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ON SMOOTHING ESTIMATES IN MODULATION SPACES AND THE NLS WITH

SLOWLY DECAYING INITIAL DATA

ROBERT SCHIPPA

Abstract. We show new local Lp-smoothing estimates for the Schrödinger equation with initial data in
modulation spaces via decoupling inequalities. Furthermore, we probe necessary conditions by Knapp-

type examples for space-time estimates of solutions with initial data in modulation and Lp-spaces.

The examples show sharpness of the smoothing estimates up to the endpoint regularity in a certain
range. Moreover, the examples rule out global Strichartz estimates for initial data in Lp(Rd) for d ≥ 1

and p > 2, which was previously known for d ≥ 2. The estimates are applied to show new local and

global well-posedness results for the cubic nonlinear Schrödinger equation on the line. Lastly, we show
`2-decoupling inequalities for variable-coefficient versions of elliptic and non-elliptic Schrödinger phase

functions.

1. Introduction

In this article we show new space-time estimates for the Schrödinger equation with slowly decaying
data outside L2-based Sobolev spaces:

(1)

{
i∂tu+ ∆u = 0, (t, x) ∈ R× Rd,
u(0) = u0 ∈ X.

In the present work we consider modulation spaces X = Ms
p,q(Rd), 2 ≤ p < ∞, which are compared to

initial data in Lp-based Sobolev spaces X = Lpα(Rd) = 〈D〉−αLp(Rd), 2 ≤ p <∞. The latter initial data
were recently considered by Dodson–Soffer–Spencer[20] (see also [21]) and by R. Mandel [41].

Modulation spaces are likewise used to model slowly decaying initial data. Feichtinger introduced
modulation spaces in [23]. He provided also a more recent account [24] emphasizing the role of modulation
spaces in signal processing; see also the textbook by Gröchenig [27]. As the body of literature is huge,
we refer to the PhD thesis of L. Chaichenets [13] and references therein for a more exhaustive account
on modulation spaces in the context of Schrödinger equations.

For the definition of modulation spaces, consider the Fourier multipliers

(�kf)(̂ξ) = σk(ξ)f̂(ξ), k ∈ Zd,

with (σk)k∈Zd ⊆ C∞c (Rd) a smooth partition of unity, adapted to the translated unit cubes Qk = k +
[− 1

2 ,
1
2 )d. For the precise definition, we refer to [13, Section 2.1]. We can suppose that σk(ξ) = σ0(ξ−k).

The norm is defined by

‖f‖Ms
p,q

=
( ∑
k∈Zd
〈k〉qs‖�kf‖qLp(Rd)

) 1
q .

If s = 0, we write Mp,q. Modulation spaces are closely related with Lp-spaces. For illustration, we collect
embedding properties: By the embedding of `p-spaces and Bernstein’s inequality, we have

Ms
p,q1 ↪→Ms

p,q2 (q1 ≤ q2),(2)

Ms
p1,q ↪→Ms

p2,q (p1 ≤ p2).(3)

2020 Mathematics Subject Classification. Primary: 35B45, 35Q55, Secondary: 42B37.
Key words and phrases. Smoothing estimates, Strichartz estimates, modulation spaces, `2-decoupling, nonlinear

Schrödinger equation.

1



2 ROBERT SCHIPPA

Rubio de Francia’s inequality ([49]) and duality yield

Mp,p′ ↪→ Lp ↪→Mp,p (2 ≤ p ≤ ∞),(4)

Mp,p ↪→ Lp ↪→Mp,p′ (1 ≤ p ≤ 2).(5)

Furthermore, we can trade regularity for summability as

(6) Ms1
p,q1(Rd) ↪→Ms2

p,q2(Rd) s1 − s2 > d
( 1

q2
− 1

q1

)
> 0

by applying Hölder’s inequality (cf. [13, Proposition 2.31]). By Plancherel’s theorem, M2,2 ∼ L2.
Let U(t) = eit∆ denote the propagator of (1), and let Uf denote the free solution for f ∈ S ′(Rd). In

this paper we show new smoothing estimates

(7) ‖Uf‖Lp([−1,1]×Rd) . ‖f‖Ms
p,q(Rd)

via `2-decoupling. We prove the following:

Theorem 1.1. Suppose that d ≥ 1, p ≥ 2, and 1 ≤ q ≤ ∞.

(A) If 2 ≤ p ≤ 2(d+2)
d , then (7) holds true provided that s > max

(
0, d2 −

d
q

)
.

(B) If 2(d+2)
d ≤ p ≤ ∞ and 2 ≤ q ≤ ∞, then (7) holds true provided that s > d− d+2

p −
d
q .

(C) If 2(d+2)
d ≤ p ≤ ∞ and 1 ≤ q ≤ 2, then (7) holds true provided that s > 2

(
1− 1

q

)(
d
2 −

d+2
p

)
.

(D) If q = 1, then (7) holds true with s = 0.

The key argument in the proof of the estimates for q ≥ 2 are the `2-decoupling inequalities for
the paraboloid due to Bourgain–Demeter (cf. [9]). It turns out that after localization in space and
parabolic rescaling the `2-decoupling inequality yields Strichartz estimates in modulation spaces by a
kernel estimate. Originally, Wolff [61] brought up decoupling for the cone to analyze Lp-smoothing
estimates for the (half-)wave equation:

‖eit
√
−∆f‖Lp([1,2]×Rd) . ‖f‖Lps(Rd).

We refer to [43, 44] and [52, Chapter 8] for further reading.
Regarding Strichartz estimates in modulation spaces, it seems the above space-time estimates were

previously not investigated in the literature. Space-time estimates with an additional window decompo-
sition were shown by B. Wang et al. [58, 57, 1]; see also Zhang [62]. We also refer to the surveys by
Wang–Huo–Hao–Guo [59] and Ruzhansky–Sugimoto–Wang [50]. These estimates were further applied
to prove well-posedness for nonlinear equations. For context we refer to S. Guo’s work [29], in which he
proved local well-posedness of the NLS in modulation spaces M2,p for 2 < p < ∞. Oh–Wang [45] glob-
alized this using the complete integrability. Below we discuss well-posedness of the cubic NLS outside
L2-based Sobolev spaces in greater detail.

We shall also compare Strichartz estimates in modulation spaces with Lp-smoothing estimates for
Schrödinger equations, which were first discussed by Rogers [47]:

(8) ‖Uf‖Lp(I×Rd) . ‖f‖Lpα(Rd)

Rogers showed that the validity of (8) for some α is equivalent to validity of the adjoint Fourier restriction
estimate R∗(p → p). We refer to [48, 40] for further discussion. The decoupling inequality can serve as
a common base for (7) and (8).

Secondly, we give new necessary conditions for estimates of the kinds

(9) ‖Uf‖Lp([−1,1]×Rd) . ‖f‖Ms
p,q(Rd)

and

(10) ‖Uf‖Lpt (I;Lqx(Rd)) . ‖f‖Lrs(Rd)

for I ∈ {[−1, 1],R}. We prove the following necessary conditions:
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Proposition 1.2. Let p ≥ 2. Necessary for (9) to hold true is

(11) s ≥ max
(
0, d− d+ 2

p
− d

q

)
.

Necessary for (10) to hold for I = [−1, 1] is

(12) s ≥ max
(
0, d− d

q
− 2

p
− d

r

)
, q ≥ r.

If I = R, we have the additional conditions

(13)
2

p
+
d

q
≤ d

r
.

We refer to Section 2 for the discussion of further conditions.

Proposition 1.2 shows that the estimates in Theorem 1.1 are sharp up to the endpoint regularity for

2 ≤ p ≤ 2(d+2)
d and for (2(d+2)

d ≤ p ≤ ∞ and 2 ≤ q ≤ ∞). Moreover, the examined examples show that
global estimates (10) for I = R and s = 0 are impossible for p > 2. Mandel [41] previously showed this
for d ≥ 2 with a more explicit example.

Corollary 1.3. Suppose that d ≥ 1, p, q ∈ [1,∞], and r ∈ (2,∞]. Then, there is no C such that the
estimate

(14) ‖Uf‖Lpt (R,Lqx(Rd)) ≤ C‖f‖Lr(Rd)

holds true for any f ∈ Lrrad(Rd).

A major difference to Lp-based Sobolev spaces, p 6= 2, is that the propagator U(t) is bounded on
modulation spaces. Already by Bényi et al. [4] was proved the bound for 2 ≤ p ≤ ∞:

(15) ‖U(t)‖Ms
p,q(Rd)→Ms

p,q(Rd) . 〈t〉d
∣∣ 1
2−

1
p

∣∣
.

Chaichenets [13, Section 3.1] observed by duality that the same bound holds for 1 ≤ p ≤ 2, and
sharpness was initially shown by Cordero–Nicola [18]. In [18] Gaussians were used as window functions
in the definition of modulation spaces. Then the sharpness follows by computation of the kernel for a
window. In Section 2 we recover the sharpness of (15) by the discussed examples.

Corollary 1.4 ([13, Section 3.1]). The estimate (15) is sharp for 1 ≤ p, q ≤ ∞ and any s, t ∈ R.

We think that this gives a more robust proof of sharpness. In fact, all the results proved in Sections
2 and 3 have straight-forward counterparts for fractional Schrödinger equations

(16)

{
i∂tu+ (−∆)α/2u = 0, (t, x) ∈ R× Rd,

u(0) = u0 ∈Ms
p,q(Rd)

for α > 1 or non-elliptic Schrödinger equations, e.g.,

(17)

{
i∂tu+ (∂2

1 − ∂2
2)u = 0, (t, x) ∈ R× R2,

u(0) = u0 ∈Ms
p,q(R2).

The latter follow by considering the decoupling inequalities from [10]. Also generalizations to variable
coefficients seem possible under additional assumptions. As decoupling inequalities for variable coefficient
versions of (17) are not explicit in the literature, we take the opportunity to prove them here. As the
results are more technical to state, we refer to Subsection 5.1. Section 5 is based on Chapter 7 of the
author’s PhD thesis [51].

We point out that the examples from Section 2 rely on (non-)stationary phase estimates, for which the
precise form of the phase function is not important, as long as the characteristic surface has non-vanishing
Gaussian curvature.
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We apply the Strichartz estimates to the cubic nonlinear Schrödinger equation:

(18)

{
i∂tu+ ∆u = |u|2u (t, x) ∈ R× R,
u(0) = f ∈ D,

where D ∈ {Lpα(R),Ms
p,2(R) +L2(R)}. We prefer to work in these slightly larger spaces as the Duhamel

term is in L2(R). Denote the solution space by S. For the proof of local well-posedness we apply the Lp-
smoothing estimates to the homogeneous equation and use the usual L2-based inhomogeneous Strichartz
estimates for the Duhamel integral. We shall see that using modulation spaces allows to save Sobolev
regularity: (18) has a local solution if f ∈Ms

6,2 for any s > 0, but considering f ∈ L6
s(R) requires s > 1

3 .

Theorem 1.5. Let ε > 0. (18) is analytically well-posed in the spaces D ∈ {L4
ε(R),Mε

4,2(R) + L2(R)},
ST = L

24
7
t ([0, T ], L4(R)), and in the spaces D ∈ {L6

1
3 +ε

(R),Mε
6,2(R) + L2(R)}, ST = L3

t ([0, T ], L6(R)),

i.e., there is T = T (‖f‖D) such that there is a unique solution in ST .
Furthermore, for D ∈ {Mε

4,2(R) +L2(R),Mε
6,2(R) +L2(R)}, we have u ∈ C([0, T ], D) with continuous

dependence on the initial data.

We remark that one could also add regularity in Lp-spaces to bound the propagator in Lpx(R) via
fixed-time estimates in order to obtain continuous curves in Lp(R) +L2(R). However, one always leaves
the space of initial values as the Schrödinger propagator is unbounded in Lp for p 6= 2.

