say that the results apply to generic elliptic operators in \mathbb{R}^{3}.

In the first step, we derive a Fourier restriction-extension theorem for surfaces Σ_{a} by following along the lines of the preceding work [14]. We prove strong bounds

$$
\begin{equation*}
\left\|\int_{\mathbb{R}^{3}} e^{i x \cdot \xi} \delta_{\Sigma_{a}}(\xi) \beta(\xi) \hat{f}(\xi) d \xi\right\|_{L^{q}\left(\mathbb{R}^{3}\right)} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{3}\right)} \tag{6}
\end{equation*}
$$

within a pentagonal region. Here $\beta \in C_{c}^{\infty}$ localizes to a suitable neighbourhood of $\{K=0\}$ in $\left(\Sigma_{a}\right)_{a \in\left[-\delta_{0}, \delta_{0}\right]}$. Away from $\{K=0\}$, [14, Theorem 1.3] provides better estimates for $d=3, k=2$.

On part of the boundary of the pentagonal region, we show weak bounds

$$
\begin{align*}
& \left\|\int_{\mathbb{R}^{3}} e^{i x . \xi} \delta_{\Sigma_{a}}(\xi) \beta(\xi) \hat{f}(\xi) d \xi\right\|_{L^{q, \infty}\left(\mathbb{R}^{3}\right)} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{3}\right)} \tag{7}\\
& \left\|\int_{\mathbb{R}^{3}} e^{i x \cdot \xi} \delta_{\Sigma_{a}}(\xi) \beta(\xi) \hat{f}(\xi) d \xi\right\|_{L^{q}\left(\mathbb{R}^{3}\right)} \lesssim\|f\|_{L^{p, 1}\left(\mathbb{R}^{3}\right)}
\end{align*}
$$

and lastly, restricted weak bounds

$$
\begin{equation*}
\left\|\int_{\mathbb{R}^{3}} e^{i x \cdot \xi} \delta_{\Sigma_{a}}(\xi) \beta(\xi) \hat{f}(\xi) d \xi\right\|_{L^{q, \infty}\left(\mathbb{R}^{3}\right)} \lesssim\|f\|_{L^{p, 1}\left(\mathbb{R}^{3}\right)} \tag{9}
\end{equation*}
$$

at its inner endpoints. We refer to Figure 2 for a diagram. For $X, Y \in[0,1]^{2}$ we write $[X, Y]=\{Z$: $\exists \lambda \in[0,1]: Z=\lambda X+(1-\lambda) Y\}$ and correspondingly $(X, Y),(X, Y]$, etc.
Proposition 1.1. Let $p: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be an elliptic polynomial with $\delta_{0}>0$ such that for $\Sigma_{a}=\{p(\xi)=a\}$, $-\delta_{0} \leq a \leq \delta_{0}$ Assumptions 1-4 are satisfied in a neighbourhood of $K=0$ in Σ_{a}. Then, we find (6) to hold for $\left(\frac{1}{p}, \frac{1}{q}\right) \in[0,1]^{2}$ provided that

$$
\frac{1}{p}>\frac{7}{10}, \quad \frac{1}{q}<\frac{3}{10}, \quad \frac{1}{p}-\frac{1}{q} \geq \frac{4}{7}
$$

Let

$$
B=\left(\frac{7}{10}, \frac{9}{70}\right), C=\left(\frac{7}{10}, 0\right), \quad B^{\prime}=\left(\frac{61}{70}, \frac{3}{10}\right), C^{\prime}=\left(1, \frac{3}{10}\right):
$$

Furthermore, we find (7) to hold for $(1 / p, 1 / q) \in\left(B^{\prime}, C^{\prime}\right]$, (8) for $(1 / p, 1 / q) \in(B, C]$, and (9) for $(1 / p, 1 / q) \in\left\{B, B^{\prime}\right\}$.

