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In nearly compensated graphene, disorder-assisted electron-phonon scattering or
“supercollisions” are responsible for both quasiparticle recombination and energy
relaxation. Within the hydrodynamic approach, these processes contribute weak decay
terms to the continuity equations at local equilibrium, i.e., at the level of “ideal”
hydrodynamics. Here we report the derivation of the decay term due to weak violation
of energy conservation. Such terms have to be considered on equal footing with the well-
known recombination terms due to nonconservation of the number of particles in each
band. At high enough temperatures in the “hydrodynamic regime” supercollisions
dominate both types of the decay terms (as compared to the leading-order electron-
phonon interaction). We also discuss the contribution of supercollisions to the heat transfer
equation (generalizing the continuity equation for the energy density in viscous
hydrodynamics).
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1 INTRODUCTION

Electronic hydrodynamics is quickly growing into a mature field of condensed matter physics [1–3].
Similarly to the usual hydrodynamics [4, 5]; this approach offers a universal, long-wavelength
description of collective flows in interacting many-electron systems. As a macroscopic theory of
strongly interacting systems, hydrodynamics should appear to be extremely attractive for condensed
matter theorists dealing with problems where strong correlations invalidate simple theoretical
approaches. However, electrons in solids exist in the environment created by a crystal lattice and
typically experience collisions with lattice imperfections (or “disorder”) and lattice vibrations
(phonons). The former typically dominate electronic transport at low temperatures, while at
high temperatures the electron-phonon interaction takes over. In both cases the electron motion
is diffusive (unless the sample size is smaller than the mean free path in which case the motion is
ballistic) since in both types of scattering the electronic momentum is not conserved. On the other
hand, if a material would exist where the momentum-conserving electron-electron interaction would
dominate at least in some non-negligible temperature range, then one could be justified in neglecting
the momentum non-conserving processes and applying the hydrodynamic theory. In recent years,
several extremely pure materials became available with graphene being the most studied [1, 3].

In nearly neutral (or compensated) graphene the electron system is non-degenerate (at least
at relatively high temperatures where the hydrodynamic approach is justified) with both the
conductance and valence bands contributing on equal footing. Although the electron system is
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not Lorenz-invariant, the linearity of the Dirac spectrum plays an
important role. Firstly, the Auger processes are kinematically
suppressed leading to the near-conservation of the number of
particles in each band [2, 3, 6, 7]. Secondly, the so-called collinear
scattering singularity [7–14] allows for a non-perturbative
solution to the kinetic (Boltzmann) equation focusing on the
three hydrodynamic modes [13, 15, 16]. As a result, one can
determine the general form of the hydrodynamic equations and
evaluate the kinetic coefficients [16–18]. To be of any practical
value, the latter calculation has to be combined with the
renormalization group approach [19] since the effective
coupling constant in real graphene (either encapsulated or put
on a dielectric substrate) is not too small, αg ≈ 0.2 − 0.3 [20, 21].

Next to the conservation laws, the main assumption of the
hydrodynamic approach is local equilibrium [4, 22] established
by means of interparticle collisions. Neglecting all dissipative
processes, this allows (together with the conservation laws) for a
phenomenological derivation of hydrodynamic equations [4, 5]
that can be further supported by the kinetic theory, where the
local equilibrium distribution function nullifies the collision
integral in the Boltzmann equation [22]. The resulting ideal
hydrodynamics is described by the Euler equation and the
continuity equations. This is where the electronic fluid in
graphene differs from conventional fluids (both Galilean- and
Lorentz-invariant): as in any solid, conservation laws in graphene
are only approximate, leaving the collision integrals describing
scattering processes other than the electron-electron interaction
to be nonzero even in local equilibrium. This leads to the
appearance of weak decay terms in the continuity equations.

Two such terms have already been discussed in literature.
Firstly, even if the electron-electron interaction is the dominant
scattering process in the system, no solid is absolutely pure.
Consequently, even ultra-pure graphene samples possess
some degree of weak disorder. Disorder scattering violates
momentum conservation and hence a weak decay term must
appear in the generalized Euler equation [2, 3, 15, 16]. Secondly,
conservation of the number of particles in each band is violated
by a number of processes (e.g., the Auger and three-particle
scattering). Although commonly assumed to be weak, they are
manifested in the decay – or recombination – term in the
corresponding continuity equation. This was first established
in [6] in the context of thermoelectric phenomena (for the most
recent discussion see [23]). Later, quasiparticle recombination
was shown to lead to linear magnetoresistance in compensated
semimetals [24–27] as well as to giant magnetodrag [28, 29].