As the NLS is one of the most prominent nonlinear dispersive equations, the body of literature on
its well-posedness is vast. To put our results into context, we only mention few results and also refer
to the references therein. Tsutsumi [55] applied classical L2-based Strichartz estimates to prove global
well-posedness in L2(R). This is the limit of analytic well-posedness [17, 38] in L2-based Sobolev spaces.
Recently, Harrop-Griffiths–Killip–Vişan [33] proved sharp global well-posedness in Hs(R), s > −1/2,
using complete integrability. Outside L2-based Sobolev spaces, we mention the early works by Vargas–
Vega [56] and Grünrock [28] in Fourier Lebesgue spaces. Hyakuna [35] proved well-posedness results in

Lp-spaces for some 1 < p < 2, and Correia [19] considered generalized energy spaces Ḣ1(Rd)∩Lp(Rd) for
p > 2. Chaichenets et al. [14] showed the first global results in modulation spaces Mp,p′ for p sufficiently
close to 2 without smallness assumption on the initial data; see also [15, 16].

In the recent work [20] Dodson–Soffer–Spencer (see also [21]) used fixed-time Lp-estimates

(19) ‖eit∆f‖Lp(Rd) . ‖f‖Lpα(Rd)

and Picard iteration to prove well-posedness of (18) with X0 = Lps(R) for 2 < p < ∞. We remark that
the sharp derivative loss α = 2d

∣∣ 1
2 −

1
p

∣∣ for Lp-estimates (19) is known since the work of Fefferman–

Stein [22] and Miyachi [42]. However, the sharp estimates were not used in [20], which resulted in high
regularity. We show how the sharp fixed time and smoothing estimates improve the results in [20] for
p = 4n + 2, n ≥ 2, and also show global results with arguments due to Dodson et al. [20]. We contend
that the splitting method applied in [56, 14], further reaching back to Bourgain’s seminal contribution
[6], to be related with the present approach to prove the global result.

Theorem 1.6. Let T > 0 and s > 3
2 . If f ∈ Ms

4,2(R), then there exists a unique solution u ∈
L

24
7
t ([0, T ], L4)∩C([0, T ],Ms

4,2(R) +L2(R)) to (42), which depends continuously on the initial data, i.e.,
for any T > 0 and fn → f ∈Ms

4,2(R), we have

‖un − u‖
L

24
7
t ([0,T ],L4)∩C([0,T ],Ms

4,2(R)+L2(R))
→ 0.

If f ∈Ms
6,2(R), then there exists a unique solution u ∈ L3

t ([0, T ], L6)∩C([0, T ],Ms
6,2(R)+L2(R)) with

continuous data-to-solution mapping f 7→ u as above.

Outline of the paper. In Section 2 we give necessary conditions for Lp-smoothing estimates in mod-
ulation spaces and Strichartz estimates in Lp-based Sobolev spaces. These rule out global Strichartz
estimates for initial data in Lr(Rd), r > 2. In Section 3 we show Theorem 1.1 via `2-decoupling. In
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Section 4 the estimates are applied to show new local and global well-posedness for the NLS. In Section
5 we show decoupling inequalities for variable coefficient versions of Schrödinger equations.

2. Necessary conditions

The purpose of this section is to collect necessary conditions to find the following estimates to hold:

(20) ‖Uf‖Lpt ([−1,1],Lq(Rd)) . ‖f‖Ms
r,t(Rd),

and

(21) ‖Uf‖Lpt (I;Lqx(Rd)) . ‖f‖Lrs(Rd).

We shall use three Knapp-type examples, which are essentially well-known in the literature [54, 48].
However, it seems that these have not been examined in the above contexts.

We start with the anisotropic Knapp example at unit frequencies, which was previously used to de-
termine the range of integrability coefficients for the L2-based Strichartz estimate (21) (cf. [54, 53]).
Consider

(22) ĝε(ξ) = χ(1−ε,1+ε)(ξ1)χ(−ε,ε)(ξ2) . . . χ(−ε,ε)(ξd).

We compute

(23) ‖f‖Lrs(Rd) ∼ εd−
d
r , and ‖gε‖Ms

r,t(Rd) ∼ εd−
d
r

for any s ∈ R, 1 ≤ r, t ≤ ∞.
We observe

Ugε(x, t) = Cd

∫
Rd
ei(x.ξ+t|ξ|

2)χ(1−ε,1+ε)(ξ1)χ(−ε,ε)(ξ2) . . . χ(−ε,ε)(ξd)dξ

= Cde
ix1eit

∫
Rd
ei((x+2te1).ξ+t|ξ|2)χ(−ε,ε)(ξ1) . . . χ(−ε,ε)(ξd)dξ.

Hence, |Uf(x, t)| & εd provided that t ∈ [−ε−2, ε−2] and |x+ 2te1| . ε−1.
Suppose that (21) holds true with I = R. Then,

εd−
2
p−

d
q . ‖Uf‖Lpt (R;Lqx(Rd)) . ‖f‖Ms

r,t(Rd) ∼ ‖f‖Lrs(Rd) . ε
d− dr ,

which requires

(24)
2

p
+
d

q
≤ d

r
.

For I = [−1, 1], we find

εd−
d
q . ‖Uf‖Lpt (I;Lqx(Rd)) . ‖f‖Ms

r,t(Rd) ∼ ‖f‖Lrs(Rd) . ε
d− dr .

As ε→ 0, this yields q ≥ r.
The variant of the anisotropic Knapp-example at high frequencies rules out gain of derivatives: For

λ ∈ 2N consider

(25) f̂λ(ξ) = χ(λ−1,λ+1)(ξ1)χ(−1,1)(ξ2) . . . χ(−1,1)(ξd).

We note that

(26) ‖fλ‖Ms
r,t(Rd) ∼ ‖fλ‖Lrs(Rd) ∼ λs.

Setting ε = λ−1, we find
fλ(x) = λdgε(λx).

Furthermore, we find by change of variables and the computation for the unit frequency anisotropic
Knapp-example:

‖Ugε(λ·)‖Lpt ([−1,1];Lqx(Rd)) = λ−
2
p−

d
q ‖Ugε‖Lpt ([−λ2;λ2];Lqx(Rd)) & λ

−d.
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By (26) the validity of (21) or (20) requires s ≥ 0.

Finally, we examine the isotropic Knapp-example, previously inspected in [48]. Let θ : Rn → R denote
a radial function, supported in {2−2 ≤ |ξ| ≤ 4} and equal to 1 on {2−1 ≤ |ξ| ≤ 2}. We consider the
radially symmetric functions

(27) fλ(x) =
( λ

2π

)n ∫
θ(ξ)ei(λ〈x,ξ〉−λ

2|ξ|2)dξ.

By stationary phase, it was computed in [48, p. 50] that

|fλ(x)| . 1, |x| � λ : |fλ(x)| ≤ CN (λ−1|x|)−N .
Hence,

‖fλ‖Lrs(Rd) . λ
s+ d

r .

Moreover,

‖fλ‖Ms
r,t(Rd) . λ

s+ d
t .

The latter estimate follows as there are ∼ λd unit cubes in the λ-annulus and all of them give rise to a
comparable Lp-norm.

Again by (non-)stationary phase, we find the lower bound (cf. [48, p. 50])

(28)
( ∫ 1

1−λ−2/10

‖eit∆fλ‖pLq(Rd)

)1/p
& λd−

d
q−

2
p .

Hence, we find for (21) to hold:

λd−
d
q−

2
p . ‖Ufλ‖Lpt ([−1,1];Lqx(Rd)) . ‖fλ‖Lrs(Rd) . λ

d
r+s.

As λ→∞, we find

(29) d− d

q
− 2

p
≤ d

r
+ s.

We find the following for (20) to be true:

λd−
d
q−

2
p . ‖Ufλ‖Lpt ([−1,1];Lqx(Rd)) . ‖fλ‖Ms

r,t(Rd) . λ
d
t+s.

Taking λ→∞, we find

(30) d− d

q
− 2

p
≤ d

t
+ s.

We are ready for the proof of Proposition 1.2:

Proof of Proposition 1.2. The claim (11) follows from the anisotropic Knapp-example at high frequencies
and the isotropic Knapp-example (30).
Likewise, (12) follows. The condition q ≥ r follows from considering the anisotropic Knapp-example at
low frequencies for finite times; the additional integrability condition (13) follows from considering the
anisotropic Knapp-example globally in time. The proof is complete. �

We give the proof of Corollary 1.3, which asserts non-existence of global Strichartz estimates

(31) ‖Uf‖Lpt (R;Lqx(Rd)) . ‖f‖Lr(Rd).

Proof of Corollary 1.3. In addition to the examples from above, we note the scaling condition

(32)
2

p
+
d

q
=
d

r
.

By considering the isotropic Knapp-example (29), using (32), and assuming (31), we find

λd−
2
p−

d
q = λd−

d
r . λ

d
r .

For r > 2 and λ→∞ this is impossible. �
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Lastly, we show Corollary 1.4, which asserts the sharp time-dependence in the fixed time estimate in
modulation spaces.

Proof of Corollary 1.4. For |t| . 1 there is nothing to prove. For |t| � 1, we consider again a non-trivial

Schwartz initial data, radially symmetric, with suppf̂ ⊆ B(0, 1). For this we find by non-stationary
phase ∣∣ ∫ eix.ξeit|ξ|

2

f̂(ξ)dξ
∣∣ .N (1 + |x|)−N

for |x| � |t|. Moreover, ∣∣ ∫ eix.ξeit|ξ|
2

f̂(ξ)dξ
∣∣ & (1 + |t|)− d2

for |x| . |t| by [34, Theorem 7.7.5]. Hence, for |t| ≥ 1,

‖U(t)f‖Lp(Rd) & |t|−
d
2 |t|

d
p .

This shows

‖U(t)‖Ms
p,q→Ms

p,q
& 〈t〉d|

1
2−

1
p |

for 1 ≤ p ≤ 2. By duality, we find the bound for 2 ≤ p ≤ ∞. �

3. `2-decoupling implies Strichartz in modulation spaces

In this section we show Theorem 1.1. In the remainder of the section let I = [0, 1]. Define

(33) s(p, d) =

{
0, 2 ≤ p ≤ 2(d+2)

d ,
d
2 −

d+2
p , 2(d+2)

d < p ≤ ∞.

To conclude Theorem 1.1, it is enough to prove the estimates

‖Uf‖Lp(I×Rd) . ‖f‖Ms(p,d)+ε
p,2 (Rd)

,(34)

‖Uf‖Lp(I×Rd) . ‖f‖Mp,1(Rd).(35)

The remaining estimates follow after frequency localization and Hölder’s inequality in the `q-spaces.
(34) is a consequence of `2-decoupling. After decoupling, this follows via a kernel estimate. The proof

of (35) also invokes the kernel estimate. We set

Ef(x, t) =

∫
Rd
ei(x.ξ+t|ξ|

2)f(ξ)dξ.

Recall the `2-decoupling theorem due to Bourgain–Demeter [9]:

Theorem 3.1 (`2-decoupling for the paraboloid). Let supp(f) ⊆ {ξ : |ξ| ≤ 1}. Then, for any R ≥ 1,
we find the following estimate to hold:

‖Ef‖Lp(Bd+1(0,R)) .ε R
εRs(p,d)

( ∑
�:R−

1
2−cube

‖Ef�‖2Lp(w(B(0,R))

) 1
2 .

In the above display w(B(0, R)) denotes a smooth version of the indicator function on B(0, R) with
high polynomial decay off B(0, R); see Subsection 5.1 for further explanation. We show that Theorem
3.1 implies Strichartz estimates in modulation spaces firstly for frequency localized functions:

Proposition 3.2. Let supp(f̂) ⊆ {ξ : λ4 ≤ |ξ| ≤ 4λ}. Then, we find the following estimate to hold

(36) ‖Uf‖Lp(Rd)×I) .ε λ
ε+s(p,d)‖f‖Mp,2

.

for any ε > 0.
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Proof. It is enough to consider for B = Bd(0, λ)

(37) ‖Uf‖Lp(B×I) .ε λ
s(p,d)+ε‖f‖Mp,2(wB)

because we can write
‖Uf‖p

Lp(Rd×I) =
∑

B′:λ-ball

‖Uf‖pLp(B′×I).

Then, by translation invariance and Minkowski’s inequality, we deduce from (37)

‖Uf‖Lp(Rd×I) =
( ∑
B′:λ-ball

‖Uf‖pLp(B′×I)
) 1
p .ε λ

s(p,d)+ε
( ∑
B′:λ-ball

‖f‖pMp,2(wB′ )

) 1
p

.ε λ
s(p,d)+ε

( ∑
B′:λ-ball

(∑
k

‖�kf‖2Lp(wB′ )

) p
2
) 1
p

.ε λ
s(p,d)+ε

(∑
k

( ∑
B′:λ-ball

‖�kf‖pLp(wB′ )

) 2
p
) 1

2

.ε λ
s(p,d)+ε

(∑
k

‖�kf‖2Lp(Rd)

) 1
2 .