In the second step we foliate a neighbourhood U of Σ_{0} with level sets of p to show bounds $\left\|A_{\delta} f\right\|_{L^{q}} \lesssim$ $\|f\|_{L^{p}\left(\mathbb{R}^{3}\right)}$ for

$$
\begin{equation*}
A_{\delta} f(x)=\int_{\mathbb{R}^{3}} \frac{e^{i x \cdot \xi} \beta_{1}(\xi)}{p(\xi)+i \delta} \hat{f}(\xi) d \xi \tag{10}
\end{equation*}
$$

independent of δ. Here, p, q are as in Proposition 1.1 and $|p(\xi)| \leq \delta_{0}$ for $\xi \in \operatorname{supp}\left(\beta_{1}\right)$ with $\Sigma_{0} \subseteq$ $\operatorname{supp}\left(\beta_{1}\right)$. Away from the singular set, estimates for

$$
\begin{equation*}
B_{\delta} f(x)=\int_{\mathbb{R}^{3}} \frac{e^{i x \cdot \xi} \beta_{2}(\xi)}{p(\xi)+i \delta} \hat{f}(\xi) d \xi \tag{11}
\end{equation*}
$$

with $\beta_{1}+\beta_{2} \equiv 1$ follow from Young's inequality and properties of the Bessel potential. The estimate of $\left\|B_{\delta}\right\|_{L^{p} \rightarrow L^{q}}$ depends on the order of the elliptic operator.
The method of proof is well-known and detailed in [14]; see also [11, 9] and references therein. We shall be brief. It turns out that one can follow along the lines of [14] very closely, substituting $k=\frac{3}{2}$ non-vanishing principal curvatures. We prove the following:
Theorem 1.2. Let $p: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be an elliptic polynomial of degree $N \geq 2$. Let $1<p_{1}, p_{2}, q<\infty$ and $f \in L^{p_{1}}\left(\mathbb{R}^{3}\right) \cap L^{p_{2}}\left(\mathbb{R}^{3}\right)$. Suppose that there is $\delta_{0}>0$ such that Assumptions $1-4$ are satisfied for $\left(\Sigma_{a}\right)_{a \in\left[-\delta_{0}, \delta_{0}\right]}$. Then, there is $u \in L^{q}\left(\mathbb{R}^{3}\right)$ satisfying

$$
P(D) u=f
$$

in the distributional sense and the estimate

$$
\|u\|_{L^{q}\left(\mathbb{R}^{3}\right)} \lesssim\|f\|_{L^{p_{1}} \cap L^{p_{2}}\left(\mathbb{R}^{3}\right)}
$$

provided that

$$
\frac{1}{p_{1}}>\frac{7}{10}, \quad \frac{1}{q}<\frac{3}{10}, \quad \frac{1}{p_{1}}-\frac{1}{q} \geq \frac{4}{7}
$$

and for $N \leq 3$

$$
0 \leq \frac{1}{p_{2}}-\frac{1}{q} \leq \frac{N}{3}, \quad\left(\frac{1}{q}, \frac{1}{p_{2}}\right) \notin\left\{\begin{array}{l}
\left\{\left(0, \frac{2}{3}\right),\left(\frac{1}{3}, 1\right)\right\} \text { for } N=2, \\
\{(0,1)\} \text { for } N=3 .
\end{array}\right.
$$

2. The Fourier restriction-Extension estimate

The purpose of this section is to prove Proposition 1.1. We shall follow the argument of [14, Section 4]. In the first step, we localize to a small neighbourhood of the vanishing set $\{K=0\}$, which by assumptions is a two-dimensional manifold in \mathcal{D}. In the complementary set, by compactness, we can apply [14, Theorem 1.3], which gives uniform $L^{p}-L^{q}$-estimates in a broader range. Thus, it is enough to suppose that Assumptions 1-4 are valid in a neighbourhood of $\{K=0\}$. The proof follows [14, Section 4] closely. In the first step, by finite decomposition and rotations, we change to parametric representation of $\Sigma_{a}=\left\{\left(\xi^{\prime}, \psi\left(\xi^{\prime}\right)\right): \xi^{\prime} \in B(0, c)\right\}$. We show bounds $T: L^{p}\left(\mathbb{R}^{3}\right) \rightarrow L^{q}\left(\mathbb{R}^{3}\right)$ for

$$
T f(x)=\int_{\mathbb{R}^{3}} \delta\left(\xi_{3}-\psi\left(\xi^{\prime}\right)\right) e^{i x \cdot \xi} \chi\left(\xi^{\prime}\right) \hat{f}(\xi) d \xi
$$

The following decay estimate, which is (5), is central.