In this paper, we report the derivation of the third weak decay
term in the hydrodynamic theory in graphene due to weak
violation of energy conservation. Indeed, the electron-phonon
interaction may lead not only to the loss of electronic momentum
(responsible for electrical resistivity in most metals at high
temperatures), but also to the loss of energy. Although
subdominant in the hydrodynamic regime, the electron-
phonon interaction should be taken into account as one of the
dissipative processes. In graphene, the linearity of the Dirac
spectrum once again plays an important role: as the speed of
sound is much smaller than the electron velocity vg , leading-order
scattering on acoustic phonons is kinematically suppressed.

Consequently, scattering on the optical branch is usually
considered [30, 31]. In contrast, we argue that there is another
process, the disorder-assisted electron-phonon scattering [32] or
“supercollisions” [33–36], that is responsible for both
quasiparticle recombination and energy relaxation. In the
high-temperature hydrodynamic regime, supercollisions are
expected to dominate both decay contributions [32].
Moreover, this process contributes weak decay terms to the
continuity equations already at local equilibrium, i.e., at the
level of “ideal” hydrodynamics.

2 RESULTS

Our arguments are based on the kinetic theory approach to
electronic transport. In the spirit of [19], we assume the
possibility of deriving the hydrodynamic equations from the
kinetic equation in the weak coupling limit [16], αg ≪ 1, with
the subsequent renormalization of the kinetic coefficients to the
realistic parameter regime [17]. Under these assumptions, we
start with the kinetic equation

Lfλk � Stee[ fλk] + StR[ fλk] + Stdis[ fλk], (1a)

with the Liouville’s operator (in the left-hand side)

L � zt + v · ∇r + (eE + e
c
v × B) · ∇k, (1b)

and the collision integrals describing the electron-electron
interaction (Stee), disorder scattering (Stdis), and quasiparticle
recombination (StR), where in this paper we focus on
“supercollisions.” We employ the following notations for the
Dirac spectrum (the chirality λ � ± 1 distinguishes the conduction
and valence bands)

ελk � λvgk, (2a)

and velocities

vλk � λvg
k
k
, k � λk

vg
vλk � ελkvλk

v2g
. (2b)

Hydrodynamics is the macroscopic manifestation of the
conservation of energy, momentum, and the number of
particles. In a two-band system, the latter comprises
excitations in both bands. In the conductance band these are
electron-like quasiparticles with the number density (N � 4
reflects spin and valley degeneracy in graphene)

n+ � N ∫ d2k

(2π)2 f+,k, (3a)

while in the valence band the quasiparticles are hole-like

n− � N ∫ d2k

(2π)2 (1 − f−,k), (3b)

with the total “charge” (or “carrier”) density being

n � n+ − n−. (3c)
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Assuming the numbers of particles in the conduction and valence
bands are conserved independently, we can also define the total
quasiparticle (or “imbalance” [6]) density

nI � n+ + n−. (3d)

Global charge conservation (or gauge symmetry) can be expressed
in terms of the usual continuity equation. This can be obtained
from Eq. 1 by performing a summation over all quasiparticle states
upon which all three collision integrals vanish [22].

N ∫ d2k

(2π)2 Stee[fλk] � N ∫ d2k

(2π)2 StR[fλk] � N ∫ d2k

(2π)2 Stdis[fλk]
� 0.

(4a)

As a result, the continuity equation has the usual form

ztn + ∇r · j � 0, (4b)

where the corresponding current is defined as

j � j+ − j− � N ∫ d2k

(2π)2 [v+,kf+,k − v−,k(1 − f−,k)], (5)

The rest of the conservation laws in graphene are approximate as
manifested in the collision integrals not vanishing upon
corresponding summations. The continuity equation
expressing momentum conservation (i.e., the Euler equation)
is obtained by multiplying the kinetic equation by the
quasiparticle momentum k and summing over all states. Since
the electron-electron interaction conserves momentum, the
corresponding collision integral vanishes

N ∫ d2k

(2π)2 k Stee[fλk] � 0. (6)

Weak disorder scattering is typically described within the
simplest τ-approximation [22].

N ∫ d2k

(2π)2 k Stdis[fλk] �
nk

τdis
, (7)

where the momentum density is defined as

nk � N∑
λ

∫ d2k

(2π)2 kfλk � v−2g jE. (8)

The last equality reprsents the fact that in graphene the
momentum density is proportional to the energy density (due
to the properties of the Dirac spectrum Eq. 2).