The ultimate estimate follows from summing the rapidly decaying weights. We turn to estimate ‖Uf‖Lp(B×I).
Via scaling we reduce to unit frequencies:

(38) ‖Uf‖Lp(I×Bd(0,λ)) = λ
d+2
p ‖Ug‖Lp(Bd+1(0,λ2))

with g(x) = f(x/λ).
We observe by rescaling and `2-decoupling:

‖
∫
ei(x.ξ+t|ξ|

2)f̂(ξ)dξ‖Lp(I×Bd(0,λ)) = λ−
d+2
p ‖

∫
ei(x

′.ξ′+t′|ξ′|2)ĝ(ξ′)dξ′‖Lp(Bd+1(0,λ2))

.ε λ
s(p,d)+ε− d+2

p
( ∑
�:λ−1cube

‖Ug�‖2Lp(wBd+1(0,λ2)

) 1
2 .

The claim follows by a fixed-time kernel estimate. We compute the kernel with aλ denoting the indicator
function of the λ−1-box centered at ξ0:

K(x, t) =

∫
ei(x.ξ+t|ξ|

2)aλ(ξ)dξ

Via a change of variables and Galilean symmetry, we find

K(x, t) = λ−deix.ξ0ei
t|ξ0|

2

λ2

∫
ei
(
x.ξ′
λ +

2ξ0.ξ
′

λ t
)
eit
|ξ|2

λ2 a(ξ)dξ = λ−deix.ξ0ei
t|ξ0|

2

λ2

∫
ei
ξ′.y
λ eit

|ξ′|2

λ2 a(ξ′)dξ′.

By non-stationary phase, we find the following estimate:

|K(x, t)| . λ−d
(
1 + λ−1|y|+ λ−2|t|

)−N
Hence, a fixed time kernel estimate gives for |t| ≤ λ2

‖Ug�(t)‖Lp(Rd) . ‖g�‖Lp(Rd).

Integration in time gives

‖Ug�‖Lp(wBd+1(0,λ2))
. λ

2
p ‖g�‖Lp(Rd).

We conclude the proof by inverting the change of variables:

λs(p,d)+ε− d+2
p
( ∑
�:λ−1cube

‖Ug�‖2Lp(wBd+1(0,λ2))

) 1
2

. λελs(p,d)λ−
d
p
(∑

�

‖g�‖2Lp
) 1

2 . λε+s(p,d)
(∑

k

‖�kf‖2Lp
) 1

2 .

�
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By Galilean invariance and a related kernel estimate we prove the following:

Proposition 3.3. Let 2 ≤ p ≤ ∞. Then, we find the following estimate to hold:

(39) ‖Uf‖Lp([−1,1]×Rd) . ‖f‖Mp,1 .

Proof. By Minkowski’s inequality, it suffices to show

(40) ‖U�kf‖Lp([−1,1]×R) . ‖�kf‖Lp(Rd).

By Galilean invariance, we observe with ĝ(ξ) = f̂(ξ + k)

‖U�kf(t)‖Lp = ‖U�0g(t)‖Lp .

Let χ ∈ C∞c (Rd). Clearly, K(x, t) =
∫
Rd χ(ξ)ei(x.ξ+t|ξ|

2)dξ is uniformly in L1(Rd) for |t| ≤ 1. Thus,

‖U�0g‖Lp([−1,1]×Rd) . ‖�0g‖Lp(Rd) . ‖�kf‖Lp(Rd).

�

We can conclude the proof of Theorem 1.1:

Proof of Theorem 1.1. (D) is Proposition 3.3. Next, we show (A), (B), and (C) for q = 2. By Stein’s
square function estimate, Minkowski’s inequality, and (36), we find

‖Uf‖Lp([−1,1]×Rd) .
∥∥(∑

N

|PNUf |2
) 1

2
∥∥
Lp([−1,1]×Rd)

.
(∑
N

‖PNUf‖2Lp([−1,1]×Rd)

) 1
2

.ε
(∑
N

N2(s(p,d)+ε)‖PNf‖2Mp,2

) 1
2 . ‖f‖

M
s(p,d)+ε
p,2

.
(41)

For 1 ≤ q ≤ 2, (A) follows from (41) and interpolating with (D) and for q ≥ 2, we use the embedding
(6). Likewise, (B) follows for q ≥ 2 via (6). (C) follows from interpolating (B) for q = 2 with (D).

�

4. Solving the nonlinear Schrödinger equation with slowly decaying initial data

In the following we solve the nonlinear Schrödinger equation

(42)

{
i∂tu+ ∆u = |u|2u, (t, x) ∈ R× R,
u(0) = u0 ∈ D

outside L2-based Sobolev spaces.

4.1. Local well-posedness of the cubic NLS for slowly decaying initial data. In this subsection
we prove new local well-posedness results. The local results do not take advantage of the defocusing
effect, and the results in this section also hold for the focusing equation:{

i∂tu+ ∆u = −|u|2u, (t, x) ∈ R× R,
u(0) = u0 ∈ D.

The smoothing estimates are the key ingredient to estimate the homogeneous solution. In the following
we use the terminology due to Bejenaru–Tao [2, Section 3]. For further reference, we write (42) as abstract
evolution equation

(43) u = L(f) +N3(u, u, u),

where u takes values in some solution space S, L : D → S is a densely defined linear operator, and the
trilinear operator N3 : S × S × S → S is likewise densely defined. As in [2, Section 3], we refer to (43)
as quantitatively well-posed in the spaces X, S, if the estimates

‖Lf‖S ≤ C‖f‖D,(44)

‖N3(u1, u2, u3)‖S ≤ C‖u1‖S‖u2‖S‖u3‖S(45)
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hold true for all f ∈ D, and u1, u2, u3 ∈ S and some constant C. This implies analytic well-posedness
(cf. [2, Theorem 3]) and an expression of the solution in terms of its Picard iterates: We define the
nonlinear maps Am : D → S for m = 1, 2, . . . by the recursive formulae

A1f = Lf,

Amf =
∑

m1,m2,m3≥1,
m1+m2+m3=m

N3(Am1
f,Am2

f,Am3
f) for m > 1.

Then we have the homogeneity property

Am(λf) = λmAm(f) for all λ ∈ R, m ≥ 1 and f ∈ D,

and the Lipschitz bound derived from (44) and (45)

‖Am(f)−Am(g)‖S ≤ ‖f − g‖DCm1
(
‖f‖D + ‖g‖D

)m−1
.

Furthermore, we have the absolutely convergent (in S) power series expansion

u[f ] =

∞∑
m=1

Am(f)

for all f ∈ BD(0, ε0). In case of (42), we have A1f = Lf = (U(t)f)t∈R and for m > 1, Am = 0 if not
m = 2j + 1 for some j ∈ N. A2j+1 admits expansion into ternary trees of depth j with 2j + 1 nodes.

To show the linear estimate in Theorem 1.5 for initial data in Lps(R), we use the following Schrödinger
smoothing estimates due to Rogers in the special case of one dimension:

Theorem 4.1 ([47, Theorem 1]). Let p ≥ 4. Then, we find the following estimate to hold

(46) ‖eit∂xxu0‖Lp([−1,1]×R) . ‖u0‖Lpα(R)

provided that α > 2
(

1
2 −

1
p

)
− 2

p .

Note that the case p = 4 is not mentioned in [47, Theorem 1], but follows by interpolating estimates
for p > 4 with the energy estimate

‖eit∂xxu0‖L2([−1,1]×R) . ‖eit∂xxu0‖L∞([−1,1],L2(R)) . ‖u0‖L2(R).

The linear estimate for initial data in modulation spaces follows from Theorem 1.1. To show the
trilinear estimate, we use inhomogeneous Strichartz estimates. Recall the following inhomogeneous
Strichartz estimates for the one-dimensional Schrödinger equation (cf. [37, 26]):

Theorem 4.2. Let qi, pi ≥ 2 for i = 1, 2 and 2
pi

+ 1
qi
≤ 1

2 . Then, we find the following estimate to hold:

‖u‖Lp1t ([0,T ],L
q1
x (R)) . ‖u(0)‖L2(R) + ‖(i∂t + ∂2

x)u‖
L
p̃′2
t ([0,T ],L

q̃′2
x (R))

.

We are ready for the proof of Theorem 1.5:

Proof of Theorem 1.5. In the following we consider 0 < T ≤ 1. The claim follows from [2, Theorem 3]
once the linear and trilinear estimate are proved. For the linear estimate in Lp-spaces, it suffices to prove
for f ∈ L4

s(R) or f ∈ L6
s(R)

‖Lf‖
L

24
7
t ([0,T ],L4(R))

. T
1
24 ‖f‖L4

ε(R),(47)

and ‖Lf‖L3
t ([0,T ],L6(R)) . T

1
6 ‖f‖L6

1
3
+s

(R).(48)

These estimates follow after Hölder in time from the Lp-smoothing estimate (46).
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For the linear estimates in modulation spaces, we decompose f = f1 + f2, f1 ∈ Ms
4,2(R) or f1 ∈

Ms
6,2(R), and f2 ∈ L2(R). It suffices to show

‖Lf‖
L

24
7
t ([0,T ],L4

x(R))
. T

1
24 (‖f1‖Ms

4,2(R) + ‖f2‖L2(R)),(49)

and ‖Lf‖L3
t ([0,T ],L6

x(R)) . T
1
6 (‖f1‖Ms

6,2(R) + ‖f2‖L2(R)).(50)

Both estimates hold true by Theorem 1.1 applied to Lf1 and Strichartz estimates applied to Lf2. The
trilinear estimate follows from the estimates

‖
∫ t

0

ei(t−s)∂
2
xF (s)ds‖L8

t ([0,T ],L4
x(R)) . ‖F‖

L
8
7
t ([0,T ],L

4
3
x (R))

and

‖
∫ t

0

ei(t−s)∂
2
xF (s)ds‖L6

t ([0,T ],L6
x(R)) . ‖F‖L1

t ([0,1],L2
x(R)),

which are both covered by Theorem 4.2, and applying Hölder’s inequality. Hence, choosing T = T (‖f‖D),
we can apply the contraction mapping principle in Lrt ([0, T ], Lp(R)) with r as above.

To prove u ∈ C([0, T ],Mε
p,2 + L2), it suffices to show Lf ∈ C([0, T ],Mε

p,2 + L2) and N3(u, u, u) ∈
C([0, T ],Mε

p,2 + L2). Let f = f1 + f2 with f1 ∈ Mε
p,2 and f2 ∈ L2. By Minkowski’s inequality, we find

by U(t)Mε
p,2 = Mε

p,2 and U(t)L2 = L2 that

lim
t→0
‖(Uf)(t)− f‖Mε

p,2+L2 ≤ lim sup
t→0

‖Uf1(t)− f1‖Mε
p,2

+ lim sup
t→0

‖Uf2(t)− f2‖L2 = 0.

The continuity in Mε
p,2 and L2 is a consequence of (U(t))t∈R a C0-group in both spaces.

For N3(u, u, u), it suffices to show continuity in L2. By Strichartz estimates, we find

(51) ‖N3(u, u, u)‖L∞t ([0,T ],L2) . ‖u‖3Lrt ([0,T ],Lp)

and ∥∥∫ t

0

ei(t−s)∆(|u|2u)(s)ds−
∫ t+δ

0

ei((t+δ)−s)∆(|u|2u)(s)ds
∥∥
L2

≤
∥∥(eiδ∆ − 1)

∫ t

0

ei(t−s)∆(|u|2u)(s)ds
∥∥
L2 +

∥∥ ∫ t+δ

t

ei((t+δ)−s)∆(|u|2u)(s)ds
∥∥
L∞δ∈IL

2 .

For the first term, the limit is zero as N3(u, u, u)(t) ∈ L2 by (51) and (U(t))t∈R a C0-group in L2. For
the second term, we use again Strichartz estimates to find∥∥ ∫ t+δ

t

ei((t+δ)−s)∆(|u|2u)(s)ds
∥∥
L∞δ∈IL

2 . ‖u‖3Lrt (I,Lp).