$$
\left|\int e^{i\left(x^{\prime} \cdot \xi^{\prime}+x_{3} \psi\left(\xi^{\prime}\right)\right)} \beta\left(\xi^{\prime}\right) d \xi^{\prime}\right| \lesssim\left(1+\left|x_{3}\right|\right)^{-\frac{3}{4}} .
$$

Applying the $T T^{*}$ argument (cf. [16, 7, 10]), we find the following Strichartz estimate:

$$
\begin{equation*}
\left\|\int e^{i\left(x^{\prime} \cdot \xi^{\prime}+x_{3} \psi\left(\xi^{\prime}\right)\right)} \beta\left(\xi^{\prime}\right) \hat{f}\left(\xi^{\prime}\right) d \xi^{\prime}\right\|_{L_{x}^{\frac{14}{3}\left(\mathbb{R}^{3}\right)}} \lesssim\|f\|_{L_{\xi^{\prime}}^{2}(B(0, c))} \tag{12}
\end{equation*}
$$

We recall the following lemma to decompose the delta distribution:
Lemma 2.1 ([4, Lemma 2.1]). There is a smooth function ϕ satisfying supp $(\hat{\phi}) \subseteq\{t:|t| \sim 1\}$ such that for all $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$,

$$
\left\langle\delta\left(\xi_{3}-\psi\left(\xi^{\prime}\right)\right), f\right\rangle=\sum_{j \in \mathbb{Z}} 2^{j} \int_{\mathbb{R}^{3}} \phi\left(2^{j}\left(\xi_{3}-\psi\left(\xi^{\prime}\right)\right)\right) \chi\left(\xi^{\prime}\right) f(\xi) d \xi
$$

By this, we can write

$$
T f(x)=\sum_{j \in \mathbb{Z}} 2^{j} \int_{\mathbb{R}^{3}} \phi\left(2^{j}\left(\xi_{3}-\psi\left(\xi^{\prime}\right)\right)\right) e^{i x . \xi} \chi\left(\xi^{\prime}\right) \hat{f}(\xi) d \xi:=\sum_{j \in \mathbb{Z}} 2^{j} T_{2^{-j}} f
$$

As pointed out in [4], the contribution of $j \leq 0$ is easier to estimate.
The contribution of $j \geq 0$, i.e., close to the singularity, is estimated by Strichartz and kernel estimates:
Lemma 2.2 (cf. [14, Lemma 4.3]). Let $q \geq \frac{14}{3}$. Then, we find the following estimate to hold:

$$
\left\|T_{2^{j}} f\right\|_{L^{q}}\left(\mathbb{R}^{3}\right) \lesssim 2^{\frac{-j}{2}}\|f\|_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

This estimate does not admit summation. For this purpose, we interpolate with the kernel estimate:
Lemma 2.3 (cf. [14, Lemma 4.4]). Let

$$
K_{\delta}(x)=\int_{\mathbb{R}^{3}} e^{i x \cdot \xi} \beta\left(\xi^{\prime}\right) \phi\left(\frac{\xi_{3}-\psi\left(\xi^{\prime}\right)}{\delta}\right) d \xi
$$

Then K_{δ} is supported in $\left\{\left(x^{\prime}, x_{3}\right):\left|x_{3}\right| \sim \delta^{-1}\right\}$, and we find the following estimates to hold:

$$
\begin{aligned}
& \left|K_{\delta}(x)\right| \lesssim_{N} \delta^{N}(1+\delta|x|)^{-N}, \text { if }\left|x^{\prime}\right| \geq c\left|x_{3}\right| \\
& \left|K_{\delta}(x)\right| \lesssim \delta^{\frac{7}{4}}, \text { if }\left|x^{\prime}\right| \leq c\left|x_{3}\right|
\end{aligned}
$$

The last ingredient to show (restricted) weak endpoint estimates is Bourgain's summation argument (cf. [1, 2] and [12, Lemma 2.3] for an elementary proof):

Figure 1. Pentagonal region, within which strong $L^{p}-L^{q}$-Fourier restriction extension estimates hold.