Supercollisions contributing to the recombination collision
integral also violate momentum conservation, however, in
comparison to the above weak disorder scattering, this is a
second-order process. Moreover, the disorder mean free time
τdis is typically determined from experimental data (see e.g., [21])
and hence can be assumed to include the conribution of
supercollisions as well.

The remaining two continuity equations – energy and
quasiparticle imbalance – are unaffected by the electron-
electron interaction and weak disorder scattering. Indeed, the

electron-electron interaction conserves energy and – neglecting
the Auger processes – particle number in each band:

N ∫ d2k

(2π)2ελkStee[fλk] � N ∫ d2k

(2π)2 λ Stee[fλk] � 0. (9)

Same applies to the (Elastic) disorder scattering

N ∫ d2k

(2π)2ελkStdis[fλk] � N ∫ d2k

(2π)2 λ Stdis[fλk] � 0. (10)

However, supercollisions do not conserve both quantities and
hence lead to weak decay terms in the two continuity equations.
Contribution of the recombination collision integral to the
continuity equation for the quasiparticle imbalance (for
derivation see Section 4) is given by

N∑
k

λ StR[fλk] ≈ − μInI,0λQ ≈ − nI − nI,0

τR
. (11)

Here nI is the imbalance density (3d) in local equilibrium,
while nI,0 is the same quantity evaluated with the Fermi
distribution function (17), i.e. for μI � 0 and u � 0. The first
equality in Eq. 11 coincides with the expression used in [6] and
serves as the definition of the dimensionless coeficient λQ, while
the second (valid to the leading order) was suggested in [16, 24]
and provides the definition of the “recombination time” τR (see
also [23]. The two expressions are equivalent since nI − nI,0 ∝ μI .
The resulting continuity equation for the quasiparticle imbalance
has the form

ztnI + ∇r · jI � − nI − nI,0

τR
, jI � j+ + j−. (12)

The same scattering process contributes a weak decay term to
the continuity equation for the energy density. Defining the decay
coefficients similarly to Eq. 11, we may present the result in the
form

N∑
k

ελkStR[fλk] � −μInE,0λQE ≈ − nE − nE,0

τRE
. (13)

Here the equivalence of the two forms of the decay term stems
from the fact that nE − nE,0 ∝ μI assuming the electrons and holes
are characterized by the same temperature.

Finally, once the dissipative processes due to electron-electron
interaction are taken into account, one usually replaces the
continuity equation for the energy density by the equivalent
equation for the entropy density, the so-called “heat transfer
equation” [4] (for derivation see Section 4; here δj and δjI are the
dissipative corrections to the electric and imbalance currents,
respectively)

T[zs
zt
+∇r ·(su−δj μT −δjI

μI
T
)]�

� δj ·[eE+ e
c
u×B−T∇ μ

T
]−TδjI ·∇μIT +η

2
(∇αuβ +∇βuα −δαβ∇ ·u)2

−nE −nE,0
τRE

+μI
nI −nI,0

τR
+u ·nk

τdis
.

(14)
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The obtained heat transfer equation is the final hydrodynamic
equation in graphene. Together with the generalized Navier-
Stokes equation derived in [16] and the continuity equation
Eqs. 4b and 12, the heat transfer equation forms a complete
set of macroscopic equations describing electronic transport in
graphene in hydrodynamic regime.

3 DISCUSSION

Supercollisions are not the only scattering process contributing to
both quasiparticle recombination and energy relaxation. Clearly,
direct (not impurity-assisted) electron-phonon interaction
contributes to energy relaxation as well as to quasiparticle
recombination (in the case of intervalley scattering) [6, 13, 14,
29, 32]. In addition, optical phonons may also contribute [30, 31],
although within the hydrodynamic approach these contributions
were discussed only at the level of dissipative (viscous)
hydrodynamics [31]. The contribution of the direct [37, 38]
and impurity assisted electron-phonon scattering to energy
relaxation was compared in [32], where it was argued that at
high enough temperatures, TaTBG (where TBG is the Bloch-
Grüneisen temperature) the supercollisions do dominate. In the
degenerate regime, where TBG ∝

��
n

√
, Ref. [32] estimates TBG as

“few tens of Kelvin”. At charge neutrality, we estimate TBG �
(s/vg)T≪T (where s is the speed of sound), such that
supercollisions always dominate over direct electron-phonon
coupling. Moreover, taking into account the additional
scattering processes will not change the form of the decay
terms (11) and (13), but rather change the numerical values of
the parameters λQ and λQE, which may have to be considered
phenomenological while interpreting experimental data [29].