By multilinearity, we see by similar arguments that for differences of solutions

‖u− ũ‖C([0,T ],Mε
p,2+L2) → 0

for ‖u(0)−ũ(0)‖Mε
p,2+L2 → 0 provided that T = T (‖u(0)‖Mε

p,2+L2 , ‖ũ(0)‖Mε
p,2+L2) is chosen small enough,

according to the local existence time in Lrt ([0, T ], Lp). The proof is complete.
�

We remark that we have some flexibility in the solution space S = Lpt ([0, T ], Lpx(R)). For small initial
data, we can likewise iterate in L4

t,x([0, 1] × R) or L6
t,x([0, 1] × R). For p > 6, although the sharp linear

estimates are still at disposal, it is not clear how to apply inhomogeneous Strichartz estimates as directly
as above.
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4.2. Improved local results for slowly decaying data. In the following we apply the iteration
worked out by Dodson et al. [20] with the sharp fixed time and smoothing estimate. For simplicity,
we focus on the small data case with T = 1. We recall the sharp fixed-time estimate for the linear
propagation due to Fefferman–Stein [22] and Miyachi [42] for convenience.

Theorem 4.3 ([22, 42]). Let 1 < p <∞, d ≥ 1. Then, we find the following estimate to hold

(52) ‖eit∆u0‖Lp(Rd) . ‖u0‖Lpα(Rd)

for α ≥ 2d
∣∣ 1

2 −
1
p

∣∣.
Let n ≥ 2. The idea in [20] to solve (42) with initial data in L4n+2

s(n) is to split the expansion

u[f ] =
∑
m≥1

Am(f) = Lf +N3(u, u, u)

not into linear and nonlinear part, but to consider higher Picard iterates

u0(t) = Lf,

u1(t) = N3(u0, u0, u0), . . .

uj(t) = N3(

j−1∑
k=0

uk,

j−1∑
k=0

uk,

j−1∑
k=0

uk)− uj−1(t).

(53)

and to prove existence of v ∈ S0([−1, 1]× R) = L∞t L
2
x ∩ L4

tL
∞
x , which solves

v = u−
n−1∑
j=0

uj .

This is equivalent to

(54) v = N3(u, u, u)−
n−1∑
j=1

uj = N3(v +

n−1∑
j=0

uj , v +

n−1∑
j=0

uj , v +

n−1∑
j=0

uj)−
n−1∑
j=1

uj .

This approach requires to prove estimates for Am(f) directly. We have the following:

Lemma 4.4. Let n ≥ 2 and m ∈ {1, . . . , 2n− 1}. With the above notations, we find

(55) ‖Amf‖
L∞t L

4n+2
m
. ‖f‖m

L4n+2
α

for α > (n− 1)
(
2− 6

4n+2

)
+ 4n−2

4n+2 .
Furthermore, the estimate

(56) ‖Amf‖
L∞t L

4n+2
m
. ‖f‖m

Mβ
4n+2,2

holds true with β > (n− 1)
(
2− 6

4n+2

)
+ 2n−2

4n+2 .

Proof. In the following we estimate Amf in L
4n+2
m recursively. Let

(57) α1 = 2
(1

2
− 1

4n+ 2

)
− 2

4n+ 2
= 1− 4

4n+ 2
=

4n− 2

4n+ 2

such that by Lp-smoothing estimates in Theorem 4.1

‖A1f‖L4n+2
t,x

. ‖〈∂x〉α1+εf‖L4n+2 .

For m > 1 let αm denote the number of derivatives such that

‖Amf‖
L∞t L

4n+2
m

x

. ‖〈∂x〉αmf‖mL4n+2
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and αm ≥ αm−2. By

Amf =
∑

m1,m2,m3≥1:
m1+m2+m3=m

∫ t

0

ei(t−s)∂
2
x(Am1

f)(s)(Am2
f)(s)(Am3

f)(s)ds,

we can use Minkowski’s inequality, the fixed time estimate with δm = 2
(

1
2 −

m
4n+2

)
, and Leibniz’s rule

to conclude (again we do not keep track of complex conjugates as the estimates are invariant)

‖Amf‖
L

4n+2
m
≤

∑
m1,m2,m3≥1:
m1+m2+m3=m

‖〈∂x〉δm
[
(Am1

f)(Am2
f)(Am3

f)
]
‖
L1
tL

4n+2
m

x

.
∑

m1,m2,m3≥1:
m1+m2+m3=m

‖〈∂x〉δmAm1
f‖

L3
tL

4n+2
m1
x

‖〈∂x〉δmAm2
f‖

L3
tL

4n+2
m2
x

‖〈∂x〉δmAm3
f‖

L3
tL

4n+2
m3
x

.

Hence, αm ≤ δm + αm−2. Iterating the argument yields

(58) αm ≤ δm + δm−2 + . . .+ δ3 + α1 + ε =

j∗∑
j=0

δm−2j + α1 + ε.

We compute αm for m = 2n− 1. In this case m− 2j∗ = 3, j∗ = n− 2. We evaluate the sum as

j∗∑
j=0

δm−2j = 2(j∗ + 1)− 2

4n+ 2

j∗∑
j=0

(m− 2j)

= 2(j∗ + 1)− 2

4n+ 2

(
(j∗ + 1)m− 2(j∗ + 1)j∗

)
= (n− 1)(2− 6

4n+ 2
).

Hence, the above display yields (55) by (58) and (57). For the proof of (56) let

β1 =
1

2
− 3

4n+ 2
=

2n− 2

4n+ 2

such that by Lp-smoothing in modulation spaces

‖A1f‖L4n+2
t,x

. ‖f‖
M
β1+ε
4n+2,ε

.

For m > 1 let βm denote the number of derivatives such that

‖Amf‖
L∞t L

4n+2
m

x

. ‖f‖m
Mβm

4n+2,2

and βm ≥ βm−2. By the same argument as above,

βm ≤ δm + δm−2 + . . .+ δ3 + β1 + ε =

j∗∑
j=0

δm−2j + β1 + ε.

For m = 2n− 1 this proves (56).
�

In the following, for fixed n ≥ 2, let

α = (n− 1)
(
2− 6

4n+ 2

)
+

4n− 2

4n+ 2
, β = (n− 1)

(
2− 6

4n+ 2

)
+

2n− 2

4n+ 2
.

A variant of the argument proves the following:
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Lemma 4.5. Let n ≥ 2, 0 ≤ j ≤ n− 1, and uj as in (53). Then, for ε > 0, there are εn ≤ 1 and ε̃n ≤ 1
such that

‖uj‖L∞t,x + ‖uj‖
L∞t L

4n+2
2j+1

. ‖〈∂x〉α+ 1
2 +εf‖L4n+2

holds true provided that ‖〈∂x〉α+ 1
2 +εf‖L4n+2 ≤ εn, and

‖uj‖L∞t,x + ‖uj‖
L∞t L

4n+2
2j+1

. ‖f‖
M
β+1

2
+ε

4n+2,2

holds true provided that ‖f‖
M
β+1

2
+ε

4n+2,2

≤ ε̃n.

The iteration is the same as in the proof of Lemma 4.4, with additional terms estimated with uj also
in L∞x . We can prove existence of v with the above estimates at hand:

Proposition 4.6. Let ε > 0, n ≥ 2, and εn, ε̃n ≤ 1 as in Lemma 4.5. Then, there is a unique v ∈ S0

satisfying (54).

Proof. We rewrite (54) modulo order of the arguments in N3 as

v = N3(v, v, v) + 3N3(v, v,

n−1∑
j=0

uj) + 3N3(v,

n−1∑
j=0

uj ,

n−1∑
j=0

uj)

+N3(

n−1∑
j=0

uj ,

n−1∑
j=0

uj ,

n−1∑
j=0

uj)−
n−1∑
j=1

uj .

By Theorem 4.2 and uj ∈ L∞t,x by Lemma 4.5, we find

‖N3(v, v, v)‖S0 . ‖v‖3S0 , ‖N3(v, v,

n−1∑
j=0

uj)‖S0 . ε‖v‖2S0 , ‖N3(v,

n−1∑
j=0

uj ,

n−1∑
j=0

uj)‖S0 . ε2‖v‖S0 .

We rewrite the last term as

N3(

n−1∑
j=0

uj ,

n−1∑
j=0

uj ,

n−1∑
j=0

uj)−N3(

n−2∑
j=0

uj ,

n−2∑
j=0

uj ,

n−2∑
j=0

uj)

and estimate again via Strichartz estimates

‖N3(

n−1∑
j=0

uj ,

n−1∑
j=0

uj ,

n−1∑
j=0

uj)−N3(

n−2∑
j=0

uj ,

n−2∑
j=0

uj ,

n−2∑
j=0

uj)‖S0

. ‖un−1‖
L∞t L

4n+2
2n−1

( n−1∑
j=0

‖uj‖L∞t L4n+2
x

)2
. ε2n+1.

The claim follows from applying the contraction mapping principle. �

We have proved the following local well-posedness result for slowly decaying data:

Theorem 4.7. Let ε > 0, n ≥ 2, and f , εn, ε̃n as in Proposition 4.6. Let 2
p + 1

4n+2 = 1
2 . Then, there

is u ∈ Lpt ([0, 1], L4n+2(R)), which satisfies (43). Furthermore, for ‖f1‖L4n+2

α+1
2
+ε

+ ‖f2‖L4n+2

α+1
2
+ε

≤ εn or

‖f1‖
M
β+1

2
+ε

4n+2,2

+ ‖f2‖
M
β+1

2
+ε

4n+2,2

≤ ε̃n, we have for the corresponding solutions ‖u1 − u2‖Lp([0,1],L4n+2) → 0 as

‖f1 − f2‖L4n+2

α+1
2
+ε

→ 0 or ‖f1 − f2‖
M
β+1

2
+ε

4n+2,2

→ 0, respectively.

Proof. The claim follows as v ∈ Lpt ([0, 1], L4n+2) by Proposition 4.6 and uj ∈ L∞t ([0, 1], L4n+2). Hence,

u =

n−1∑
j=0

uj + v = Lf +N3(u, u, u) ∈ Lpt ([0, 1], L4n+2),
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and the continuity of the data-to-solution mapping follows from multilinearity. �

4.3. Global well-posedness in modulation spaces. Next, we show global results in modulation
spaces stated in Theorem 1.6. We use the blow-up alternative due to Dodson–Soffer–Spencer [20, Sec-
tion 3]. Since we work with initial data in modulation spaces, for which we have improved homogeneous
Strichartz estimates, this requires less Sobolev regularity compared to the Lp-case.

Let w(t) = U(t)f denote the first Picard iterate, and let v(t) = u(t)− w(t). Then v satisfies

v(t) = N3(v + w, v + w, v + w).

We have the following blow-up alternative:

Lemma 4.8 (Blow-up alternative). Let s > 0, and f ∈ Ms
4,2(R) + L2(R). If T ∗ is maximal such that

u ∈ L
24
7
t ([0, T ∗], L4(R)) for T < T ∗, but u /∈ L

24
7
t ([0, T ∗], L4(R)), then

lim
t→T∗

‖v(t)‖L2 =∞.

The same blow-up alternative holds for f ∈Ms
6,2(R) + L2(R) in the solution space L3

t ([0, T ], L6(R)).

Proof. We shall only look into the case f ∈Ms
4,2(R)+L2(R) as the second claim follows mutatis mutandis.

We argue by contradiction. Let (tn) ⊆ [0, T ∗), tn → T ∗, but

(59) ‖v(tn)‖L2(R) ≤ C.

Firstly, letting f = f1 + f2, f1 ∈Ms
4,2(R) and f2 ∈ L2(R), we have

‖Lf1(t)‖Ms
4,2(R) .T∗ ‖f1‖Ms

4,2(R), ‖Lf2(t)‖L2(R) ≤ ‖f2‖L2(R)

Hence, ‖Lf(t)‖Ms
4,2(R)+L2(R) .T∗ ‖f‖Ms

4,2(R)+L2(R). But together with (59), this implies that there is a

sequence tn → T ∗ with

‖u(tn)‖Ms
4,2(R)+L2(R) ≤ C̃.