Lemma 2.4. Let $\varepsilon_{1}, \varepsilon_{2}>0,1 \leq p_{1}, p_{2} \leq \infty, 1 \leq q_{1}, q_{2}<\infty$. For every $j \in \mathbb{Z}$ let T_{j} be a linear operator, which satisfies

$$
\begin{aligned}
& \left\|T_{j}(f)\right\|_{q_{1}} \leq M_{1} 2^{\varepsilon_{1} j}\|f\|_{p_{1}} \\
& \left\|T_{j}(f)\right\|_{q_{2}} \leq M_{2} 2^{-\varepsilon_{2} j}\|f\|_{p_{2}}
\end{aligned}
$$

Then, for θ, q and p_{i} defined by $\theta=\frac{\varepsilon_{2}}{\varepsilon_{1} \varepsilon_{2}}, \frac{1}{q}=\frac{\theta}{q_{1}}+\frac{1-\theta}{q_{2}}$ and $\frac{1}{p}=\frac{\theta}{p_{1}}+\frac{1-\theta}{p_{2}}$, the following hold:

$$
\begin{align*}
& \left\|\sum_{j} T_{j}(f)\right\|_{q, \infty} \leq C M_{1}^{\theta} M_{2}^{1-\theta}\|f\|_{p, 1} \tag{13}\\
& \quad\left\|\sum_{j} T_{j}(f)\right\|_{q} \leq C M_{1}^{\theta} M_{2}^{1-\theta}\|f\|_{p, 1} \text { if } q_{1}=q_{2}=q \tag{14}\\
& \left\|\sum_{j} T_{j}(f)\right\|_{q, \infty} \leq C M_{1}^{\theta} M_{2}^{1-\theta}\|f\|_{p} \text { if } p_{1}=p_{2} \tag{15}
\end{align*}
$$

We interpolate the bounds

$$
2^{j}\left\|T_{2^{-j}} f\right\|_{L^{q}\left(\mathbb{R}^{3}\right)} \lesssim 2^{\frac{j}{2}}\|f\|_{L^{2}\left(\mathbb{R}^{3}\right)}, \quad \frac{14}{3} \leq q \leq \infty
$$

and

$$
2^{j}\left\|T_{2^{-j}} f\right\|_{L^{\infty}\left(\mathbb{R}^{3}\right)} \lesssim 2^{-\frac{3 j}{4}}\|f\|_{L^{1}\left(\mathbb{R}^{3}\right)}
$$

as above together with duality to find restricted weak endpoint bounds

$$
\|T f\|_{L^{q, \infty}\left(\mathbb{R}^{3}\right)} \lesssim\|f\|_{L^{p, 1}\left(\mathbb{R}^{3}\right)}
$$

for $(1 / p, 1 / q) \in\left\{B, B^{\prime}\right\}$, weak bounds

$$
\|T f\|_{L^{q, \infty}} \lesssim\|f\|_{L^{p}}, \quad\|T f\|_{L^{q}} \lesssim\|f\|_{L^{p, 1}}
$$

for $(1 / p, 1 / q) \in\left(B^{\prime}, C^{\prime}\right]$, respectively, $(1 / p, 1 / q) \in(B, C]$, and strong bounds in the interior of the pentagon $\operatorname{conv}\left(A, B, C, C^{\prime}, B^{\prime}\right)$ with $A=(1,0)$,

$$
B=\left(\frac{7}{10}, \frac{9}{70}\right), C=\left(\frac{7}{10}, 0\right), \quad B^{\prime}=\left(\frac{61}{70}, \frac{3}{10}\right), C^{\prime}=\left(1, \frac{3}{10}\right):
$$

Real interpolation of the weak bounds at B and B^{\prime} gives strong bounds on $\left(B, B^{\prime}\right)$. This finishes the proof of Proposition 1.1.

3. L^{p} - L^{q}-ESTIMATES FOR SOLUTIONS TO ELLIPTIC DIFFERENTIAL OPERATORS

In this section we prove Theorem 1.2 relying on Proposition 1.1. The argument parallels [14, Section 5.2] very closely, to avoid repitition we shall be brief. Let A_{δ} and B_{δ} be as in (10) and (11). We start with the more difficult estimate of A_{δ}. We show boundedness of $A_{\delta}: L^{p}\left(\mathbb{R}^{3}\right) \rightarrow L^{q}\left(\mathbb{R}^{3}\right)$ independently of δ with p, q as in Proposition 1.1. For this it is enough to show restricted weak type bounds