At charge neutrality and in the hydrodynamic regime, the
coefficients λQ and λQE are of the same order of magnitude (both
are dominated by the same supercollisions), but quantitatively
different. Indeed, the continuity equation for the energy
density should contain one more contribution of the similar
form. “Quasiparticle recombination” typically refers to
scatering between the quasipartricle states in different bands
only. This is the only type of supercollisions contributing to λQ.
Similar supercollisions may also take place within a single
band [32]. While this process does not change the number of
particles in the band, it does describe the energy loss as the
electron may scatter from the higher energy state into the
lower energy state (and losing its momentum to the impurity
along the way). Consequently, this additional process does
contribute to energy relaxation. Given that the form of the
corresponding collision integral is very similar to Eq. 15 – one
only has to change to band indices to be the same – the algebra
remains the same and thus we can treat Eq. 13 as the final
result that takes this additional intraband supercollisions
into account making the numerical values of λQ and λQE
substantially different – we do not expect any accidental
cancellation or smallness should the difference λQ − λQE
appear in a particular solution of hydrodynamic equations. At
the same time, at low temperatures – i.e., below the hydrodynamic
range – we expect the coefficients λQ and λQE to be parametrically

different: energy relaxation is now dominated by the direct
electron-phonon interaction [32]; while the recombination is
still governed by supercollisions (together with the phonon-
induced intervalley scattering).

The order of magnitude of τR could be estimated based on the
calculations of [32]. Adapting the latter to charge neutrality, we
find τ−1R ∼ D2T2/(ρs2v2g ) (where D ≈ 20 eV is the deformation
potential [37, 38] and ρ is the mass density per unit area) yielding
the corresponding length scale ℓ

−1
R ≈ 10 μm at the top of the

hydrodynamic temperature range, T ≈ 250 K. This should be
further compared to the contribution of three-particle collisions
[3, 31], τ−13 ∼ α4gT . Assuming the common sample design where
graphene is encapsulated in hexagonal boron nitride (with the
dielectric constant ϵ ≈ 4), the effective coupling constant (taking
into account renormalizations) is αg ≈ 0.3 − 0.4 leading to the
similar estimate at high temperatures. On the other hand, at the
low end of the hydrodynamic range [39], T ≈ 50 K, the
contribution of the three-body collisions should dominate
(accounting for the empirical value ℓR ≈ 1.2 μm reported in
[29], however preserving the functional form of the weak
decay terms in the continuity equations.

The obtained Eq. 2 should be compared to the corresponding
equations in [3, 6, 31], where energy relaxation due to
supercollisions was not taken into account. All other terms are
present in all four equations with the following exceptions. The
Eq. 54 of [3] is written in the relativistic notation omitting the
imbalance mode, quasiparticle recombination, and disorder
scattering, all of which are discussed separately elsewhere in
[3]. Ref. [6] was the first to focus on the imbalance mode with
the Eq. 2.6 containing all the terms of Eq. 2 except for the viscous
term (and energy relaxation). Finally, the Eq. 1c of [31] contains
all of the terms in Eq. 2 except for energy relaxation and in
addition contains a term describing energy relaxation due to
electrons scattering on the optical phonon branch that is
neglected here (generalization of the resulting theory is
straightforward).

To summarize, we have considered supercollisions as a
mechanism of quasiparticle recombination and energy
relaxation in graphene and derived the corresponding decay
terms in the hydrodynamic continuity equations. Since the
same scattering mechanism is responsible for both effects, one
has to take into account energy relaxation while considering
quasiparticle recombination. The latter is an indespensible
feature of electronic hydrodynamics in graphene in
constrained geometries, where homogenious solutions violate
the boundary conditions [24].

4 MATERIALS AND METHODS

4.1 Collision Integral due to Supercollisions
An electron in the upper (conductance) band may scatter into an
empty state in the lower (valence) band – effectively recombining
with a hole – emitting a phonon (which carries away the energy)
and losing its momentum to the impurity. Within the standard
approach to the electron-phonon interaction, this process is
described by the collision integral
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StR[f+k2] � 2π∑
k1 ,q

Wqδ(ε+k2 − ε−k1 − ωq)[f−k1(1 − f+k2)nq
− f+k2(1 − f−k1)(1 + nq)], (15a)

where nq is the phonon (Plank’s) distribution function (the
phonons are assumed to be at equilibrium and play the role of
a “bath”),Wq is the effective scattering rate that includes the Dirac
factors and is averaged over the angles [32].