Since the local existence time of solutions in L
24
7
t ([0, T ], L4

x(R)) only depends on ‖f‖Ms
4,2(R)+L2(R) by

Theorem 1.5, we see that we can continue the solutions beyond T ∗. This is a contradiction. �

Hence, for the proof of global well-posedness it suffices to show

sup
t∈[0,T ]

‖v(t)‖L2 ≤ C(T )

for some non-decreasing function C : [0,∞)→ [0,∞). Let

M(v) =
1

2

∫
|v|2dx,

E(v) =

∫
1

2
|vx|2 +

1

4
|v|4dx,

Ẽ(v) =

∫
1

2
|vx|2 +

1

4
(|v + w|4 − |w|4)dx.

Note that a priori it is not clear that E(v(t)) is finite for t 6= 0. The following computations are carried
out for initial data from a suitable a priori class, say f ∈ S(R). This ensures all quantities to be finite
and allows to justify integration by parts arguments. Since we prove bounds depending only on ‖u0‖Ms

p,q

for p <∞, the arguments are a posteriori justified by density and well-posedness.
For the homogeneous solutions, we observe by the fixed time estimate in modulation spaces and their

embedding properties,

‖w(t)‖Ms
4,2
. 〈t〉 18 ‖w(0)‖Ms

4,2
, ‖w(t)‖L4 . ‖w(t)‖M4,4/3

. ‖w(t)‖
M

1
4
+ε

4,2

.
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By Sobolev embedding, we have for any t ∈ [0, T ]

(60) ‖〈∂x〉w(t)‖L4 + ‖〈∂x〉w(t)‖L∞ .T ‖w(0)‖
M

3
2
+ε

4,2

.

For L6-based modulation spaces, we find by the same embedding properties

(61) ‖〈∂x〉w(t)‖L∞ + ‖〈∂x〉w(t)‖L6 .T ‖w(0)‖
M

3
2
+ε

6,2

.

Hence, Hölder’s inequality and the assumptions on the initial data imply

E ≤ C(T )(Ẽ +M + 1).

By Lemma 4.8, solutions in Lp([0, T ], Lq) with p, q as in Theorem 1.6 for any T > 0 follow from the
following:

Proposition 4.9. Let ε > 0, f ∈M
3
2 +ε

4,2 or f ∈M
3
2 +ε

6,2 . For all T > 0, we have

sup
t∈[0,T ]

M(v(t)) + E(v(t)) .T 1.

Moreover, Theorem 1.6 follows from this proposition by piecing together the local solutions. We turn
to its proof:

Proof of Proposition 4.9. Let

(f, g) = <
∫
f(x)g(x)dx.

We aim to bound the quantity M(v) + Ẽ(v) + 1 by Grønwall’s lemma. For the derivative of M , we
compute

∂tM(v) = (v, vt) = (v,−i(vxx + |v + w|2(v + w))

= (v, 2|v|2w + v2w + 2|w|2v + w2v + |w|2w).

By Hölder’s inequality, we compute for ‖w(t)‖L4 .T 1

∂tM(v) .T E(v)
3
4 + E(v)

1
2 + E(v)

1
4 .T M(v) + E(v) + 1.

Similarly, for ‖w(t)‖L6 + ‖w(t)‖L∞ .T 1, we find

∂tM(v) .T M(v)
1
2E(v)

1
2 +M(v)

1
2 +M(v)

1
2 .T M(v) + E(v) + 1.

For the derivative of Ẽ, we compute

∂t

∫
1

2
|vx|2dx = (−vt, vxx) = −(vt,−ivt + |v + w|2(v + w))

= −(vt, |v + w|2(v + w))

and

∂t

∫
1

4
(|v + w|4 − |w|4)dx = (vt + wt, |v + w|2(v + w))− (wt, |w|2w).

Hence,

∂tẼ(v) = (wt, |v + w|2(v + w)− |w|2w).

This expression has total homogeneity four in v, w. Let (hv, hw) denote the homogeneity in v, w. Then
we have to estimate the cases (1, 3), (2, 2), (3, 1). Let the collected terms be denoted by A(hv,hw). If (60)
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holds true, then applications of Hölder’s inequality give

|A(1,3)| = |(wxx, 2|w|2v + v̄w2)| = |(wx, 2(wxwv + wwxv + |w|2vx + wxwv) + w2vx)|

.T E(v)
1
4 + E(v)

1
2 ,

|A(2,2)| = |(wxx, 2|v|2w + wv2)| = |(wx, 2(vvxw + vvxw + |v|2wx + wvvx) + wxv
2)|

.T E(v)
3
4 + E(v)

1
2M(v)

1
2 + E(v)

1
2 ,

|A(3,1)| = |(wxx, |v|2v)| = |(wx, 2|v|2vx + v2vx)| .T E(v).

If (61) holds true, then by another application of Hölder’s inequality, we find

|A(1,3)| .T M(v)
1
2 + E(v)

1
2 , |A(2,2)| .T M(v)

1
2E(v)

1
2 +M(v)

1
2 , |A(3,1)| .T E(v).

Consequently,
∂tẼ(v) .T (1 +M(v) + E(v)) .T (1 +M(v) + Ẽ(v)).

Thus,
∂t(1 +M(v) + Ẽ(v)) ≤ C(T )(1 +M(v) + Ẽ(v))

and Grønwall’s inequality yields

1 +M(v) + Ẽ(v) ≤ e
∫ T
0
C(t)dt

with C(t) = C(t, ‖u0‖
M

3
2
+ε

4,2

), or C(t) = C(t, ‖u0‖
M

3
2
+ε

6,2

), respectively. Hence,

M(v) + E(v) .T 1.

�

Furthermore, it seems possible with the sharp smoothing and fixed-time estimates to prove global
results for initial data in L4n+2

s or Ms
4n+2,2 using arguments due to Dodson et al. [20]; see also the

previous subsection. As this approach still loses many derivatives as it does not use smoothing of the
Duhamel term, the details are omitted. We plan to return to this problem in future work.

5. Variable-coefficient decoupling inequalities for non-elliptic Schrödinger equations

In this section we prove variable-coefficient decoupling inequalities for elliptic and hyperbolic phase
functions. We start with describing the set-up in Subsection 5.1 and then carry out the proof in Subsection
5.2.

5.1. Variable-coefficient oscillatory integral operators. We consider smooth functions
a ∈ C∞c (Rn+1 × Rn), a = a1 ⊗ a2, 0 ≤ a1, a2 ≤ 1 and φ : Bn+1(0, 1) × Bn(0, 1) → R, which we shall
refer to as amplitude and phase function.

We associate the oscillatory integral operator

(62) Tf(t, x) =

∫
Rn
eiφ(t,x,ξ)a(t, x, ξ)f(ξ)dξ

and the rescaled versions

(63) Tλf(t, x) =

∫
Rn
eiλφ(t/λ,x/λ,ξ)a(t/λ, x/λ, ξ)f(ξ)dξ

for different classes of phase functions.
Subject of discussion are variable-coefficient generalizations of the phase function

φhyp(t, x; ξ) = 〈x, ξ〉+
t〈ξ, Iknξ〉

2
, Ikn = diag(1, . . . , 1,−1, . . . ,−1︸ ︷︷ ︸

k

), 0 ≤ k ≤ n/2.

Set also In = diag(1, . . . , 1) ∈ Rn×n.
In the following we shall always assume that there are at most as many negative eigenvalues as positive
eigenvalues, which is no loss of generality since time reversal t→ −t flips signs.
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We define the Gauss map by

(64) G : Bn+1 ×Bn → Sn, G(z; ξ) =
G0(z; ξ)

|G0(z; ξ)|
; z = (t, x),

where m ∈ N and Bm denotes the unit ball in Rm and

(65) G0(z;ω) =

n∧
j=1

∂ξj∂zφ(z; ξ)

with the standard identification
∧nRn+1 ∼= Rn+1.

We impose the following conditions on the phase function:

H1) rank ∂2
ξxφ(z; ξ) = n ∀ (z, ξ) ∈ Bn+1 ×Bn,

H2) ∂2
ξξ 〈∂zφ(z; ξ), G(z; ξ0)〉|ξ=ξ0 is non-degenerate.

H1) is a non-degeneracy condition, and H2) implies that the constant coefficient approximation of φ is
the adjoint Fourier restriction operator (i.e. extension operator) associated to a non-degenerate surface.

Contrary to the constant-coefficient case φhyp, rescaling (t, x) → (λ2t, λx), ξ → ξ/λ yields no exact
symmetry. Therefore, it is useful to quantify the conditions H1) and H2). Before doing so, we point out
the following more precise versions of H1) and H2), which one may assume without loss of generality:

H1′) det ∂2
ξxφ(z; ξ) 6= 0 for all (z; ξ) ∈ T ×X × Ξ = Z × Ξ;

H2′[k]) ∂t∂
2
ξξφ(z; ξ) is non-degenerate for all (z; ξ) ∈ Z × Ξ

and has exactly k negative eigenvalues.

Here, T,X,Ξ denote balls of radius less or equal to one around the origin. To reduce from H1) and H2)
to the conditions in the above display, one applies a rotation in space-time. This gives G(0; 0) = en+1,
and then one uses a partition of unity to suitably localize the support. Moreover, the implicit function
theorem implies the existence of smooth functions Φ and Ψ taking values in X and Ω, respectively, such
that

(66) ∂xφ(z; Ψ(z; ξ)) = ξ

and

(67) ∂ξφ(t,Φ(t, x; ξ); ξ) = x.

The first identity allows us to find a graph parametrization ξ 7→ (∂zφ(z; Ψ(z; ξ))) = (ξ, (∂tφ)(z; Ψ(z; ξ)))
for a hypersurface Σz with non-vanishing curvature. From differentiating the second identity we find
∂xΦ(0; 0) = ∂2

xξφ(0; 0)−1.

Later on, H1′) and H2′) are quantified. It turns out that one can perceive any phase function satisfying
H1′) and H2′) after introducing a partition of unity and rescaling as small smooth perturbations of

φhyp = 〈x, ξ〉+
t〈ξ,Ink ξ〉

2 .

For h ∈ C2(Bn(0, 1),R) let the extension operator Eh be given by

Ehf(t, x) =

∫
Bn(0,1)

ei(xξ+th(ξ))f(ξ)dξ,

where f ∈ L2, supp(f) ⊆ Bn(0, 1) and define a smooth weight function, which is essentially a character-
istic function on some ball Bn+1(z,R), z = (t, x):

wB(z,R)(t, x) = (1 +R−1|x− x|+R−1|t− t|)−N

for some large integer N ∈ N, which is fixed later.
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We define the decoupled Lp-norm for variable coefficient operators for
1 ≤ R ≤ λ. Let TR denotes a finitely overlapping family of R−1/2 balls covering Bn(0, 1). Set

‖Tλf‖Lp,Rdec (S) =

(∑
τ∈TR

‖Tλfτ‖2Lp(S)

)1/2

for S measurable and

(68) α(p, k) =

{
k
(

1
4 −

1
2p

)
, 2 ≤ p ≤ 2(n+2−k)

n−k ,

n
4 −

n+2
2p ,

2(n+2−k)
n−k ≤ p <∞.

We recall the constant-coefficient `2-decoupling theorem proved in [9, 10]:

Theorem 5.1. [10, Theorem 1.2, p. 280] Let R ≥ 1, N ≥ 10, 2 ≤ p < ∞, 0 ≤ k ≤ n/2, α(p, k) as in
(68) and h : Bn(0, 1)→ R be a C2-function with Hessian ∂2

ξξh having modulus of eigenvalues in [C−1, C]

for some C > 0. Then, we find for f with supp(f) ⊆ B(0, 1) the following estimate to hold:

‖Ehf‖Lp(wBR ) .C,N,ε R
α(p,k)+ε‖Ehf‖Lp,Rdec (wBR )

provided that N ≥ N(n, p).

Strictly speaking, this result was proved in [10] only for the hyperboloid h(ξ) =
∑n
i=1 αiξ

2
i . However,

the arguments from [46], which are illustrated in the context of elliptic surfaces in [9, Section 7], yield
the more general translation invariant case in a straight-forward manner. See also the discussion below.

Originally, decoupling inequalities were studied for the cone by Wolff in [39, 61] to make progress on
Lp-smoothing estimates (cf. [43, 44]) for the wave equation. These estimates were refined (cf. [25, 7])
until the breakthrough result of Bourgain-Demeter (cf. [9, 11]) where sharp decoupling inequalities for
the paraboloid were proved. Subsequently, the result was generalized to hyperboloids (cf. [10]). These
results also give estimates for exponential sums, in particular essentially sharp Strichartz estimates on
irrational tori.