$$
\left\|A_{\delta}\right\|_{L^{q_{0}, \infty}} \lesssim\|f\|_{L^{p_{0}, 1}}
$$

for $\left(1 / p_{0}, 1 / q_{0}\right)=(61 / 70,3 / 10)$ and the bounds

$$
\left\|A_{\delta} f\right\|_{L^{q}} \lesssim\|f\|_{L^{p, 1}}
$$

for $(1 / p, 1 / q) \in((61 / 70,3 / 10),(1,3 / 10)]$ as strong bounds for A_{δ} with p, q as in Proposition 1.1 are recovered by interpolation and duality. As $\nabla p(\xi) \neq 0$ for $\xi \in \operatorname{supp}\left(\beta_{1}\right)$ by construction, we can change to generalized polar coordinates. Let $\xi=\xi(p, q)$, where p and q are complementary coordinates.
Write

$$
A_{\delta} f(x)=\int \frac{e^{i x . \xi} \beta_{1}(\xi)}{p(\xi)+i \delta} \hat{f}(\xi) d \xi=\int d p \int d q \frac{e^{i x . \xi(p, q)} \beta(\xi(p, q)) h(p, q) \hat{f}(\xi(p, q))}{p+i \delta}
$$

where h denotes the Jacobian. We can suppose that $\left|\partial^{\alpha} h\right| \lesssim \alpha 1$ choosing $\operatorname{supp}(\beta)$ small enough. The expression is estimated as in [14, Subsection 5.2] by suitable decompositions in Fourier space and crucially depending on the Fourier restriction estimates for Proposition 1.1; see [11] for $p(\xi)=|\xi|^{\alpha}$. We write

$$
\frac{1}{p(\xi)+i \delta}=\frac{p(\xi)}{p^{2}(\xi)+\delta^{2}}-i \frac{\delta}{p^{2}(\xi)+\delta^{2}}=\mathfrak{R}(\xi)-i \Im(\xi)
$$

As in [14], $\Im(D)$ is estimated by Minkowski's inequality and Fourier restriction-extension estimates, in the present context from Proposition 1.1. The only difference in the estimate of $\mathfrak{R}(D)$ is that [14, Lemma 5.1] is applied for $k=\frac{3}{2}$ according to the dispersive estimate (5). For details we refer to [14, Section 4]. This finishes the proof of the estimate for A_{δ}.

For the estimate of B_{δ}, we carry out a further decomposition in Fourier space: By ellipticity, there is $R \geq 1$ such that

$$
|p(\xi)| \gtrsim|\xi|^{N}
$$

provided that $|\xi| \geq R$. Let $\beta_{2}(\xi)=\beta_{21}(\xi)+\beta_{22}(\xi)$ with $\beta_{21}, \beta_{22} \in C^{\infty}$ and $\beta_{22}(\xi)=0$ for $|\xi| \leq R$, $\beta_{22}(\xi)=1$ for $|\xi| \geq 2 R$.
We can estimate

$$
\left\|B_{\delta}\left(\beta_{21}(D) f\right)\right\|_{L^{q}} \lesssim\|f\|_{L^{p}}
$$

for any $1 \leq p \leq q \leq \infty$ by Young's inequality uniform in δ. This gives no additional assumptions on p and q. We estimate the contribution of β_{22} by properties of the Bessel kernel (cf. [5, Theorem 30])

$$
\left\|B_{\delta}\left(\beta_{22}(D) f\right)\right\|_{L^{q}\left(\mathbb{R}^{3}\right)} \lesssim\left\|\beta_{22}(D) f\right\|_{L^{p}\left(\mathbb{R}^{3}\right)}
$$

for $1 \leq p, q \leq \infty$ and $0 \leq \frac{1}{p}-\frac{1}{q} \leq \frac{N}{3}$ with the endpoints excluded for $N \leq 3$. For $N \geq 4$ this estimate holds true for $1 \leq p \leq q \leq \infty$. This corresponds to the second assumption on p and q in Theorem 1.2. Lastly, we give the standard argument for constructing solutions: For $\delta>0$, consider the approximate solutions $u_{\delta} \in L^{q}\left(\mathbb{R}^{3}\right)$

$$
\hat{u}_{\delta}(\xi)=\frac{\hat{f}(\xi)}{p(\xi)+i \delta}
$$

By the above, we have uniform bounds

$$
\left\|u_{\delta}\right\|_{L^{q}\left(\mathbb{R}^{3}\right)} \lesssim\|f\|_{L^{p_{1}}\left(\mathbb{R}^{3}\right) \cap L^{p_{2}}\left(\mathbb{R}^{3}\right)}
$$