Similarly, an electron in the lower band may absorb a phonon
and scatter into the upper band – effectively creating an electron-
hole pair – while still losing its momentum to the impurity

StR[f−k2] � 2π∑
k1 ,q

Wqδ(ε+k1 − ε−k2 − ωq)[f+k1(1 − f−k2)(1 + nq)
− f−k2(1 − f+k1)nq].

(15b)

The collision Integral (14) conserves the total charge

N∑
k

StR[fλk] � N∑
k2

(StR[f+k2] + StR[f−k2]) � 0, (15c)

(see Eq. 4) and vanishes in global equilibrium

StR[f (0)] � 0, (15d)

where the quasiparticle distribution is described by the Fermi
function. This should be contrasted with local equilibrium
described by

f (le)λk � {1 + exp[ελk − μλ(r) − u(r) · k
T(r) ]}

− 1

, (16)

where μλ(r) is the local chemical potential and u(r) is the
hydrodynamic (or “drift”) velocity. The local equilibrium
distribution function (16) allows for independent chemical
potentials in the two bands, which can be expressed in terms
of the “thermodynamic” and “imbalance” chemical potentials

μλ � μ + λμI . (17)

In global equilibrium

f (0) � f (le)λk (μI � 0, u � 0). (18)

Now we show, that in local equilibrium, i.e. for nonzero μI , the
recombination collision integral remains finite (unlike Eq. 14d).
As a scalar quantity, the collision integral (15) cannot depend on
the hydrodynamic velocity u in the first (linear) order.
Consequently, to the leading order the integrated collision
integral yielding the decay terms in the continuity equations is
proportional to μI .

4.2 Derivation of the Weak Decay Terms in
Continuity Equations
To the leading order, we can describe the difference between
the local equilibrium distribution function f (le)λk and the Fermi
function f (0) similarly to the leading non-equilibrium correction
in the standard derivation of hydrodynamics [22].

δf � fλk − f (0) � −T zf (0)

zε
h � f (0)(1 − f (0))h. (19)

Now we re-write the collision integral (14) with the help of the
relations

f1(1 − f2)(1 + nq) − f2(1 − f1)nq � (1 − f1)(1 − f2)(1 + nq)
[ f1
1 − f1

nq

1 + nq
− f2
1 − f2

],
and

f (0)2 (1 − f (0)1 )(1 + nq) � −znq

zω
(f (0)2 − f (0)1 ),

and find (to the leading order in h)

StR[f+k2] � −2π∑
k1 ,q

Wqδ(ε+k2 − ε−k1 − ωq) znq
zω

(f (0)+k2 − f (0)−k1 )(h−k1 − h+k2),
(20a)

StR[f−k2] � 2π∑
k1 ,q

Wqδ(ε−k2 − ε+k1 + ωq) znq
zω

(f (0)+k1 − f (0)−k2 )(h−k2 − h+k1).
(20b)

Consider now the contribution of the recombination
collision integral to the continuity equation for the quasipar-
ticle imbalance

N∑
k

λ StR[fλk] � N∑
k2

(StR[f+k2] − StR[f−k2]) �

� −4πN ∑
k1 ,k2 ,q

Wqδ(ε+k2 − ε−k1 − ωq) znq
zω

(f (0)+k2 − f (0)−k1 )(h−k1 − h+k2).
(21)

To the leading order, the deviation hλk is proportional to μI

hλk ≈
λμI
T
. (22)

The remaining integral has dimensions of particle density
divided by time and therefore the result can be written in the
form Eq. 11. The same scattering process contributes a weak
decay term to the continuity equation for the energy density.
Indeed, multiplying the collision integral Eq. 15 by the
quasiparticle energy and summing over all states, we find
after similar algebra

N∑
k

ελkStR[fλk] � N∑
k2

(ε+k2StR[f+k2] + ε−k2StR[f−k2])∑
k

�

� −2πN∑
k2 ,q

Wqδ(ε+k2 − ε−k1 − ωq) zn
(0)
q

zω
ωq(f (0)+k2 − f (0)−k1 )(h−k1 − h+k2).

Defining the decay coefficients similarly to Eq. 11 above, we may
present the result in the form Eq. 13.