The theory was also extended to non-degenerate curves (cf. [12]). As already pointed out in Beltran-
Hickman-Sogge [3], the decoupling theory seems to extend to the variable coefficient case sharply diver-
gent from the Lp − Lq-estimates for oscillatory integral operators. In fact, it is well known that there
are strictly less estimates admissible in the constant coefficient case due to Kakeya compression (cf.
[5, 8, 60]).

Our first result is the following extension of Theorem 5.1:

Theorem 5.2. Let 2 ≤ p < ∞, n,M ∈ N, 0 ≤ k ≤ n/2 and α(p, k) like in (68). Suppose that (φ, a)
satisfies H1′) and H2′[k]). Then, we find the following estimate to hold:

(69) ‖Tλf‖Lp(Rn+1) .ε,φ,M,a λ
α(p,k)+ε‖Tλf‖Lp,λdec(Rn+1) + λ−M‖f‖2.

For variable-coefficient generalizations of the phase function φcone(t, x; ξ) = 〈x, ξ〉+ t|ξ| associated to
the adjoint Fourier restriction problem of the cone this was carried out in [3]. The proof of Theorem 5.2
adapts this general strategy from [3] to prove variable-coefficient decoupling from constant-coefficient de-
coupling: on small spatial scales the variable-coefficient oscillatory integral operator is well-approximated
by a constant-coefficient operator. It is enough to make progress on this small scale because it extends
to any scale by means of parabolic rescaling. Moreover, Iosevich–Liu–Xi [36] investigated decoupling
inequalities for phase functions with a symmetric Carleson–Sjölin condition.

Already in the context of constant coefficients, approximating one surface by another on small scales
and recovering arbitrary scales by rescaling was used to derive decoupling estimates for more general
elliptic surfaces or the cone (cf. [9, Section 7, 8]), see also [46, 30].

It seems plausible that a similar approximation derives the variable-coefficient cone decoupling from
the variable-coefficient paraboloid decoupling. Recently, in [32] was shown by the same approximation
that broad-narrow considerations are also valid for the cone. We do not pursue this line of argument.
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We recall different consequences of Theorem 5.2: The variable-coefficient `2-decoupling implies a sta-
bility theorem for exponential sums which is proved using the argument in [9] for the constant-coefficient
case. Moreover, on small spatial scales the broad-narrow considerations from the constant-coefficient
case extends to the variable- coefficient case. As used above, the decoupling theorem implies Strichartz
and smoothing estimates without further arguments (e.g. dispersive estimates for the propagator).

5.2. Variable-coefficient decoupling for hyperbolic phase functions.

5.2.1. Basic reductions. Before we begin the proof of Theorem 5.2 in earnest, we carry out several
reductions. Most importantly, we quantify the conditions H1′) and H2′[k]). In dependence of ε, M and

p from Theorem 5.2, we choose a small constant 0 < cpar � 1 and a large integer N = Nε,M,p and define
the following conditions which we will impose on the phase function for A ≥ 1:

H11) |∂2
xξφ(z; ξ)− In| ≤ cpar for all (z, ξ) ∈ Z × Ξ

H21
[k]) |∂t∂

2
ξφ− In| ≤ cpar for all (z, ξ) ∈ Z × Ξ

D11
1) ‖∂xk∂

β
ξ φ‖L∞(Z×Ξ) ≤ cpar for 2 ≤ |β| ≤ N

D12
1) ‖∂t∂βξ φ‖L∞(Z×Ξ) ≤ cpar for 3 ≤ |β| ≤ N

D2A) ‖∂2
z∂

β
ξ φ‖L∞ ≤

cparA
100n for 1 ≤ |β| ≤ 2N

For technical reasons we also impose the following margin condition on the positional part a1 of the
amplitude a:

MA) dist(suppa1,Rn+1\Z) ≥ 1/(4A)

We already note the following consequence of H21
[k]):

(70) |∂t∇ξφ| ≤ 2|ξ|.

In [31] it was shown that after introducing suitable partition of unities and performing changes of
variables an elliptic phase function satisfying H1′) and H2′[0]) reduces to the following normal form:

(71) φ(t, x; ξ) = 〈x, ξ〉+
t|ξ|2

2
+ E(x, t; ξ)

with E being quadratic in (t, x) and ξ, to say

∂α(x,t)∂
β
ξ E(0; ξ) = 0 ∀|α| ≤ 1, β ∈ Nn0 .

The explicit representation (71) is not required for the following arguments. However, it is useful to
keep it in mind stressing the nature of a small smooth perturbation to φhyp. We refer to data (φ, a)
satisfying the above conditions for some A ≥ 1 and 0 ≤ k ≤ n/2 as type (A, k)-data. The notation and
nomenclature is analogous to [3] to point out the similarity to the case of homogeneous variable-coefficient
phase functions.

It turns out that these conditions are invariant under parabolic rescaling in a uniform sense, and this
allows us to run the induction argument for normalized data. However, to reduce arbitrary hyperbolic
phase functions, we have to do one rescaling which depends on the phase function. This gives rise to
the dependence on φ in (69). If we confine ourselves in (69) to normalized data, there will be no explicit
dependence on φ. We define the relevant constant as follows, where ε, M and p were fixed above and
cpar and N = Nε,M,p in the definition of normalized data are chosen in dependence.

We denote by Dε
A,k(λ;R) the infimum over all D ≥ 0 so that the estimate

‖Tλf‖Lp(BR) ≤ DRα(p,k)+ε‖Tλf‖Lp,Rdec (wBR ) +R2n(λ/R)−N/8‖f‖L2

holds true for all data (φ, a) of type (A, k), balls BR of radius R contained in B(0, λ) and f ∈ L2(Bn(0, 1)).
For the weight function we take N as in D2A). The estimate

(72) Dε
1,k(λ;R) ≤ Cε
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implies Theorem 5.2 since we can reduce to normal data. It turns out that it is enough to prove the
following proposition:

Proposition 5.3. Let 1 ≤ R ≤ λ1−ε/n. Then, we find the estimate (72) to hold true.

In fact, we observe that for any 1 ≤ ρ ≤ R and ρ−1/2-ball θ one may write

Tλfθ =
∑

σ∩θ̃ 6=∅,
σ:R−1/2−ball

Tλfσ,

where θ̃ denotes the intersection of supp(f) and θ. We compute using Minkowski’s and Cauchy-Schwarz
inequality that for any weight w one has

‖Tλf‖Lp,ρdec(w) = (
∑

θ:ρ−1/2−ball

‖Tλfθ‖2Lp(w))
1/2 = (

∑
θ:ρ−1/2−ball

(
∑

σ:R−1/2−ball,
σ∩θ̃ 6=∅

‖Tλfθ‖)2)1/2

≤ (
∑

θ:ρ−1/2−ball

(R/ρ)n/2
∑

σ:R−1/2−ball,
σ∩θ̃ 6=∅

‖Tλfσ‖2Lp)1/2 . (R/ρ)
n
4 ‖Tλf‖Lp,Rdec (w).

(73)

Since ‖Tλf‖Lp(BR) . ‖Tλf‖Lp,1dec(BR), from taking ρ = 1 in the above display it follows that

(74) Dε
A,k(λ;R) . R

n
4−α(p,k)−ε,

which yields finiteness of Dε. Moreover, we can reduce to

(75) Dε
A,k(λ;λ1− ε

n ) ≤ Cε.

Indeed, the support conditions of the amplitude a imply that the support of Tλf is always contained
in B(0, λ). We cover B(0, λ) by an essentially disjoint family of λ1− ε

n -balls

‖Tλf‖pLp(B(0,λ)) ≤
∑

B:λ1− ε
n−balls

‖Tλf‖pLp(B),

and using Minkowski’s inequality we find

‖Tλf‖Lp(B) . Dε
A,k(λ;λ1− ε

n )λ
ε
4 (λ1− ε

n )α(p,k)+ε
( ∑
θ:(λ1− ε

n )−1/2−balls

‖Tλfθ‖2Lp(wB)

)1/2
+ (λ1−ε/n)2(n+1)λ−εN/8‖f‖2

. Dε
A,k(λ;λ1− ε

n )(λ1− ε
n )α(p,k)+ελ

ε
4

( ∑
θ:λ−1/2−balls

‖Tλfθ‖2Lp(wB(0,λ))

)1/2
+ λ2(n+1)− 2ε(n+1)

n λ−εN/8‖f‖2.

For N large enough in dependence of ε, n and M we find (69) to hold from (73) for normalized data.

5.2.2. Rescaling of variable-coefficient phase functions. We record the following trivial rescaling allowing
us to reduce data of type A to data of type 1:

Lemma 5.4. For any A ≥ 1 we find the following estimate to hold:

(76) Dε
A,k(λ;R) .A Dε

1,k(λ/A;R/A).

Proof. Let (φ, a) be a datum in A-normal form. We define φ̃(z; ξ) = Aφ(z/A; ξ) and amplitude ã(z; ξ) =

a(z/A; ξ) and observe that Tλf = T̃λ/Af . Note the equivalent behaviour of φ and φ̃ under one positional

derivative. Hence, we find (φ̃, ã) to satisfy H11), H21
[k]), D11

1), D12
1), and the second derivative amounts

to an additional factor of 1/A. Hence, we find D21) to hold. The new margin of the new amplitude ã has
been increased to size 1/4 and we find M1) to hold. This step might require the additional argument of
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decomposing the amplitude function through a partition of unity and translating each piece, if necessary,
to adjust to the enlarged support Asupp(a). This involves a sum over O(An+1) operators where each is
associated to type 1-data.

Covering B(0, R) with R/A-balls yields another factor of O(An+1), but these pieces can be bounded by
Dε

1,k(λ/A;R/A), and the proof is complete. Moreover, the form of the error term allows us to summarize

the sum over O(An+1) error terms again as error term. �

Next, we show the following stability result for normalized phase functions under parabolic rescaling1.
This allows us to properly run an induction argument.

Lemma 5.5. [Parabolic rescaling for hyperbolic phase functions] Let 2 ≤ p < ∞, 1 ≤ ρ ≤ R ≤ λ,
0 ≤ k ≤ n/2 and α(p, k) like in (68). Suppose that (φ, a) satisfies H1′) and H2′[k]) and let Tλ be the

associated oscillatory integral operator. If g is supported in a ρ−1-ball and ρ is sufficiently large, then
there exists a constant C(φ) ≥ 1 such that

‖Tλg‖Lp(wBR ) .ε,N,φ Dε
1,k(λ/Cρ2, R/Cρ2)(R/ρ2)α(p,k)+ε‖Tλg‖Lp,Rdec (wBR ) +R2(n+1)(λ/R)−N/8‖g‖2.

Proof of Lemma 5.5 for phase functions of type 1. Let ξ0 ∈ Bn(0, 1) be the centre of ρ−1-ball where g is
supported. We perform the change of variables ξ′ = ρ(ξ − ξ0) and we compute

Tλg(z) =

∫
Rn
eiφ

λ(z;ξ)aλ(z; ξ)g(ξ)dξ =

∫
Rn
eiφ

λ(z;ξ0+ρ−1ξ′)aλ(z; ξ0 + ρ−1ξ′) ρ−ng(ξ0 + ρ−1ξ′)︸ ︷︷ ︸
g̃(ξ′)

dξ′.

We expand φ to find

φ(z; ξ0 + ξ′/ρ) = φ(z; ξ0) + [∇ξφ(z; ξ0)]
ξ′

ρ
+ ρ−2

∫ 1

0

(1− r)〈∂2
ξξφ(z; ξ0 + rξ′/ρ)ξ′, ξ′〉dr.

Let Φξ0(t, x) = (t,Φ(t, x; ξ0)); Φλ(t, x) = λΦξ0(t/λ, x/λ) and we introduce the dilations Dρ(t, x) =
(ρ2t, ρx) and D′ρ−1(x) = ρ−1x. We find

(77) eiλφ(Φξ0 (ρ2t/λ,ρx/λ);ξ0)Tλg ◦ Φλξ0 ◦Dρ = T̃λ/ρ
2

g̃,

where

T̃λ/ρ
2

g̃(t, x) =

∫
Rn
eiφ̃

λ/ρ2 (t,x;ξ)ãλ/ρ
2

(x; ξ)g̃(ξ)dξ,

and the phase φ̃(t, x; ξ) is given by

〈x, ξ〉+

∫ 1

0

(1− r)〈∂2
ξξφ(Φξ0(t,D′ρ−1x); ξ0 + rξ/ρ)ξ, ξ〉dr,

and the amplitude ã(y, t; ξ) = a(Φξ0(t;D′ρ−1y); ξ0 + ξ/ρ).