By the Banach-Alaoglu-Bourbaki theorem, we find a weak limit $u_{\delta} \rightarrow u$, which satisfies the same bound. We observe that

$$
P(D) u_{\delta}=f-i \frac{\delta}{P(D)+i \delta} f
$$

Since

$$
\left\|\frac{\delta}{P(D)+i \delta} f\right\|_{L^{q}} \lesssim \delta\|f\|_{L^{p_{1} \cap L^{p_{2}}}}
$$

we find that $P(D) u_{\delta} \rightarrow f$ in $L^{q}\left(\mathbb{R}^{3}\right)$. Since $P(D) u_{\delta} \rightarrow P(D) u$ in $\mathcal{S}^{\prime}\left(\mathbb{R}^{3}\right)$, this shows that

$$
P(D) u=f
$$

in $\mathcal{S}^{\prime}\left(\mathbb{R}^{3}\right)$. The proof is complete.

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project-ID 258734477 - SFB 1173. I would like to thank Rainer Mandel for discussions on related topics.

References

[1] Jean Bourgain. Estimations de certaines fonctions maximales. C. R. Acad. Sci. Paris Sér. I Math., 301(10):499-502, 1985.
[2] Anthony Carbery, Andreas Seeger, Stephen Wainger, and James Wright. Classes of singular integral operators along variable lines. J. Geom. Anal., 9(4):583-605, 1999.
[3] Jean-Baptiste Castéras and Juraj Földes. Existence of traveling waves for a fourth order Schrödinger equation with mixed dispersion in the Helmholtz regime. arXiv e-prints, page arXiv:2103.11440, March 2021.
[4] Yonggeun Cho, Youngcheol Kim, Sanghyuk Lee, and Yongsun Shim. Sharp $L^{p}-L^{q}$ estimates for Bochner-Riesz operators of negative index in $\mathbb{R}^{n}, n \geq 3$. J. Funct. Anal., 218(1):150-167, 2005.
[5] Lucrezia Cossetti and Rainer Mandel. A limiting absorption principle for Helmholtz systems and time-harmonic isotropic Maxwell's equations. arXiv e-prints, page arXiv:2009.05087, September 2020.
[6] László Erdős and Manfred Salmhofer. Decay of the Fourier transform of surfaces with vanishing curvature. Math. Z., 257(2):261-294, 2007.
[7] J. Ginibre and G. Velo. On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J. Functional Analysis, 32(1):1-32, 1979.
[8] Susana Gutiérrez. Non trivial L^{q} solutions to the Ginzburg-Landau equation. Math. Ann., 328(1-2):1-25, 2004.
[9] Eunhee Jeong, Yehyun Kwon, and Sanghyuk Lee. Uniform Sobolev inequalities for second order non-elliptic differential operators. Adv. Math., 302:323-350, 2016.
[10] Markus Keel and Terence Tao. Endpoint Strichartz estimates. Amer. J. Math., 120(5):955-980, 1998.
[11] Yehyun Kwon and Sanghyuk Lee. Sharp resolvent estimates outside of the uniform boundedness range. Comm. Math. Phys., 374(3):1417-1467, 2020.
[12] Sanghyuk Lee. Some sharp bounds for the cone multiplier of negative order in \mathbb{R}^{3}. Bull. London Math. Soc., 35(3):373390, 2003.
[13] Walter Littman. Fourier transforms of surface-carried measures and differentiability of surface averages. Bull. Amer. Math. Soc., 69:766-770, 1963.
[14] Rainer Mandel and Robert Schippa. Time-harmonic solutions for Maxwell's equations in anisotropic media and Bochner-Riesz estimates for non-elliptic surfaces. arXiv preprint.
[15] Elias M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, volume 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.
[16] Peter A. Tomas. A restriction theorem for the Fourier transform. Bull. Amer. Math. Soc., 81:477-478, 1975.

[^0]: 2020 Mathematics Subject Classification. Primary: 35J08, 35J30, Secondary: 46E35.
 Key words and phrases. resolvent estimates, Sobolev embedding, Fourier restriction, Limiting Absorption Principle.