4.3 Derivation of the Heat Transfer Equation
The entropy density of a system of fermions is defined in terms of
the distribution function as
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s � −N∑
λ

∫ d2k

(2π)2 [ fλk ln fλk + (1 − fλk)ln(1 − fλk)]. (23)

Treating this integral as

s � N∑
λ

∫ d2k

(2π)2 S[ fλk],
any derivative of s can be represented in the form

zs
zz

� N∑
λ

∫ d2k

(2π)2
zS[ fλk]
zfλk

zfλk
zz

.

Consider now each term of the kinetic equation multiplied
by the derivative zS[fλk]/zfλk and summed over all states.
Using the above relation with z→ t, one finds for the time
derivative term

N∑
λ

∫ d2k

(2π)2
zS[ fλk]
zfλk

zfλk
zt

� zs
zt
.

The gradient term yields similarly

N∑
λ

∫ d2k

(2π)2
zS[fλk]
zfλk

vλk · ∇rfλk � ∇r · N∑
λ

∫  d2k

(2π)2vλkS[ fλk]
� ∇r · jS,

where the quantity

jS � N∑
λ

∫ d2k

(2π)2vλkS[ fλk], (24)

can be interpreted as the entropy current.The electric field term
vanishes as the total derivative

eE · N∑
λ

∫ d2k

(2π)2
zS[ fλk]
zfλk

∇kfλk � eE · N∑
λ

∫ d2k

(2π)2∇kS[ fλk] � 0,

while the Lorentz term vanishes for rotationally invariant systems
upon integrating by parts [justified by the fact that
S(k→∞)→ 0]

e
c
N∑

λ

∫ d2k

(2π)2
zS[ fλk]
zfλk

[vλk × B] · ∇kfλk �

� e
c
N∑

λ

∫ d2k

(2π)2 [vλk × B] · ∇kS[ fλk]
� −e

c
N∑

λ

∫ d2k

(2π)2 S[ fλk]∇k · [vλk × B] � 0.

The last equality follows from

zvαλk
zkβ

� vg
λk

(δαβ − kαkβ

k2
).

Similar approach was used in [16] to derive the continuity
equations (as outlined above). Combining all four terms, we
conclude that integration with the factor zS[ fλk]/zfλk turns the
left-hand side of the kinetic equation to the familiar form

N∑
λ

∫ d2k

(2π)2
zS[ fλk]
zfλk

Lfλk � zs
zt

+ ∇r · jS. (25)

Equation 25 is valid for an arbitrary distribution function.
Denoting the integral of the right-hand side of the kinetic

equation by

I � N∑
λ

∫ d2k

(2π)2
zS[fλk]
zfλk

(Stee[f ] + StR[f ] + Stdis[f ]), (26)

we arrive at the “continuity equation for the entropy”

zs
zt

+ ∇r · jS � I . (27)

In the usual hydrodynamics [4] the only contribution to
the collision integral is given by particle-particle scattering,
i.e. the processes assumed to be responsible for establishing
local equilibrium such that at I � 0 the ideal (Euler)
hydrodynamic is isentropic. In the present case, local
equilbrium is assumed to be achieved by means of the
electron-electron interaction. Evaluating the derivative of S
explicitly, we find

zS[fλk]
zfλk

� −ln fλk
1 − fλk

� ln[ 1
fλk

− 1].
For the Local Equilibrium Distribution Function

zS[fλk]
zfλk

� ελk − μλ − u · k
T

.

Substituting this expression into Eq. 26, we find that the
remaining integration is very similar to the above
derivation of the continuity equations. The integral with
the quasiparticle energy yields exactly the above Eq. 13.
The integral with λμI yields Eq. 11 multiplied by μI .
Finally, the term u · k yields Eq. 7 multiplied by the
hydrodynamic velocity. The integral of this term with the
recombination collision integral is assumed to be included
into the definition of the mean free time, see the
corresponding discussion above. As a result, we arrive at
the following form of the intergated collision integral

I � − 1
T
nE − nE,0

τRE
+ μI
T

nI − nI,0

τR
+ u · nk

Tτdis
.

The decay terms in Eq. 14 appear already at local
equilibrium. To complete the heat transfer equation one
has to take into account disispation. In graphene, this is
most conveniently done by considering the classical limit of
relativistic hydrodynamics since the form of dissipative
corrections is determined by the symmetries of the
quasiparticle spectrum. The result has been already
reported in literature, therefore we combine the dissipative
corrections with Eq. 14 and write the heat transfer equation
in graphene in the form Eq. 14.
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