We verify (77): From the definition

(Φλξ0 ◦Dρ)(t, x) = λΦξ0(ρ2t/λ, ρx/λ)

and

φλ(Φλξ0(Dρ(t, x)), ξ0 + ξ/ρ) = λφ(Φξ0(ρ2t/λ, ρx/λ); ξ0 + ξ/ρ)

→ λφ(Φξ0(ρ2t/λ, ρx/λ); ξ0) + λ[∇ξφ(Φξ0(ρ2t/λ, ρx/λ); ξ0)]
ξ

ρ

+ ρ−2λ

∫ 1

0

(1− r)〈∂2
ξξφ(Φξ0(ρ2t/λ, ρx/λ); ξ0 + rρ−1ξ)ξ, ξ〉dr,

1Here, the term parabolic refers to the rescaling of time by a quadratic factor compared to space and is not restricted

to phase functions related to elliptic (parabolic) surfaces.



SMOOTHING ESTIMATES IN MODULATION SPACES 23

which proves (77). If φ is in normal form, then we can also write

(78) φ̃(t, x; ξ) = 〈x, ξ〉+
t|ξ|2

2
+

∫ 1

0

(1− r)〈∂2
ξξE(Φξ0(t,D′ρ−1x), ξ0 + rξ/ρ)ξ, ξ〉,

and with g̃ being supported in Bn(0, 1) we can assume that |ξ| ≤ 1.
A change of spatial variables gives

‖Tλg‖Lp(BR) .φ ρ
n+2
p ‖T̃λ/ρ

2

g̃‖Lp((Φλξ0
◦Dρ)−1(BR)),

where the implicit constant stems from the Jacobian of Φξ0 , which is controlled by property D11). Note
that the implicit constant can be chosen constant for data of type 1 provided that cpar > 0 is chosen
small enough. We cover (Φλξ0 ◦Dρ)

−1(BR) with essentially disjoint R/ρ2-balls, BR/ρ2 ∈ BR/ρ2 and find

‖Tλg‖Lp(BR) .φ ρ
(n+2)/p

( ∑
BR/ρ2∈BR/ρ2

‖T̃λ/ρ
2

g̃‖pLp(BR/ρ2 )

)1/p
.

We argue below that

‖T̃λ/ρ
2

g̃‖Lp(BR/ρ2 ) .ε,N Dε
1,k(λ/Cρ2, R/Cρ2)(R/ρ2)α(p,k)+ε‖T̃λ/ρ

2

g̃‖
L
p,R/ρ2

dec (wB
R/ρ2

)

+ (R/ρ2)2(n+1)(λ/R)−N/8‖g‖L2(Rn)

(79)

holds for each BR/ρ2 ∈ BR/ρ2 and some C ≥ 1.

If (φ̃, ã) was a type-1 datum, this would be a consequence of the definitions. First, we show how to
conclude the proof with (79): we can write

∪BR/ρ2∈BR/ρ2BR/ρ2 ⊆ (Φλξ0 ◦Dρ)
−1(BCφR) = CR′ ,

where BCφR is a ball concentric to BR, but with enlarged radius CφR for some Cφ ≥ 1 because Φξ0 is a
diffeomorphism.
Hence, we find from summing the pth power on both sides over R/ρ2 balls and inverting the change of
variables

Dε
1,k(λ/Cρ2, R/Cρ2)(R/ρ2)α(p,k)+ε

( ∑
BR/ρ2∈B

‖T̃λ/ρ
2

g̃‖p
L
p,R/ρ2

dec (wB
R/ρ2

)

)1/p
≤ Dε

1,k(λ/Cρ2, R/Cρ2)(R/ρ2)α(p,k)+ε‖T̃λ/ρ
2

g̃‖
L
p,R/ρ2

dec (wC
R′

)
.

Inverting the change of coordinates yields

‖Tλg‖Lp(BR) .ε,N,φ Dε
1,k(λ/Cρ2, R/Cρ2)(R/ρ2)α(p,k)+ε

(
∑

θ̃:(R/ρ2)−1/2−ball

‖Tλgθ‖pLp(wBR ))
1/p +R2(n+1)(λ/R)−N/8‖g‖L2(Rn).

It is straight-forward to check that the θ, which are the images of θ̃ under the mapping ξ 7→ ρ(ξ− ξ0),
which inverts the change of variables in frequency space, form a cover of the suppg with R−1/2-balls. Note
how the error term compensates the decomposition into R/ρ2 balls. In fact, any R/ρ2-ball contributes
with (R/ρ2)2n and there are roughly ρ2(n+1) R/ρ2-balls.

It remains to prove (79) for each BR/ρ2 ∈ BR/ρ2 . For this purpose record the following representations

of φ̃L = φ̃(t, (L−1)tx;Lξ):

(80) φ̃L(t, x; ξ) = 〈x, ξ〉+

∫ 1

0

(1− r)〈∂2
ξξφ(Φξ0(t,D′ρ−1 ◦ L−1x), ξ0 + Lrξ/ρ)Lξ, Lξ)dr,

and from Taylor expansion we find (up to an irrelevant phase factor)

(81) φ̃L(t, x; ξ) = ρ2φ(t,Φξ0(t,D′ρ−1 ◦ L−1x); ξ0 + Lξ/ρ).
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φ̃L is an affinely changed version of φ̃ for some invertible L, so that ∂t∂
2
ξξφ̃L(0, 0; 0) = Ikn. We perceive

L = diag(
√
µ1, . . . ,

√
µn) ·R, where R is a rotation and µ1, . . . , µn are the eigenvalues of ∂t∂

2
ξξφ̃ which is

already close to Ikn quantified by property H2
[k]
1 ).

We verify H11) for φ̃: Taking an x derivative of the integral term leads to an expression of the kind
∂x∂

2
ξξφ · ∂xΦξ0 · ρ−1.

∂x∂
2
ξξφ is controlled by property D1

1) of φ. From the definition of Φξ0 and the chain rule we find

∂xΦξ0 = (∂x∂ξφ)−1. Since |∂2
xξφ − Ikn| ≤ cpar, we have |∂xΦξ0 | ≤ 2 and we find the total expression to

be of order cpar/ρ. Note that taking a frequency derivative does not magnify the size.
Likewise we verify D11

1) for |β| = 2. For higher derivatives in ξ we can argue with the representation
(81) and observe that the bounds for large ρ become smaller and smaller since any derivative in ξ gives
rise to a factor of ρ−1. In this way one checks the validity of D21).

We check H2
[k]
1 ): For this purpose we write

∂t∂
2
ξ φ̃L(t, x; ξ)− Ikn = ∂t∂

2
ξ φ̃L(t, x; ξ)− ∂t∂2

ξξφ̃L(0, 0; 0)

and use the fundamental theorem of calculus. For an additional ξ derivative we find the contribution to
be of size O(cparρ

−1). For positional derivatives we use property D21) of φ to find this contribution to
be also much smaller than cpar, and thus the claim follows.

The only cases of D21) which require additional reasoning to the above arguments are when there are
two time derivatives and only one or two frequency derivatives. Else, the smallness is immediate from
(81). In the case of two time derivatives and few frequency derivatives we have to consider combinations
∂2
tt∂

2
ξξE , ∂tΦξ0 and ∂2

ttΦξ0 . ∂2
tt∂

2
ξξφ and higher frequency derivatives are controlled by property D21) of

φ and above we have seen that ∂tΦξ0 is controlled quantitatively through (70) of φ. The control over
∂2
ttΦξ0 follows from considering one further time derivative:

∂tt∂ξφ
λ(Φλ(t, x; ξ0); ξ0) + ∂t∂

2
xξφ

λ(Φλ(t, x; ξ0))∂tΦ
λ

+ ∂t∂
2
xξφ

λ(Φλ(t, x; ξ0); ξ0)∂tΦ
λ(t, x; ξ0) + ∂2

xx∂ξφ
λ(Φλ(t, x; ξ0); ξ0)(∂tΦ

λ)2

+ ∂2
xξφ

λ∂2
ttΦ

λ = 0.

(82)

Hence, we find |∂2
tt∂ξφ̃L|, |∂2

tt∂
2
ξξφ̃L| ≤ C independent of φ with dependence only on the parameters in

the definition of type 1 data. After invoking Lemma 5.4 with some constant independent of φ provided
that φ is a datum of type 1, the proof is complete. �

Finally, we deal with the case of a general phase function. The proof is essentially a reprise of the
proof of Lemma 5.5. However, the implicit constants are now allowed to depend on φ, and since we are
not dealing with a normalized datum from the beginning, the constants may become arbitrarily large.

Proof. First, we use the trivial rescaling from Lemma 5.4 φ→ φA = Aφ(z/A, ξ) to ensure that

‖∂2
z∂

β
ξ φ‖L∞ ≤

cpar
100nA

for |β| = 1, 2.

Later, we shall see how to choose A = A(φ). Next, we break the support of g into ρ−1-balls, and again
we will choose ρ ≥ 1 later in dependence of φ.

We carry out the changes of coordinates from the proof of Lemma 5.5 and again arrive at the repre-
sentations

φ̃A(t, x; ξ) = 〈x, ξ〉+

∫ 1

0

(1− r)〈∂2
ξξφ

A(ΦAξ0(t,D′ρ−1x); ξ0 + rξ/ρ)ξ, ξ〉dr,(83)

φ̃A(t, x; ξ) = ρ2φA(ΦAξ0(t,D′ρ−1x); ξ0 + ξ/ρ),(84)

and we define φ̃AL analogous to the proof of Lemma 5.5. We check H11) from (83) which shows that

(85) ∂2
xξφ̃

A
L = In +Oϕ(ρ−1).
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We also find ‖∂xk∂2
ξξφ‖L∞ = Oφ(ρ−1) also follows from (84). Moreover, for higher order derivatives in ξ

we get additional factors of ρ−1 which proves property D11
1).

Likewise, we verify D12
1) for sufficiently large ρ.

For the proof of H2
[k]
1 ) we write again

(86) ∂t∂
2
ξξφ̃

A
L − Ikn = ∂t∂

2
ξξφ̃

A
L(t, x; ξ)− ∂t∂2

ξξφ̃
A
L(0, 0; 0)

and estimate the difference deploying the fundamental theorem of calculus. The above arguments al-
ready yield ∂t∂

3
ξξξφ̃

A
L = Oφ(ρ−1), for positional derivatives we choose A = A(φ) large enough, so that

∂t∂z∂
2
ξξφ̃

A
L ≤

cpar
100n and we can also control this contribution. Note that here we also need |∂2

ttΦ
λ| =

Oφ(A−1) which follows from (82).
We check D21) like in the proof of Lemma 5.5 after choosing A = A(φ) sufficiently large. �

5.2.3. Approximation by extension operators. Let (φ, a) be a datum of type 1 giving rise to the oscillatory
integral operator Tλ and recall that we assume the amplitude function to be of product type: a(z; ξ) =
a1(z)a2(ξ). Further, recall that

ξ 7→ (∇x,tφλ)(z; Ψλ(z; ξ))

is a graph parametrisation of a hypersurface Σz. Thus, we have

(87) 〈z, (∇x,tφλ(z; Ψλ(z; ξ))〉 = 〈x, ξ〉+ thz(ξ)

for all z = (x, t) ∈ Rn+1 with z/λ ∈ Z where hz(ξ) = (∂tφ
λ(z; Ψλ(z; ξ))).

Moreover, from the definition of Ψλ we have

ξ = ∂xφ
λ(z; Ψλ(z; ξ)),

In = ∂2
xξφ

λ(z; Ψλ(z; ξ))(∂ξΨ
λ(z; ξ)),

0 = ∂3
xξξφ(z; Ψλ(ξ))(∂ξΨ

λ(z; ξ))2 + ∂2
xξφ

λ(z; Ψλ(ξ))∂2
ξξΨ

λ(z; ξ).

(88)

And consequently, we find for 1-normalized data

∂ξΨ
λ(z; ξ) ∼ In,

|∂2
ξξΨ

λ(z; ξ)| � 1.
(89)

Let Ez denote the extension operator associated to Σz given by

Ezg(x, t) =

∫
Rn
ei(〈x,ξ〉+thz(ξ))az(ξ)g(ξ)dξ,

where az(ξ) = a2 ◦Ψλ(z; ξ)|det ∂ξΨ
λ(z; ξ)|.

We shall see that on small spatial scales Tλ is effectively approximated by Ez and vice versa. We record
the following consequence of dealing with 1-normalized data:

Lemma 5.6. Let (φ, a) be a type 1 datum. Each eigenvalue µ of ∂2
ξξhz satisfies |µ| ∼ 1 on supp(az).

For elliptic phase functions of type 1 we have µ ∼ 1 on supp(az).

Proof. From the definition of hz we find

∂ξhz(ξ) = (∂t∂ξφ
λ(z; Ψλ(z; ξ))∂ξΨ

λ(z; ξ),

∂2
ξξhz(ξ) = (∂t∂

2
ξξφ

λ(z; Ψλ(z; ξ))(∂ξΨ
λ(z; ξ))2 + ∂t∂ξφ

λ(z; Ψλ(z; ξ))∂2
ξξΨ

λ(z; ξ),

and the claim follows from (89). �

This becomes needful when it comes to applying the constant-coefficient `2-decoupling theorem, which
we repeated in Theorem 5.1, because Lemma 5.6 ensures uniformity of the constant from the decoupling
inequality.

In the following we analyze Tλf(z) for z ∈ Bn+1(z;K) ⊆ B(0, 3λ/4) and 1 ≤ K ≤ λ1/2. The con-
tainment property can be assumed due to the margin condition. We see that the desired approximation
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identity holds on this spatial scale: we perform a change of variables ξ = Ψλ(z; ξ̃) and expand φλ around
z to find

Tλf(z) =

∫
Rn
ei(〈z−z,∇x,tφ

λ(z;Ψλ(z;ξ̃)〉+Eλz (z−z;ξ̃))aλ1 (z)az(ξ̃)fz(ξ̃)dξ̃,

where fz = eiφ
λ(z;Ψλ(z;·))f ◦Ψλ(z; ·) and

Eλz (v; ξ) =
1

λ

∫ 1

0

(1− r)〈(∂2
zzφ)((z + rv)/λ; Ψλ(z; ξ))v; v〉dr.

Lemma 5.7. Let Tλ be an operator associated to a 1-normalized datum (φ, a), 0 < δ ≤ 1/2, 1 ≤ K ≤
λ1/2−δ and z/λ ∈ Z so that B(z;K) ⊆ B(0, 3λ/4).
Then, we find the estimates

‖Tλf‖Lp(wB(z;K)) .N ‖Ezfz‖Lp(wB(0;K)) + λ−δN/2‖f‖2,(90)

‖Ezfz‖Lp(wB(0;K)) .N ‖T
λf‖Lp(wB(z;K)) + λ−δN/2‖f‖2.(91)

to hold provided that N is chosen sufficiently large depending on n, δ and p. Here, the constant N is the
same for the weight functions, the conditions on the derivatives D11

1), D12
1), D21) and in the exponent

of λ in the above estimates. Moreover, in case of sharp cutoff (90) becomes

(92) ‖Tλf‖Lp(B(z;K)) .N ‖Ezfz‖Lp(wB(0;K)) + λ−δN/2‖f‖2.

Proof. We can replace f by fϕ, where in view of the definition az and the fact that we are dealing with
a datum of type 1, we can assume that ϕ is supported in [0, 2π]n. After performing a Fourier series

decomposition of eiE
λ
z (v,ξ)ϕ(ξ), one may write

(93) eiE
λ
z (v,ξ)ϕ(ξ) =

∑
k∈Zn

ak(v)ei〈k,ξ〉,

where ak(v) =
∫

[0,2π]n
e−i〈k,ξ〉eiE

λ
z (v;ξ)ϕ(ξ)dξ.

Since K ≤ λ1/2 we find the favourable bound

sup
(v;ξ)∈B(0,K)×suppaz

|∂βξ E
λ
z (v; ξ)| .N

|v|2

λ

as long as β ∈ Nn0 with 1 ≤ |β| ≤ 2N by virtue of property D21) and the computation in (88) showing

that |∂βξ Ψλ(z; ξ)| . 1 as long as 1 ≤ |β| ≤ 2N . Consequently, integration by parts yields

|ak(v)| .N (1 + |k|)−N ,

whenever |v| ≤ 2λ1/2. We derive the following pointwise identity from (93):

|Tλf(z + v)| ≤
∑
k∈Zn

|ak(v)||Ez(fzei〈k,·〉)(v)| .
∑
k∈Zn

(1 + |k|)−N |Ez(fzei〈k,·〉(v)|.

We decompose further:

‖Tλf‖Lp(wB(z;K)) ≤ ‖(T
λf)1B(z;2λ1/2)‖Lp(wB(z;K)) + ‖(Tλf)1Rn+1\B(z;2λ1/2)‖Lp(wB(z;K)).

The second term leads to the error term, that is

(94) ‖(Tλf)χRn\B(z;2λ1/2)‖Lp(wB(z;K)) . λ
n
2p−δ(N−(n+2))‖f‖L2(Rn).

In fact, we have ‖Tλf‖L∞ . ‖f‖2, and consequently,(∫
Rn+1

(1 +K−1|x|)−(n+2)|Tλf |p
)1/p

. Kn/p‖f‖L2 . λ
1
2p ‖f‖2,
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and the factor λ−δ(N−(n+2)) stems from the additional decay of the weight (1+K−1|x|)−N we are actually
considering. This gives (94), and since the operator Ez is translation-invariant,

(95) Ez[e
i〈k,·〉g](t, x) = Ezg(t, x+ k) ∀(t, x) ∈ Rn+1 and k ∈ Rn.

Minkowski’s inequality yields

(96) ‖Tλf1B(z;2λ1/2)‖Lp(wB(z;K)) .N
∑
k∈Zn

(1 + |k|)−N‖Ezfz‖Lp(wB((k,0),K)).

Next, observe that∑
k∈Zn

(1 + |k|)−N‖Ezfz‖Lp(wB((k,0),K))

=
∑
k∈Zn

(1 + |k|)−
N
p (1 + |k|)N( 1

p−1)‖Ezfz‖Lp(wB((k,0),K)

≤

[∑
k∈Zn

(1 + |k|)−N‖Ezfz‖pLp(wB((k,0),K)

]1/p(∑
k∈Zn

(1 + |k|)N( 1
p−1)p′

)1/p′

= C(n, p,N)

(∫
|Ezfz|p

∑
k∈Zn

(1 + |k|)−NwB((k,0),K)

)1/p

.n,p ‖Ezfz‖Lp(wB(0,K)).

(97)

For the ultimate estimate one observes∑
k∈Zn

(1 + |k|)−NwB((k,0),K) . wB(0,K).

In order to prove (91), we write

Ezfz(v) =

∫
Rn
eiφ

λ(z+v;Ψλ(z;ξ)e−E
λ
z (v;ξ)az(ξ)f ◦Ψλ(z; ξ)dξ.

Again, we insert a smooth cutoff ϕ(ξ) supported in [0, 2π]n so that

e−iE
λ
z (v;ξ)ϕ(ξ) =

∑
k∈Zn

ei〈k,ξ〉bk(v),

where bk(v) =
∫

[0,2π]n
e−i〈k,ξ〉e−iE

λ
z (v;ξ)ϕ(ξ)dξ. Once more, integration by parts yields the pointwise

bound

|bk(v)| .N (1 + |k|)−2N ,

and inverting the change of variables gives

|Ezfz(v)| .N
∑
k∈Zn

(1 + |k|)−2N |Tλ [ei〈k,∂zφ
λ(z,·)〉f ]︸ ︷︷ ︸
f̃k

(z, v)|.

From a similar argument to the one from the proof of (91), we have

(98) ‖Ezfz‖Lp(wB(0,K)) .N
∑
k∈Zn

(1 + |k|)−2N‖(Tλf̃k)χB(z,2λ1/2)‖Lp(wB(z,K)) + λ−δN/2‖f‖2.
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The k = 0 term is alright because it yields the desired quantity. For the higher order terms we use the
estimate (90) and (97) to conclude∑

k∈Zn,k 6=0

(1 + |k|)−2N‖(Tλf̃k)χB(z,2λ1/2)‖Lp(wB(z;K))

.N 2−N
∑

k∈ZN ,k 6=0

(1 + |k|)−N‖Ezfz‖Lp(wB((k,0),K))

.N 2−N‖Ezfz‖Lp(wB(0,K)).

Choosing N large enough depending on n and p this quantity can be absorbed into the lefthandside of
(98) which yields the claim. �

5.2.4. Conclusion of the proof.

Proof of Proposition 5.3. To show Proposition 5.3 for fixed parameters n, ε and N = N(n, ε), it is
enough to prove that

(99) Dε
1,k(λ;R) .ε 1 for all 1 ≤ R ≤ λ1−ε/n.

We perform an induction on the radius, and with the base case (small R) readily settled, we contend the
following induction hypothesis:

There is a constant Cε ≥ 1 such that Dε
1,k(λ′;R′) ≤ Cε holds for all 1 ≤ R′ ≤ R/2 and all λ′ satisfying

R′ ≤ (λ′)1−ε/n.
We use the approximation lemma on a small spatial scale and lift the resulting estimates to the correct

spatial scales through parabolic rescaling: Let BK denote a family of finitely-overlapping K-balls covering
BR for some 2 ≤ K ≤ λ1/4. After breaking BR into B(z;K)-balls the estimate from Lemma 5.7 implies

(100) ‖Tλf‖Lp(BR) .
( ∑
B(z;K)∈BK

‖Tλf‖pLp(B(z;K))

)1/p
.
( ∑
B(z;K)∈BK

‖Ezfz‖pLp(wB(0;K))

)1/p
.

We apply the constant-coefficient decoupling theorem (Theorem 5.1) to each small scale and find after
reverting the change of coordinates (again using that we are dealing with 1-normalized data):

‖Ezfz‖Lp(wB(0,K)) .ε K
ε/2+α(p,k)‖Ezfz‖Lp,Kdec (wB(0,K))

. Kα(p,k)+ε/2
( ∑
σ:K−1/2−ball

‖Tλfσ‖2Lp(wB(z;K))

)1/2
+ λ−N/8K2n‖f‖2.

(101)

Moreover, this estimate holds uniformly in z by virtue of the uniform estimates on the Hessian of hz
derived in Lemma 5.6. We plug (101) into (100) to find after using Minkowski’s inequality:

(102) ‖Tλf‖Lp(BR) . K
α(p,k)+ε/2

 ∑
σ:K−1/2−ball

‖Tλfσ‖2Lp(wBR )

1/2

+ λ−N/8K2nRn‖f‖L2 .

Next, apply Lemma 5.5 to each Tλfσ which gives the estimate

‖Tλfσ‖Lp(wBR ) ≤ Dε
1,k(λ/(CK2), R/(CK2))(R/K2)α(p,k)+ε‖Tλfσ‖Lp,Rdec (wBR )

+R2(n+1)(λ/R)−N/8‖fσ‖L2(Rn).
(103)
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We note that Dε
1,k(λ/(CK2), R/(CK2)) .ε 1 according to our induction hypothesis. Plugging (103) into

(102) gives after applying orthogonality

‖Tλf‖Lp(BR) ≤ CεCεKε/2(R/K2)α(p,k)+ε

 ∑
σ:K−1/2−ball

‖Tλfσ‖2Lp,Rdec (wBR )

1/2

+R2(n+1)(λ/R)−N/8‖f‖2
≤ CεCεK−ε/2Rα(p,k)+ε‖Tλf‖Lp,Rdec (wBR)

+R2(n+1)(λ/R)−N/8‖f‖L2(Rn),

and we see that induction closes. �

Proof of Theorem 5.2. To finish the proof of Theorem 5.2, we break the support of f ∈ L2(Bn(0, 1)) into

ρ−1-balls, ρ = ρ(φ), so that after parabolic rescaling we are dealing with a normalized phase function φ̃.

We can apply Proposition 5.3 to φ̃, and the proof is completed using Lemma 5.5. �
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